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Abstract. Many interactive human skills are based on
real-time error detection and correction. Here we investi-
gate the spectral properties of such skills, focusing on
a synchronization task. A simple autoregressive error
correction model, based on separate ‘motor’ and ‘cogni-
tive’ sources, provides an excellent fit to experimental
spectral data. The model can also apply to recurrent
processes not based on error correction, allowing com-
mentary on previous claims of 1/ f-type noise in human
cognition. A comparison of expert and non-expert sub-
jects suggests that performance skill is not only based on
reduced variance and bias, but also on the construction
of richer mental models of error correction.

1 Introduction

Recent research has suggested that human cognition and
skill, as found in sequential time and distance estimation
tasks (Gilden et al. 1995), speech (Voss and Clarke 1975),
bimanual coordination (Schmidt et al. 1992) and music
(Voss and Clarke 1978; Voss 1988) may display 1/ f-type
power density spectra. Although strong methodological
criticisms of assertions of 1/ f noise in music and speech
have been previously mounted (Nettheim 1992; Pressing
1994), spectral shapes of this form are widely found in
many physical systems, and the search for a common
mechanism is long-standing in the physical sciences
(Voss and Clarke 1978; Miller et al. 1993; Gilden et al.).
So far, no cognitive or motor mechanisms that explicitly
produce such spectral shapes have been proposed. Here
we investigate the effectiveness of a general model of
human skill based on temporal error compensation and
show that it provides an excellent fit to spectral data from
simple synchronized tapping tasks, without the need to
postulate 1/ f noise sources. The model can also be ex-
tended to non-synchronized timing tasks, which allows
a direct discussion of possible factors creating 1/ f type
effects.

2 The autoregressive tapping model

Consider a person who taps as synchronously as possible
to a steady repeating auditory tone. If the asynchrony
between the tap and the tone at time n is defined as A

n
,

the intertap interval I
n
is
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where P is the intertone interval.
Another expression for I

n
is given by the basic two-

tiered Wing-Kristofferson model (Wing and Kristoffer-
son 1973a, b), which describes the timing of human rhy-
thmic production in the absence of error correction:
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This is based on an internal cognitive clock process
generating regular intervals C

n
, whose endpoints trigger

motor system actions characterized by delay intervals
M

n
. The central feature of this process description is that

if the C
n

and M
n

are treated as uncorrelated noise pro-
cesses, (2) yields zero autocorrelations for lags greater
than 1. This equation, and its extensions to more com-
plex motor patterns, have been shown to provide an
excellent quantitative account of the covariance structure
of human performance (Wing and Kristofferson 1973a, b;
Wing 1980; Vorberg and Hambuch 1984; Wing et al.
1987; Jagacinksi 1988; Turvey et al. 1989; Pressing et al.
1996).

This formulation can be extended to include error
correction by supposing that (2) is modified by a correc-
tion of the clock interval C

n
based on the most recent

asynchronies between tone and tap. If only the last asyn-
chrony affects the process, then an additional linear
correction term of type — aA

n
appears, as has been con-

sidered by previous authors in various forms (Hary and
Moore 1987; Schulze 1992; Mates 1994a, b; Vorberg and
Wing 1996), albeit purely in the time domain. In the
experimental work here lag 2 effects appear, and so we
propose a more general error correction expression of
the form !aA

n
!bA

n~1
. Given this expression, (2)

becomes
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1The error correction terms are assumed to be based on a null position
that is approximated by the mean. By subtracting the mean from each
side of the equation, the entire equation can then be put in the form of
deviation from mean values.

Combining this with (1) yields
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It is convenient here to measure asynchronies relative to
their mean positions, which are normally close to zero1.

This is a second-order autoregressive equation in the
asynchronies, and differs from a standard ARMA(2, 1)
(autoregressive moving average) equation only in the
nature of the noise process represented by the last four
terms, which here is autocorrelated at lag 1 and therefore
not white. From this equation, under a condition of
(second-order) stationarity, the autocovariance functions
at lag k, notated c

A
(k), can be calculated. Taking the

variance of both sides of (4) allows computation of the
series variance as
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where p2
C

and p2
M

are the clock and motor variances,
respectively. In this derivation we have used the property
that, defining
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as the interonset interval in the absence of error correc-
tion,
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for all l*0, where d
l0

is the Kronecker delta. Equation
(7) has been previously given by Vorberg and Wing 1995;
and relies on the fact that, by its definition, I*

n
is a random

variable unaffected by times earlier than n.
By taking the covariance of (4) with A

n
we similarly

obtain
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For k*2, the autocovariance functions satisfy the Yule-
Walker equations.

c
A
(k)"(1!a)c

A
(k!1)!bc

A
(k!2), k*2 (9)

which may readily be derived by taking the covariance of
each side of (4) with A

n~k`1
, in light of (7).

The general solution of these equations is
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valid for k*2, where
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The Yule-Walker equations can be rearranged to provide
estimates of both alpha and beta directly from the time
series measurements:
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valid for k*2.
After this estimation process, (5) and (8) can be solved

directly for the motor and cognitive variances:
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From this knowledge of the autocovariance functions, we
can determine a covariogram.

3 Spectral properties of the model

Spectral properties of our model may be derived from the
Wiener-Khintchine Theorem (Gottman 1981),
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Here f
A
(u) is the power spectral density function for the

asynchronies and u is the angular frequency.
Substitution of (5), (8), (10) and (11) in (15) and simpli-

fication yields (see Appendix A)
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This is our general functional form for human error
correction processes that are linear and second order. We
denote this model as AR2. Considered as a spectral
model, it has no free parameters, as a, b, p2

M
and p2

C
are all

computable from the measured autocovariance func-
tions, as given above.

The numerical fit of the spectrum will depend strong-
ly on values of the first- and second-order error correc-
tion parameters a and b. Investigation of (12) and (13)
reveals that for the case b"0 (termed AR1), they contain
the indeterminacy 0/0, and hence estimation is strongly
affected by error and noise effects. Thus, a different es-
timation procedure for a is preferable for this case, even
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though formally AR1 is a subcase of AR2. For the AR1
case, we find
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The autocovariance function is a geometric function of
lag k, and asynchronies of non-adjacent time intervals are
correlated. The series is stationary provided 0(a(2.
These last results for the AR1 case have been previously
derived by Vorberg and Wing (1996).

For b"0, we can obtain the AR1 spectral density
function from (16):
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We can estimate a from the Yule-Walker equations with
b"0 as
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for all k*2.
When both aP0 and bP0 (no error correction), (20)

reduces to
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All three forms for f
A
(u) can be converted to equivalent

predictions about the intertap interval spectral density
function f

I
(u) by use of the linear filtering theorem (Gott-

man 1981), which from (1) yields:
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In particular, in the case of no error correction, as in
non-synchronized (‘spontaneous’) tapping, the interonset
spectral density function will be [from (22) and (23)]
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This form displays no low frequency peak and shows that
the strict Wing-Kristofferson formulation is inconsistent
with a 1/f noise form.

4 Experimental and analytical procedures

The validity of these models in the spectral domain was
investigated by experimental study of synchronous tap-
ping to a repeating auditory tone by two subjects of
contrasting experience. Subject A had no previous back-
ground in musical performance or the tapping task,
whereas subject B is an extensively trained professional

percussionist and pianist. Both were self-ascribed right-
handers.

The subjects tapped one or both of two keys on a flat
table, one with each hand. The keys were connected to an
IBM 486 computer equipped with special recording and
data analysis software written by Young Ho Kim. Asyn-
chrony data were recorded to an accuracy of 1 ms. The
experimental set-up is otherwise identical to that de-
scribed in Pressing, Summers and Magill (1996).

Synchronization tones were delivered to the right ear.
Both subjects performed 8 runs at each of 5 pulse lengths:
250, 375, 500, 750 and 1000 ms. Subject B was also able to
perform runs at shorter pulse lengths of 175, 150, 125,
and 100 ms. All tapping was performed with the right
hand alone, except for runs with P)150 ms (subject B),
which used hand alternation. The length of the runs was
n"950 for runs of pulse length)375 ms, and n"600
for the others. The order of runs was interleaved to
minimize learning effects.

Autocovariance properties of the series were cal-
culated after quadratic detrending to help ensure station-
arity. Detrending — that is, the use of deviations from
a curve of best fit — is commonly used in long time series
(Gottman, 1981), and we found here that the effects of
quadratic detrending were very minor, causing spectrally
only a modest change in the single lowest frequency
Fourier bin relative to undetrended data, with no signifi-
cant implications for overall fit. The spectral density
function for each detrended run was then computed
using a Hanning-windowed periodogram,
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2
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total power relative to the unwindowed periodogram.
The optimality of these last procedures was verified by
simulation trials using autoregressive models with run
lengths and parameter values matching the experimental
values.

In the cases where hand alternation was used, which
was necessary to allow the expert performer to achieve
the fastest speeds, the asynchronies were measured rela-
tive to the separate means for each hand. Differences
between the hands’ mean asynchronies were small, and
this procedure yielded a small but consistent improve-
ment in the correspondence between theory and experi-
ment.

5 Results and discussion

The covariograms showed an excellent correspondence
between theory and data. A sample covariogram for
a single run is shown in Fig. 1. However, the main focus
here is on the spectral domain, to which we now turn.

Spectral results were consistent for a given subject
among the eight runs of each specific pulse size, and
hence they were combined to provide optimal parameter
estimation. a values, b values, spectral density functions
and variances were linearly averaged; autocovariances
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Fig. 1. A covariogram for a typical run of 950 taps. Pulse
size"250 ms, subject A. Dotted line connects the data points
and the smooth curve shows predictions of the AR1 model for
a"0.220

were averaged by use of the Fisher z-function technique
via conversion to autocorrelations (Pressing et al. 1996).
The spectral plots for the two subjects for all pulse sizes
are shown in Fig. 2.

For comparison, the best straight line log-log fits (of
the form f

A
(u)"Ku~L, corresponding to 1/ f-type noise)

were also fit to the data. (It should be noted that these
data do not directly test claims for 1/ f noise made by
Gilden et al. (1995) as their data were recorded under
conditions of non-synchronous tapping, unlike here).
Table 1 summarizes the model parameters and relative
fits to the data.

The results provide strong evidence in favour of the
AR1 model for pulse sizes *175 ms, and for the AR2
model in the range )150 ms, with a transition between
model forms in the range 150—175 ms. In the *175 ms
range, AR1 fits were clearly better than the AR2 fits,
because for b+0 accurate parameter estimation in AR2
tends to be swamped by system noise, as described
earlier. Below 175 ms, the AR2 form shows lower resid-
uals than AR1 and displays the high frequency peak
found in the data, which the AR1 form does not. There
was no suggestion of 1/ f behavior at low frequencies.

These results are consistent with previous experi-
mental work suggesting a qualitative change in cognitive
processing for pulse sizes below 250—300 ms (Wing et al.
1987; Peters 1989). They are also understandable on the
grounds that the fastest paces of )150 ms are less than
or of the order of typical estimates for a minimum audi-
tory reaction time, usually cited as about 140 ms (Luce
1986), as well as typical estimates for decision-based error
correction times (110—200 ms, depending on experi-
mental contest: Vince 1948; Gibbs 1965). It might be
considered that the hand alternation necessary to pro-
duce these fastest speeds is at least partially responsible
for sequential within-hand (i.e., lag 2) effects. However,
this is quite unlikely, as extensive experimental trials with
alternating hands for pulse sizes above 200 ms for both

subjects showed no convincing evidence for the AR2
model. This work will be reported elsewhere (Pressing,
manuscript submitted).

This result, that expertise enables richer mental
modeling (via an increase in autoregression order), has
parallels in other motor tasks. Notably, in tracking and
steering tasks, one primary result of practice is a shift
from the use of purely low-order spatial information like
position to the inclusion of higher-order control informa-
tion, such as velocity and acceleration (Kelley 1968;
McCormick 1970). The use of higher-order information
is found to be context-dependent, as here, according to
the progression-regression hypothesis (McCormick 1970;
Jagacinski and Hah 1988).

As seen in Table 1, AR1 a uniformly increases with
pulse length, that is, greater processing time between taps
allows more rapid and reliable error correction. a can be
considered a measure of information accumulation in
working memory, a process which presumably entails
transmission of peripheral sensory information to the
central nervous system and its conversion to a repres-
entation useful for controlling action. Except for the
slowest speed, a values for the expert performer are
substantially larger at each pulse length than for the
non-expert, corresponding to more effective error com-
pensation due to expertise. Motor variance is approxim-
ately independent of pulse size and subject, as found by
other workers (Wing and Kristofferson 1973b; Wing
1980), whereas clock variance increases with pulse size
and is much larger for the novice than the expert, as
expected.

Figure 3 shows a plot of error parameter values. For
the AR2 cases, with a labelled a

2
, consistently a

2
'0,

b(0, and a
2
#b+0.10!0.20. From the form of (4), it

can be seen that a
2
#b can be interpreted as a total or

net error correction parameter. Since values of both AR1
a and AR2 (a

2
#b) plateau to this same range for both

subjects for shorter pulses, this range may represent
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Fig. 2a and b. See Page 6 for legend

a general error correction threshold found as processing
demands increase. The fact that b is negative we interpret
to mean that b corrects for errors of correction in the
first-order process that are increasingly likely at fast speeds.

Equations (16) or (20) can be used to dissect the
spectrum into ‘cognitive’ and ‘motor’ components via the
corresponding two terms in the numerator. The motor
component makes its largest contribution for higher fre-
quencies, and the cognitive component is dominant for
lower frequencies (Fig. 4), producing a characteristic cog-
nitive noise plateau.

The work here achieves a good match between data
and theory without the postulation of any 1/ f noise
sources, and in accord with this, no low-frequency peak
appears in our asynchrony spectral data. However,
Gilden et al. (1995) found a 1/ f-type low-frequency peak
in the power spectrum of interonset intervals for non-

synchronized tapping experiments, and interpreted this
as being due to the cognitive noise component of the
Wing-Kristofferson model. Although both the experi-
mental conditions (synchronized/non-synchronized) and
the variables used as a basis for power spectrum calcu-
lation (asynchronies/interonset times) are different in
these two cases, these results actually require reconcili-
ation, since cognitive noise of the Wing-Kristofferson
type appears in explanations of both results, and our data
would be expected to show some low-frequency evidence
of 1/ f noise in their interonset spectrum if cognitive clock
noise were the source of it, and they do not.

We believe the reason is as follows. The Wing-
Kristofferson form was generated on the basis of the
empirical finding that for a stationary time series of
spontaneous tapping, the interonset autocovariance at
lag 1 is negative, whereas for higher lags it is effectively
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Fig. 2a–c. Plots of spectral density vs frequency (u/2n) of asynchronies
for synchronized tapping experiments for two right-handed subjects.
Subject A is not a musician. Subject B is a highly trained professional
musician, who was able to perform runs at faster speeds. Pulse size P is
indicated for each case in milliseconds. Data points are an average of
8 runs in each case, totalling ca 5000—7500 taps at each pulse size.
Curves represent model predictions. Successive cases have been shifted
up by scale factors for clarity of display. For a, b, the curves show a first-
order autoregressive (AR1) spectrum, as given in (20), using parameters
directly calculated from the time series data. For P)175 ms (c), both
AR1 and AR2 predictions are shown: AR2"—, AR1"— ·—, with the
second-order autoregressive (AR2) spectrum calculated from (16). The
superior fit of the AR2 model for fast pulse speeds is particularly evident
for high frequencies

zero. The covariance properties of ‘clock’ and ‘motor’
noise sources, namely those of complete stochastic
independence (white noise), are thus essential to the pro-
duction of the correct time domain behaviour.

Given these conditions, the spectrum of the Wing-
Kristofferson process follows ineluctably from the
Wiener-Khintchine theorem as (24), or equivalently in

the Appendix (29), which shows no 1/ f behavior. 1/ f
behavior can only occur if higher autocovariance func-
tions are non-zero, and they are not. Hence, the source of
1/ f noise cannot be the Wing-Kristofferson cognitive
clock process, contradicting Gilden et al.’s (1995) inter-
pretation.

There seems to be a simple way out of this problem.
We note that the Wing-Kristofferson form does not hold
for a non-stationary series, although the issue has not
always been emphasized, because tapping runs have typi-
cally been short (Wing and Kristofferson, 1973a, b). Like-
wise, the Wiener-Khintchine theorem does not apply in
the absence of second-order stationarity. We believe
therefore that the source of Gilden et al.’s 1/ f noise for
low frequencies may be series non-stationarity, due to
medium- to long-term fluctuations in speed of performance.
Significantly, Gilden et al. (1995) did not perform data
detrending, and so their results are in fact not expected to
be stationary, supporting this interpretation. Further
support comes from the fact that Gilden et al.’s (1995) 1/ f
form fit well primarily for longer duration pulse intervals,
which presumably generated longer runs. Given this, we
suggest that the human source for such fluctuations may
rest with sustained attention processes, one form of
which is measured in classical vigilance tasks. Sustained
attention has been identified as one of four central factors
making up attentional processes (Cohen 1992).

We examined these ideas in a preliminary replication
effort. About 2000 additional trials were performed with
the expert performer at each of two pulse sizes: 250 ms
and 750 ms, using a non-synchronous (‘spontaneous’)
protocol. In this work the performer’s task was to keep
a steady beat at a pretrained speed without a reference
tone. Other experimental conditions were identical to
those described earlier.

With no detrending, the interonset series were mark-
edly non-stationary, and we found a clear low-frequency
rise in the interonset power spectra at the longer pulse
size, as in Gilden et al. (1995), but only a very weak rise at
the faster speed. The low-frequency rises were markedly
reduced by (cubic to quintic polynomial) detrending to
improve stationarity, supporting the idea that the genesis
of the low-frequency rise is medium- to long-term fluctu-
ations in speed. Such fluctuations do not occur in syn-
chronized tapping because the presence of a recurring
reference source damps them out. The fact that Gilden
et al. (1995) found that fluctuations of this kind also
apply to distance estimations but not to an unlinked
series of reaction time experiments supports the view that
the source of 1/ f spectral noise is not specifically linked
to a cognitive clock process.

Additional features characteristic of expertise also
appeared in these non-synchronized runs. There were
small sharp peaks at the fast speed that corresponded to
subharmonics of the basic pulse. These were equivalently
visible as peaks in the correlogram at intervals of four
taps c(4), c(8), c(12). . . and corresponded to cognitive
groupings based on 4/4 musical meter applied to the
temporal patterns, resulting from our expert subject’s
musical training. These peaks were not apparent at the
slower speed.
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Table 1. Parameters and relative fits of the models to the data

Subject Pulse Model type and Log-log slope p2
M

p2
C

Fraction of cases with
size parameter values (ms2) (ms2)
(ms) Better AR fit Better AR1 fit

than ‘1/ f ’ fit than AR2 fit

A 1000 ! AR1: a"0.563$0.058 !0.584$0.048 8.42$79.9 943.17$158.1 8/8** 7/8*
750 " AR1: a"0.274$0.025 !1.010$0.038 8.70$31.5 589.73$82.1 8/8** 7/8*
500 AR1: a"0.209$0.026 !1.253$0.023 15.98$41.0 466.09$74.5 8/8** 8/8**
375 " AR1: a"0.180$0.013 !1.277$0.031 15.56$17.0 228.50$22.6 8/8** 7/8*
250 AR1: a"0.155$0.027 !1.273$0.052 9.32$3.15 69.16$9.16 8/8** 8/8**

B 1000 AR1: a"0.559$0.049 !0.529$0.048 27.75$23.90 384.8$45.5 8/8** 8/8**
750 AR1: a"0.654$0.043 !0.383$0.060 13.96$13.49 231.1$23.8 8/8** 8/8**
500 AR1: a"0.379$0.069 !0.862$0.049 11.41$7.80 125.1$15.2 8/8** 7/8*
375 AR1: a"0.353$0.036 !0.841$0.033 13.75$6.95 64.70$7.94 8/8** 8/8**
250 AR1: a"0.194$0.015 !1.090$0.052 10.76$2.82 35.47$2.98 8/8** 8/8**
175 AR1: a"0.144$0.025 !1.168$0.074 13.40$6.30 27.04$4.29 8/8** 8/8**

AR2: a
2
"0.644$0.159 !6.84$12.07 44.12$30.96 7/8*

b"!0.477$0.177
150 AR2: a

2
"0.497$0.076 !0.875$0.027 7.3$4.3 36.3$4.5 7/8* 2/8

b"!0.393$0.070
125 AR2: a

2
"0.529$0.051 !0.770$0.017 12.43$3.05 40.76$4.55 7/8* 2/8

b"!0.397$0.047
100 AR2: a

2
"0.845$0.065 !0.792$0.074 1.456$6.704 49.9$3.80 8/8** 1/8*

b"!0.721$0.063

**P(0.005 (one-tailed), *P(0.05 (one-tailed)
!Additional constraint in a estimation: 0(a(1
"Seven runs used in parameter calculation. One excluded on the basis of parameter deviations '4 standard errors

Fig. 3. Error correction parameters for all runs. AR1
parameter a increases with pulse size. Net error correc-
tion at faster speeds appears to be limited by informa-
tion-processing constraints to a parameter range of ca
0.10—0.20, as measured by AR1 a and AR2 (a

2
#b)

6 Conclusions

The model here is a simple one, and it does not address
possible effects due to separate error correction processes
for phase and period (Mates 1994a, b) or non-linear
effects (e.g. order discrimination thresholds — typically
about 20 ms, or higher polynomial terms (Hirsch and

Sherrick 1961; Mates 1994b). However, its exact solvabil-
ity allows a closed form for the spectral distribution
function, and in view of the excellent fit of data and
model in the absence of free parameters, these possible
effects are apparently small or mutually compensatory.
We suggest that, in particular, the impact of the order
discrimination threshold is limited by the frequently

345



Fig. 4. Decomposition of the spectrum into its cognitive
and motor components

observed tendency, found here as well, for tapping to
consistently anticipate the stimulus (Fraisse 1982;
Mates 1994a).

The model’s success supports the idea that linear
autoregressive error correction processes are dominant
in synchronized tapping and exhibit characteristic spec-
tral shapes. Expertise is distinguished in a consistent
fashion, by higher-than-non-expert error correction
parameters and lower values of clock variance. The
model presented here has also been extended to many
other types of rhythmic patterns, and linear error correc-
tion processes have been found also to offer a good
description of those experimental results (Pressing,
manuscript submitted). The reverse-sigmoidal spectral
shapes found here are also reflected in those cases.
In other work, we have shown that linear error correc-
tion processes can be treated as special cases of a more
general non-linear formulation (Pressing, manuscript
submitted).

Overall, the spectra of cognition and skilled human
performance show at least four types of behaviour. First,
when memory-less production with independent trials is
involved, the data display no autocorrelation, and the
spectrum is white (flat), as for example with iterated
reaction time trials (Gilden et al. 1995). Second, when
error correction variables based on successive synchroni-
zation to an external time template are treated, the error
spectrum is reverse sigmoidal, normally arising from
a first-order autoregressive process, unless task demands
of coordination and speed require greater accuracy, when
a second-order process may be used. Third, estimation
based on an internal reference and a sequential assess-
ment process can produce 1/ f-like behaviour at low
frequencies, due perhaps to medium- to long-term time
fluctuations in attention. Finally, musical training can

produce specific subharmonic peaks due to learned prin-
ciples of cognitive grouping (phrasing).
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Appendix A

The method of direct substitution described in the paper
correctly produces (16). However, a simpler way to com-
pute the spectrum corresponding to the autocorrelation
functions of (10) is to use both the Wiener-Khintchine
theorem and the linear filtering theorem as follows. We
can use (4) in the main paper to define a series

E
n
"(C

n
!P)#(M

n`1
!M

n
)"I*

n
!P

"A
n`1

!(1!a)A
n
#bA

n~1
(26)

for the second-order autoregressive case, where I*
n
, as

given by (6), is just the intertap in the absence of error
correction, that is, the basic Wing-Kristofferson model.
Since E

n
only differs from I*

n
by an additive constant,

their power spectra are identical. What is f
I*

(u)? This is
computed as follows. Under the standard assumption of
independence of the C’s and M’s, Wing and Kristofferson
(1973a) computed the following values for the
autocovariance functions:
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#2p2

M
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M
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From the Wiener-Khintchine theorem,

fI* (u)"c
I*

(0)#2
=
+
k/1

c
I*

(k) cos uk

"c
I*

(0)#2c
I*

(1) cosu

"p2
c
#2p2

M
(1!cosu) (28)

Hence

f
E
(u)"f

I*
(u)"p2

c
#2p2

M
(1!cosu) (29)

and since the linear filtering theorem in this case yields
[from (26)]

f
E
(u)"D1!(1!a)eiu#be2iuD2 f

A
(u) (30)

rearrangement results in

f
A
(u)"

p2
c
#2p2

M
(1!cosu)

1#(1!a)2#b2!2(1!a)(1#b) cosu#2b cos2u
(31)

as was to be shown (16).
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