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Abstract. A computational model of the lesion and
single unit data from navigation in rats is reviewed. The
model uses external (visual) and internal (odometric)
information from the environment to drive the firing of
simulated hippocampal place cells. Constraints on the
functional form of these inputs are drawn from exper-
iments using an environment of modifiable shape. The
place cell representation is used to guide navigation via
the creation of a representation of goal location via
Hebbian modification of synaptic strengths. The model
includes consideration of the phase of firing of place cells
with respect to the theta rhythm of hippocampal EEG.
A series of predictions for behavioural and single-unit
data in rats are derived from the input and output
representations of the model.

1 Introduction

Our ability to perceive and remember spatial locations in
the real world is central to much of our everyday
behaviour. The exact nature of our representation of
spatial location will affect our ability in a range of tasks
such as remembering where we parked the car to taking
a short-cut on the way to the shops. Neuropsychological
studies (e.g. Habib and Sirigu 1987; Maguire et al. 1996;
Bohbot et al. 1998) and, more recently, functional brain
imaging (e.g. Aguirre and D’Esposito 1997; Maguire
et al. 1997, 1998) have implicated the hippocampus and
surrounding cortical areas in the medial temporal lobes
in this type of spatial memory. However, detailed
knowledge of the nature of the neuronal representation
of spatial location requires information at the level of
single cells. Indeed, the observation of ‘place cells’ in the
hippocampus of freely moving rats (O’Keefe and
Dostrovsky 1971) relates directly to the neural repre-
sentation of the rat’s spatial location. In this article we
briefly review the data from single-unit recordings that
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relates to the neural basis of navigation. We then
describe a computational model consistent with these
data, and examine the predictions that it makes
regarding single-unit and behavioural data in rats.

2 Neural correlates of spatial processing

‘Place cells’ are neurons recorded in the hippocampus of
freely moving rats that tend to fire at a high rate only
when the rat is in a particular portion of its environ-
ment, independently of local sensory cues such as the
odour of the floor covering (O’Keefe and Dostrovsky
1971; O’Keefe 1976). Since different place cells respond
in different parts of the environment, collectively their
firing rates encode the current location of the rat (Fig. 1;
Wilson and McNaughton 1993). ‘Head-direction’ cells
have been found near to the hippocampus in the dorsal
pre-subiculum (Taube et al. 1990) and also in the
anterior thalamic nuclei and mammillary bodies (e.g.
Taube 1998). These cells code for the direction of the
rat’s head, regardless of its location within the environ-
ment. This representation of direction was predicted to
accompany the place representation, under the hypoth-
esis that the hippocampus is a system for spatial
navigation (O’Keefe and Nadel 1978).

The hippocampal formation is well positioned to
process multimodal information from all sensory cor-
tices, although, when available, visual information tends
to exert a dominant influence on place cell firing com-
pared to the other sensory modalities. Visual stimuli at
or beyond the edge of the rat’s reachable environment
are sufficient to control the overall orientation of the
place (O’Keefe and Nadel 1978; Muller and Kubie 1987;
O’Keefe and Speakman 1987) and head-direction (Ta-
ube et al. 1990) representations. Rotation of these
stimuli cause rotation of the receptive fields of place and
head-direction cells about the center of a symmetrical
environment. In congenitally blind rats, objects at the
edge of the environment also control the orientation of
the place cell representation (Save et al. 1998). However,
objects placed within the environment do not control the
orientation of the place cell representation (Cressant
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Fig. 1. The firing rate maps of 35 simultaneously recorded place cells,
i.e. 35 ‘place fields’ showing firing rate as a function of the rat’s
location in the square box shown in the top right corner (adapted from
O’Keefe et al. 1998). The fields are arranged topographically for

et al. 1997). The representations of place and head di-
rection appear to be linked in that, when both head di-
rection cells and place cell have been recorded
simultaneously, the orientations of the two representa-
tions appear to be locked together (Knierim et al. 1995).

Experiments have been conducted in which place cell
firing rates are recorded in environments of varying
shape and size (O’Keefe and Burgess 1996). These show
that the shape and location of a place field is determined
by combining information about the distances of the rat
from the walls that bound its environment in each al-
locentric direction. In simple rectangular environments,
the data can be well explained by considering only dis-

display purposes only; there is no clear topographical relationship
between the locations of the place cells in the hippocampus and the

locations of their place fields in the environment. Notice that,
collectively, the place fields cover the environment

tances in the four directions normal to the walls.
Figure 2 shows the data recorded from a place cell in
four rectangular environments, and the qualitative fit to
the data that can be made from a thresholded sum of
four inputs that have Gaussian tuning curve responses
to the presence of a wall at a particular distance from the
rat along the four allocentric directions North, South,
East and West. These findings suggest that the inputs
driving hippocampal place cell firing are tuned to
respond to walls at a particular bearing. One of the
implications of this finding is that distant visual cues
play an important role in anchoring the rat’s sense of
allocentric direction, and this in turn affects the overall
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Fig. 2. Left The place fields of a place cell recorded in four rectangular
boxes. Right A qualitative model of the place cell’s firing as the
thresholded sum of four sensory input cells, each tuned to respond
whenever there is a wall a particular distance from the rat along one of
the four allocentric directions normal to a wall. The Gaussian tuning
functions decrease with increasing distance of peak response, as shown
in Eq. (1). Adapted from O’Keefe and Burgess (1996)

orientation of the place fields by determining which wall
is perceived as to the North etc.

The modality of inputs conveying information about
the distance of the walls is not clear. Some authors have
argued that these are internal signals (i.e. vestibular and
proprioceptive) which are occasionally reset by reference
to visual (McNaughton etal. 1996) or tactile
(McNaughton 1996) information. However, it seems
more likely that the system is driven by a mixture of
whichever input modalities are afforded by a particular
environment (e.g. Hill and Best 1981). These inputs
would include visual, olfactory and tactile information
as well as internal signals, all of which are available in
the hippocampus.

The spatial role of the hippocampus and surrounding
areas is also indicated by the fact that lesion of the rat’s
hippocampus or subiculum impair its navigational
ability, specifically in tasks requiring an internal repre-
sentation of space such as returning to an unmarked
goal location from novel starting positions (e.g. Morris
et al. 1982; Barnes 1988; Jarrard 1993).

2.1 Phase coding

In the above we have considered the representation of
spatial information by neuronal firing rates. However,
place cell firing appears to reflect the location of the rat
using a temporal code as well as increasing its firing rate
whenever the rat enters a circumscribed part of its
environment (the ‘place field’). Whenever the rat is doing
something that involves displacement motion of its
head, the hippocampal electroencephalograph (EEG)
shows a sinusoidal oscillation termed the theta rhythm.
The timing with which a place cell fires as the rat runs
through the place field on a linear track exhibits a
systematic relationship to the phase of theta, such that
each burst of spikes occurs at a successively earlier phase
(O’Keefe and Recce 1993). Perhaps the most interesting
observation related to this phase coding is that the phase
of firing correlates more strongly with the location of the
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rat (r = 0.66) than with the time since entering the place
field (r = 0.42). Whether or not such a phase coding
exists when the rat explores freely in an open environ-
ment is less clear. It was predicted (Burgess et al. 1993)
that, in open field environments, place cells firing at a
‘late’ phase would tend to have place fields centred
ahead of the rat, and those firing at an earlier phase
would tend to have place fields centred behind the rat
(see Burgess et al. 1994; Skaggs et al. 1996 for some
evidence supporting this).

2.2 The model

The experimental observation of place cells together with
the data linking hippocampal lesions to impairments in
navigation raise two immediate questions: How does the
place specificity of place cells arise, and how do they
contribute to behaviour? Over the past few years we have
developed a neural network model that provides a
possible solution to these two questions (Burgess et al.
1994; Burgess and O’Keefe 1996; O’Keefe and Burgess
1996). We have also tested this model by implementing it
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Fig. 3. Top Hardware setup. Bottom Robot’s eye view. The detected
horizontal dark-light edge points are shown in white, and a black
arrow marks the (x, y) position in the image that is returned by the
visual processing. The ‘North’ wall can be identified (on the right) by
its dark upper half. Adapted from Burgess et al. (1997)



304

on a mobile robot: forcing it to use real-world inputs, and
seeing if it can indeed direct the navigation of a robot.

2.3 The neural network

The sensory inputs to the simulated hippocampus are
encoded in a rectangular array of cells, organized such
that each row of cells codes for the distance to a wall in a
particular direction with each cell tuned to respond
maximally at a particular distance (Fig. 5). We note
that, in convex environments, identifying the walls on
the basis of their allocentric direction from the rat
conveniently solves the ‘binding’ or ‘correspondence’
problem of how information regarding a particular
stimulus (a wall here) is channelled to a particular set of
cells as the robot moves about. It is possible that the lack
of influence on place fields of an object within the
environment is due to the fact that its allocentric
direction from the rat can vary by more than 180°,
allowing the binding problem to rear its head once more
as information regarding that object would not arrive on
one constant set of channels.

Sensory cells respond to the distance of walls in
particular directions according to the form of the inde-
pendent place field components identified in O’Keefe
and Burgess (1996), e.g. cell i in the row coding for
distances from the West wall has firing rate:

Aexp[—(x — d;)*/26%(d))]
2no%(d;)

(1)

where x is the distance from the wall, d; is the distance at
which the cell responds maximally, the amplitude
A = 500. The width of the tuning curve increases with
the distance of peak response as a(x) = ao(L> +x?)/L>.
This reflects the decreasing reliability of the estimate of x
at large distances; see later for a different form for this
increase (in the simulations here ¢y = 10cm and
L =30cm). In principle, there will be sensory cells
tuned to respond to walls at all distances in all
allocentric directions. However, our previous experi-
ment (O’Keefe and Burgess 1996) indicated that consid-
eration of the four orthogonal compass directions was
sufficient for explanation of data recorded in rectangular
boxes aligned with these directions. We discuss a more
general model in Sect. 4.1.

The connections in the model are simply taken to be
‘on” or ‘off’, and each cell is modelled as a linear
threshold unit: firing at a rate proportional to the
amount by which its net input exceeds a threshold. The
simulation is performed in time steps during which all
firing rates and connection weights are updated. Each
step corresponds to one cycle of the theta rhythm (about
0.1 s) and is divided into two, corresponding to the early
and late phases of the theta cycle (see below). Each cell
in the entorhinal layer receives hard-wired connections
from two sensory cells related to two orthogonal walls
(Fig. 5). The connections from the entorhinal layer to
the place cell layer include an element of unsupervised
competitive learning (Burgess et al. 1994).
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Fig. 4. Top A simple snapshot model of place cells and navigation.
The place cell activity at a goal location is stored by taking a snapshot
of place cell activity via Hebbian modification of connections to a goal
cell. Moving so as to maximize the firing of the goal cell returns the rat
to the goal location. Filled circles are active place cells; empty circles
are inactive place cells and filled squares mark potentiated synapses.
Bottom A population vector model of place cells and navigation. The
firing rates of four goal cells are illustrated. Each cell has a peak rate
displaced from the central goal location in an allocentric direction
(North, South, East or West). The population vector of displacement
directions weighted by firing rates indicated the direction of the rat
from the goal. The net firing rate indicates the proximity of the goal. G
Goal location. Adapted from Burgess and O’Keefe (1997)

The behaviour of place fields depends solely on which
connections to the corresponding place cell have been
turned on. A place field may maintain a fixed distance
from two orthogonal walls, or may depend on many
more than two inputs, all peaked at a fixed distance from
a walls of the environment. Accordingly, some place
fields will change in amplitude and shape when the en-
vironment is changed in size or shape consistent with
experimental data (O’Keefe and Burgess 1996). Because
entorhinal cells receive only two orthogonal inputs, their
receptive fields will all remain at a fixed distance from
two walls and will not change shape or amplitude during
changes in the shape and size of the environment (con-
sistent with the known data on entorhinal cells Quirk
et al. 1992).

The basic idea behind how the model uses place cell
firing for navigation can be illustrated by the following



very simple model. When the rat encounters a location
in its environment that is associated with reward, a ‘goal
cell’ downstream of the place cells is strongly excited by
the attributes of the goal. This causes a one-shot Heb-
bian increment in the synaptic connections to the goal
cell from the place cells that are active at that location.
As the rat moves away from the goal location, the net
activity of place cells with strong connections to the goal
cell will be a monotonically decreasing fraction of the
total place cell activity. Thus the activation of each goal
cell will code for the proximity of a goal location, and
could be used in a gradient-ascent style search for the
goal: the rat could return to the goal location simply by
moving so as to increase the firing rate of the goal cell
(Fig. 4).

The model simulated here actually uses a more
complicated model of learning of the goal location.
This depends on one-shot Hebbian association of the
place cells active at the goal location to a set of goal
cells, in such a way that the subsequent goal cell acti-
vations form a ‘population vector’ (Georgopoulos et al.
1988) coding for the direction of the goal (Burgess
et al. 1994; Burgess and O’Keefe 1996). This more
complicated model takes advantage of the coding of
location by the phase of the EEG theta rhythm at
which spikes are fired, described below. It has advan-
tages over the simple model such as enabling rats to
take short-cuts towards the goal, and does not require
the rat to hunt around to determine the direction in
which to move. Finally, we note that the goal cell
population vector is an allocentric direction (e.g.
Northwest), and must be translated into an egocentric
direction (e.g. left) before being used to guide the
navigation of the rat. This transformation is straight-
forward given that the rat knows its own orientation,
and might be expected to occur in the basal ganglia
(Brown and Sharp 19995), or in the posterior parietal
cortex (Burgess et al. 1999).

2.4 Phase coding and a population vector representation
of goal location

The two questions regarding the formation and use of
place cell firing in navigating rats include the questions
of the formation and use of the phase-coded nature of
their firing. The model makes use of the phase coding
type of in open-field environments that we predicted on
the basis of the phase coding on linear tracks: that place
cells firing at a late phase of the EEG theta rhythm
should tend to have place fields centred ahead of the rat
while those firing at an early phase should tend to have
place fields centred behind the rat.

Rather than the simple model described above, in
which the proximity of a goal location is represented by
the firing rate of one goal cell, we decided that each goal
location should be represented by a set of goal cells, each
associated with a particular goal and with a particular
head direction (North, East etc). In this way, the direc-
tion to a goal location could be represented by the
population vector of a set of goal cells, i.e. the vector
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sum of each goal cell’s associated direction weighted by
its firing rate is a vector indicating the direction of the
rat from the goal.

We assume that goal cells have inputs from the
head direction and reward systems such that the
connections from place cells to a goal cell can be
modified whenever that rat encounters the corre-
sponding goal and faces in the appropriate direction.
The modification of these connections occurs at the
late phase of the theta cycle and switches on connec-
tions from place cells active at that time. We further
assume that whenever a rat encounters a goal location
it turns around to face in several different compass
directions. Application of the above learning rule
causes a set of goal cells to provide a population
vector encoding direction to a previously encountered
goal. This follows from the fact that the goal cell
associated with North will receive strong connections
from place cells whose place fields tend to be centred
to the North of the goal (i.e. place cells active at a late
phase when the rat is facing North), and similarly for
the goal cells associated with other directions. Thus,
whenever the rat is North of the goal, the goal cell
associated with North will fire more strongly than that
associated with South, giving a net Northward com-
ponent to the population vector (see Figure 5).

Although this model of goal learning is entirely
speculative, it is consistent with evidence that the ease of
inducing long-term potentiation of synapses (LTP) is
modulated by the phase of theta at which stimulation
occurs (Pavlides et al. 1988), and that rats’ performance
in the water maze is impaired when they are prevented
from looking around at the goal location (Arolfo et al.
1994) and improved when they are allowed to (Keith
and McVety 1988).

We assume that place cells in the model show phase
coding as a result of phase coding of the sensory cells in
the input to the model, as follows. The phase of firing of
sensory cells depends on the current egocentric angle
from the rat of the allocentric direction in which they
respond to a wall at a particular distance (simply ap-
plying the rule used by Burgess et al. 1994 for discrete
visual stimuli to the walls of the box). The phase of
firing varies linearly from the latest phase for cells re-
sponding to a wall ahead of the rat to the earliest phase
for those responding to a wall behind the rat. Each
entorhinal cell receives inputs from two sensory cells
and fires at a phase determined by the mean egocentric
direction of the two walls from the rat (i.e. at the early
phase if the mean direction is ahead, the late phase if
behind). Each place cell receives inputs from many en-
torhinal cells, its phase of firing is simply taken to be the
phase at which the majority of input firing arrives dur-
ing each theta cycle. This mechanism produces a phase
shift because sensory cells that respond maximally near
to a given wall have a higher peak response than those
that respond maximally far from the wall. Thus, as the
rat moves through a place field, the sensory input from
the wall in front of the rat (arriving at a late phase)
tends to increase relative to the sensory input from the
wall behind the rat.
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2.5 Physical implementation

To check that the model can cope with the real-world
problems of unreliable sensory and odometric informa-
tion we have used a mobile robot to provide its inputs
(and to be guided by its output). Fortunately, it is
possible to provide a realistic simulation of these types
of input since the rat’s visual and odometric systems
appear to be relatively unsophisticated. Rats have wide
angle vision but do not necessarily segment stimuli into
objects or extract much sensory information beyond the
location or motion of the stimulus (e.g. Dean 1990). The
ability of rodents to path integrate is also limited. For
example, hamsters that are required to return to their
point of departure using only path integration err
significantly after an L shaped route of only 1 m per
side, or after five active or two passive rotations in the
dark (Etienne et al. 1996).

The hardware we used was a Khepera miniature ro-
bot (Fig. 3) with on-board video and a ring of short-
range infra-red proximity detectors to provide artificial
visual and haptic information. Two independently
driven wheels allow movement around a rectangular
environment formed by white walls and a dark floor
(Fig. 3) Control of the robot’s movement is imprecise:
the speeds of the two independent wheel motors are set
and occasionally monitored via shaft-encoders on the
wheel axles, stopping when approximately the desired
amount of turn has been achieved. To make our task
easier, and to maintain close contact with the experi-
mental situations in which the place cell data con-
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Fig. 5. The neural network. There are 60 sensory cells, 900 entorhinal
cells, 900 place cells and 4 goal cells. Inputs from the sensors on the
robot drive the firing of the sensory cells. Activation propagates
through the model to form a representation of space in the place cell
layer. Learning in the connections to the goal cells while at the goal
location allows them to code for the direction and proximity of the
goal location during subsequent movement. Adapted from Burgess
et al. (1997)

straining the model was collected, the robot was tested in
simple rectangular environments.

Visual estimates of the distances from the robot to the
walls of the environment are used to drive the firing of
‘sensory cells’, entorhinal cells and thence place cells
(Fig. 5; Burgess et al. 1997). The walls are identified by
their allocentric direction from the robot. An estimate of
the allocentric direction (orientation) of the robot is
maintained by odometry and sightings of the North wall
which is visually distinct from the other walls and serves
to polarize the environment. When the robot encounters
a goal location a reinforcement signal prompts one-shot
Hebbian learning in connections from the place cells to a
set of goal cells. The subsequent firing rates of these cells
provide a continuous estimate of the direction and
proximity of the goal location, enabling navigation, see
above. Visual processing consists solely of filtering for
horizontal dark-light edge points formed where a wall
meets the floor, and finding the row (y) in the image
containing the most dark-light edge points and the col-
umn (x) of the centroid of the edge points on that row
(Fig. 3). The distance to the wall is estimated from y,
and the bearing of the wall to the robot is estimated
using x. This scheme does not work if the robot acci-
dentally faces directly into a corner; however the esti-
mated orientation does not drift fast enough for this to
happen, see below. One wall (the North wall) is marked
by a dark horizontal stripe along the top: its presence is
detected by filtering for horizontal light-dark edge
points. The infra-red proximity detectors detect the
presence of a wall within about 4 cm and are used to
prevent collisions.

At each step of the simulation the proximity detectors
are read, the robot rotates on the spot to face in the
estimated orientations N S E W capturing an image at
each orientation. Each acquired image is used to esti-
mate the distances to the wall and to provide on-going
correction of the robot’s estimated orientation (Fig. 3).
If no wall was perceived by the proximity detectors the
rat moves 3 cm forward in the desired direction. If a wall
is perceived the robot moves 3 cm away from the wall,
whose direction is estimated from the relative values of
the proximity detectors. Since each step corresponds to
0.1 s or one theta cycle (see above) this implies a speed
of 30 cm/s for the rat. (In practise each step takes
around 3 s.) During exploration, each movement is
made in a random direction within 30° of the previous
direction (unless a wall is perceived). During navigation,
each movement is made in the direction indicated by the
output of the neural network model.

3 Performance

Following the 300 steps of exploration (i.e. 30 s of rat-
time) in a 50 X 50 cm square environment, the robot’s
navigation was tested in the same 50 x 50 cm environ-
ment or in a 50 X 75 cm environment. During explora-
tion and navigation the robot performed well in
maintaining estimates of the distance and direction of
each wall relative to it. Put another way, relative to its



environment the robot shows good self-localization and
maintenance of sense of direction. The relatively poor
accuracy of the estimations of the distances to walls at
each step can be judged from the spread of the points
showing the robot’s estimations of wall locations
(Fig. 6), but these errors are not cumulative. The
estimation of the angle to the wall is also rather
imprecise, but is accurate enough to maintain a sense
of direction accurate to the nearest 90° between sighting
of the North wall.

In the 50 x 50 cm environment the robot successfully
returned to unmarked reward locations having visited
them once previously. The robot also shows general-
ization in returning to the goal from novel starting lo-
cations. Expanding the environment after the location of
the goal had been learned caused the robot to search at a
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Fig. 6. Above Navigation to a goal location (marked by O) in a
square environment, following exploration of the environment. Below
Navigation to the same goal in a rectangular environment (i.e. after
deformation of the square). The figure shows the path of the robot,
each dash representing 0.1 s of simulated time (or about 3 s of real
time). Dots show the robot’s estimate of the locations of the walls at
each step. The robot received a (simulated) reward at the location
marked O and was then replaced in the environment in two different
locations and required to return to the goal location. Adapted from
Burgess and O’Keefe (1997)
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location intermediate to that indicated by each of the
walls that have been pulled further apart (Fig. 6).

We also monitored the firing rates of the cells in the
simulation, as a function of the robot’s location. As
expected, when the environment was increased in size
along one axis most simulated place fields remain at a
fixed distance from one of the two walls, although some
become stretched and bimodal along that axis, see
(Burgess et al. 1997). By contrast the entorhinal recep-
tive fields are larger and always remain at a fixed dis-
tance from two of the walls. While reliable enough for
maintaining a sense of direction, given frequent sightings
of the walls of the environment, we note that odometry
alone would not have been sufficient to support the fir-
ing of place cells over long periods of combined trans-
lation and rotation. However, experimental data from
rats shows that, once established, both the place repre-
sentation and the locus of searching can be maintained
in the dark or in the absence of the environment’s po-
larizing extra-maze stimuli. It is possible that uncon-
trolled auditory, olfactory and somatosensory cues may
contribute to these findings.

4 Discussion and predictions

The model summarized above provides a detailed
solution to the questions of how place cell firing could
arise, and how it might be used, given the constraints of
a particular physical manifestation in a particular (very
simple) environment. We note that our robotic imple-
mentation only provides validation of the model’s
viability in these simple environments rather than
cluttered real-world environments. In this section we
compare the input side of the model with other
approaches and generalize this aspect of the model to
be applicable to environments other than simple rect-
angular boxes. This more general model makes several
predictions which we examine briefly. We then consider
the consequences of our choice of output representation.
In consideration of both the model’s inputs and outputs
we attempt to make predictions regarding future exper-
iments on rats in novel environments.

4.1 Sensory inputs

A major difference between the model presented here
and most other models of navigation is our separation of
information relating to place and direction. In the
model, a place cell is tuned to fire in response to the
presence of walls at a set of distances along particular
allocentric directions from the rat. The set of distances
and directions may be thought to define a ‘receptive
field” for the place cell, such that the firing rate is
determined by the extent to which walls fall within the
receptive field. Thus the rat’s sense of direction controls
the overall orientation of the set of place fields by
defining the reference for allocentric directions, but
where each cell fires depends on the distances along
those directions at which walls are present.
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Following Cressant et al. (1997) we suggest that dis-
tinctive features at or beyond the edge of the rat’s im-
mediate environment contribute to the rat’s sense of
direction, whereas intramaze features do not. Note that
the features at the edge of the environment need not
necessarily be visual Save et al. (1998), but that visual
features tend to dominate other modalities when they
are placed in conflict Jeffery et al. (1997). However, al-
though distinct well-localized cues can drive the rat’s
sense of direction and hence play a role in determining
the orientation of a place cell’s ‘receptive field’, the re-
ceptive field itself responds only to extended features,
like the walls of the box (or barriers within it). Thus
narrow local features like the corner of a box will not
influence place field shape and location, provided there
are sufficient alternative directional cues (distant lights
etc) for the corners not to affect the rat’s sense of di-
rection. In most other models of navigation (e.g. Bach-
elder and Waxman 1994), local features are directly used
for both localization and orientation.

4.2 A general model: beyond rectangular environments

The model requires rather high-level ‘sensory input cells’
that are tuned to respond wherever there is a wall at a
certain distance along a certain allocentric direction. In
the case of the rectangular environments used in
experiments discussed so far it is sufficient to consider
only four directions (perpendicular to the walls) to
provide a good account of the data. In this section we
investigate a more detailed model of inputs with a
smooth tuning to arbitrary distances and directions, so
that as a population they cover the range of distances
and directions at which the rat might experience a wall
in more general environments. We use this model to
provide more quantitative explanations of specific firing
patterns, with the aim of producing more quantitative
predictions of the firing pattern of individual place cells
in specific novel environments.

We will term the particular form of sensory input cells
explored in this section ‘boundary vector cells’, since
each responds maximally when the boundary of the an-
imal’s environment is at a particular distance and allo-
centric angle. The firing rate of a particular boundary
vector cell is determined by the overlap of the boundaries
of the environment with its receptive field. Since a finite
number of boundary vector cells is to cover the range of
distances and directions the animal encounters, each
must have a receptive field with angular and radial ex-
tent. Thus for a given cell i, peaked at polar coordinate
(d;, ¢;) from the rat’s location, the receptive field is de-
scribed by the product of two gaussian curves (cf. Eq. 1):

6i(r, 0) o< expl—(r — &)’ /20%(d)] / /27024
X expl—(0 = ¢, /20%,] /2702, 2)

where the angular width o4, is a constant but the radial
width o,,4 increases linearly with increasing distance d;.

This represents the accuracy of distance determination
approximating by Weber’s law.

To assess the effect of our assumptions about these
cells as inputs to the place cell system we dispense with
the entorhinal layer in the model described earlier
(which effectively combined input cells into pairs before
passing on their activations to place cells). Thus we
consider each boundary vector cell as contributing di-
rectly to a thresholded sum of inputs that determines the
place cell’s firing rate. Note that within this framework,
the firing rate of each place cell is solely determined by
the subset of inputs to which it is connected, and pos-
sibly by the weights on those connections (if connection
weights are not simply zero or one). In principle, by
determining the subset of inputs which are involved in
driving a particular place cell, we can predict the initial
behaviour of that cell under arbitrary manipulations of
environment size and shape. With reference to the effects
of local features like corners we note that recent work
(Lever et al. 1999) has shown that a place field in a
square box will assume a consistent initial shape and
location when the rat is transferred to a cylindrical box,
as predicted by our model. Note that we do not discount
effects of learning in the behaviour of place fields over
the longer term. This is consistent with experiments
showing that normal looking place fields are established
almost immediately on the first visit to an environment
(Hill 1978), and that this does not depend on NMDA
mediated LTP, although their subsequent stability does
(McHugh et al. 1996; Kentros et al. 1998).

Figure 7 illustrates the shape of a typical receptive
field, and the firing field of the corresponding boundary
vector cell. A given place cell’s firing is determined by
taking the thresholded sum of a set of these inputs.
Figure 8 shows a selection of 30 simulated place fields
generated in a rectangular environment, by assuming
binary connections from a random set of 40 boundary
vector cells and a threshold chosen to show the top 10%
of firing in each case. We note that this simple model
produces a realistic looking selection of place fields
without any learning taking place. Note that we do not
rule out learning effects; on the contrary, synaptic
modification is implicated in a place field’s subsequent
stability or otherwise, and is required for the place cell to
goal cell connections for the learning of goal locations.

The existence of boundary vector cells are a major
prediction of the model, i.e. that there are neurons
within, or upstream of, entorhinal cortex whose re-
sponse is simply driven by the presence of a wall at a
particular distance away from the rat along a particular
allocentric direction. Furthermore, those cells respond-
ing maximally when a wall is nearby should have a
higher peak firing rate and more sharply tuned response
than those responding maximally when a wall is far off.
We note that without systematic manipulation of the
shape of the environment or introduction of a single
movable wall, these cells might resemble place fields in
that they would show spatially localized firing. Unlike
place cells, their firing would depend only on the dis-
tance of the wall in the appropriate direction, and not on
the other walls. The finding of subicular cells with



localised firing independent of environmental shape
(Sharp 1997), and the existence of projections from su-
biculum to entorhinal cortex indicates this area as a
good place to look first.

a b
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An issue that the simple model presented here, using
the four directions N, S, E, W in rectangular environ-
ments, cannot resolve is whether such an input cell
should be tuned to respond maximally when the surface

N

Fig. 7. a Contour plot of the receptive field
of a typical boundary vector cell. The field is
centred at distance d from the rat, at a
bearing 0 relative to some allocentric North.
b Firing pattern of the boundary vector cell
in a square environment. Note that the firing
field (shown as dark) follows the boundary in
direction 0

Fig. 8. Thirty simulated place fields. The firing of each place cell is
modelled as the sum of 40 randomly chosen inputs from a set of 200
(tuned to respond at 20 distances in 10 allocentric directions),

thresholded to show the top 10% of firing. Their realistic appearance
(cf. Fig. 1) implies that learning is not needed to explain place cell
formation in a novel environment
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Fig. 9. A simulation of the place cell shown in Fig. 2. The simulated
place cell firing rate is the thresholded sum of weighted inputs from
the 200 possible boundary vector cells. These cells respond to walls at
arbitrary distances and directions with the Gaussian response function
shown in Eq. (2). The connection weights are constrained to be
positive and are chosen to fit the place fields shown in Fig. 2

of the wall is perpendicular to the direction along which
it responds to distance (angle 0 above). The current
model does not include such a dependence on the angle
of incidence with the wall. This may be an oversight,
however, since the normal direction is intuitively the
natural direction along which to measure a wall’s
proximity: being the one unique direction defined by a
wall and, in most situations, the direction along which
direction can be estimated most accurately.

In future modelling work we intend to reverse-engi-
neer place fields recorded in many environments of dif-
fering shape by determining their constituent inputs, i.e.
finding the set of sensory cells that, summed and thres-
holded, could produce the place field in all environ-
ments. This would allow us to make a quantitative
prediction regarding the place field following further
environmental manipulations, see (Jackson et al. 1999).
An example of this process is shown in Figs. 9 and 10.
Figure 9 shows a simulated place cell formed from the
thresholded weighted sum of boundary vector cell
inputs, with connection weights chosen to provide a
least-squares fit of the data in Fig. 2. These weights are
constrained to be greater than or equal to zero for bio-
logical plausibility (assuming excitatory inputs from
boundary vector cells onto place cells). Figure 10 shows
the prediction of the cell’s place fields in the two square
boxes if a barrier had been inserted. Unfortunately ex-
perimental data from that cell in this situation is not
available. However this type of prediction (a second
place field after introduction of a barrier) has recently
been observed (Lever et al. 1999 and unpublished data)!

Fig. 10. Prediction of the effect a central barrier would have had on
the place cell in Fig. 2. The simulation of this place cell (see Fig. 9)
was tested in the large and small square environments shown in Fig. 2,
with the addition of a central barrier. The simulation predicts that, for
this cell, secondary place fields would be formed just below the barrier
in addition to the fields just below the North wall

4.2.1 Phase coding. For the model to work as specified,
sensory input cells should show a phase coding relative
to the hippocampal theta rhythm according to the
egocentric angle of the normal to the wall from the rat
(or the angle to the nearest part of the wall when the wall
is obscured in the normal direction). This is a very
specific prediction relating to the model of phase coding
used here.

4.3 Hippocampal outputs

In terms of the robot’s behaviour, expanding the
environment along one axis effectively stretches out the
goal cell representation along that axis, but still results in
a unimodal search pattern located between the loci
indicated by fixed distances from each of the walls.
These experiments have not yet been performed on rats,
but the predicted search behaviour in the expanded
environment runs contrary to that implied by simple
extension of an experiment in which two cylinders
indicating the goal location were moved further apart
(Collett et al. 1986). However, the relative indifference
of PCs to objects placed within an environment
(Cressant et al. 1997) compared to the walls of the
environment (O’Keefe and Burgess 1996), and recent
lesion data (Pearce et al. 1998) indicate that navigating
to places defined with respect to a single proximal cue is
not mediated by the hippocampus.

The search pattern generated from the hippocampal
representation of space depends on the storage and



output mechanism that makes use of it. OQur particular
model of this mechanism (i.e. the goal cell population
vector) leads to the above behaviour. Whether or not
these results predict the actual experimental perfor-
mance of rats reflects directly on the validity of this
mechanism. Using a different output mechanism, such
as the simple model in Fig. 4 (top), would have different
consequences for behaviour. In the model, contracting
an environment by a large enough factor can cause place
fields near to, and primarily associated with, opposing
walls to cross over. This can cause the locations of peak
firing of opposing goal cells to cross over, which has a
disastrous effect on behaviour, with the robot searching
only at the edges of the environment. Perhaps for this
reason, such crossing over of place fields has not been
observed, with the firing of one or other seemingly in-
hibited in this situation (e.g. Gothard et al. 1996).

The specific mechanism used to guide the model’s
behaviour makes predictions for single unit recording
studies. The most clear prediction is that of sets of ‘goal
cells’ immediately downstream of the place cells. How
would we recognize a goal cell in a single-unit recording
study? The clearest signature of a goal cell is that it
develops a large receptive field peaked near to the goal
location when the rat encounters the goal for the first
time. Unfortunately, the chance of recording from the
set of goal cells associated with a given goal at the mo-
ment it is discovered is rather small. Following discovery
of the goal, goal cells would resemble place cells with
very large receptive fields. The fact that head-direction
signals must modulate the modification of synapses onto
goal cells implies that the subiculum, pre-subiculum or
nucleus accumbens (e.g. Brown and Sharp 1995) might
be a good place to look for goal cells.

We have discussed the extension of the input side of
the model to more complex environments. Extension of
the goal cells to complex environments in a way that
would support robust navigation is beyond the scope of
this paper, but see Trullier and Meyer (2000, this issue).
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