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Abstract. We study the dynamics and stability of legged
locomotion in the horizontal plane. We discuss the
relevance of idealized mechanical models, developed in a
companion paper, to recent experiments and simulations
on insect running and turning. Applying our results to
rapidly running cockroaches, we show that the models’
gait and force characteristics match observations rea-
sonably well.

1 Introduction: insect locomotion

In this paper, we apply the simple bipedal mechanical
models for legged locomotion developed in the preceed-
ing paper (Schmitt and Holmes 2000a) to rapidly
running cockroaches. We describe the results of simu-
lations illustrating the analyses of Schmitt and Holmes
(2000a), and compare them with experiments of Full
et al. (Full and Tu 1990, 1991; Ting et al. 1994),
simulations by Kubow and Full of a rigid body subject
to prescribed hexapedal foot forces based on forces
observed in such experiments (Kubow and Full 1999),
and to observations on turning behavior due to Jindrich
and Full (1999).

We recall the basic equations of motion in the inertial
frame from Schmitt and Holmes (1999):

mi = R(O())f, 10 = (rp —1) x R(O(£))f . (1)

Here, r denotes mass center (COM) position, 0 body
orientation, R(0) is the rotation matrix, and rp is the
foot position at touchdown, computed as described by
Schmitt and Holmes (2000a) and remaining fixed during
each stride. A 50% duty cycle is assumed. The foot force
f is supposed to act along the leg, and is either specified
externally [prescribed force model], or derived from the
displacement of a passive elastic leg [compliant fixed and
moving center of pressure (COP) and prescribed leg
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angle models]. For the latter models, it is convenient to
use polar coordinates during each stance phase, in terms
of which the Hamiltonian equations of motion become,
for the linear spring case
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for fixed COP. For the moving COP model of Schmitt
and Holmes (2000a), with d = dy + di [ — (—1)"0], one
adds —dik(1 — Iy/n){d + {sin[y — (—=1)"0]} and
+dik(1 — ly/n){d + {sin[yy — (—1)"0]}, respectively, to
the fourth and sixth components of (2). The three
degrees of freedom ({,y,0) describe COM positions
relative to the ‘active’ foot and body orientation, and

n= \/Cz + d? + 2{d sin(y — 6) denotes the (compressed)
leg length. The integer n counts stance phases, using the
convention n even for left (L) and » odd for right (R).
The model is characterized by six physical parameters:
body mass, m, and moment of inertia, /; leg stiffness, k,
and relaxed leg length, /y; pivot position (COP) relative
to COM, d; leg touchdown angle 5. Defining nondi-
mensional time 7, these reduce to four nondimensional
groups:

. ~ Dot
w1tht:lL

lo 0

)

(3)

where v is a characteristic COM velocity. For moving
COP, d is replaced by d; = d;/ly; j=0,1.

In Schmitt and Holmes (2000a), it is shown that these
models exhibit periodic gaits for a range of forward
speeds above a critical speed (or, equivalently, below a
critical k£ depending on f), at which a saddle-node
bifurcation occurs. The ‘physical’ branch of gaits



518

emanating from this is asymptotically stable with respect
to heading and body angular velocity, provided d < 0
(or d; < 0, for moving COP).

2 Simulations of rapidly running cockroaches

The following simulations were done in Matlab, using
Runge-Kutta integration of the equations of motion
in both inertial and polar coordinates, with indistin-
guishable results. Parameters were set to values typical

for the death-head cockroach Blaberus discoidalis
(Ting et al. 1994; Kram et al. 1997, Kubow and
Full 1999): m =0.0025kg, I=2.04x 1077 kg m?,

k=0.5—3.5Nm"'. Spring constants were chosen to
match peak forces characteristic of steady running at
0.2-0.25m s™! with reasonable leg compressions
(<50%). We considered various touchdown angles and
leg lengths: f = /4, 1y = 0.017 m, leads to long strides
and slow leg cycle rates around 4-5 Hz at forward
speeds in the 0.2-0.25-m s~! range; increasing 8 to 1
gives rates of 6-8 Hz; finally, decreasing [y to 0.01 m
with f =1 gives stride lengths and cycle rates of about
10 Hz, close to those observed in the animal. For these
parameter values, the velocities for which £ = 1 lie above
0.25m s™!, so the following simulations are within the
regime for which the linear spring model is reasonable
(see the remarks following (33) in Sect. 3.2 of Schmitt
and Holmes 2000a).

Further parameter studies will be described elsewhere
(Schmitt and Holmes 2000b; Schmitt et al. 2000), but in
passing we observe that both the fixed and moving COP
models display constant stride lengths with increasing
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forward speed. One may even give explicit formulae
based on simple geometrical constructions appealing to
L-R reflective symmetry (see the diagram in Fig. 2a). We
have

Ly = 4lycos f§ and
Ly = 4[dcosf+ locos(B+0) =~ 4(lo +d)cosf ,  (4)

(for small |0]), respectively, where d and 0 are the
maximal excursion of COP from COM and body angle
magnitude at touchdown in the moving COP (latter)
case. This assists in parameter choices, and also agrees
with the experimental observation that stride length is
approximately constant in the range 0.05-0.30 m s~ ';
see Ting et al. (1994) and Fig. 2.

2.1 Running with fixed center of pressure

We first consider gaits of the compliant-legged, free
pivot biped of Sect. 3.1-3.3 of Schmitt and Holmes
(2000a). Simulations of running were carried out for
d<0,d=0, and d > 0. The results of Fig. 1, with
k=0.53, Ip =0.017, = /4, corroborate the stability
calculations presented in Sect. 3.2-3.3 of Schmitt and
Holmes (2000a). For d < 0, starting from an arbitrary
initial state with mass center and angular velocities and
body orientation not at gait equilibrium values, the
motion meanders briefly before settling to a stable gait
with small oscillations about a constant angle 6. For
d =0, similar behavior ensues, provided the initial
angular velocity is zero. For 4 > 0, however, a stable
gait is not achieved; the center of mass diverges and
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Fig. 1. Stable (a) and unstable
(b) motions of the elastic legged
system with d = —0.005 and
+0.005, respectively. Other pa-
rameter values given in text. x’s
represent foot positions, 0’s and
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zigzags and ultimately the body ‘bounces back’ and foot
placements collide.

For the d =0 case, we use a modified Newton-
Raphson iteration coupled with Runge-Kutta numerical
integration of (2) to find a periodic gait and its associ-
ated eigenvalues. A sample fixed point thus found is:
7=0.3, 6 =0.09852, 0 =0, and 0 = 0, with the single
non-unity eigenvalue 0.2421. The analytical map of
Schmitt and Holmes (2000a), Sect. 3.2, using the elliptic
function quadratures computed there for the same fixed
point values, delivers 0.2416, a difference of only 0.2%.
In general, the values (v,y1,0,41,0,41) oObtained by
simulating for one stride, agreed within 1.0% with those
predicted by the map. These comparisons provide
checks of our numerical calculations.

We now examine the character of steady gaits.
Comparing forward and lateral velocities during the
stride to those reported by Full and Tu (1990) and Kram
et al. (1997) and reproduced in the model of Kubow and
Full (1999), reveals that they match reasonably closely
those observed for the cockroach (Fig. 2b). Forces
generated at the foot (or equivalently, at P) also com-
pare fairly well both in orders of magnitude and time
histories to those for summed leg tripods (Fig. 2c), al-
though the peak fore-aft forces (£0.0014 N) and lateral
forces (£0.0041 N) have magnitudes ‘reversed’ from
+0.004 N and +0.0032 N taken in Kubow and Full
(1999). However, 0 variation for the model differs
markedly from observations; it approximates a negative
sinusoid (third panel of Fig. 2b). This is due to the
torque, which is positive during L-stance and negative
during R-stance, since d < 0 (third panel of Fig. 2c).
Experimental studies (Kram et al. 1997) reveal that 0
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behaves more like a positive cosinusoid, with 0 =~ 0 at
touchdown and liftoff. Note that our velocities and force
components are referred to inertial coordinates, but that
since 0 remains small, they approximately coincide with
body coordinates.

A steady gait was also found for = 1.0; here the
velocity and angle oscillations (y = 0.21 +0.02 m s~!,
¥ ==40.02ms"!, 0 = +0.035 rad s7!), and peak fore-aft
and lateral forces (4+0.0004 N, +0.0018 N) were con-
siderably smaller than those observed, although the
temporal frequency of 5.9 Hz was closer to that in the
animal at this forward speed. Decreasing /y to 0.1 and
increasing k to 2.25 (to keep k approximately constant at
preferred speed) gives a gait with the appropriate 10 Hz
frequency at 0.22m s~ !, and with peak fore-aft and
lateral forces of +£0.0011 N and +0.0047 N and corre-
spondingly smaller fore-aft velocity and body angle
variations (less than =+1°), due to reduced integrated
force and torque impulses resulting from the shorter
stride duration. The fact that fore-aft forces are always
smaller than lateral forces in the model is due to our
single leg and ‘in-line’ force vector (Schmitt and Holmes
2000b).

Following the lead of Kubow and Full (1999), we
next examine the effects of perturbating forward, lateral
and angular velocities of a stable (d < 0) gait from their
nominal values (here 0.218 ms~', —0.0547 m s~! and
—3.30 rad s~!, respectively; see Fig. 3). Perturbations of
+0.0l ms~! and £0.02m s~ in forward and lateral
velocities and 40.3 rad s™! and +0.6 rad s~! in angular
velocity, were applied as discontinuous jumps directly
after touchdown. In all cases, a new final gait is selected;
all motions are coupled, and as expected from the
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tation; see Fig. 1.] Perturbations in angular velocity also
cause the system to seek a new stable gait, but the final
angular velocity itself appears insensitive to perturba-
tion size (Fig. 3c).

The recovery rate from perturbations apparent in
Fig. 3 matches the larger (slowest) eigenvalue of the
linearized full stride map (—0.4699), as one expects for
coupled motions (the other eigenvalues are 1 and
—0.3853). Note that the eigenvalues are negative, leading
to oscillatory decay, illustrated by the plot of forward
versus lateral velocity in Fig. 4. Forces generated at the
foot or, equivalently, at P, following these perturbations
differ by up to 34% in peak values from those of steady
running shown in Fig. 2c, but the shapes of the force
functions remain similar.

These results differ from those of Kubow and Full
(1999), whose model recovered from perturbations in

Forward Velocity (m/sec)

Fig. 4. Recovery from lateral velocity perturbation; orbit of full stride
map shown with stride sequence indicated. The nominal fixed point is
off-scale at (0.218,—0.0547)

each case to the original unperturbed velocities (in body
coordinates). We also note that our maximum velocity
perturbations are an order of magnitude smaller than
the largest used by Kubow and Full (1999) (oy,
ox = £0.22, 60 = £30.0); perturbations of those mag-
nitudes disrupted running irrecoverably, for example by
putting the direction of the mass center velocity vector
behind the leg direction, so that the body bounces back
and cannot proceed. We further discuss our results in
comparison with the results of Kubow and Full (1999) in
Sect. 3.



2.2 Running with prescribed foot forces

To make possible a more direct comparison with studies
of the hexapod model of Kubow and Full (1999), we
also considered the bipedal model of Schmitt and
Holmes (2000a), Sect. 3.1 with prescribed foot forces
which rotate with the body during each stride. The
appropriate equations of motion are (1). We took mass
and inertia as in Sect. 2.1, and the following foot forces,
characteristic of summed tripods, relative to the body
frame:

f(r) = [j:0.0032sin(2m/TS),70.004sin(4nt/TS)]T , (5
with full stride period 7; =0.1s, as in the report of
Kubow and Full (1999). Behavior was remarkably
sensitive to the touchdown foot position specified via
ly, d and f. For values similar to those of Sect. 2.1, we
found stable gaits, with reasonable fore-aft and lateral
velocity variations, but with cosinusoidal yaw oscilla-
tions of the opposite sign to those observed; this follows,
since turning moments about the COM are positive in
the first half of each L-stride and negative in the second
(and vice versa in R-stride), opposite to those in the
animal. For example, with /o =0.017 m, d = —0.001
and f = 1.25, we located a periodic gait with average
forward speed of 0.211 m s~! and L-touchdown data

5=0.224, 5=0.143, 0=—0.057(—3.3°),
(0 = —0.00011) |

and forward and lateral velocity oscillations of £0.026
lp =0.017m, d=-0.004

and =£0.039. For and
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p = 1.25, the forward velocity was significantly slower:
v=0.106m s

As noted in (14) of Schmitt and Holmes (2000a), for
the special case 0(¢) = constant, there is only neutral
velocity stability; recovery to nominal gait following
perturbation observed by Kubow and Full (2000a) must
therefore be due to coupling with rotation. Indeed, as
pointed out there, a jump in forward velocity causes the
body to ‘outpace’ its feet, leading to a turning moment
that reorients the body and causes forces during the
following stance phase to decelerate it. Similar obser-
vations apply to lateral and angular velocity perturba-
tions.

Perturbation results for the first case are shown in
Fig. 5 in the same format as in Fig. 3. The unperturbed
gait values at L-touchdown were 0.224 m s~! forward,
—0.0183 m s~! lateral, and —0.00011 rad s~' angular
velocity, and perturbations of similar magnitudes to
those in Fig. 3 were used. Since energy is not conserved
(see the peg-leg models of Schmitt and Holmes (2000a)),
full asymptotic recovery is possible; energy supplied (or
removed) by the perturbation is effectively removed (or
resupplied) by the prescribed forces, and the open-loop
bipedal model shows slow monotonic recovery to the
nominal gait following (modest) forward velocity per-
turbations. Recovery after lateral and angular velocity
perturbations is more rapid and oscillatory. The per-
manent shift in forward and lateral (y,x) velocities in
Fig. 5 are due to our use of inertial frame coordinates
(ey,e,); in body coordinates, the average lateral velocity
returns to near zero and straight running resumes. De-
cay rates are comparable to those of Kubow and Full
(1999) (63% recovery in about 80 strides for forward,
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and 8 strides for lateral perturbations, compared to 50
and 8 strides, respectively, in Kubow and Full (1999)).
The angular velocity recovers more slowly, in 7 strides; in
Kubow and Full (1999), this occurred within one stride.
These differences, and the yaw velocity sign discrepancy,
are largely due to replacement of the tripod force system
with a single virtual leg (Schmitt et al. 2000).

In an attempt to correct the yawing behavior, we
significantly decreased the lateral distance to foot
touchdown, thus keeping force vector deviations within
the triangle defined by foot and COM at touchdown and
liftoff. Picking /y = 0.008 m, d = —0.0025 and § = 0.175
(this small value is necessary to obtain a ‘symmetric’
stance phase, with COM passing the foot near mid-
stance), we obtained qualitatively correct moment and
yaw patterns:

5=0.228, 5=0.088, 0=0.0014(0.08°), (0=0.0001)

but perturbation studies revealed that this gait was
unstable, exhibiting slowly increasing oscillations in
response to all perturbations. In this case, moment
maxima during L-stance are +1.3 x 107®* N'm, com-
pared with £7.8 x 107> N'm for the tripod forces of
Kubow and Full (1999). While we can match forces
reasonably well, moments and yaw amplitudes are
significantly smaller, evidently precluding stabilization
via yaw coupling. (For the first gait noted above, the
moments of £5.9 x 107> N m are closer in magnitude to
those of Kubow and Full 1999).

In analytical work to be reported elsewhere (Schmitt
and Holmes 2000b), we have shown that prescribed
forces which do not rotate with the body during each
stride always lead to unstable gaits in bipedal models.
Since yaw amplitudes are only 1-5°, the rotation matrix
R(0(¢)) in (1) is essentially constant during a stride, and
one might expect such a ‘minor’ change to have little
effect. However, this result, and those above, show that
stability is a subtle issue for prescribed force models.
Although they can display stable behavior, their be-
havior is fragile and critically dependent upon parameter
and protocol choices. In contrast, the compliant-leg
models display much more robust stability characteris-
tics.

2.3 Prescribed angle running

Here, we briefly consider a periodic gait with prescribed
hip angles, as discussed by Schmitt and Holmes (2000a),
and check its stability. An ‘impulseless’ fixed point of the
type described there was found for f = 1.0 with

v =0.2100, 6=0.1807, 0= —0.1133(—6.49°) ,

and eigenvalues 1, 0.997(=1) and 0.457. Simulations
confirmed stable running and provided the gait charac-
teristics shown in Fig. 6. Body angle variation within a
stride is now a negative cosine wave, and forward and
lateral velocities exhibit sharp changes in slope (accel-
eration discontinuities) at touchdown and liftoff, due to
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instantaneous imposition of the angular velocity con-
straint. The force magnitudes are significantly smaller
than those observed for the free pivot case (Fig. 2), with
consequently smaller variations in forward and lateral
velocity during each stride. (Although torques are
implicitly applied at P and work is thereby done to
maintain the prescribed angles, the forces at the feet, or
equivalently at P, determine the full translational
dynamics.) Overall, this gait compares poorly with
observations; as in the first prescribed force gaits of
Sect. 2.2, the applied torques lead to turning moments
opposite to those observed, with corresponding negative
yaw oscillations.

2.4 Running with moving center of pressure

We simulated the moving COP model of Schmitt and
Holmes (2000a), taking m and [ as above but with
k=3.5125, Iy =0.008 m, dy=0, d =—0.0035 and
B = 1.125 (as above, these parameter values were chosen
after some trial and error to give an appropriate stride
length at the preferred speed). A stable periodic gait was
found with

v=0.2186, 6=0.1346, 0= 0.008(0.46°) ,

and eigenvalues 1, 0.105 and 0.431; Fig. 7 shows the
resulting gait characteristics. Fore-aft and lateral veloc-
ity and force oscillations are similar in pattern and

523

magnitude to the fixed COP gait (Fig. 2), but the
angular variation is now a positive cosinusoid, as in
observations. Indeed, d is positive during the first half of
each stride and negative in the latter, so oscillating
torques are applied during each stride as in the animal
itself (Fig. 7b,c).

However, angular variations are much lower than
observed, being an order of magnitude below the £5-6°
reported. Data reduction performed on the hexapedal
model of Kubow and Full (1999; Garcia M, personal
communication) reveals that the COP and resulting
torque time histories are qualitatively similar to those of
Fig. 7, but that both are an order of magnitude greater;
thus d variations exceed the length of the insect, putting
the COP in front of its head and behind its tail at
touchdown and liftoff, respectively. We were unable to
find stable gaits with d values increased by this order.
Evidently, while the single effective leg can represent the
summed forces adequately, it cannot successfully re-
produce the large torques exerted by the tripod of legs.
We are currently studying this in greater detail (Schmitt
et al. 2000).

2.5 Strategies for turning

Unlike relatively tall mammals, insects with their
splayed postures and low mass centers cannot easily
effect turning impulses by ‘leaning,” but turns can be
achieved by other means. For example, to turn mass
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center heading 45° to the left without changing forward
speed, impulses of magnitude mv/v2 and
mv/(1 —1/y/2) must be provided laterally from the
right and the front, respectively. In our model, this can
be achieved by lengthening and/or stiffening the right
leg, possibly also decreasing its touchdown angle f, and
shortening/relaxing the left leg, perhaps increasing its
touchdown angle. [Recall that stiffness and length are
linked in the nondimensional group k = ki3 /mv* of (3).]
Increases of f at touchdown increase angular momen-
tum py, while linear momentum p; decreases; for d = 0,
this typically increases the angle Ay swept by the leg,
effectively reorienting the mass center heading velocity
vector in the desired direction. Decreasing f§ on the outer
leg has a similar effect, via a decrease in Ay.

However, recent experiments reported by Jindrich
and Full (1999) suggest that leg angles do not change
significantly during turning behavior, whereas leg
lengths at touchdown do change. Specifically, the tripod
with front and back legs outside the turn appears to
generate the bulk of the lateral force and torque neces-
sary to realign both heading and body orientation; the
front leg of this tripod is significantly extended on
touchdown [by about 11% for turns of (/(45°) accom-
plished in 1-3 full strides], while the hind leg of the inner
tripod is retracted (by about 17%; Jindrich and Full
1999). At liftoff, the inner front and middle legs are
significantly shorter (by 19-26%) and the outer hind leg
longer (by about 20%). Length changes are presumably
achieved by varying the ‘horizontal posture’ (joint an-
gles). The strategy described below therefore primarily
uses adjustable leg length and stiffness, the effects of
which our model combines in k. In fact, we expect that

larger joint angles corresponding to increased leg lengths
might also confer increased stiffness in the insect, and
vice versa.

In the following descriptions, although turning con-
tinues after nominal parameter values are restored, we
refer to the stance periods during which parameter
changes are in effect as the turn steps. After several
strides of steady straight motion, starting on the right
(R) touchdown, we changed k/3 by factors of up to 2 (or
0.5) on the R (or L) legs, sometimes accompanied by
changes in f§ by up to 0.8 (or 1.25 for L), for 2-6 steps.
After the turn steps, all parameters reverted to their
nominal ‘straight running’ values. With nominal
p = n/4 (for which the admissible range of touchdown
heading angles 0 is relatively narrow), the larger changes
frequently led to ‘crashes’ in which the mass center
heading angle at touchdown fell outside the allowable
range. When this did not occur, turns were generally
modest (0-5°) and sometimes to the right, the direction
opposite to that desired (see Fig. 8a for a representative
example using § = 1.0). This behavior follows from the
fact that, with d < 0, the torque impulse occurs in the
direction opposite to the desired turn, since the increased
R leg force produces a clockwise torque. Orientation
subsequently overcorrects and the asymptotic stability of
orientation/heading coupling eventually settles the body
on its new course. The out-of-phase patterns of orienta-
tion and heading evolution through the turn shown in
Fig. 9a differ markedly from the small [¢0(5°)] differences
observed by lJindrich and Full (1999; Table 1 and
Fig. 4E). In terms of that paper, the ‘leg effectiveness’ is
poor; a desired linear momentum change to change
heading is accompanied by an undesired angular
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momentum change, negatively affecting orientation.
Larger (0(45°)) turns could be obtained by careful choice
of initial data, but they were non-robust and involved
unrealistically short steps (‘stumbles’) and large impulses.

We therefore decided to allow changes in d, with a
view to modeling the effect of the insect ‘favoring’ its
outside front leg during the turn while deemphasising its
inside hind leg, consistent with the observations of
Jindrich and Full (1999) summarized above. We set
d > 0 on R leg stance, and d ~ 0 on L leg stance during
the turn steps. Stable turns of 20-70° were then easily
elicited in 2-6 steps, with changes in k/3 of order 2 (or
0.5), both with and without changes in 5. Turns were
also obtained with no change in k/3 or 8. Figures 8b-9b
show a representative example, again with f=1. On
shifting the COP, the unstable behavior associated with
d >0 helps produce the required reorientation (no
change in f is needed), but some overshoot of orienta-
tion occurs, and several steps following the turn steps are
required to achieve and stabilize the new heading. Most
of the turn is accomplished over 3-5 steps in a 250-450-
ms period, during which heading lags orientation by 5—
15°, and there is considerable variability in stance peri-
od. Throughout, heading fluctuations are generally
greater than those of orientation. These results are in
reasonable agreement with observations, although in
Jindrich and Full (1999), it was found that heading led
orientation by 5° on average (with considerable vari-
ability among both animals and trials). This difference is
perhaps related to the ‘unphysical’ yawing behavior of
the fixed COP model during steady running (see Sect. 2.1
and Fig. 2a).

Left turns were more easily accomplished, and larger
angle changes obtained, starting with an R-turn step.
This can be understood by considering body angular
velocity, which is positive in straight running at R
touchdown, so that body orientation is already moving

the turns of Fig. 8a and b; +’s indicate touch-
down/liftoff instants

in the appropriate direction (Fig. 9b). Left turns initi-
ated by L-turn steps were possible, but displayed body
orientations opposite to the desired direction early in the
turn. We computed foot forces throughout the turns and
checked that integrated foot impulses matched the linear
momentum changes observed.

Preliminary simulations of turning for the moving
COP model gave very similar results to those of
Figs. 8b—9b. Turns of 40-75° were easily achieved in 2-5
steps simply by transiently biasing the COP position
forward on the outer leg. For a left turn, this was
achieved by setting dy = 0.0025 on two succeeding R
steps, while otherwise keeping dy = 0 throughout. This
effectively increases the leg length at touchdown (the
pivot being further forward), and keeps the pivot ahead
of the COM for most of the stride, thus biasing the
moment arm to produce the desired torque and reori-
entation. Force magnitudes increased by up to 70%
during the turn, and no changes in [y, f or k were nec-
essary. Detailed studies will be published elsewhere
Schmitt and Holmes (2000b).

We note that, during ‘emergency’ behaviors such as
wedging and self righting, cockroaches can produce leg
forces an order of magnitude greater than those used in
normal running (Full and Ahn 1995; Full et al. 1995);
the relatively modest transient force increases required
above are thus quite reasonable.

3 Conclusions and future work

In this and the preceeding paper (Schmitt and Holmes
2000a), we have developed and analysed models for
legged insect locomotion in which the tripod support
stance phases are replaced by a single ‘virtual’ compliant
leg, and angular momentum is conserved about the
current ‘foot’ position in each such phase, with instan-
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taneous switches at touchdown/liftoff (no double stance
phases). We consider dynamics only in the horizontal
plane. Our models are rigid bodies, representing the
head-thorax-abdomen, free to translate and rotate on a
frictionless plane, subject to intermittent constraints due
to foot placement.

With a fixed ‘hip’ (or coxa-body) pivot P and virtual
legs attached at P behind the mass center, we find en-
ergy-conserving periodic gaits that display (strong) as-
ymptotic stability with respect to heading and body
orientation, and that share many features of gaits ob-
served in the death-head cockroach Blaberus discoidalis.
When angular leg displacements are prescribed relative
to body orientation, we also find that stable gaits are
possible, although we have only investigated a limited
class of motions which do not suffer angular impulses at
touchdown. These fixed COP and prescribed angle
models can be seen as limiting cases; neither yields cor-
rectly phased yawing motions, and a more realistic
model would probably fall between these two extremes.
The moving COP model, which also displays stable
gaits, goes some way in this direction, but is unable to
produce yawing motions of sufficient size.

Our models are simple and idealized; in particular, we
neglect frictional and other losses (due to muscles, for
example). Including such losses, with a suitable energy
input, perhaps due to applied torques at P, we expect to
obtain equilibration and asymptotic stability of forward
velocity; endowing the legs with mass and inertia would
also lead to energy losses due to impact on touchdown.
Even in our simplified model, there are four parameter
groups; nondimensional stiffness & (or ¢), inertia /, ‘hip
distance’ d, and touchdown angle f (3). We can estimate
values (for Blaberus discoidalis) from the measurements
of Full et al. (1999), but our parameter studies have been
limited. Taking = n/4 and [, = 0.017 m, we obtain a
gait with velocity, angle and force oscillations compa-
rable to those observed, but with relatively slow, long
strides; f =1 and/or /[y =0.01 m give more realistic
stride frequencies, but gait variations are then too small.
This may be an effect of our replacement of the support
tripod by a single leg; reduction to a single virtual leg
certainly reduces torque and hence yawing magnitudes
in the moving COP case. Further examination of gait
dependence on parameters is needed, as has been done
for saggital plane models (Blickhan 1989; McMahon
and Cheng 1990) and this is currently in progress (Sch-
mitt and Holmes 2000b). Nonetheless, a general pre-
dicition emerges; a rearward shift of the mass center
should promote instability. It would be interesting to
test this on ‘prepared’ insects.

We may also essay a tentative comparison of our
findings with those of Kubow and Full (1999), who
studied the response of a rigid body moving under pre-
scribed force components applied at foot locations and
with magnitudes derived from observations of steady
straight running of Blaberus. Perturbations of forward,
lateral and angular velocity (0.22+0.22ms™!),
(0+£0.20ms™"), and (0+30rads™!), respectively,
were applied at the beginning of a stance phase. For-
ward velocity recovered to its original value slowly (63%

recovery in about 50 strides), lateral velocity recovered
more rapidly (63% in about 8 strides) with a permanent
change in heading direction, and angular velocity re-
covered within one stride (see Kubow and Full 1999;
Figs. 5-14 and accompanying text). However, forces
were not allowed to respond to perturbations, a ques-
tionable assumption, particularly in view of the fact that
for large forward and lateral velocity perturbations, the
body may move outside the ‘straight running’ support
tripod assumed by the model. Presumably, large leg
displacements resulting from large perturbations would
significantly modify force magnitudes and directions,
and feet could skid or lose contact entirely. (We find
force magnitudes in compliant legs change by up to 34%
for significantly smaller perturbations than those of
Kubow and Full 1999).

One qualitative similarity between the behavior of
our free pivot model and these results is the emergence
of three timescales from the three eigenvalues 4 =1,
associated with forward velocity, and |13|(= 0.39) <
|42|(m= 0.47), associated with heading direction and body
angular velocity, obtained for d < 0 [Sect. 3.2-3.4 of
Schmitt and Holmes (2000a) and Sect. 2.1 above]. We
do not see a clear separation of time scales, nor the near-
instantaneous recovery from angular velocity perturba-
tions (Kubow and Full 1999; Fig. 14a). However, our
observation of relatively rapid recovery in orientation
and lateral velocity (in the body frame) does agree with
the general picture presented in Kubow and Full (1999);
we find 63% recovery from lateral and angular pertur-
bations in about 5 strides. On the addition of weak
(frictional or impact) dissipation, we would expect our
neutral stability to forward velocity perturbations
(41 = 1) to become weak asymptotic stability, compa-
rable to the slow (50-stride) recovery. We cannot expect
close agreement, since Kubow and Full (1999) essen-
tially solve an ‘open loop’ problem, with fixed force
histories applied in a periodic clock-driven manner,
while our compliant-legged ‘closed-loop’ models gener-
ate forces depending upon body motions, and liftoffs
and touchdowns are event-driven. Applying prescribed
forces to the bipedal model, we can obtain stable gaits as
in Kubow and Full (1999), albeit with reversed yaw
oscillations; on correcting the sign, yawing torques are
up to 60-times smaller than those for the hexapod, and
gaits are unstable. (Disallowing forces to rotate with the
body during a stride also results in unstable gaits; Sch-
mitt and Holmes 2000b). Overall, we find the ‘robust’
mechanical feedback of the compliant leg models more
plausible in accounting for gait stability than carefully
chosen open-loop prescribed forces.

Our studies of turning are only preliminary, but we
have shown that the free pivot, fixed and moving COP
models can effect stable turns of 20-75° in 2—6 steps by
transiently varying touchdown angles, leg lengths and
compliances, along with a forward shift of the attach-
ment point (COP) P. The shift of P is essential (and
sufficient alone) to elicit turning; (small) turns are pos-
sible with fixed d < 0, but they are fragile — parameters
must be selected carefully to avoid unstable behavior —
and the resulting body orientation and heading behaviors



are unnatural. Our strategy of shifting P seems plausible
in that it might capture the differing ‘leg effectiveness
numbers’ identified by Jindrich and Full (1999), but an
examination of hexapedal models may be needed to
properly understand turning (the final frame — step 5 —
of Fig. 8A of Jindrich and Full (1999), for example,
shows a lateral force impulse directed to the left while
the L-tripod is down; this is impossible for our biped).
We find the use of natural (unstable, d > 0) dynamics
and nonzero yaw velocities to achieve body reorienta-
tion appealing, but we recognize that the precise way in
which yawing during steady running ‘feeds into’ turning
probably differs from that in free pivot models. How-
ever, again a qualitative prediction emerges; if passive
dynamics is implicated in turn stabilization, then neural
‘turn signals’ leading to stance changes should be de-
tected only during the early part of a turn (Figs. 8b, 9b).

Although much of the theory developed by Schmitt
and Holmes (2000a) applies to general spring laws, we
have focused on the linear spring for specific calculations
and for the simulations above. At this stage, seeking
general properties, we did not think it wise to attempt a
detailed model of individual limbs or muscles (see Full
and Ahn 1995). The linear spring has the advantage of
simplicity and explicit solubility (for d = 0), with the
disadvantage of non-physical behavior at high velocities.
However, in this respect, the requirement that the non-
dimensional parameter k = kl3/mv* > 1 for physically
acceptable behavior (see discussion following (33) of
Schmitt and Holmes 2000a) is not as stringent as might
appear, since it is reasonable to suppose that, in insects,
the effective leg stiffness can be adjusted to ‘match’ dif-
ferent forward speeds. We are currently investigating
this (Schmitt et al. 2000), in an attempt to model the
stride length and frequency variations reported by Ting
et al. (1994).

In addition to the parameter studies mentioned
above, to bring our models closer to reality, in future
work we plan to include double stance phases (duty
factor > 50%) and, in an attempt to move towards
multiple legs and tripod support, to further study mov-
ing COP models. The former will disrupt conservation
of angular momentum, since there are now two attach-
ment points. The latter will require a proper under-
standing of under what conditions, and how, multiple
legs can be ‘collapsed’ to a single equivalent (nonlinear)
spring; this may be particularly important for under-
standing turning behavior. We also wish to include
compliant torsional springs at the attachment point(s) P,
to add finite leg masses and inertias, and to consider
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frictional and other losses and their effects on asymp-
totic stability and forward speed selection. We believe
that, while retaining the (relative) simplicity of a single
effective leg for each tripod, such extensions of the basic
models developed here can give further insight into the
stability and control of insect running.
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