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Abstract. Based on a complexity analysis of mutual
information transmission of EEG developed by us [Xu J,
Liu Z, Liu R, Yang Q (1997) Physica D 106: 363-374],
dynamic processes of the complexity of mutual infor-
mation transmission in human brains were studied. To
diminish possible problems due to coarse graining
preprocessing, some new measures of complexity were
used. The results show that, just before and after
generalized seizures, the complexities of almost all
information transmission between different brain areas
drop significantly; there is also a temporary decrease of
complexity when subjects shift their attention. The
above facts suggest that there is a transient decrease of
information transmission complexity when brain state
changes occur suddenly. Mental arithmetic tasks acti-
vate the left temporal lobe to exchange more informa-
tion with other brain areas. The results hint that the
methods used here might be an approach to observe
quick processes in the living brain.

1 Introduction

Brain imaging technologies such as positron emission
tomography (PET) and functional magnetic resonance
imaging (fMRI) have been developing quickly in the
recent years (Posner and Raichle 1998). These technolo-
gies allow the visualization of functional activities in
living brains for the first time with improving spatial
resolution. However, because these technologies are
primarily based on measuring metabolism or blood flow
differences, their temporal resolutions are slower than the
electrical and chemical processes of brain neurons.
Therefore, such technologies have limited utility in the
study of fast processes in the brain such as thinking and
attention shifting. Moreover, they may not distinguish an
excitatory activity from an inhibitory one, as both

Correspondence to: F. Gu
(e-mail: fjgu@fudan.edu.cn)

activities can lead to an increase in metabolic rate or
quantity of blood flow. In addition, equipment for such
technologies is very expensive and this may also limit their
application. On the other hand, the electroencephalo-
gram (EEG) has high temporal resolution, it is a direct
reflection of electric activities of neurons in the brain and
the equipment is cheap, although its spatial resolution is
not so high. Therefore, these different technologies may
complement each other if they can be used properly.
The term EEG as we use it here only denotes the
spontaneous brain electrical activity; we will not discuss
evoked potentials or event-related potentials in this
paper. Since the discovery of the EEG by Berger in 1929,
it has always been difficult to extract useful information.
Many efforts have been made to utilize various analyt-
ical methods, such as spectral analysis and EEG map-
ping. Many digital signal processing methods have also
been used to extract frequency and time domain features
of the EEG under different conditions (Nunez 1981;
Yang and Gao 1989). However, most of the above an-
alyses belong to the category of linear analysis. Its use is
limited for complex phenomena such as EEG activity.
From the 1980s, due to the quick development of non-
linear dynamics, many authors devoted themselves to
studying the chaotic characteristics of the EEG, espe-
cially to estimate its fractal dimension or Lyapunov
exponential under different conditions (Babloyantz et al.
1985; Babloyantz and Destexhe 1986; Dvorak et al.
1986; Varghese et al. 1987; Babloyantz and Destexhe
1988a,b; Xu and Xu 1988; Rapp 1989; Frank et al. 1990;
Tasemidis and Sackellares 1991; Roschke and Aldenhoff
1991; Lutzenberger et al. 1992; Fell et al. 1993; Stam
et al. 1994; Besthorn et al. 1995; Theiler 1995; Cerf et al.
1999). Nevertheless, the estimated fractal dimension or
Lyapunov exponential values from different laboratories
even under similar experiment conditions vary over a
wide range (Basar 1990), and no generally acknowledged
value exists. This is due to contradiction between the
mathematical need for a long time series to obtain reli-
able estimations and the extreme instationarity of the
EEG. More recently, studies using nonlinear dynamic
analysis of the EEG have been more interested in
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characterizing its dynamics rather than arguing as to
whether the EEG is chaotic or not (Rapp 1993; Stam
et al. 1997) and some new approaches have been tried.
Stam and his colleagues (1997, 1999) suggested the use of
nonlinear forecasting methods to analyze EEG data. Wu
and Xu (1991) suggested the use of a complexity mea-
sure, the Kolmogorov complexity (KC), defined by
Lempel and Ziv (1976) to characterize EEG signals for
different functional states of the brain. We will describe
the definition of KC briefly in the next section. For cal-
culating, KC only needs thousands of sampled points
and it does not matter if the signal is chaotic or not; it
therefore seems to be a good candidate for such analysis.
Furthermore, Xu et al. (1997) suggested that, as the main
function of the brain is in information processing, it is
reasonable to study the information transmission among
the various parts of the human cerebral cortex by the
information theory of Vastano and Swinney (1988). To
characterize the global feature of the information trans-
mission process from one location to another, the mutual
information transmission between a segment of the EEG
at the source and segments of the EEG at the destination
with the same length but different delays is calculated.
Some complexity measures, including KC or Cl1, C2,
defined by Xu et al. (1994), of the information trans-
mission process are calculated. To visualize the result
intuitively, Xu et al. (1994, 1997) proposed drawing a so-
called information transmission matrix (ITM); we shall
give a brief review of this in the next section. They
showed a difference of ITMs between normal and ab-
normal subjects under different conditions. Their results
showed that the ITM might provide an approach to
distinguish different functional states of the brain.

In this paper, by taking the advantage of the higher
temporal resolution of the EEG, we will examine dy-
namic changes of ITMs during performance of mental
tasks, such as doing mental arithmetic or shifting one’s
attention to listen to soft music, and also during epileptic
seizure. We try to use this method to observe objectively
some functional dynamic process related to conscious-
ness in the human brain.

2 Methods
2.1 Subjects

Thirty-one undergraduate students or graduate students,
19-30 years old, including 22 males and 9 females,
participated in the experiments involving listening to
music. Five subjects were asked to do mental arithmetic.
Another 11 data sets for this task were generously
provided by Prof. Q. Yang from her laboratory in
Beijing University of Traditional Chinese Medicine, and
the epileptic seizure data were kindly provided by Prof.
K. Ouyan from the Capital University of Medicine.

2.2 EEG recording

The subject sat comfortably in a quiet electrically shielded
room while the EEG was recorded with an EEG

apparatus produced by ESAOTEBIOMEDICA (Galileo
Vega 24W). The electrodes were placed at F1, F2, C3, C4,
T3, T4, O1 and O2 according to the international 10-20
system (we shall label the above electrode positions as
1,2,...,7,8). An earlobe electrode was taken as the
reference. The electrode resistance is less than 5 KQ for
all leads. The filter setting time constant was 0.3 s with a
low-pass filter at 1500 Hz. The analog EEG signals of all
channels were transferred by a cable to a personal
computer for A/D conversion (1000-Hz sampling rate;
12-bit A/D precision.). Nearly 11 s of consecutive EEG
were stored on hard disk for further analysis.

The subjects were informed in advance as to what
they should do during the experiment. In the case of
studying the shift in attention to soft classical music, the
subjects were told to rest with their eyes closed before
the music started and to focus their attention on their
own abdomen. However, they were told to focus their
attention on the music once it began. The music used in
most of the experiments was Beethoven’s “Fiir Elise”. A
pure tone was used as a control. In some experiments,
the recording began 6 s before the music could be heard
and lasted for 6 s; in others the music started at the
beginning of the fourth second and lasted for 8 s. All
the subjects knew the music, but on the experimental
day did not hear it before the experiment. For the
mental arithmetic task, the subjects were told to
subtract 3 from 100, then subtract 3 from the product,
and to repeat the subtraction of 3 until the end of the
experiment.

2.3 ITM analysis

2.3.1 Information transmission matrix. Based on the
mutual information theory (Vastino and Swinney 1988),
for every EEG trail, m-dimension phase space could be
reconstructed; the value m is taken to be 3 as Vastano
and Swinney suggested. Taking a segment of EEG
[Xi(lo), Xl'([() + 1), ey Xf(to + 1022), Xf(to + 1023)] re-
corded at the ith position with a time window of
1024 ms beginning at the moment ¢y, the probability of
the vector [x(7), x(t + 1), x{t + 2)] with its head
locating at some sub-cube of the phase space can be
estimated, and its entropy H[X(#y)] can thus be calcu-
lated. In a similar manner, another entropy H[X(f, +
kt)] can also be calculated, and a joint entropy H[X({),
Xi(ty + kt)] too, where 7is 1 ms. Thus, the information
transmission with a delay kt from the ith location to the
Jjth location can be determined as the following:

IT;;(to, kt) = H[Xi(to)] + H[X;(to + k)]
— H[X;(t), X;(to + kT)] .

Fixing ¢y and taking different k values from 0 to 511, an
information transmission time series is obtained. Calcu-
lating a complexity measure C; (1) of this time series, we
obtain an index characterizing some activation degree of
information transmission from the ith location to the jth
location during a period [ty, ty, + 511]. Then, an array
with 8 x 8 = 64 squares can be drawn, where the gray



scale of the square at the ith row and the jth column is
Cif(tp). Xu (Xu et al. 1997) called such an array an
information transmission matrix or ITM. Thus, ITM is
an intuitive representation of information transmission
between different areas of the cerebral cortex. The ith
row indicates the information transmitted from the ith
position to other leads (including the ith lead itself), and
the jth column means the information received by the jth
lead from the other positions. Increasing the value ¢y by
a step At (here we take Az = 0.5 s) and repeating the
above procedure again and again, a series of ITM is
obtained which represents the dynamic process of the
information transmission complexity in the brain.

2.3.2 Complexity. Several complexity measures such as
KC, C1 and C2 were used for ITM analysis (Xu et al.
1994, 1996; Tong et al. 1996; Yang et al. 1996; Xu 1997),
and similar results were obtained for these different
measures. As we will not use C1 and C2 in this paper, we
will give only a brief description of KC here; for a
description of C1 and C2, see Xu et al. 1994, 1996; Tong
et al. 1996; Yang et al. 1996; Xu 1997. KC can be
defined as a measure to express the rate of new pattern
occurrence with the length of a time series, the element
of which is taken from a finite set. KC can be calculated
as follows. For a given time series, the first element is
taken as a sub-string and the complexity set to be 1.
Then, the second element is taken and checked if it is the
same as the first one; if it is not, the complexity is added
by one; if it is, the complexity remains unchanged and a
new element is appended to it to produce a new sub-
string with two elements, and to see if the sub-string
occurs in the string from the beginning to the element
just before the latest appended new element. If it does
not, then it means that a new pattern occurs, and the
complexity should be increased by one. If it does, then
no new pattern occurs, and the complexity remains
unchanged. A new element should be appended to form
a new sub-string with three elements and the above
procedure should be repeated until a new pattern occurs
so that the complexity is increased by one. The element
just after the new pattern is taken and the above
procedure repeated until the end of the series. It was
proven that this complexity could be normalized to a
number between 0 and 1. We call that number the
Kolmogorov complexity (KC) here. If the time series is
periodic, then KC will approach 0 with length; if it is
completely random, it will approach 1 (Lempel and Ziv
1976). However, as the EEG signal is continuous, a
coarse graining preprocessing was used to transform the
original EEG data into a binary series. In general, a
mean value of the original signal was calculated if the
original value was greater than the mean. In this case it
was set to 1, otherwise to 0. In the papers mentioned
above, the complexity measures were measured for these
{0,1} time series. However, such over-coarse graining
preprocessing may lose some of the information of the
original data. An improper coarse graining may even
change the dynamic property of the original time series,
for example, transferring a chaotic into a periodic time
series, although such a possibility is small. To overcome
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Fig. 1a—d. A comparison of Kolmogorov complexity (KC), CO and
the approximate entropy (ApEn). a A bifurcation diagram of logistic
mapping; b coarse-grained KC - u curve; ¢ CO - p curve; d ApEn - u
curve

this potential risk, some new complexity measures were
explored. In a previous paper (Chen et al. 1998), we
defined a new complexity measure CO as follows:
calculating the power spectrum of the original time
series with fast Fourier transform (FFT), a fast
algorithm for calculating finite discrete Fourier trans-
form proposed by Cooley and Tukey (1965), and
calculating its mean value. Only those spectrum com-
ponents are kept for which the amplitudes are greater
than the mean; all the other spectral components are set
to zero. Then, an inverse FFT for this new spectrum is
taken to obtain a new time series. This is considered as
the regular component of the original time series, and
the difference between the original time series and its
regular component is considered as the disorder com-
ponent of the original. Then, a ratio of the area of the
disorder component over the area of the original time
series is considered as a complexity measure, which is
denoted as CO. It is obvious that CO for a periodic signal
is zero, and for white noise is unit. No coarse graining
preprocessing is needed for calculating CO.

Another alternative candidate for a complexity mea-
sure without the need for over-coarse graining prepro-
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Fig. 2. a Dynamic process of infor-
mation transmission matrices (ITM)
during an epileptic seizure; b the
averages of C, (ty) with time f; ¢ the
averages of mutual information
transmission with time; d the origi-
nal EEG data during the epileptic
seizure (for details, see text)
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cessing is approximate entropy or ApEn (Pincus
1991,1995; Yang and Liao 1997), which can be defined
and calculated using the following algorithm for a given
time series x(1), x(2), ..., x(N).

1. Construct a set of m-dimensional vectors:

X (i) = [x(@),x(i +1),... x(i +m—1)]
i=12,....N—-m+1
2. Define a distance d[ X(i),X(j)] between X(i) and X(j) as

the maximum difference between their corresponding
components, i.e.,

Fig. 2. (Contd.)

DX (i), X (j)] = max[|x(i + k) —x(j + k)]

for all k£ values from 0 to m — 1.
Then, calculate the distances for all possible pairs
[X(),X()) if i = J.

. Define a threshold r, and for every i value count the

number of the case in which
DIX(1).X(j)] < 7 .

Calculate the ratio of this number over N — m, and
denote it as C?(r).

. Calculate the logarithm values of C!"(r) for all possible

i values, take their average and denote this as ¢" (7).
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5. Increase m to m + 1;in a similar way as described in
(1)~(4), ¢""'(r) can be calculated.

6. In theory, the approximate entropy is defined as the
limit of ¢™(r) — ¢" ™' (r), when N approaches infinity.
It was proven that this limit exists with a probability
of 1.

Therefore, intuitively, the ApEn can be taken as a
measure of the probability of generating new patterns
when m increases; thus, the bigger the ApEn value, the
greater the probability of generating new patterns, and
the more complex the time series (Yang and Liao 1997).
In practice, N cannot be infinity; we can only estimate it
if N is big enough. In addition, this value also depends
on the values of m and r. According to his experience,
Pincus (1995) suggested that it would be proper if m = 2
and r=20.1 — 0.2 SD, where SD, is the standard
deviation of the original data. It has been pointed out
that for a robust estimation value ApEn, a shorter time
series with only about 1000 data points is enough.
Therefore, this measure is especially suitable for phys-
iological signal analysis, where instationarity of such a
signal is often strong.

We have used a segment of the time series generated
by logistic mapping

X+l = 1 - Mi) U € (072)7

as a probe to test KC, CO and ApEn (Chen 1999). The
first 1000 points of the time series were abandoned to
avoid the transient process, and the length of the time
series was about the same as that used in the EEG
analysis. A bifurcation diagram of logistic mapping,
diagrams of KC, CO and ApEn versus logistic mapping
parameter u were compared. It was shown that when the
parameter p varied within some ranges in (1.4, 1.48),
although the original time series generated by the logistic
mapping with such parameters should be chaotic as its
bifurcation diagram showed, KC calculated from a

xy € [—1,1]

coarse grained series was almost zero, but CO and ApEn
were not (Fig. 1). By observing the original time series, it
is seen that they vary around the mean value periodi-
cally. However, the amplitude is in disorder; thus
although the original series is chaotic globally, the
coarse-grained series become periodic.

In the following, we will use CO or ApEn as com-
plexity measures instead of KC or CI and C2.

3 Results

Figure 2a shows a dynamic process of ITM during an
epileptic seizure, which is a complex partial seizure
occurring in a patient who was monitored all day and
night; the time order is from left to right, then from top
to bottom. The time window for calculating is 8 s and
the neighboring frames are separated by an interval of
4 s with 4 s overlap. In this experiment, the sampling
rate is 128 Hz. In the ITMs (3rd row, 3rd column and
5th row, 2nd column), the complexities of almost all
squares are much lower and they occur just before and
just after the epileptic seizure. To demonstrate the
dynamic process of this experiment more clearly, an
average of C;(#y) was calculated for every frame and
plotted against 7o (Fig. 2b). There is a significant drop of
the averaged Cj; just before and just after epileptic
seizure (comparing with the original EEG records shown
in Fig. 2d).

Figure 3 shows a dynamic process of ITM for a
mental arithmetic task. As mentioned above, the sub-
jects were asked to subtract 3 from 100, then to sub-
tract 3 from the product repeatedly. In the analysis, CO
was used as the complexity measure. The intensity is
greater for the squares in the 5th row or 5th column
during the process. Thereis a very intense “‘cross’ at some
moment. It suggests that, during the process, the left
temporal lobe may be busy transmitting information to

0.263

Fig. 3. Dynamic process of infor-
mation transmission matrices (ITM)
while performing mental arithmetic
tasks. In the analysis, we used CO as
the complexity measure

1.092



or receiving information from other areas, or doing
both. In Fig. 4, we used KC as the complexity measure
to analyze the same data and, in Fig. 5, ApEn was
taken as the complexity measure. The results were
similar.

Figure 6 shows an example of the dynamic process
of ITM when the subject rests with eyes closed and
focused on his own abdomen in a quiet environment
for the first 3 s. Then the music started and the piece
was played to the end. CO was the complexity measure.
There was a temporary decrease in complexity after the
music started (Fig. 6). About 80% of the subjects show
such a decrease in complexity. However, there was no
such clear drop if the subject listened to the same music
again immediately after the experiment (Fig. 7).
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0.089

0.652

Fig. 4. Using KC as the complexity
measure to analyze the same data
as in Fig. 3

0.948

Fig. 5. Using ApEn as the com-
plexity measure to analyze the same
data as in Fig. 3

Figure 8 shows a result when an acoustic stimulus
lasted for the first 5 s, then stopped and silence ensued
for another 5 s. There was also a significant decrease in
information transmission complexity during such state
transferring.

4 Discussion

Tononi and Edelman (1998) defined a quantity “‘neural
complexity” to measure the differentiation degree of the
brain which is some average of mutual information
between every possible subset and the rest of the brain.
They hoped that this index could characterize con-
sciousness in some way. However, due to the combina-
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Fig. 6. Dynamic process of ITM
when the subject rests with eyes
closed and concentrate on his/her
abdomen in a quiet environment for
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tory explosion, to calculate such neural complexity for
bio-signal data we need a very powerful computer.
Although the approach suggested in this paper is based
only on the mutual information between pairs of
locations on the scalp, it could still give us a quantitative
and objective measure of differentiation of the brain in
some way since the complexity of all pairs of locations
was calculated. Its calculation time is short, and can be
used on-line; and it seems to be able to provide an
intuitive picture of dynamic processes in the living brain
related to higher function. It is very interesting that there

LI the first 3 s, then the music “Fiir
20 Else” started and played to the end.
The subject was asked to focus his/
her attention on listening to the
music once the music started. CO
was taken as the complexity
measure

is a temporal decrease when the subject shifts his/her
attention, or an epileptic seizure starts or stops, although
the waveforms of the EEG signals for these different
cases are quite different. For the former case, the non-
stationary state is not obvious, at least with the naked
eye while, for the latter case, the non-stationary state is
outstanding. These facts suggest that the temporal drop
in information transmission complexity may be a
general outstanding index to note the change of brain
states. Surely such a change should be implied in the
original signal itself related to its non-stationary state
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E music a second time just after he/she
B Ry O L B finishes the experiment described in
B.Le B5.© 12.e8 15.80 20. 20 25.060 Fig. 6

during such changes in the state of the brain. However,  explain the meaning of such a drop in signal, that is, the
as mentioned above, in some cases, such as the case of  brain might have to deactivate its information transmis-
attention shifting, the change in the original EEG signal  sion temporally in preparation for re-organization of its
could not be clearly detected by the naked eye. Thus, it  activities to change to a new state. To be sure, to
might be reasonable to propose a hypothesis here to  separate such a drop from the non-stationary original
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EEG data is absolutely impossible. More experiments
and signal analysis will be needed to test this hypothesis
further.

Complexity is a very complex term; no generally ac-
cepted definition is available. In this paper, we chose not
to provide a general review of all possible definitions of
complexity. It should, however, be noted that the com-
plexity measure we used in this paper is a measure of the
degree of disorder of a time series, whereas Tononi and
Edelman (1998) defined the differentiation of a system.
However, we applied our complexity measures not to
one channel of the EEG signal, but to the mutual in-

0.182

0.781

Fig. 8. Dynamic process of ITM
when the subject focused on an
acoustic stimulus for the first 5 s,
then the sound stimulus was
stopped and silence ensued for a
further 5 s

formation transmission of pairs of locations distributed
over the whole scalp. Thus, our ITM also provides the
possibility of measuring the differentiation of the brain.
We have used KC, CO and ApEn as our complexity
measures to process all the data mentioned above. For
most of the cases, no significant difference could be
observed in the results. In this paper, we only show the
results obtained by using some complexity, say, C0, and
the results using other measures are similar to each
other. The only exception is to calculate the dynamic
process of information transmission complexity during
epileptic seizure bursting. When we use KC as the



complexity measure, KC is below the normal level during
the whole bursting process; when we use CO or ApEn as
the complexity measure, it drops significantly at the
beginning, then recovers to its normal level gradually
during the bursting, then drops again significantly when
the epileptic seizure stops. Careful examination of the
mutual information transmission time series shows that it
has slow drift with higher amplitude at the sampled time
window; therefore the over-coarse graining for calculat-
ing the KC may lead to the wrong conclusions. Therefore,
although for most cases KC can be used as the complexity
measure effectively, there is still a potential risk owing to
its need for over-coarse graining preprocessing.

What is the meaning of our complexity of mutual
information transmission? According to the definitions
of the complexity measures we used in this paper, they
are functions of the degrees of disorder of a time series;
thus they also have the meaning of information. How-
ever, the time series here is not the EEG signal itself, but
the information transmission between two leads. Thus,
we cannot imply that the complexity of the information
transmission is simply a measure to express how much
information is transmitted from the source to the des-
tination. It is a quantity to describe the complexity of
variation of the information transmission pattern with
time. It can only be explained roughly as a measure of
the activation degree of the information transmission
process between the two areas. As information is a
non-dimensional quantity, information about some in-
formation is still information. However, it is not infor-
mation in the ordinary sense; it is ‘‘second-order
information”. To explain this intuitively, we can imagine
a conservation between a sender and a receiver. If the
conservation sent is constructed from artificially syn-
thesized words one by one, although its speed can be
very fast so that the information transmitted per second
is very large, it may be difficult to understand and the
receiver may not be able to detect the underlying
meaning implied through intonation, change of speed,
or a pause, used in natural conservations. The com-
plexity of the information transmission may be a mea-
sure of such implied information, or some second-order
information. We have used an average of mutual in-
formation transmission within the same time window to
calculate the complexity of mutual information trans-
mission and to draw I'TM with the same data as we used
in the results reported above, which we could consider as
a measure of “first-order information”. The results show
that, in many cases, such as performing mental arith-
metic tasks, the former is similar to the latter, although
the averaged mutual information transmission does not
distinguish different brain functional states as clearly as
ITMs do (Chen 1999). To our surprise, calculating the
average mutual information transmission for the
epileptic seizure data mentioned above, we found it to
increase greatly during an epileptic seizure (Fig. 2c¢).
Therefore, it seems that it is not the mutual information
transmission itself which represents the degree of con-
sciousness which some may expect. Brain activities are
so complicated that no single quantity can describe every
aspect of the activity. Our approach is only one of the
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ways to address this problem; other approaches should
also be considered so that we obtain a clearer picture of
brain activities. In conclusion, the results reported in this
paper show that our methods might provide an
approach for observing quick processes related to
consciousness in living brains.
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