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Abstract. Two-hour vigilance and sleep electroencephalo-
gram (EEG) recordings from five healthy volunteers were
analyzed using a method for identifying nonlinearity and
chaos which combines the redundancy–linear redundancy
approach with the surrogate data technique. A nonlinear
component in the EEG was detected, however, inconsistent
with the hypothesis of low-dimensional chaos. A possibility
that a temporally asymmetric process may underlie or influ-
ence the EEG dynamics was indicated. A process that merges
nonstationary nonlinear deterministic oscillations with ran-
domness is proposed for an explanation of observed proper-
ties of the analyzed EEG signals. Taking these results into
consideration, the use of dimensional and related chaos-
based algorithms in quantitative EEG analysis is critically
discussed.

1 Introduction

During the last decade there has been a sustained interest in
describing neural processes and brain signals, especially the
electroencephalogram (EEG), within the context of nonlin-
ear dynamics and theory of deterministic chaos (see, e.g., in
this journal Soong and Stuart 1989; Gallez and Babloyantz
1991; R̈oschke and Aldenhoff 1991; Fell et al. 1993; and
for comprehensive reviews Rapp et al. 1989; Bas¸ar 1990;
Jansen 1991; Freeman 1992). If the nature of the analyzed
signals was actually low-dimensional, the published results
could be of immense importance for theoretical neuroscience
and neurologic and psychiatric clinical practice. However,
confidence in results obtained from experimental data, such
as finite dimensions or positive Lyapunov exponents, and
the reliability of chaos-based algorithms in general, have re-
cently come into question, and alternative methods for iden-
tifying possible nonlinear determinism in experimental time
series have been proposed (Weigend and Gershenfeld 1993;
Palǔs 1995; and references therein).

This paper presents results from applying a method
for identifying nonlinearity and chaos which combines the
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redundancy–linear redundancy approach with the surrogate
data technique, to vigilance and sleep EEG recordings of ap-
proximately 2 h duration from five healthy volunteers. The
method consists of a test for nonlinearity in which a null hy-
pothesis of a linear stochastic process is tested by statistics
based on nonlinear and linear redundancies (Paluš 1995).
The presence of a signature of chaos, positive Kolmogorov–
Sinai entropy (KSE), is assessed using the marginal re-
dundancy approach (Paluš 1993). Employing these methods
(briefly introduced in Sect. 2; for details refer to Paluš 1993,
1994a, 1995), a nonlinear component was detected in all ana-
lyzed EEG records; however, signatures of low-dimensional
chaos were absent. Similar results have been independently
reported by Pritchard et al. (1995), Rombouts et al. (1995)
and Stam et al. (1995). Theiler and Rapp (1996), Prichard
and Theiler (1994), Theiler et al. (1992) and Casdagli (1992)
also rejected low-dimensional chaos and confirmed nonlin-
earity in the EEG; however, they reported only weak ev-
idence for nonlinearity in the normal EEG. In this study
very long EEG recordings were analyzed, which could be
the source of greater statistical power of the tests performed,
and thus stronger evidence for nonlinearity, than in the other
studies. We also indicate that the EEG may possess temporal
asymmetry as a nonlinear property.

A process that merges nonstationary nonlinear determin-
istic oscillations with randomness is proposed for an expla-
nation of the observed properties of the EEG signals an-
alyzed. Taking these results into consideration, the use of
dimensional and related chaos-based algorithms in quantita-
tive EEG analysis is critically discussed.

2 Principles of the methods

Considern discrete random variablesX1, . . . , Xn with sets
of valuesΞ1, . . . , Ξn, respectively. The probability distribu-
tion for an individualXi is p(xi) = Pr{Xi = xi}, xi ∈ Ξi.
We denote the probability distribution function byp(xi),
rather thanpXi

(xi), for convenience. Analogously, the joint
distribution for then variablesX1, . . . , Xn is p(x1, . . . , xn).
The redundancyR(X1; . . . ;Xn), in the case of two variables
also known as mutual informationI(X1;X2), quantifies the
average amount of common information contained in then
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variablesX1, . . . , Xn:

R(X1; . . . ;Xn)

=
∑
x1∈Ξ1

. . .
∑

xn∈Ξn

p(x1, . . . , xn) log
p(x1, . . . , xn)
p(x1) . . . p(xn)

(1)

The marginal redundancy%(X1, . . . , Xn−1;Xn) quantifies
the average amount of information about the variableXn

contained in then− 1 variablesX1, . . . , Xn−1:

%(X1, . . . , Xn−1;Xn)

=
∑
x1∈Ξ1

. . .
∑

xn∈Ξn

p(x1, . . . , xn) log
p(x1, . . . , xn)

p(x1, . . . , xn−1)p(xn)

(2)

The relation

%(X1, . . . , Xn−1;Xn)

= R(X1; . . . ;Xn)−R(X1; . . . ;Xn−1) (3)

can be derived by simple manipulation.
When the discrete variablesX1, . . . , Xn are obtained

from continuous variables on a continuous probability space,
then the redundancies depend on a partitionξ chosen to dis-
cretize the space. Various strategies have been proposed to
define an optimal partition for estimating redundancies of
continuous variables (see Paluš 1995; Weigend and Gershen-
feld 1993; and references therein). Here we use the ‘marginal
equiquantization’ method described in detail in Paluš (1993,
1995). Pompe (1993) also describes this kind of partitioning.

Now, let then variablesX1,. . ., Xn have zero means,
unit variances and correlation matrixC. Then, we define the
linear redundancyL(X1; . . . ;Xn) of X1, X2, . . . , Xn as

L(X1; . . . ;Xn) = −1
2

n∑
i=1

log(σi) (4)

whereσi are the eigenvalues of then×n correlation matrix
C.

If X1, . . . , Xn have ann-dimensional Gaussian distribu-
tion, thenL(X1; . . . ;Xn) andR(X1; . . . ;Xn) are theoreti-
cally equivalent (Morgera 1985).

Based on (3) we define thelinear marginal redundancy
λ(X1, . . . , Xn−1;Xn), quantifying linear dependence ofXn

on X1, . . . , Xn−1, as

λ(X1, . . . , Xn−1;Xn)

= L(X1; . . . ;Xn)− L(X1; . . . ;Xn−1) (5)

In practical applications one deals with a time series
{y(t)}, considered as a realization of a stochastic process
{Y (t)}, which is stationary and ergodic. Then, due to ergod-
icity, all the subsequent information-theoretic functionals are
estimated using time averages instead of ensemble averages,
and the variablesXi are substituted as

Xi = y(t + (i− 1)τ ) (6)

Due to stationarity the redundancies

Rn(τ ) ≡ R(y(t); y(t + τ ); . . . ; y(t + (n− 1)τ )) (7)

%n(τ )

≡ %(y(t), y(t + τ ), . . . , y(t + (n− 2)τ ); y(t + (n− 1)τ )) (8)

Ln(τ ) ≡ L(y(t); y(t + τ ); . . . ; y(t + (n− 1)τ )) (9)

λn(τ )

≡ λ(y(t), y(t + τ ), . . . , y(t + (n− 2)τ ); y(t + (n− 1)τ )) (10)

are functions ofn andτ , independent oft.
The surrogate-data based nonlinearity tests (Theiler et al.

1992; Schiff and Chang 1992) consist of computing anonlin-
ear statistic from the data under study and from an ensemble
of realizations of a linear stochastic process which mimics
‘linear properties’ of the studied data. If the computed statis-
tic for the original data is significantly different from the
values obtained for the surrogate set, one can infer that the
data were not generated by a linear process; otherwise the
null hypothesis, that a linear model fully explains the data,
is accepted. For the purpose of such test the surrogate data
must preserve the spectrum1 and, consequently, the autocor-
relation function of the series under study. An isospectral
linear stochastic process to a series can be constructed by
computing the Fourier transform (FT) of the series, keeping
unchanged the magnitudes of the Fourier coefficients but
randomizing their phases and computing the inverse FT into
the time domain. Different realizations of the process are
obtained using different sets of the random phases.

To evaluate the test, the test statistic is defined as the
difference between the redundancy obtained for the original
data and the mean redundancy of a set of surrogates, in
the number of standard deviations (SDs) of the latter. Thus
both the redundancies and redundancy-based statistics can
be evaluated as functions of the lagτ and the embedding
dimensionn.

The redundancyRn(τ ) [or, %n(τ )], based on probabil-
ity distributions, measures general dependences among the
series{y(t)} and its lagged versions, whereas the linear re-
dundancyLn(τ ) [or, λn(τ )], based on correlations, reflects
only their linear relations. Comparing the plots ofRn(τ )
and Ln(τ ) (or %n(τ ) and λn(τ )) can provide an informal
test for important nonlinearities in the studied data (Paluš
et al. 1993). This approach, in Paluš (1995) referred to
as qualitative testing, or qualitative comparison, can bring
some additional information to the results of the quantitative
(surrogate-data-based) test. Moreover, one can not always
construct good surrogate data. That is, despite theoretical
expectations, in numerical practice linear properties of the
surrogates may differ from those of the data under study.
Changes in linear properties are reflected in nonlinear statis-
tics as well, and thus may result in spurious detection of
nonlinearity in linear data (Paluš 1995). Therefore, we also
evaluate the statistic based on the linear redundancyLn(τ ),
which specifically reflects changes in linear properties. Then,
only those significant differences in the nonlinear statistic
can reliably count for nonlinearity that are not detected in
the linear statistic (Paluš 1995).

If a time series{y(t)} was generated by anm-dimen-
sional chaotic system, then forn > m and under some
conditions the marginal redundancy%n(τ ) decreases with
τ as

%n(τ ) ≈ H1 − |τ |h (11)

1Also, preservation of histogram is usually required. A histogram transfor-
mation used for this purpose is described in Paluš (1995) and references
within.



391

whereh is the KSE of the underlying dynamical system and
H1 is a constant related to precision (quantization) of data
(Fraser 1989; Paluš 1993). Fulfilling the conditions for (11)
can be limited by the amount of data available (Paluš 1994a,
1996). Therefore we propose a comparison of the slopes of
the redundancy%n(τ ) and the linear redundancyλn(τ ) [or,
the slopes of%n(τ ) obtained from the data under study and
%n(τ ) from its surrogates] to find whether the decrease in
%n(τ ) is a nonlinear (possibly chaotic) phenomenon or can
be explained by a linear stochastic process. The latter case
renders a hypothesis of deterministic chaos improbable.

3 Material and methods

Five paid, physically and psychically healthy volunteers (Table 1), chosen
from a larger group by passing standard EEG-study criteria, participated
in the experiment giving written informed consent. The five subjects were
recorded in two different states:

1. Relaxed vigilance with closed eyes. Vigilance was assured by the vol-
unteers’ participation in a simple mental task: subjects were asked to
listen to a text recorded on a tape-recorder and to count occurrences
of the conjunction ‘but’. (For brevity, the term ‘vigilant state’ will be
used henceforth to refer to this state.)

2. Sleep evoked by a 1 or 2 mgdose (according to individual sensitivity)
of flunitrazepam (tablets). (Henceforth this will be referred to as ‘sleep
state’.)

Eight channels of EEG data, sampled by 256-Hz frequency and 12-bit
precision, were recorded from the positionsO1, O2, T5, T6, F7, F8, Pz and
Fz , using the common Goldman reference electrode. Each record consists
of ninety 90-s segments (90×23 040 samples).

The marginal redundanciesλn(τ ) and %n(τ ) and the related linear
and nonlinear statistics were calculated from the redundanciesLn(τ ) and
Rn(τ ), estimated from the data and the surrogates (30 realizations of the
surrogates for each dataset). Due to the segmentation of the data, the n-
tuplesy(t); y(t + τ ); . . . ; y(t + (n − 1)τ ) were constructed only inside the
individual segments, whereas final probability distributions and the corre-
lation matrices were averaged through all the segments. For the qualitative
comparisons, the original–data redundanciesRn(τ )[o] andLn(τ )[o] were
computed from entire 23 040-sample segments, which gives the effective
series lengthN = 2 037 600, given embedding dimensionsn = 2–5, a lag
range 1–100 and the segmentation. In the surrogate data tests 16 384 (16k)-
sample subsegments were used, employing fast Fourier transform (Press et
al. 1986), requiring a series length equal to a power of 2. This yields the
effective series lengthN = 1 438 560 applicable for the redundancy esti-
mations. The surrogate data were generated for each segment separately,
i.e., using 16 384 samples. Gaussianization (Paluš 1995) was performed in
the quantitative analysis; before the analysis, the data were filtered using
a notch filter in the frequency domain to eliminate interference from the
recording equipment.

All the redundancies were computed for embedding dimensionsn =
2–5 usingQ = 4–16 marginal equiquantal (equipopulated) bins. In the
qualitative testing, the redundancies were also computed withQ up to 64,
but n was only 2 and 3.

4 Results

Figure 1 presents the analysis results of the EEG of sub-
ject 2 recorded in positionO1 in the vigilant state. In the
qualitative comparison there are practically no differences
between the linear marginal redundancyλn(τ ) (Fig. 1a) and
the marginal redundancy%n(τ ) (Fig. 1b). The result of quan-
titative analysis is different: there are several highly signifi-
cant differences (about 10 SDs) detected in the statistic based
on nonlinear redundancy (Fig. 1d). The possibility that these
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Fig. 1. a Linear marginal redundancy andb marginal redundancy, as func-
tions of time lag, for the vigilance electroencephalogram (EEG) of subject 2
recorded from positionO1. The four differentcurvesin each figure are the
redundancies for different embedding dimensions,n = 2–5, reading from
bottom to top.c Linear redundancy statistic, andd nonlinear redundancy
statistic, as functions of time lag and for embedding dimensionsn = 2–5,
for the same EEG record

significances are spurious (caused by imperfect surrogates)
is ruled out by the results in the statistic based on linear re-
dundancy, where no significant differences (differences be-
tween –1 and 1 SD) were found (Fig. 1c). The hypothesis
of a linear stochastic process was thus rejected.

Looking at the nonlinear redundancy statistic (Fig. 1d) in
detail, one can see that the significant differences are period-
ically distributed and located in the lags in which%n(τ ) has
its minima. This means that%n(τ ) is significantly greater
than zero also in its minima, which is not apparent from
Fig. 1b, especially in the case of%2(τ ). Thus,%2(τ ) > 0
and the variablesx(t) andx(t + τ ) are dynamically (deter-
ministically) connected for the whole range of considered
lags, i.e., up to 100 samples, or 390 ms. In the case of the
surrogates,%2(τ ) vanishes in its minima. For other lags the
differences between the EEG data and the surrogates are
not significant. This phenomenon, typical fornonlinear de-
terministic oscillations(Palǔs 1995), will be calledperiodic
nonlinearity.

The long-term decreasing trend in%n(τ ) is exactly re-
flected also in linearλn(τ ); and is fully explained by the
isospectral linear stochastic process, because there is no in-
dication of a decreasing pattern in the time-lag dependence
of differences (Fig. 1d; cf. Fig. 3d in Paluš 1994a).

The results in Fig. 1b and d were obtained usingQ = 4
marginal equiquantal bins. The tests using finer partitions,
possible due to the large amount of data available, were
also performed (see Sect. 3). Using finer partitions did not,
however, bring any new information in either the qualitative
comparison or the quantitative analysis (Paluš 1994b). This
phenomenon is typical for all EEG data analyzed.

Results similar to those depicted in Fig. 1 and described
above, were obtained from the EEG signals of all five sub-
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Fig. 2. Marginal redundancy forb the sleep EEG of subject 1 from posi-
tion O1 anda its surrogates, as functions of the time lag. The four different
curvesin each figure are the redundancies for different embedding dimen-
sions,n = 2–5, reading from bottom to top.c Linear redundancy statistic,
and d nonlinear redundancy statistic, as functions of the time lag and for
embedding dimensionsn = 2–5, for the same EEG record

jects recorded in the vigilant state from positionsO1, O2,
T5, T6, Pz and Fz, i.e., from all channels except the two
frontal ones (F7 andF8). For the sleep state and the above
six channels we can also present one typical example. The
analysis results obtained from the EEG of subject 1, recorded
in the sleep state from positionO1, are presented in Fig. 2.
In general, the sleep EEGs are less coherent than the vig-
ilance ones, the values of the redundancies are about 10
times smaller and decrease faster, i.e., the coherence length2

is shorter. The results of the nonlinearity tests, however, are
the same as those for the vigilance EEG, described above:
no qualitative differences between%n(τ ) computed from the
EEG and from the surrogates3 were found (Fig. 2a,b). No
significant differences (from –1 to 1.6 SDs) were found in
the linear redundancy statistic (Fig. 2c); but several highly
significant differences (tens of SDs) were detected in the
nonlinear redundancy statistic (Fig. 2d). These significant
differences are located in the lags in which%n(τ ) has its
minima.

Properties of the EEG signals recorded in the frontal
loci (F7 andF8; note thatFz was included in the above six
channels) in both the vigilant and sleep states are similar to
those obtained from other channels in the sleep state, with
two differences:

1. In addition to the periodic nonlinearity, significant dif-
ferences in ‘short’ lags, i.e., in the lags 1–2 samples (4–

2Under the coherence length we understand here such time lagγ that
%2(τ ) > 0 significantly∀τ ≤ γ, whereγ, τ ≥ 0.
3The comparison of%n(τ ) computed from the EEG data with%n(τ ) from
the surrogates is equivalent to the comparison ofλn(τ ) with %n(τ ) from
the EEG, and may be even more reliable (Paluš 1995). Therefore we will
use the former in all remaining tests presented here.%n(τ ) from the surro-
gates means the mean values of%n(τ ) obtained from 30 realizations of the
surrogates.
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Fig. 3. a, bNonlinear redundancy statistic andc, d marginal redundancy for
the vigilance EEG of subject 1 from positionF7, beforea, c and afterb, d
high-pass filtering, as functions of time lag and for embedding dimensions
n = 2–5

8 ms) or 1–3 samples (4–12 ms) were detected (Fig. 3b).
We will henceforth refer to this phenomenon as ‘short-
lag nonlinearity’.

2. In three subjects in both the vigilant and sleep states,
this short-lag nonlinearity was the only significant differ-
ence detected (Fig. 3a). We observed, however, that the
spectra of these records are dominated by slow activity.4

When this slow activity was eliminated by a digital filter
in spectral domain, a typical pattern of periodic nonlin-
earity emerged. The short-lag nonlinearity, however, was
not eliminated.

An example of this phenomenon is presented in Fig. 3.
The analysis results of the vigilant state EEG of subject 1,
recorded in positionF7, are depicted in Fig. 3a,c. (We do not
present%n(τ ) from the surrogates, which is not qualitatively
different from %n(τ ) obtained from the EEG, nor the lin-
ear redundancy statistic, in which no significant differences
were found.) In the nonlinear statistic the only significant
differences are located in the lags 1–2 samples (Fig. 3a).
The lag-dependence of%n(τ ) (Fig. 3c), however, is similar
to that presented in Fig. 2b, showing the typical sleep state
result. After eliminating the slow activity from the signal,
the lag dependence of%n(τ ) is close to the typical vigilance
pattern (Fig. 1), but the coherence length is shorter (Fig. 3d).
Results from the quantitative test are also typical, i.e., sig-
nificant differences in the minima of%n(τ ) were detected,
but with the addition of significant differences in the lags
1–2 samples (Fig. 3b).

In general, the properties of EEG signals recorded in
frontal positionsF7 andF8 are not different from the prop-
erties of other EEG signals described above. The only differ-
ence is the short-lag nonlinearity, which is typical for these
channels but can also be found in other locations (Table 1).

4Unfortunately we were not able to determine whether it was slow EEG
activity or eye artifacts, but the latter are more probable.
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Fig. 4. a Linear λ2(τ ) and b nonlinear marginal redundancy%2(τ ) for
the sleep EEG of subject 5 from positionPz (continuous lines) and its
surrogates (mean value,dashed lines; mean± SD, dotted lines). c, d The
same asb, but c for the vigilance EEG of subject 1, positionO1 andd for
the simulated data with gradually changing fast frequency during oscillatory
episodes, discussed in Sect. 5

Defining qualitative differences between%n(τ )[o] from
the original data and%n(τ )[s] from the surrogates is some-
times problematic. Above we have stated that no such differ-
ences were found in analysis of the EEG data studied. This
is true in the sense of the definition of qualitative differ-
ences given in Paluš (1995), which emphasizes differences
in ranges of lags in which%n(τ ) is positive, locations of ex-
trema and long-term trends of%n(τ ). Looking at more sub-
tle details, however, one can discover an interesting feature
which differentiates the nonlinear oscillations in the EEG
from trivial periodic nonlinearity, described in Paluš (1995).
For such a detailed comparison, we have plotted in one fig-
ure (Fig. 4b)%2(τ )[o] from the sleep EEG data of subject 5,
recorded in positionPz (continuous line) and%2(τ )[s] from
its surrogates (mean, dashed line; mean± SD, dotted lines).
We can observe an asymmetry in the peaks of%n(τ )[o] com-
pared with those of%n(τ )[s]. The fact that this is a nonlinear
phenomenon and not an artifact of imperfect surrogates, is
demonstrated by comparingλ2(τ )[o] and λ2(τ )[s] (Fig. 4a;
line-type codes as in Fig. 4b): these coincide, thus linear
properties of the surrogates are the same as those of the
EEG data.

This phenomenon can be found also in other subjects
in both the vigilant and sleep states, but in most cases the
difference is very small and almost invisible. Another exam-
ple, when this asymmetry is easily detectable, is the vigilant
state EEG from positionO1 of subject 1 (Fig. 4c). In Fig. 4d
this phenomenon is observed in numerically generated data,
discussed in Sect. 5.

In summary, all the EEG records possess a nonlinearity.
In particular, a type of periodic nonlinearity was detected
in all the EEG records (although in some of the EEGs from
frontal channelsF7 andF8 it was not detected in the raw data
but after high-pass filtering). EEGs from the frontal chan-

Table 1. Basic characteristics of the subjects and results of the analysis

Subject

1 2 3 4 5
Age (years) 43 40 44 31 20
Sex F F M F M
O1 – vigil P P P P P
O1 – sleep P P P P S P
O2 – vigil P P P P P
O2 – sleep P P P P S P
T5 – vigil P S P S P P S P S
T5 – sleep P P S P S P S P S
T6 – vigil P S P S P P S P S
T6 – sleep P P S P S P S P S
Pz – vigil P P P P S P S
Pz – sleep P P P P S P
Fz – vigil P P P P S P S
Fz – sleep P P P S P S P
F7 – vigil F S P S F S F S P S
F7 – sleep F S P S F S F S P S
F8 – vigil F S P S F S F S P S
F8 – sleep F S P S F S F S P S

F, female; M, male; vigil, the vigilant state; sleep, the sleep state; P, periodic
nonlinearity; F, periodic nonlinearity detected after high-pass filtering; S,
short-lag nonlinearity

nelsF7 andF8 and from certain other channels also possess
the short-lag nonlinearity. These results are summarized in
Table 1.

5 Discussion

Periodic nonlinearity, detected in practically all the EEG
records analyzed, was characterized by significant differ-
ences located in the lags in which the redundancy%n(τ )
has its minima, while the relations betweeny(t) andy(t+τ )
in other lags were well reproduced by the linear stochas-
tic surrogates. Also, the linear stochastic surrogates mimic
the EEG signals very well from the viewpoint of qualitative
comparison. This kind of behavior was observed in peri-
odic processes related to dynamics on limit cycles or tori,
while ‘specifically nonlinear dynamics’, like evolution on
strange attractors, was characterized by both qualitative dif-
ferences and significant results of the quantitative tests in en-
tire ranges of studied lags (Paluš 1994a, 1995). On the other
hand, regular periodic processes have zero KSE and thus no
long-term decreasing trend in%n(τ ) (Palǔs 1993). Dynam-
ical information loss, measured by a long-term decrease in
%n(τ ), however, is not a phenomenon specific only to chaotic
dynamics, but can be caused by any kind of dynamical noise,
such as that in autoregressive processes (Paluš 1994a, 1996),
or by a nonstationarity or fluctuation in some parameter of a
dynamical system that might otherwise be regular, i.e., have
zero KSE (Palǔs 1993). The long-term decreasing trend in
%n(τ ) detected in all EEG records analyzed, has been found
consistent with the linear stochastic hypothesis. Thus, stud-
ied EEG signals can be a mixture of nonlinear determinis-
tic oscillations, linear stochasticity and/or nonstationarity. In
particular, in a numerical study the following simulated time
series were constructed: Episodes of two-frequency oscilla-
tions of the form

y(t) = A sin(ω1t) sin(ω2t) (12)
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Fig. 5. Marginal redundancy forb the simulated time series discussed in
Sect. 5 anda its surrogates, as functions of time lag. The four different
curvesin each figure are the redundancies for different embedding dimen-
sions,n = 2–5, reading from bottom to top.c Linear redundancy statistic,
and d nonlinear redundancy statistic, as functions of time lag and for em-
bedding dimensionsn = 2–5, for the same simulated series

whereω1 = 2π/T1 represents fast dominant oscillations (e.g.,
T1 = 0.1 s) andω2 = 2π/T2 represents a slower ‘envelope’
(e.g.,T2 = 0.5–1.0 s), were randomly distributed in a back-
ground of Gaussian noise. Durations of the episodes were
random, varying from 0.8T2 to 2.2T2. Also other parame-
ters were randomized: The amplitudeA asAt = A0 + αt,
the argument of the ‘envelope sine’ asω2t + ξt and the fast
frequencyω1 as ω1(t) = ω0 + ot, whereαt, ξt and ot are
Gaussian deviates with zero means and variances of about
20% ofA0, 2π/3 and 10% ofω0, respectively. Finally, the
spectra of these artificial signals are more realistic (i.e., more
closely resemble real EEG spectra), when the background
noise is not white but filtered into a 1/f type. Tuning the
above parameters (the variances of the random components,
the durations of the episodes, the frequency of episode oc-
currence, and the type of the background noise) one can
produce signals which, when analyzed, yield results practi-
cally indistinguishable from the results obtained from var-
ious EEG recordings. An example of results from such an
artificial time series is presented in Fig. 5:%n(τ ) of the sim-
ulated data (Fig. 5b) and of its surrogates (Fig. 5a), the linear
redundancy statistic (Fig. 5c) and the nonlinear redundancy
statistic (Fig. 5d). These results are practically the same as
those obtained from the vigilance EEG recordings from all
but the frontal channels (Fig. 1). By changing the back-
ground noise, in particular by increasing the spectral power
of slow frequencies relatively to the power of the mainω1
oscillations, the ‘vigilant state artificial EEG’ can be changed
into the ‘sleep state artificial EEG’; i.e., the results become
similar to those presented in Fig. 2.

When the fast oscillation frequencyω1 is randomized as
described above (or constant) no asymmetries such as those
in Fig. 4 are observed. In an additional study we found that

such asymmetries may occur when the frequencyω1 changes
gradually during the oscillatory episode. In particular, we
used linearly changing periodT1 asT1(t) = T0 + ct, where
t is the time from the beginning of an oscillatory episode.
The sign of the parameterc determines on which side of a
peak of%2(τ ) the asymmetry occurs: whenc is negative the
asymmetry is located on the left side of the peaks, as in the
cases presented in Fig. 4; whenc is positive, the asymmetry
is located on the right side. Thus, if the asymmetries detected
in the real EEG data were indeed caused by this mechanism,
relatedc values are negative andT1 values decrease, or the
dominant frequency (alpha) increases during the oscillatory
episodes (alpha spindles).

The process described above is obviously asymmetric
with respect to time. Although the actual dynamical mech-
anisms underlying the EEG can be different,5 the temporal
asymmetry can be detected in the real EEG dynamics.6 Re-
cently, Chialvo and Millonas (1995) have pointed out the
importance of temporally asymmetric fluctuations for bio-
logical energy transduction. The possible existence of and a
role for temporally asymmetric processes in brain dynamics
could be an interesting subject for research.

The simulated time series, which combine nonstation-
ary deterministic oscillations with randomness, namely, in
which oscillatory episodes with some randomized param-
eters are randomly distributed in a noisy background, can
mimic all properties of the real EEG signals analyzed.7 Of
course, this is not evidence that this ‘model’8 explains real
EEG dynamics, although it seems more probable than the
hypothesis of low-dimensional chaos. Without insisting on a
particular model or hypothesis, we can conclude that in the
analyzed EEG recordings nonlinearity was detected, though
not consistent with the hypothesis of low-dimensional chaos.
Considering this result, applications in computerized EEG
analysis of algorithms, designed for characterization of low-
dimensional chaotic systems, should be critically reassessed.

Some authors (Mayer-Kress and Layne 1987; Koukkou
et al. 1993; Wackermann et al. 1993; Lutzenberger et al.
1995) no longer insist on interpreting their results, such as
finite dimension estimates, as evidence for underlying low-
dimensional chaos, but propose these measures, particularly
the correlation dimension (CD) (Grassberger and Procaccia
1983), as measures for relative characterization of different

5A generalized Wiener process with a nonzero drift can be considered as a
plausible stochastic alternative to the above deterministic drift inT1 (ω1).
6The asymmetry in the peaks of%2(τ ) is not necessarily equivalent to the
temporal asymmetry of the underlying process (time series), and the redun-
dancy%2 (mutual informationI) is not a measure suitable for detecting
the temporal asymmetry, due to its symmetry properties [I(ξ; η) = I(η; ξ)].
Consideringξ = y(t) andη = y(t + τ ), the temporal asymmetry of a series
{y(t)} can be detected by the significant difference between the probability
distributionsp(ξ, η) andp(η, ξ), quantified by the Kullback-Leibler infor-
mationKLI =

∑
ξ

∑
η

[p(ξ, η)− p(η, ξ)] log[p(ξ, η)/p(η, ξ)]. Applica-
tion of this approach led to positive detection of the temporal asymmetry
in the EEG; however, only a part of the EEG data described in this paper
was processed using theKLI measure. Therefore the temporal asymmetry
in the EEG is reported here only as a possibility, which requires further
study before it is considered a general feature of the EEG.
7Except that of the short-lag nonlinearity, detected in a part of the datasets
(Table 1).
8The process described is not considered as a model generating EEG, like,
for example, that proposed by Jansen and Rit (1995), nor as a time-series
model estimated from EEG data (e.g., Jimenez et al. 1995).
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EEG recordings. Although these authors demonstrate that
such CD estimates may have some discriminating power
with respect to EEGs recorded in different physiologic or
psychologic conditions, considering that the underlying pro-
cesses can be stochastic, these low numbers, formally ob-
tained from dimensional algorithms, are probably spurious
and have no theoretically justified meaning and interpreta-
tion. Moreover, it can hardly be established how robust or
sensitive measures such as CD are when they are used in
the relative characterization of processes the dimensional-
ity of which can be effectively infinite. For these reasons
we do not consider the dimensional and Lyapunov expo-
nents algorithms, based on the particular hypothesis of a
low-dimensional attractor, to be promising in computerized
EEG analysis. Nonlinear methods, which quantify the real
existing properties of a process under study, should be used.
For instance, differences in coherence lengths of various
EEG records can induce differences in estimates of CD or
Lyapunov exponents. The coherence length of a process is
related to its entropy rate and thus can be directly quanti-
fied, e.g., by an ‘approximate entropy’ (Pincus et al. 1991)
or by ‘coarse-grained entropy rates’ (Paluš 1996), which can
be applied to both deterministic–chaotic and stochastic sys-
tems, and are designed specifically for noisy, finite-precision
and finite-length experimental data.

6 Conclusion

Two-hour vigilance and sleep EEG recordings from five
healthy volunteers were analyzed using a method for identi-
fying nonlinearity and chaos which combines the redundancy
– linear redundancy approach with the surrogate data tech-
nique. A nonlinear component in the EEG was detected,
but was found inconsistent with the hypothesis of low-
dimensional chaos. A possibility that a temporally asym-
metric process may underlie or influence the EEG dynamics
was indicated. A process which merges nonstationary non-
linear deterministic oscillations with randomness, namely in
which deterministic oscillatory episodes are randomly dis-
tributed in a noisy background, has been proposed for an
explanation of observed properties of the analyzed EEG sig-
nals. Considering these findings, the use of dimensional and
related chaos-based algorithms in the quantitative EEG anal-
ysis was criticized, and measures applicable also to nonlin-
ear stochastic processes were proposed instead. However,
any EEG study in which authors apply nonlinear measures
should also present results of elaborate analysis using linear
methods, and/or test hypotheses9 using isospectral surrogate
data, in order to demonstrate that nonlinear measures are
indeed necessary to quantify the phenomena under study.
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Başar E (ed) (1990) Chaos in brain function. Springer, Berlin, Heidelberg,
New York

Casdagli M (1992) Chaos and deterministic versus stochastic modelling. J
R Stat Soc B 54: 303–328

Chialvo DR, Millonas MM (1995) Asymmetric unbiased fluctuations are
sufficient for the operation of a correlation ratchet. Phys Lett A 209:
26–30

Fell J, R̈oschke J, Beckmann P (1993) Deterministic chaos and the first
positive Lyapunov exponent: a nonlinear analysis of the human elec-
troencephalogram during sleep. Biol Cybern 69: 139–146

Fraser AM (1989) Information and entropy in strange attractors. IEEE Trans
Information Theory 35: 245–262

Freeman WJ (1992) Tutorial on neurobiology: from single neurons to brain
chaos. Int J Bifurcations Chaos 2: 451–482

Gallez D, Babloyantz A (1991) Predictability of human EEG: a dynamical
approach. Biol Cybern 64: 381–391

Grassberger P, Procaccia I (1983) Measuring the strangeness of strange
attractors. Physica D 9: 189–208

Jansen BH (1991) Quantitative analysis of electroencephalograms: is there
chaos in the future? Int J Biomed Comput 27: 95–123

Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked poten-
tial generation in a mathematical model of coupled cortical columns.
Biol Cybern 73: 357–366

Jimenez JC, Biscay R, Montoto O (1995) Modeling the electroencephalo-
gram by means of spatial spline smoothing and temporal autoregres-
sion. Biol Cybern 72: 249–259

Koukkou M, Lehmann D, Wackermann J, Dvořák I, Henggeler B (1993)
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