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Abstract. In this paper we present a systematic method for
generating simulations of nonstationary EEG. Such simula-
tions are needed, for example, in the evaluation of track-
ing algorithms. First a state evolution process is simulated.
The states are initially represented as segments of stationary
autoregressive processes which are described with the cor-
responding predictor coefficients and prediction error vari-
ances. These parameters are then concatenated to give a
piecewise time-invariant parameter evolution. The evolution
is projected onto an appropriately selected set of smoothly
time-varying functions. This projection is used to generate
the final EEG simulation. As an example we use this method
to simulate the EEG of a drowsy rat. This EEG can be
described as toggling between two states that differ in the
degree of synchronization of the activity-inducing neuron
clusters.

1 Introduction

In a real-world setting we are hardly ever able to assess the
performance of a method by just applying it to observed data
(a sample). In many cases a method to be tested is compared
with a previos method that is assumed to give the correct
answers and thus serves as a reference. In the estimation of
properties of stationary processes we have several methods
with which we can obtain consistent estimates if the pro-
cess is ergodic. In this case the time averages can be used
to estimate the ensemble averages (Papoulis 1984). We can
then make our estimates more accurate by using more data
to calculate them. The accurate estimates can subsequently
serve as references against which the methods to be tested
are compared.

In the case of nonstationary processes we often cannot
use time averages. In order to estimate a property of the
process at a time instant we have, in the strict sense, just
one point of the sample to build our estimate on. To get
over this problem the assumption of slow time variation is
often adopted. This gives us the possibility of using, foe
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example, adaptive segmentation which will chop the sample
into quasi-stationary (almost stationary) epochs to which we
would then apply methods that are intended to be used with
samples from ergodic processes (Bodenstein and Praetorius
1977; Ishii et al. 1979). The applicability of this approach
depends heavily on the rate of time variation, the criteria
on which the segmentation is based and the correctness, or
rather the adequacy, of the time series model.

There are cases in which the time variation is so rapid
that the process cannot be approximated with a concatenation
of stationary epochs. The durations of the quasi-stationary
segments would then be too short to enable adequate esti-
mates. This applies to both estimation and simulation of such
processes. On the other hand, we cannot allow for a time
variation that is totally ‘unpredictable’. This would mean
that if we have obtained a sample of the process and aim
to estimate its time-varying characteristics, the model may
have, loosely speaking, more degrees of freedom than the
sample the estimates are based on (Gersch 1991).

If we can make an assumption ofsmoothnessof the
time variation we can still obtain meaningful estimates and
at the same time allow reasonably rapid changes of process
characteristics. This follows from the fact that one can have
a smooth sequence of parameters describing a process, i.e. a
sequence with small second differences, that has large first
differences. This means that the parameter rate of change
does not have to be small. This applies also to the building
of models for time-varying processes and the use of these
models in the generation of simulations of these processes.

1.1 Simulation of EEG with autoregressive models

The autoregressive (AR) process model was first applied to
the EEG by Zetterberg (1969), Fenwick (1969) and Gersch
(1970). Since that time the AR model has been applied to
the EEG in at least 160 journal articles (Kaipio 1996). The
applicability of AR models to the EEG has usually been ver-
ified only experimentally, but recently there has been some
interest get in the theoretical justification of this (Steinberg
et al. 1985; Wright et al. 1990; Blinowska and Malinowski
1991). AR models have been used in a wide collection of
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tasks concerning the EEG, including spectral analysis, clas-
sification of brain states, detection of transients, prediction
of epileptic seizures and the simulation of the EEG.

The simulation of EEG using an AR model was sug-
gested early in the 1970s (Fenwick et al. 1971; Wennberg
and Zetterberg 1971; Zetterberg 1973). Simulations of time-
varying AR processes were used by Wennberg and Isaakson
(1976) to test the modeling and tracking capabilities of the
Kalman filter. The aim in this paper was to assess the appli-
cability of the Kalman filter to the estimation of the time-
varying EEG, and the simulations were made to approxi-
mate the classical band structure of the EEG. The authors
used an approximate factorization of AR model to first- and
second-order spectral factors (Zetterberg 1969) which have
been shown to correspond to the classical bands of the EEG.
To produce time-varying simulations they let the parameters
of these factors, i.e. the power, bandwidth and center fre-
quency, be time-varying. They did not, however, discuss
how the time variability should be systematically imple-
mented to produce simulations that would exhibit the time-
varying characteristics of the EEG. In addition, the classical
band structure of the EEG does not always apply, especially
when the EEG exhibits at least partly chaotic characteris-
tics. They also discussed the use of simulations to aid in the
recognition of certain spectral parameters of the model using
visual inspection (Isaksson 1975).

1.2 Motivation and overview of the method

In this paper we suggest a systematic method which can be
used to generate simulations of a time-varying EEG. The
main motivation of this method is to provide researchers
with realistic time-varying EEG simulations. Such simula-
tions are of great importance when the performance of, for
example, segmenting and tracking algorithms is to be evalu-
ated objectively. This requires that the true properties of the
process are known exactly. Also, it may be the case that one
has not enough real EEG data to achieve sufficiently reliable
evaluation results. Then the only possibility may be to rely
on simulations that are based on the available EEG but are
otherwise statistically independent of the observed EEG.

In the first step the existing EEG data are divided, for
example, with visual inspection into segments that are then
classified. These classes might correspond, for example, to
the sleep stages. For each segment the AR model parame-
ters, that is, the prediction coefficients and prediction error
variances, are calculated and for each class the mean and the
covariance matrix of these parameters are calculated. In this
paper it is assumed that the joint distribution of these param-
eters can be approximated by the normal distribution. The
class evolution is then estimated by, for example, Markov
models or (in two-class situations) by estimating the prob-
ability distributions of segment (epoch) durations for each
class.

In the second step the simulation of the EEG is gener-
ated. A piecewise constant parameter evolution is formed
first for each predictor coefficient and the prediction error
variance separately. The durations of constant segments (or
state transition times) are drawn from the corresponding es-
timated distribution. The predictor coefficients and the pre-

diction error variances are drawn from the corresponding
joint distributions using the estimated means and covari-
ances. This is done for each segment independently.

In the next step the piecewise constant parameter evolu-
tions are smoothed by projecting them onto set of smoothly
time-varying functions. Finally these projections are used as
parameters of a time-varying filter with which the simulated
EEG is generated.

The proposed method has been used by the authors
to evaluate the performance of a root tracking algorithm
(Patom̈aki et al. 1995) and a modified time-varying autore-
gressive least squares algorithm (Kaipio and Karjalainen
1995).

2 Estimation and simulation of the state evolution and
class representers

We assume that the time-varying EEG can be approximated
with a progression of statessj , j = 1, . . . , each of which is
a member of a classCk, k = 1, . . . ,K. There are several
methods with which one can estimate such a class evolu-
tion if the (probabilistic) description is not known a priori.
One such a method is to model the class evolution as a
Markov model and estimate the parameters of the model.
This model can then be used to simulate the class evolution.
The state are then drawn from the respective distributions
in the order that the class evolution dictates. The estimation
of a continuous-time Markov model and the simulation of
sleep EEG class evolution (hypnogram) has been discussed
in Kemp and Kamphuisen (1986). In addition to the class
evolution the model should produce the durationsTj of the
states.

We assume that within these states the process can be
approximated with an AR(p) process. For the selection of
an appropriate orderp in different situations, see Vaz et al.
(1987). The final selection ofp should be the maximum
of the adequate orders of all classes. We also assume that
within each state the coefficientsφji , i = 1, . . . , p of the
predictor and the prediction error varianceγj corresponding
to the AR(p) model are drawn from the density that can be
approximated with ap + 1-dimensional normal distribution.
Each class has its own distribution. We call the vectorθj =
(φj1, . . . , φ

j
p, γj)

′, where the prime denotes transposition, a
representer of the statesj . We will further assume that the
representer of the statesj is independent of the representers
of the statess` for all j /= ` if the class to whichsj belongs
is known.

The assumption of approximate normality of represen-
ters implies that we only need to estimate the means and
covariances ofθk for each classCk to be able to gener-
ate representers. If the means and covariances ofθk are not
known, they can be estimated from segmented and classified
EEG data by, for example, using any preferred method to
calculate the parameters of the AR(p) model and the asso-
ciated residual error variance for each segment. One such
method is the modified covariance method (Marple 1980).
This can be usedin lieu of the predictor coefficients and the
prediction error variances. Let there benk > p estimateŝθk

for θk. Estimates for the mean̂µk and covariancêCk of θ̂k

can then be obtained as



351

µ̂k = n−1
k

nk∑
i=1

θ̂ki (1)

Ĉk = (nk − 1)−1
nk∑
i=1

(θ̂ki − µ̂k)(θ̂ki − µ̂k)′ (2)

We can now generate representers from the thus estimated
p + 1-variate normal distributions

fk(θ) = (2π)−p/2|Ĉk|−p/2 exp
(
−(θ − µ̂k)′Ĉ−1

k (θ − µ̂k)
)

(3)

where |Ĉk| denotes the determinant of thêCk, as follows:
Generate ap + 1-vectorg of independent normal variables
with zero mean and unit variance. Then the variablesθ =
Lkg + µ̂k are distributed asfk(θ), whereĈk = L′kLk is the
Cholesky decomposition of thêCk (Papoulis 1984).

If the representers have been estimated from relatively
short segments, the covarianceŝCk may include a non-
negligible contribution that is due to the small sample esti-
mate properties. In such a case we can reduce the variances
of the classes simply by dividing the covariance matrices by
a number that is greater than unity. While this method is not
the correct way to diminish the small sample contribution,
it maintains the eigenvector structure ofĈk and only dimin-
ishes the eigenvalues. This means that the only result of this
operation is that the deviances of the simulatedθk values
from the meanŝµk will be smaller. This will also decrease
the possibility of obtaining a temporarily unstable model.

An AR(p) model is stable if and only if the rootszi, i =
1, . . . , p of the polynomial

X(z, φ) = 1−
p∑
i=1

φiz
−i (4)

fulfill |zi| < 1 for all t. For some classes the roots ofX(z, φ)
with φi = µi, i = 1, . . . , p may have almost unit modulus or
the covariance may be large, which means that the proba-
bility of obtaining an unstable representer is non-negligible.
This is why the stability of each representer should be veri-
fied by calculating the roots of the polynomial. All roots with
modulus greater than or equal to unity should be transferred
to lie inside the unit circle and the predictor reassembled.
This can be done by factoring the polynomial to (complex)
roots and multiplying each unstable rootzi by |zi|−2. This
operation will approximately restore the shape of the spec-
trum in most practical cases (Ljung 1988, subroutine fstab).

3 Generation of the time-varying AR process

We will discuss first two types of direct concatenation that
are not feasible for generating time-varying simulations and
how this unfeasibility can be overcome. Then we discuss the
details of the method that was briefly described at the end
of Sect. 1.

3.1 Direct concatenation

The majority of time series methods that are designed to
track the characteristics of time-varying processes are based

on either direct or indirect minimization of the prediction
(residual) error (Ljung 1987). It is thus desirable that the
optimal predictor of the simulation behaves in such a way
that it makes sense to compare the estimated model with it.
For example, if the coefficientsbk(t) of the optimal predictor
will decay relatively fast, we would use as the definition of
time-varying spectral density (Gersch 1991)

P (ω, t) =
σ2
e(t)

|1−∑∞
k=1 bk(t) exp(−iωkT )|2

(5)

There are two trivial ways to use concatenation to gen-
erate simulations of nonstationary processes which are not
directly usable. The first is to generate stationary segments
separately and then concatenate them directly. There are two
major problems with this kind of simulation. In this case
we actually have a nonoverlapping sum of independent pro-
cesses. Letx(t) be the process with zero mean for allt and
t∗ be the first instant of a new segment. Then, irrespective
of the values at timet∗−1, the correlation ofx(t∗) with the
entire history ofx(t) is zero, the predictor forx(t∗) is zero
and the spectrum estimateP (ω, t∗) = σ2

e(t∗). This is clearly
not desirable.

At the neuronal level this kind of sudden change in pro-
cess characteristics would correspond to a situation where
one activity-inducing neuron cluster shuts down abruptly and
at the same time another cluster achieves its full effect. This
is a totally unrealistic situation.

The second type of concatenation involves the concate-
nation of the parametric representations of the segments.
This concatenation could then be used as a time-varying
filter with abrupt filter coefficient changes at the segment
borders. As above, this kind of change would correspond to
an unrealistic abrupt change in the physical and chemical
state of the neuron cluster. In addition, it turns out that the
calculation of the optimal predictor is problematic.

For this reason we have chosen to build a smoothly
changing parametric representation for the process. We use a
time-varying AR(p) model as the representation and generate
the simulations by feeding white noise to the corresponding
filter. If the coefficients of the model do not change very
much during the correlation time of the process, the optimal
predictor is approximately equal to the coefficients of the
AR(p) at each time. Thus the reference against which the
estimates are compared is directly accessible.

3.2 The generation of smooth parameter evolution

We start from a sequence of representers (predictor coeffi-
cients and prediction error variancesφkj , j = 1, . . . , p andγk,
respectively) which are the result of the simulated state evo-
lution as described above. Let the corresponding sequence
of the segments durations beTk, k = 1, . . .. We call the
concatenate of the segments ablock, which is of length
T =

∑
Tk. First we build the coefficient matrixΦc of piece-

wise constant parameter evolution
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Φc =



φ1
1 φ

1
2 · · · φ1

p
...

...
φ1

1 φ
1
2 · · · φ1

p

T1

φ2
1 φ

2
2 · · · φ2

p
...

...
φ2

1 φ
2
2 · · · φ2

p

T2

φ3
1 φ

3
2 · · · φ3

p
...

...

...


= [Φc

1 Φ
c
2 . . . Φc

p] (6)

ThusΦc contains in its columnsΦc
i the stepwise constant pa-

rameter evolutions of each predictor coefficient. The length
of each constant segment isTk, so that the full row dimen-
sion ofΦc is T . The column dimension is the orderp of the
AR model.

The next step is to smooth each individual parameter
evolution Φc

j . This can be done by assuming that each of
them is a linear combination of some fixed set ofM linearly
independent smooth functionsϕi, i = 1, . . . ,M of duration
(length)T . The selection of such functions is discussed later.
We call the setϕi a basis, since it obviously is a basis of an
M -dimensional subspace of theT -dimensional space of all
possible one-parameter evolutions. We now collect the basis
vectorsϕi to matrixS = [ϕ1, . . . , ϕM ] of sizeT ×M . Now,
because we assumed that the smoothed parameter evolutions
Φj are linear combinations ofϕi, they are of the form

Φj = Scj , (7)

where cj is a M × 1 vector. It is well known that if we
want theΦj vectors to be the best approximations for theΦc

i
vectors in the least squares sense, the vectorcj of coefficients
can be calculated from

cj = (S′S)−1S′Φc
j (8)

and we haveΦj = S(S′S)−1S′Φc
j (Lawson and Hanson 1995).

Thus the smoothed parameter vectors are the orthogonal pro-
jections ofΦc

j to subspaceSs spanned by the columns of
S. The projection can be performed simultaneously for all
j = 1, . . . , p giving

Φ = S(S′S)−1S′Φc = SC (9)

whereC = [c1, . . . , cp] is a M × p coefficient matrix. The
columns ofΦ are now the smoothed predictor coefficients
Φj that are of the form

Φj = Φj(t) = Scj =
M∑
i=1

ϕi(t)cji , (10)

where timet now refers to the row index of the vectorsΦj
and ϕi. To complete the specification we need the corre-
spondingly smoothed evolution of the prediction error vari-
ance. As above, concatenateγi to give

Γ c = (
T1︷ ︸︸ ︷

γ1, . . . , γ1,

T2︷ ︸︸ ︷
γ2, . . . , γ2, γ3, . . .)

′ (11)

Then using the same basis we obtain

Γ = S(S′S)−1S′Γ c (12)

The matrixΦ and the vectorΓ now contain all information
about the temporal variations of the EEG simulation to be
generated.

Next we generate a white noise sequence of zero mean
and unit variancee(t), t = 1, . . . , T . The simulated EEG
sequence is then obtained by filteringe(t) with the time
varying filter defined byΦ andΓ :

x(t) =
p∑
j=1

Φj(t)x(t− j) +
√
Γ (t)e(t) . (13)

Due to the highly nonlinear mapping of polynomial co-
efficients to the roots, it would be very burdensome to add
the stability condition|zk(t)| < 1 to the projection as a
constraint in the least squares problem corresponding to the
projection. This constrained least squares problem can be
expressed as

min
Φ
{‖Φ− Φc‖, Φj ∈ Ss ∀j, |zk(t)| < 1 ∀k, t} (14)

Since Φ tends to overshoot the stationary representers in
parameter space, it is probable that in some cases the roots
zk(t) will be temporarily unstable. This is, however, not a
problem if the overshoot and its extent in time are not large
since in this casex(t) does not diverge much.

3.3 The choice of basis forSs

It is usually necessary to include the constant basis as one of
the functions so that the stationary case falls into this setting
as a special case whatever the basis. For convenience we
will thus assume thatϕ1 ≡ 1. See Kaipio and Karjalainen
(1995) for an example where this is not the case.

The basis function selection has been discussed in the lit-
erature concerning time-varying AR modeling; for a review
see Gersch (1987). The problem of estimating an optimal
time-varying AR (TVAR) model can be viewed to be the
inverse to the problem of generating simulations. In TVAR
modeling the parameter evolution is estimated from an EEG
sample and is constrained so that each parameter process is
in Ss.

The basis functions suggested to be used in conjunc-
tion with TVAR models include general polynomial, Fourier,
Haar, Legendre, spline and prolate spheroidal wave bases.
With the exception of the Haar basis, which is a block pulse
basis, the suggested bases are able to model smooth changes
in the parameter evolution. This ability is dependent on the
choice of basis and the parameters concerning it – the di-
mension ofSs in particular.

The problem with these bases is that they are global
within the block, so that a small change anywhere in the
block induces changes that extend throughout the block.
This is obviously not desirable. We wish to maintain the
local nature of the basis and simultaneously obtain a smooth
parameter evolution.

We have chosen to use a basis consisting of shifted and
time-scaled Gaussian functionsϕi(t):

ϕi(t) = exp
(−(t− ti)

2/d2
i

)
, i = 2, . . . ,M (15)

Obviously there can be no fixed general choice forM ,
ti or di that would be optimal in some sense. The choice
of these parameters depends heavily on the underlying situ-
ation and the demands. In the case of simulation the feasi-
ble parameters depend on the number and durations of the
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stationary segments, or more generally, the distributions of
these.

According to our experience the Gaussian basis fulfills
the requirements of locality and smoothness of evolution
with relatively simple selection rules ofM , ti or di for a
wide class of evolutions. The trivial choice forti and di
is such that the half-widths ofϕi(t) will exactly cover the
length of the block. This leads toti = (i − 1)T/(M − 1),
2Mdi = T , whereT is the length of the block. The selection
of M is yet left open. If the block consists ofD segments of
lengthL each, thenT = DL and we could chooseM = D+1.
This selection leads to projections that are smooth but tend to
overshoot the design classes heavily in the parameter space.

We have found that the selection

M ≈ 6D (16)

di ≈ 3T/M (17)

ti = (i− 1)T (M − 1) (18)

will produce reasonable projections if the segment length
distribution is not very wide.

3.4 Other methods
of obtaining a smooth parameter evolution

Naturally it is possible to tailor the bases individually to fol-
low the state evolution and just to smooth the transients of
the parameter evolution. One way to implement this indi-
rectly is to use the sigmoidal basis. An example of a sig-
moidal type basis function is

ϕi(t) = (1 + exp(−c(t− ti)))
−1 (19)

whereti are selected to coincide with the segment borders
andc is adjusted to give the desired rise times.

It is also easy to buildΦc and then filter the columns
with a (noncausal) zero-phase low-pass filter. Just as with
the sigmoidal basis this will, however, lead to a situation
where the simulation would be a concatenate of stationary
and transition regions which is usually not very realistic.

In addition, it has been shown that the tracking capabil-
ity of adaptive estimators depends on the type of evolution
of the parameters (Benveniste et al. 1990). If the parameters
were to be time-invariant for a long period of time, the es-
timators could perform markedly better with the simulation
than with the real EEG data.

In principle it is possible to realize the parameter evolu-
tion as a multivariable AR process. For many situtions this
could be assumed to be a feasible model for parameter evo-
lution. In time-varying AR estimation (tracking) the use of
a Kalman filter would yield such a multidimensional param-
eter process estimate (Isaksson 1975; Ishii et al. 1980). The
probability density function of the parameters is, however,
very difficult to control so that the model remains stable at
all times. If the parameter processes are forced to the stabil-
ity region after generation, the smoothness exhibited by, for
example, a second-order low-pass type of AR process is dif-
ficult to maintain. The testing for stability must be carried
out for each time, which would be very burdensome with
long simulations.

0 500 1000 1500 2000 2500 3000

Fig. 1. The maximum likelihood estimatesg1(T ) = g(T ; 4, 0.006) and
g2(T ) = g(T ; 7, 0.013) of the segment duration densities for classes 1 (con-
tinuous line) and 2 (dashed line)

4 An example

As an example of the use of the proposed method we sim-
ulate the EEG (electrocorticogram) of a drowsy rat. This
was chosen for the sake of simplicity since this EEG can be
approximated as a process that toggles between states that
belong to two classes only. The amount of data on which
the statistics we give here are based on, is far too small to
enable any true inference. The main point of this example
is to illustrate the steps of the proposed method in detail.

4.1 The state evolution

The data were visually classified into two classes. As an aid
in the classification the spectrum estimates and root loca-
tions of the modified covariance estimates of AR(6) model
(Marple 1980) were used.

The exponential distribution induced by the Markov
model did not fit the experimental segment duration dis-
tribution of either class. We adopted another model for the
class evolution. Since there are only two classes, class 1 al-
ways changes to class 2 and vice versa. Thus we can model
the class evolution simply by the estimated distributions of
the segment durations. The gamma distribution

g(T ;λ1, λ2) =
λλ1+1

2

G(λ1 + 1)
Tλ1 exp(−λ2T ) (20)

seemed to fit the observed histograms of both states, where
G(·) is the gamma function. The fitted probability densities
g1(T ) = g(T ;λ1

1, λ
1
2) andg2(T ) = g(T ;λ2

1, λ
2
2) are shown in

Fig. 1.

4.2 The representer estimates

We used the modified covariance method to estimate the
AR(6) models for both classes. These coefficients and the
corresponding residual variances were used as estimates
of the predictor coefficients and prediction error variances.
Forty estimates of the representersθ1 andθ2 were obtained.
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Table 1. The estimated means ˆµ1, µ̂2 and the covarianceŝC1 andĈ2 of classes 1 and 2
φ1 φ2 φ3 φ4 φ5 φ6 γ

µ̂1 0.5065 −0.0528 0.0619 −0.0828 −0.000 −0.143 0.5686

µ̂2 0.6722 −0.3583 −0.174 −0.0562 −0.034 −0.281 1.1819

Ĉ1
0.0362 −0.033 0.0182 −0.001 0.0049 −0.005 0.0223
−0.033 0.0448 −0.018 −0.003 −0.002 0.0031 −0.029
0.0182 −0.018 0.0283 −0.002 −0.003 −0.000 0.0056

-0.0016 −0.003 −0.002 0.0139 0.0003 −0.006 −0.005
0.0049 −0.002 −0.003 0.0003 0.0182 −0.012 0.0026
−0.005 0.0031 −0.000 −0.006 −0.012 0.0183 0.0082
0.0223 −0.029 0.0056 −0.005 0.0026 0.0082 0.0444

Ĉ2
0.0177 −0.006 −0.010 0.0127 0.0073 −0.004 −0.011
−0.006 0.0179 −0.011 0.0111 −0.009 0.0097 −0.007
−0.010 −0.011 0.0398 −0.034 −0.002 0.0157 0.0083
0.0127 0.0111 −0.034 0.0408 −0.007 −0.002 −0.017
0.0073 −0.009 −0.002 −0.007 0.0197 −0.019 0.0066
−0.004 0.0097 0.0157 −0.002 −0.019 0.0359 −0.001
−0.011 −0.007 0.0083 −0.017 0.0066 −0.001 0.4413

 0 π/2  π

Fig. 2. The spectra of classes 1 (continuous line) and 2 (dashed line)
corresponding to the meansµ1 and µ2 and the model polynomial root
(pole) locations in the complex plane (open circles, class 1,crosses, class
2)

The marginal densities of eachφi, i = 1, . . . , 6 were visu-
ally examined to support the normal approximation of the
predictor coefficients. The marginal densities of the predic-
tion error variancesγ1 and γ2, however, could not be ap-
proximated with the normal distribution, which was to be
expected. To use another distribution would be very cum-
bersome, so we let the joint density be normal but applied
hard limits toγ1 andγ2 when the representers were drawn
from the distribution. As hard limits we used the minimum
and maximum of the observed residual variances of both
classes.

The meanŝµ1, µ̂2 and the covarianceŝC1 and Ĉ2 are
given in Table 1. The spectra and root locations correspond-
ing to the means are given in Fig. 2. Note that the frequency
corresponding to the second peak in the spectrum of class 2
is approximately 2 times the frequency of the first. This can
be taken as a sign of the partially chaotic nature of state 2.

4.3 The generation of simulations

The segment duration sequence was generated by drawing
independent random numbers from the distributionsg1 and
g2 in turn. The representer sequence was generated as de-
scribed in Sect. 2.

The segment durations and representers of a simulation
are given in Table 2. The corresponding concatenated pre-
dictor coefficient processesΦc

1 andΦc
2 and the corresponding

smoothed processesΦ1 andΦ2 are shown in Fig. 3a. The
prediction error variancesΓ c andΓ are shown in Fig. 3b.
The corresponding simulation is shown in Fig. 3c and an
example of the original EEG in Fig. 3d.

To verify the similarity of the quasi-stationary epochs
and the transition region between the original rat EEG data
and the simulations, we show in Fig. 4a a segment of origi-
nal data and, in Fig. 4c, a simulation which is adapted to the
original segment as follows: The EEG was divided visually
into three parts and the representers for the quasi-stationary
parts were estimated. The temporal extent of the representers
was broadened to cover the transition region. The concate-
nated and smoothed parameter evolution is shown in Fig.
4c.

5 Discussion

We have presented a systematic method which can be used to
simulate nonstationary EEG. The applicability of the method
to, for example, human sleep EEG simulation is obvious.
Apart from EEG that can be described by a stochastic class
evolution, this method is also applicable to such processes
that exhibit a deterministic type state evolution.

An example is the gradual desynchronization of alpha
waves as a response to visual stimulation (Markand 1990).
In such a case we can take samples of the EEG that are
synchronized with the stimulus, estimate representer statis-
tics before the stimulus using one segment (C1;T1) and after
the stimulus using several segments (C2,C3, . . . ;T2, T3, . . .).
We can then use the predetermined class evolution (order)



355

Table 2. The durations and representers of a simulation
Class

∑
Ti Ti φ1 φ2 φ3 φ4 φ5 φ6 γ

1 0 645.5 0.3402 0.0455 −0.02277 −0.08406 0.0358 −0.2347 0.437
2 645 410.2 0.7642 −0.3862 −0.2483 0.06458 −0.01698 −0.3176 2.224
1 1056 804.8 0.25 0.161 −0.1543 0.06727 0.05747 −0.295 0.3a

2 1861 532.5 0.9159 −0.3473 −0.53 0.254 0.106 −0.4673 1.159
1 2393 1368 0.4241 0.05525 0.03071 0.01801 0.1109−0.3348 0.3509
2 3761 555.4 0.774 −0.4261 −0.3595 0.02872 0.1362 −0.5736 1.522

The segment durationsTi drawn from the distributionsg1(T ) and g2(T ), and the predictor coefficientsφj , j =
1, . . . , 6 and prediction error variancesγ drawn from the normal distribution with means ˆµ1, µ̂2 and covariances
Ĉ1 andĈ2 are shown.a The prediction error has been constrained to lie in the observed region
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b As in a) but for prediction error vari-
ancesΓ c andΓ . c The corresponding sim-
ulation.d An example of original rat EEG
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smoothed evolutions.c An adapted simu-
lation

k1, k2, . . . and segment durations and vary the representers
only. [See Kaipio and Karjalainen (1995), where the per-
formance of a modified TVARLS estimation scheme was
evaluated with simulations of this kind.]

Signals such as the electro-oculogram (EOG), electro-
myogram (EMG) and some event-related potentials can be
added to the simulations directly. When doing this, however,
it must be noted that the occurrences may correlate some
states of the background. An example is the correlation of



356

EOG with REM sleep. To achieve a realistic situation the
occurrence statistics should be estimated and used accord-
ingly.

It is well known that some epochs of the EEG are bet-
ter described as a mixture of chaotic and stochastic be-
haviour rather than a regular stochastic process such as an
AR(p) model (see, e.g., Pijn et al. 1991). However, for short
segments the main difference between chaotic and regu-
lar description is that the former exhibits phase correlation
whereas the phase of the latter should be independent be-
tween any two different frequencies and have uniform dis-
tribution between zero and 2π. Short segments with phase
coherence can often be approximated with a limiting case
of a regular process having a line spectrum with the lines
exactly at the multiples of the inverse of the period. Such
a process can be approximated also with an AR(p) model.
An example is state 2 of the rat EEG and the corresponding
simulation of Fig. 4. The visual appearance of the chaotic
state 2 does not differ much from the simulation that is reg-
ular in construction. See Blinowska (1991) for a discussion
of the applicability of the AR(p) model to chaotic EEG.

If this approach is not considered adequate, the pre-
diction error processΓ (t) can be smoothly forced to zero
and the gap thus obtained filled by a chaotic process that
is multiplied with a taper to avoid the abrupt changes in
process characterictics discussed in Sect. 3.1. See Freeman
(1987) for an example of the simulation of chaotic EEG. An-
other method of achieving this is to generate a noise process
with constant spectrum but with appropriate phase coher-
ence. This can then be fed to the time-varying filter.
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