Biol. Cybern. 83, 313-325 (2000)

Biological
Cybernetics

(© Springer-Verlag 2000

Computational model of dot-pattern selective cells

P. Kruizinga, N. Petkov

Institute of Mathematics and Computing Science, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands

Received: 20 December 1999 / Accepted in revised form: 3 March 2000

Abstract. A computational model of a dot-pattern selec-
tive neuron is proposed. This type of neuron is found in
the inferotemporal cortex of monkeys. It responds
strongly to groups of dots and spots of light intensity
variation but very weakly or not at all to single dots and
spots that are not part of a pattern. This non-linear
behaviour is quite different from the spatial frequency
filtering behaviour exhibited by other neurons that react
to spot-shaped stimuli, such as neurons with centre-
surround receptive field profiles found in the lateral
geniculate nuclei and layer 4Cf of V1. It is implemented
in the proposed computational model by using an AND-
type non-linearity to combine the responses of centre-
surround cells. The proposed model is capable of
explaining the results of neurophysiological experiments
as well as certain psychophysical observations.

1 Introduction

Von der Heydt et al. (1991, 1992) reported on the
properties of a specific type of orientation selective
neuron in areas V1 and V2 of the visual cortex of
monkeys that they called the grating cell. Similarly to
other orientation selective neurons, such as simple,
complex and hyper-complex cells, grating cells respond
vigorously to a grating of bars of appropriate orienta-
tion, position and periodicity. In contrast to other
orientation selective cells, grating cells respond very
weakly or not at all to single bars, that is, bars that are
isolated and are not part of a grating. This behaviour of
grating cells cannot be explained by linear filtering
followed by half-wave rectification as in the case of
simple cells (Movshon et al. 1978b; Andrews and Pollen
1979; Maffei et al. 1979; Glezer et al. 1980; Kulikowski
and Bishop 1981), nor by three-stage models of the type
used for complex cells (Movshon et al. 1978a; Spitzer
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and Hochstein 1985; Morrone and Burr 1988). The non-
linear processing properties of grating cells were repro-
duced by a computational model based on an AND-type
non-linear combination of the responses of a group of
simple cells (Kruizinga and Petkov 1995, 1999; Petkov
and Kruizinga 1997; Kruizinga 1999).

Tanaka et al. (1991) found cells in the inferotemporal
cortex that were maximally activated by dot patterns.
These cells belonged to a larger group of cells that they
called ‘texture cells’. The majority of these texture cells
responded optimally to gratings, and the description of
the cells fully complies with the description of the grat-
ing cells given by Von der Heydt et al. (1992).

The cells found by Tanaka et al. (1991) seem to have
characteristics similar to grating cells. They maximally
react to a pattern that consists of a number of dots,
though they are also excited by grating patterns, al-
though to a considerably less extent. The neurophysi-
ological experiments revealed a preference of the cells
for regular dot patterns over more random patterns of
dots. The cells are selective for the polarity of the
stimulus: cells that strongly react to a pattern of white
dots on a black background showed no reaction to
patterns of black dots on a white background. Finally,
it was reported that the exact shape of the texture ele-
ments (squares vs dots) was not critical. We call these
neurons dot-pattern selective cells.

The role of these dot-pattern selective cells seems to
be similar to the role of the grating cells: they detect
areas in the visual field that contain texture that is built
of specific texture elements. This behaviour can be ex-
plained by a model in which responses to individual
texture elements are combined to produce a response to
a pattern of such elements.

Since dot-pattern selective cells and grating cells seem
to play similar roles, namely to detect a particular class
of texture, the model of dot-pattern selective cells that is
proposed here is in a way analogous to the model of
grating cells: first individual texture elements are de-
tected. In this case, the elements are dots or, more gen-
erally, spots of light intensity variation in the visual field.
Next, the responses to a small number of individual dots
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or spots are combined into one response of a subunit
referred to as a spot-group subunit. Finally, the re-
sponses of the subunits in a certain neighbourhood are
summed together to produce the response of a dot-pat-
tern selective cell.

The parameters of the dot-pattern selective cell model
differ from the parameters of the model of grating cells.
Instead of a preferred orientation and spatial frequency,
as with the grating cell model, the dot-pattern selective
cell model has as parameters the dot size and the density
of the dot distribution. Although there is no neuro-
physiological evidence yet, we hypothesise that the re-
sponse of dot-pattern selective cells does not depend on
the contrast of the stimulus. In the computational model
this is accounted for by adopting the same type of
contrast normalisation as used in the grating cell model
(Petkov and Kruizinga 1997).

The article is organised as follows: in Sect. 2, we
present a computational scheme for selective detection
of intensity spots. In Sect. 3, a model of dot-pattern
selective cells is presented and a number of computa-
tional experiments are carried out to validate the model.
Section 4 describes the evaluation of the texture dis-
crimination properties of the model by means of the
Mahalanobis distance. A comparison is made with some
texture operators that are widely used in computer
vision. In Sect. 5, a further comparison is made on the
basis of the results of segmentation experiments. In the
last section, the results are summarised and some con-
clusions are drawn concerning the role of the dot-pattern
selective cell in visual information processing.

2 Detectors of intensity spots

Though most of the cells in the primary visual cortex
(area V1) are orientation selective, about 10-20% of
them do not show any orientation preference. They are
called unoriented or broadband cells. The majority of
these cells are found in layer 4Cf of V1 and in the so-
called cytochrome oxidase blobs (Blasdel and Fitzpatrick
1984; Livingstone and Hubel 1984; Ts’o and Gilbert
1988). Most of them resemble lateral geniculate nucleus
(LGN) cells in that they have a centre-surround receptive
field profile, although some unoriented cells have no
inhibitory surround region. Centre-surround receptive
field profiles can be modelled by means of a difference of
Gaussian (DoQG) impulse response function (Fig. 1)
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where the image point coordinates x and y specify the
position of a light impulse in the visual field and &, 7, o,
and y are parameters explained in more detail below.
The centre of the receptive field within the visual field
is specified by the pair (&,#). The parameters ¢ and y
specify the standard deviations o, = yo (y < 1.0) and
os = o of the centre and the surround Gaussians, re-
spectively. In our experiments, we used a value of
y = 0.5, which is in accordance with the experimental
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Fig. 1. A two-dimensional difference of Gaussian function: a intensity
map, and b one-dimensional profile along a line through the centre of
symmetry

data obtained by Kingdom et al. (1997). The normali-
sation factor 1/y? in front of the centre Gaussian is used
to obtain a function with a zero DC component, which
is also in agreement with neurophysiological data. With
this value of the parameter 7y, the radius of the centre
region is the following function of a:

ry = 0.960 . (2)

In our experiments, we use two types of such functions:
one with a positive (excitatory), and the other with a
negative (inhibitory) central region. Following tradition,
they are referred to as ’centre-on’ and ‘centre-off’
receptive field functions. The former is defined by (1),
the latter differs from it only by a factor of —1.

The response of the concerned type of cell is modelled
by a two-stage model: first a linear spatial summation
stage and second, a non-linear stage that includes con-
trast normalisation and thresholding.

The linear stage consists in computing an integral:

Seaas = [[ £ 5213 3
where f'(x, y) is the light intensity distribution in an input
image.

A contrast normalisation mechanism follows, to en-
sure that the detection of features is more or less inde-
pendent of their contrast (Dean 1981; Ohzawa et al.
1982). Although we did not find evidence for this
mechanism in the neurophysiological literature, we hy-
pothesise that contrast normalisation will also take place
in analogy with other types of visual neurons, for ex-
ample, simple cells. Contrast normalisation is performed
by dividing the quantity s¢, ., by the average gray level
ag .o of the image within the concerned receptive field;
the latter is computed as follows, using the ‘surround’
Gaussian as a weighting function:
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Fig. 2. The hyperbolic ratio function used for thresholding and
contrast normalisation

is proportional to the local contrast within the receptive
field. Finally, the response vg,,, of the concerned
modelled cell is computed as the hyperbolic ratio
function from the local contrast ratio /¢, ., (Albrecht
and Hamilton 1982; Sclar et al. 1990):

0 if aéne = 0
Cena = X (1 lg'"‘“"’RC> otherwise ‘ (6)
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where y(z) =0 for z < 0, y(z) =z for z > 0 (threshold-
ing), and R and C are constants that represent the
maximum response and the semi-saturation level, re-
spectively (Fig. 2).

An unoriented cell modelled by a centre-on receptive
field function will react strongly to a light spot that is
located entirely in the centre, excitatory region of the
receptive field. In contrast, a centre-off cell will react to a
dark spot on a light background. Both types of cells will
also react to other features in their receptive fields such
as lines or edges. The function of an ideal spot detector
is, however, to signal spots only. Our computational
model of such an ideal spot detector is based on a lateral
inhibition mechanism. A spot -detecting subunit whose
response will be denoted by vf .y gCts as positive input
the output v¢ 4, of a centre- surround cell centred on
position (&, 1) and as negative input the output of a
number of other centre-surround cells with the same
preferred spot size but with the centres of their receptive
fields located in the vicinity of (&,#) (Fig. 3). The dis-
tance Ry,; between the centres of the receptive fields of
the cells that provide inhibitory input to the concerned
subunit and the centre of the receptive field of the cell
that provides excitatory input is chosen in such a way
that the response of the subunit is equal to the response
of the latter cell if a spot of the size of the central region
of that cell is present. This is the case for Ry = 1.360. In
this case, an optimal spot stimulus with a size exactly
equal to the size of the central region of the receptive
field will induce no response in the concerned sur-
rounding cells that provide an inhibitory input to the
subunit. We use the term ‘subunit’, not ‘cell’, on pur-
pose. The concept of a spot-detecting subunit is intro-
duced to represent a given step in our computational
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Fig. 3. A group of centre-surround cells provide excitatory and
inhibitory input to a spot-detecting subunit. The cells are represented
by the central regions of their receptive fields. The layered structure is
for illustration purposes only

model and not to suggest the existence of a special type
of cell with such a function. Even the assumption that
the role of such a subunit is fulfilled by a dendrite of a
dot-pattern selective cell would be overly speculative.

Other image features, such as edges and bars, may
also invoke a reaction of the concerned centre-surround
cell, but they will cause a reaction of the involved nearby
cells as well. In that case, the output of the spot-
detecting subunit v is 1nﬂuenced by the outputs of
the nearby centre- surround cells, in such a way that if at
least one of these cells is active, the subunit response is
suppressed. In our model, the lateral inhibition scheme
involves a fixed number of nearby centre-surround cells
whose receptive field centres lie on a circle of radius Ry
around the centre (&, 7) of the receptive field:

Veyoy A Viie{l...N},

, B .0,
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0 otherwise
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where p is a fixed factor — in our experiments we used
p = 0.8. The number of nearby cells that are involved in
the inhibition process is set to N = 15. This value is high
enough to guarantee that the spot-detecting subunits do
not react to features other than spots.

In our experiments, we use spot-detecting subunits
with different values of ¢ to achieve the detection of
spots of different sizes. This introduces a coding re-
dundancy since spot-detecting subunits on more than
one scale, with the receptive fields centred at the same
position, will react to a spot in their receptive field. Be-
side the spot-detecting subunit with the appropriate size
of the centre region, all subunits centred on the same
position will show a response. This redundancy can be
eliminated by suppressing all non-optimal responses.
This is implemented by a winner-takes-all mechanism
across all subunits with the same receptive field centre
position but with different values of the size parameter o.
The ultimate response of a spot-detecting subunit 0¢ 4 ,
is computed as follows:
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Fig. 4. A schematic overview of the stages in the models of centre-
surround cells and spot-detecting subunits

a b

Fig. 5a—e. The single image in top-right position is a synthetic input
image, which includes features of different form, size, and contrast.
Each row in the 4 x 5 block of images corresponds to a given optimal
size of the spots to be detected. a Results of convolutions with centre-
surround receptive field functions of four different sizes. b The results

lﬁ‘n,rf"y | v OJ} (9)
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The winner-takes-all mechanism will cause the informa-
tion concerning the location of spots in the image to be
separated into different channels, depending on the size
of the spots. The sensitivity to spots with different sizes
therefore depends on the sampling of the scale range. In
our experiments, we used four different scales.

The model presented above will detect spots of a
specific size in the visual field, independent of the con-
trast and discarding other image features such as lines
and edges. A schematic overview of the model is shown
in Fig. 4 and the processing of visual information by this
model is illustrated in Fig. 5, together with the results at
intermediate stages. The intensity of a pixel in a result
image represents the response of the corresponding part
of the model with a receptive field centred at that pixel.

normalised for contrast. The effect of lateral inhibition and winner-
take-all competition on the responses of spot-detecting subunits are
illustrated in ¢ and d, respectively. For illustration purposes, in e, the
responses of the spot-detecting subunits are replaced by the
corresponding optimal size stimuli



As can be seen from the intermediate results after con-
volution of the input image with a centre-surround re-
ceptive field function (Fig. 5a), there is a response to
spots, but also to other image features. At this stage, the
strength of the response depends on the local contrast of
the features. This dependence is eliminated by the con-
trast normalisation step (Fig. 5b). The lateral inhibition
eliminates the response to non-spot stimuli (Fig. 5c).
Finally, the winner-takes-all mechanism across all
channels suppresses all responses to sub-optimal spot
stimuli and ensures that a spot is detected in one channel
only (Fig. 5d).

3 Dot-pattern selective cells
3.1 Computational model

The dot-pattern selective cell model is basically very
similar to the model of grating cells (Petkov and
Kruizinga 1997; Kruizinga and Petkov 1999). A dot-
pattern selective cell receives input from spot-detecting
subunits that are combined by an AND-type non-
linearity in such a way that modelled dot-pattern selective
cells will only react if a number of spots of a specific size
are detected in the receptive field of the cell. The response
appears at a given minimum number of spots, then rises
with the number of additional spots up to a given
maximum and finally flattens out. This model of dot-
pattern selective cells is next explained in more detail.

The activity of a so-called spot-group subunit, ;. ¢,
with position (&,7) and preferred spot size specified by
(2), 1s computed as follows (Fig. 6):

1 if Card{0esnc, pan.0 t Veracn+tnoy > O,
tenopl = i€ [1 .. I’l]} >m (10)
0 otherwise

The above equation says that the response is 1 if the
response of at least m out of n(m < n) spot-detecting

spot detecting
subunits

spot-group
subunits

Fig. 6. A spot-group subunit is activated if at least m out of n(m < n)
spot-detecting subunits (taken at random positions) in its receptive
field are active. The inputs to the spot-group subunit are first
binarised. The layered structure is for illustration purposes only
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subunits exceeds a given threshold ®. The positions
(¢ + A&;,n+ Ay;) of the concerned spot-detecting su-
bunits are taken at random within the neighbourhood of

(&n):

A& =(C + ri)recos oy
Ay, =+ r)rgsine; (i=1,...,n) (11)

where ( (1.5 <{) is a number that parametrises the
density of the spots in the pattern, relative to their size, r;
are random numbers taken from a normal distribution
with a zero mean and a standard deviation of 0.5 and o;
are random numbers taken from a uniform distribution
between 0 and 2zn. The number of locations n that are
taken into account is larger than the minimum number
m of spots to be detected. In our experiments, we set the
number of inspected locations to n =30 and the
minimum number m of spots to be detected to m = 3.
The spot-group subunit is activated only if three or more
spots are detected in the inspected 30 locations. This is
similar to the detection of oriented texture by grating
subunits in the grating cell model (Petkov and Kruizinga
1997; Kruizinga and Petkov 1999). The difference
between the models is the loose constraint for the
positioning of the detected spots in the dot-pattern
selective cell model: spots can be located at random
positions within the receptive field, while in the case of
the grating cell model the location of the bar primitives
is more strictly determined to guarantee the detection of
gratings with a specific preferred spatial-frequency.

The role of the spot-group subunit in the overall
model of dot-pattern selective cells is to generate re-
sponse to a group of structural elements, in this case
spots, but remain silent to single elements.

In the final stage of the model of a dot-pattern selective
neuron, its response b¢ 5., is computed by a weighted
summation of the responses of spot-group subunits:

(= () L
benoy: = //e 2 lenoycdd dn (12)

This spatial summation is to provide that if more than m
spots are encountered in the receptive field of the cell,
the response will increase with the number of additional
spots and will flatten out after reaching a certain
maximum that is determined by the size of the receptive
field. Again this mechanism is similar to the grating cell
model in which the response of a grating cell is computed
as a weighted summation of grating subunits.

The parameter f§ in (12) specifies the size of the region
in which the weighted summation takes place and
determines, together with the parameters ¢ and {, the
effective size of the receptive field of the dot-pattern
selective cell. Larger values of f§ result in a uniform re-
sponse to a dot-pattern texture area even with larger
discontinuities in the dot-pattern. The disadvantage,
however, is an inaccuracy in determining the edges of the
dot-pattern texture area or the transitions to areas with
other spot statistics. The choice of this parameter in our
model, f =8, is an empirically determined balance be-
tween uniformity and accuracy.
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3.2 Computer simulations with the dot-pattern
selective cell model

To validate the model as described above, we carried out
a number of computational experiments in which the
model is applied to different visual stimuli. These stimuli
were chosen to elicit characteristic responses of the
modelled cells. Experiments were carried out with
patterns of spots of different shape, size, contrast, and
density, but also with isolated spots and non-spot stimuli
like edges and lines.

Figure 7 shows the response of dot-pattern selective
cells to patterns that consist of structure elements of the
same size, contrast, and density but differ in the form of
the structure elements (spot vs triangle). The response
images in the bottom row show that the model is not
sensitive to the exact form of the stimuli. The intensity of
a pixel in a result image represents the activity of a
modelled dot-pattern selective cell whose receptive field
is centred on the concerned pixel. All responses that are
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Fig. 7a, b. Input stimuli (upper row) and computed result images that
correspond to the responses of modelled dot-pattern selective cells
(lower row). Responses of the modelled cells to a pattern of spots with
an optimal size and density a and to a pattern of structure elements
(triangles) of the same size and density but of a different form b. The
responses are high (as indicated by the light intensity in the result
images) in both cases

a

represented in one such result image correspond to
modelled dot-pattern selective cells with equal values of
the model parameters except the values of the centre
coordinates of their respective receptive fields. They
are optimally tuned to dot patterns of a specific spot
size, determined by the parameter ¢ of the model, and
density of the spots in the pattern, determined by the
product (r,.

The upper row of Fig. 8 shows a number of visual
stimuli for which the response of modelled dot-pattern
selective cells is computed; the results are shown in the
lower row of images. Figure 8a shows a dot pattern that
elicits maximal response from the model with given pa-
rameter values. The response drops to zero if the size of
the spots is changed to a non-optimal value or when
another spot density is used (Fig. 8b,c). The lower image
in Fig. 8d shows the response to an input image (upper
image) that contains a dot pattern that is an optimal
stimulus with respect to the spot size and density, with
spots of constant intensity on a background of increas-
ing intensity. The Michelson contrast between the spots
and the background varies, but as can be seen from the
result image, this does not have an effect on the response
of the dot-pattern selective cells within a broad range of
contrast values (cf. Fig. 8a). When the contrast drops
below a certain threshold, the spot-detecting subunits
are not able to detect the spots, so that the subsequent
spot-group subunits and finally the dot-pattern selective
cells remain inactive as well.

Figure 9a shows an input image with non-spot image
features (top row) and the response to these stimuli as
computed with the dot-pattern selective cell model
(bottom row). The model parameters (spot size and
density) have the same values as in the experiments of
Fig. 8. As can be seen from the results, the model does
not react to image features other than spots.

Our hypothesis is that dot-pattern selective cells act in
the same way as grating cells in that they extract higher-
order statistics from an image by combining the inputs
from a number of feature detectors. Since the underlying
detectors have a preference for a specific type of feature,
the cells will not react to other image features. The
modelled cells also do not react to isolated features
of the appropriate type, because of the AND-type

Fig. 8a—d. Input stimuli (upper row) and
computed result images that correspond to the
response of modelled dot-pattern selective cells
(lower row); light and dark intensities mean
strong and weak or no response, respectively.
a Response of the modelled cells to a pattern
of spots with an optimal size and density.
Patterns with different spot size b or density

d

¢ do not elicit any activity of the model. d The
response is constant for a broad range of spot
contrasts



non-linear mechanism employed to detect the presence
of multiple features.

The response of the model to dot patterns with a
random spot distribution is shown in Fig. 9b. The size of
the spots is optimal and their density across the input
image is the same as in the optimal case shown in
Fig. 8a, which contains a regular (periodic) pattern. The
response to this pattern is small though not zero. This is
in agreement with the neurophysiological findings of
Tanaka et al. (1991). They found that the cells that are
optimally tuned to detect dot patterns in an image have
a preference for regular patterns over irregular patterns.
A surprising aspect of the model presented above is that
this behaviour is not deliberately included in the model.
The inputs from the spot-detecting subunits that are
combined for the computation of the spot-group subunit
response are taken from random positions around the
centre of the receptive field. The small response of the
model to a randomly ordered dot pattern is therefore
not due to the underlying mechanism, but to the fact
that a random distribution of the spots causes nearby
spots to be glued together to form non-spot features,
which prevents the spot-detecting subunits from react-
ing. At the same time, the gaps in the irregular pattern
are larger than the ones in the regular pattern. When the
number of spots in the image is increased (Fig. 9c¢), re-
sulting in a smaller number of gaps, the response is still
small. The fact that the response of the model to irreg-
ular dot patterns is smaller than the response to regular
patterns should be considered as a qualitative property
of the model. The difference can be attenuated by ap-
plying a sub-linear monotonously increasing function,
such as logarithm or the hyperbolic ratio function
(Fig. 2), to the output of the model.

The dot-pattern detection capabilities of the model
are illustrated in Fig. 9d. Dot-pattern selective cells only
react to dot patterns, discarding all other image features
(cf. Fig. 9a and d). In this respect, dot-pattern selective
cells are similar to grating cells that react to gratings of
bars but do not react to simple bars or other features.

From the results of these computer simulations it may
be concluded that the model presented in the previous
section is capable of reproducing the main properties of
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Fig. 9a—d. Input stimuli (upper row) and
computed result images that correspond to
dot-pattern selective cell responses (lower row).
The modelled cells do not react to single dot
stimuli and to non-spot image features as lines
and edges a. Irregular dot patterns of optimal
spot size and average density result in a
response that is smaller than the response to a
regular pattern b (cf. Fig. 8a). Even when the
density of spots is increased, the response does
not rise ¢. The detection capability of dot-
pattern selective cells is illustrated in d: the cells
react only in the area filled with a dot-pattern
texture

this type of neuron as known from neurophysiological
experiments.

3.3 Dot-pattern selective cells versus grating cells

The question may be due of what the added value of the
dot-pattern selective cells is for visual information
processing given the existence of grating cells: both
types of cells react to texture that is built of structure
elements. In the case of the grating cells, the structure
elements are bars and the only constraint is that they
appear in more or less periodic patterns. In contrast,
dot-pattern selective cells react strongly to spot-like
structure elements that can be randomly distributed. In
many cases, both types of cells will react; especially
textures with a strict periodic pattern of spots will trigger
both grating and dot-pattern selective cells.

Grating cells detect periodic one-dimensional light
intensity variations; this means they specifically react to
intensity distributions that do not change in one direc-
tion while changing periodically in the perpendicular
direction. Viewed in that light, it should be clear that
there are textures that cannot be adequately processed
by grating cells. For instance, grating cells will not react
to intensity distributions that are periodic in both the
direction of their preferred orientation and the perpen-
dicular orientation, that is, true two-dimensional peri-
odic light intensity variations, as for example
checkerboard patterns (Von der Heydt et al. 1992). This
fact evidently necessitates another type of texture pro-
cessing cell, like the dot-pattern selective cell. Figure 10
shows the response of both grating cells and dot-pattern
selective cells to a checkerboard stimulus. The modelled
grating cells have a preferred vertical orientation and a
preferred periodicity that coincides with the horizontal
periodicity of the checkerboard. The modelled dot-pat-
tern cells have a dot size and spreading preference that is
optimal for the checkerboard shown.

Figure 11a shows two dot-pattern textures, each with
a different spot size and random spot distribution. Fig-
ure 11b and ¢ show the segmentation results that were
obtained on the basis of feature vectors computed with
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b c
Fig. 10. a An input image of a checkerboard pattern and b the
computed response image of grating cells with vertical preferred
orientation and preferred periodicity equal to the periodicity of the
checkerboard in horizontal orientation. The response image of
optimally tuned dot-pattern selective cells is shown in ¢

a b c

Fig. 11. a An input image containing two textures with randomly
placed spots of different size and density, b the segmentation results
obtained on the basis of the responses of the grating cell model, and ¢
the dot-pattern selective cell model

the grating cell and the dot-pattern selective cell models,
respectively. The results clearly show that the two tex-
tures that are present in the input image cannot be dis-
tinguished on the basis of the response of grating cells.
The poor segmentation result is due to the fact that the
response of grating cells to the concerned type of texture
is negligible. Therefore, no adequate discrimination is
possible. In contrast, the two textures can be separated
using the responses of the modelled dot-pattern selective
cell model. As was shown before, the response to a
texture with randomly located spots is sub-optimal, but
the dot-pattern selective cells still give a sufficient and
rather uniform response within the two texture areas

%\x

and a good separation can be made. This example
illustrates the additional dimension that dot-pattern se-
lective cells add to texture detection and discrimination.

The relation between grating cells and dot-pattern
selective cells is further illustrated by a psychophysical
experiment concerning the so-called Ouchi illusion. A
simple pattern of two gratings with different orientations
— a creation of the Japanese artist Ouchi — generates an
illusion of relative motion (Fig.12a). To experience the
motion illusion, look at the image at a distance of about
50 cm. The pattern in the inner disk seems to move as a
whole, relative to the outer disk. Hine et al. (1995) have
done a number of psychophysical experiments to reveal
the exact conditions for the illusion to occur. Based on
the results of these experiments they hypothesise that the
illusion may be caused by grating cell activity. The fact
that the pattern seems to move as a whole and especially
the close match between the estimation of the orienta-
tion and spatial frequency bandwidth based on the
illusion and on neurophysiological data (Von der Heydt
et al. 1992) support this hypothesis.

The similar roles that grating cells and dot-pattern
selective cells seem to play in texture processing suggests
that this illusion will be experienced not only with a
grating pattern, but also with dot patterns, at least as
long as different classes of dot-pattern selective cells are
activated by the patterns. Figure 12b shows such an il-
lusion with dot patterns. As can be verified by the reader,
a similar effect is observed indeed. Since the response of
grating cells to this type of patterns is low, the effect may
be due to the dot-pattern selective cells in the same way
as grating cells may cause the original Ouchi illusion.

4 Texture discrimination properties
of the dot-pattern selective cell operator

In this section, we look at the discrimination properties
of a texture operator derived from the model of the dot
pattern selective cell. To quantitatively measure the
discrimination properties of this operator we compute
the Mahalanobis distance between sets of feature vectors
that are derived from different texture images. The
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Fig. 12. The Ouchi illusion, with a
grating patterns and b a similar illusion
with dot patterns. The effect is enhanced
by jiggling the pattern while looking at it
(see Hine et al. 1995, 1997)



Mahalanobis distance (Mahalanobis 1936) between two
sets of feature vectors is defined as follows:

D= \/(lll —1)T (1 — ) (13)

where p; and p, are the mean vectors of the two sets and
>~ ! is their pooled covariance matrix.

It is closely related to Fisher’s linear discriminant and
Fisher’s criterion (Fisher 1923). Fisher’s linear discri- @
minant function is a projection of the multidimensional (s e wyp ga®",
feature space on a one-dimensional subspace, a line, -:,"' 'i'. -'l':' Yot
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which is called the Fisher criterion, is maximised. In
(14), n, and n, are the projected means of the two sets of
feature vectors and o] and o3 are their respective
variances. The relation between the maximum value of
the Fisher criterion and the Mahalanobis distance is as

follows:
D=V2f (15)

The Mahalanobis distance thus quantifies the distance
between two sets of feature vectors, relating it to their
spatial spreading. Therefore, the larger the Mahalanobis
distance, the larger the separability of the two concerned
sets and the smaller their overlap. This property of the
Mahalanobis distance gives the possibility to quantify
the capability of a texture feature extraction operator to
produce separable sets of feature vectors for different
types of texture and to compare different operators.

We computed the Mahalanobis distance between
pairs of sets of feature vectors extracted from nine dif-
ferent texture images shown in Fig. 13.

Since the dot-pattern selective cell operator is pri-
marily suited for processing dot-pattern textures, the test
set consists of images of this type. In a number of these
texture images, the spots are arranged in a regular pat-
tern. Other texture images have a more random distri-
bution of the spots across the image. In the former case,
not only the dot-pattern selective cell operator, but also
the grating cell operator will respond, though its re-
sponse will not be optimal. In the latter case, only the
dot-pattern selective cell operator will respond, showing
the role of the dot-pattern selective cell operator in the
combination with the grating cell operator.

Fig. 13. Nine test images, denoted B1 through B9, left to right and
top to bottom

As described elsewhere in more detail (Kruizinga and
Petkov 1999), sets of feature vectors are obtained by
applying a vector operator to each test image and taking
1,000 samples from each of the resulting vector fields.
Similar to the experiments described in our previous
work on texture operator comparison, 24-dimensional
feature vector operators are used. In the case of the dot-
pattern selective cell operator, this is achieved by a set of
24 different operators with four different spot sizes, three
values for the spot density parameter { and for both
black and white spots.

Table 1 lists the values of the Mahalanobis distance
between sets of feature vectors computed with the dot-
pattern selective cell operator. The values are all rela-
tively high, with the lowest value being 7.74, which for
two normally distributed sets of equal variance corre-
sponds to an overlap of only 0.01%. This means that all
pairs of test images can be linearly separated on the basis
of the feature vectors obtained with a dot-pattern se-
lective cell operator. The values are comparable with the
values of the Mahalanobis distance obtained with the
grating cell operator for pairs of oriented texture images

Table 1. Mahalanobis distance

for features obtained with the Bl B2 B3 B4 B5 B6 B7 B8 B9

gg;‘;‘;fm selective cell Bl _ 2020 1467 5240 774 2533 1196 1126  22.16
B2 - 26.64 2869 3435 7229 5268 1243  21.64
B3 - 6582 1015 3356  17.66 1148 2284
B4 _ 83.16 22535 16174 4335  55.62
BS - 4337 1162 1546  30.89
B6 - 7209 3454 5507
B7 - 2572 4318
B8 - 23.46

B9 -
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Table 2. Mahalanobis distance

for the Gabor-energy features Bl B2 B3 B4 B5 B6 B7 B8 B9

Bl - 3.20 6.09 7.41 3.01 27.05 7.09 5.03 2.79

B2 - 6.43 4.86 5.53 30.14 6.90 4.03 1.44
B3 - 7.72 7.34 38.57 4.84 7.64 7.28
B4 - 8.85 45.79 9.73 7.59 7.30
B5 - 23.15 8.43 6.63 5.57
B6 - 44.72 34.55 32.12
B7 - 8.02 8.34
B8 - 4.47
B9 -

Table 3. The Mahalanobis dis-

tance for the co-occurrence Bl B2 B3 B4 B5 B6 B7 B8 B9

matrix features Bl - 3.75 4.65 5.59 3.39 8.39 5.71 4.55 4.07
B2 - 5.35 4.62 6.51 8.19 5.94 4.03 4.60
B3 - 5.57 5.47 8.33 4.03 5.67 6.18
B4 - 7.76 8.79 5.78 6.10 6.73
B5 - 8.16 6.41 6.43 7.34
B6 - 8.58 8.97 8.46
B7 - 6.72 6.92
B8 - 5.73
B9 —

(see Kruizinga and Petkov 1999). The performance of
the dot-pattern selective cell operator in segmentation
tasks with dot-pattern textures can therefore be expected
to be as good as the performance of the grating cell
operator with respect to oriented texture.

Table 2 shows the values of the Mahalanobis distance
for pairs of sets of feature vectors computed with the
Gabor-energy operator (see Kruizinga and Petkov
1999). All values listed in this table are considerably
smaller than the ones obtained with the dot-pattern
selective cell operator. The minimum value is 1.44: this
corresponds to an overlap of 48% of two normally dis-
tributed sets of equal variance, which means that the
concerned vector sets cannot be separated by a linear
discriminator. On average the Mahalanobis distance
values are more than three times smaller than the values
obtained with the dot-pattern selective cell operator.
Note that texture image B6 can be separated very well
from the other images; the values of the Mahalanobis
distance for all pairs in which B6 is involved are much
higher than all other values. This is due to the oriented
structure of the honeycomb pattern in the image. When
the pairs in which B6 is involved are excluded, the av-
erage value falls to 6.19. This is considerably smaller
than the average value of 33.66 obtained with the dot-
pattern selective cell operator, excluding texture B6 from
the experiments.

The values of the Mahalanobis distance obtained
with the co-occurrence matrix operator are listed in
Table 3 (for details on the particular type of operator
used, see Kruizinga and Petkov 1999). With an average
value of 6.19 the co-occurrence matrix operator defi-
nitely does not perform as well as the other two opera-
tors. Note again that the values for pairs including B6
are larger. The reason is that, similar to the other op-
erators, the co-occurrence matrix operator has a pre-
ference for periodicity in the textures.

Table 4. Statistics of the Mahalanobis distances

Feature type Avg Min Max

Co-occurrence matrix features 6.19 3.39 8.97
Gabor-energy features 12.49 1.44 45.79
Dot-pattern selective cell features 41.73 7.74 225.35

Table 4 lists the average, the minimum, and the
maximum Mahalanobis distances that were measured
using the three concerned operators. From this table it
may be concluded that the dot-pattern selective cell
operator is superior to both the Gabor-energy and the
co-occurrence matrix operator with respect to dot-pat-
tern textures. For such textures, the specialised dot-
pattern selective cell operator outperforms the general
purpose texture operators.

5 Classification results comparison
with other texture operators

In this section, the properties of the dot-pattern selective
cell operator are further analysed by carrying out a
classification results comparison. In this method a
segmentation algorithm is applied to a feature vector
field computed with the operator, and the segmentation
performance and suitability of the used features are
evaluated by using the number of misclassified pixels
(Weszka et al. 1976; Conners and Harlow 1980; Pichler
et al. 1996). In this way, the practical value of the
operator can be evaluated and compared with other
texture operators.

For this purpose a number of texture segmentation
experiments were carried out in the following way. First
a given texture operator is applied to an image that
contains two or more different textures. The concerned
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Fig. 14. Results of segmentation experiments using the K-means
clustering algorithm. The left-most column shows three input images
containing two, five, and nine textures. The second column shows the
exact (manual) segmentation of the input images (the so-called ground
truth); one grey level is used to mark the pixels that belong to one

operator is actually a vector operator in that it consists
of a set of operators with different parameter settings
(spot size and density). The resulting feature vector field
is then used as an input to a general-purpose clustering
algorithm that assigns individual vectors to clusters in
the feature space. As in the case of a similar comparison
of the grating cell operator with other operators pre-
sented elsewhere (Kruizinga and Petkov 1999), a K-
means clustering algorithm is used for this purpose. This
algorithm assigns the input feature vectors to a prede-
termined number of clusters K.

Three experiments were carried out, in which images
containing an increasing number of textures had to be
segmented. The results of these experiments are shown
in Fig. 14. The leftmost column shows the input images
that were used, with two, five and nine different textures,
respectively. The second column from the left shows the
perfect segmentations of the input images into regions of
different texture. The other three columns show the re-
sults of the segmentation of the input images on the
basis of the vector fields obtained with the three con-
cerned texture operators: the dot-pattern selective cell
operator, the Gabor-energy operator, and the co-
occurrence matrix operator, respectively.

The segmentation results based on clustering of fea-
ture vectors obtained with the dot-pattern selective cell
operator are reasonably good. The K regions, which
result from the clustering by the K-means algorithm,
correspond to the K regions in the input image that

class. The three right-most columns show the segmentation results
(using K =2, K =5, and K = 9 for the respective rows) based on the
dot-pattern selective cell operator (middle column), the Gabor-energy
operator, (second column from the right) and the co-occurrence matrix
operator (right-most column)

contain different textures. The only misclassified pixels
are located at the borders of the texture regions; that is,
there are no subregions inside a texture region that are
not classified correctly. In comparison to the experi-
ments concerning the application of the grating cell
operator to oriented texture images (Kruizinga 1999;
Kruizinga and Petkov 1999), a larger number of pixels
are misclassified at the borders of the texture regions.
This means that the dot-pattern selective cell operator is
more sensitive to border effects in the estimation of the
feature vectors in comparison to the grating cell opera-
tor.

The results obtained with the Gabor-energy operator
are shown in the second column from the right. It is
clear that in all three cases the segmentation is not as
good as with the dot-pattern selective cell operator. In
particular, the misclassification of pixels within a texture
region and, in some cases, the inability to distinguish
distinct textures are evident drawbacks. The results show
the same characteristic as in the case of the segmentation
of oriented texture based on the Gabor-energy features
(Kruizinga and Petkov 1999): the segmentation perfor-
mance decreases significantly when a larger number of
different textures are involved.

The rightmost column shows the segmentation results
based on the classification of the co-occurrence matrix
feature vectors. The results are comparable with those of
the Gabor-energy operator in that not all texture regions
are classified correctly and that different parts of a
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homogeneous texture region are assigned to different
classes.

In conclusion, the results of the segmentation exper-
iments confirm the outcome of the operator comparison
on the basis of the Mahalanobis distance: with respect to
dot-pattern textures, the dot-pattern selective cell oper-
ator clearly has better discrimination and segmentation
properties than the other two operators.

6 Summary and conclusions

In this article, we introduced a computational model of
dot-pattern selective cells. The model highly resembles
the model of grating cells, as proposed elsewhere
(Petkov and Kruizinga 1997), in that it employs an
AND-type non-linearity for combining the inputs from
subunits that detect structural elements. The parameters
of the model include spot size and density. The model is
capable of mimicking the main response properties of
the dot-pattern selective cells as known from neuro-
physiological experiments.

Besides the similar roles dot-pattern selective cells and
grating cells seem to play in visual information pro-
cessing, they also respond in a similar way to certain
visual stimuli. In particular highly periodic dot-pattern
textures will trigger a response in both types of cells.
Nevertheless, both grating cells and dot-pattern selective
cells seem to be needed to cover the wide spectrum of
textures that occur in nature. The computational ex-
periments with textures with randomly positioned spots
have clearly shown that there are situations in which
grating cells fail to detect and discriminate texture while
dot-pattern selective cells adequately solve these tasks.

To evaluate the discrimination properties of the tex-
ture operator derived from the model of dot-pattern
selective cells, it was applied to a set of test images and
for each pair of images the Mahalanobis distance was
computed between the corresponding sets of feature
vectors. A test set of dot-pattern textures was used. The
resulting values of the Mahalanobis distance show that
the proposed operator has excellent discrimination
properties with respect to dot-pattern textures. Using the
same test images, the Mahalanobis distances were
computed for two other texture operators, namely the
co-occurrence matrix operator and the Gabor-energy
operator. The results clearly show that these operators
are less well suited for dot-pattern texture processing
than the dot-pattern selective cell operator.

A number of segmentation experiments were carried
out to compare the dot-pattern selective cell operator
with the other two texture operators with respect to their
practical value in segmentation tasks. The three opera-
tors were applied to three test images containing an in-
creasing number of dot-pattern textures. The general
purpose K-means clustering algorithm was applied to
the resulting feature vector fields to classify the indi-
vidual feature vectors in K classes. The results confirm
the superiority of the dot-pattern selective cell operator
in comparison to the other two texture operators. Using
this operator, the only misclassified pixels are located

near the borders of the texture regions, whereas with the
other operators entire subregions within the same tex-
ture are incorrectly classified.

Von der Heydt et al. (1992) put forward the hy-
pothesis that grating cells might be an efficient means for
quick preattentive identification of texture of vital im-
portance for an animal, such as grass or a bunch of
bananas. Petkov and Kruizinga (1997) demonstrated by
means of computer experiments that grating cells can
play an important role in the separation of form infor-
mation, as coded in the contours of objects, from texture
information, in particular in cases in which oriented
texture is concerned.

Dot-pattern selective cells might play a similar role
with respect to texture types other than oriented texture.
While grating cells will react strongly to oriented texture
such as grass or long leaves, dot-pattern selective cells
will most strongly react to texture that consists of spots.
Such texture is richly available in nature: think, for in-
stance, of the rounded leaves of many plants, trees, and
flowers.

Where grating cells are specialised in the processing of
oriented texture, dot-pattern selective cells are specia-
lised in the processing of dot-pattern textures. By em-
ploying different types of texture-processing cells, each
specialised in the detection and analysis of a specific type
of texture, the visual system is capable of accurately
discriminating textures in visual scenes and separating
texture from form. This strategy can also be adopted for
texture analysis in artificial vision systems. Specialised
operators perform substantially better than general
purpose texture operators, at least with respect to their
special domain.
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