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Abstract
Motor imagery electroencephalogram (EEG) is widely employed in brain–computer interface (BCI) systems. As a time–
frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD)
and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG
rhythmscorresponding to specificbrain activities.However,whenapplied tomultichannelEEGsignals,MEMDorNA-MEMD
often demonstrate low robustness to noise and high computational complexity. To address these issues, we have explored
the advantages of our recently proposed fast multivariate empirical mode decomposition (FMEMD) and its noise-assisted
version (NA-FMEMD) for analyzing motor imagery data. We emphasize that FMEMD enables a more accurate estimation
of EEG frequency information and exhibits a more noise-robust decomposition performance with improved computational
efficiency. Comparative analysis with MEMD on simulation data and real-world EEG validates the above assertions. The
joint average frequency measure is employed to automatically select intrinsic mode functions that correspond to specific
frequency bands. Thus, FMEMD-based classification architecture is proposed. Using FMEMD as a preprocessing algorithm
instead of MEMD can improve the classification accuracy by 2.3% on the BCI Competition IV dataset. On the Physiobank
Motor/Mental Imagery dataset and BCI Competition IV Dataset 2a, FMEMD-based architecture also attained a comparable
performance to complex algorithms. The results indicate that FMEMD proficiently extracts feature information from small
benchmark datasets while mitigating dimensionality constraints resulting from computational complexity. Hence, FMEMD
or NA-FMEMD can be a powerful time–frequency preprocessing method for BCI.
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1 Introduction

Motor imagery, based on brain–computer interface (BCI)
systems that establish direct communication between the
human brain and communication devices, provides users
with the ability to control computer cursors, interactive
robotic wheelchairs, and explore virtual environments (Doud
et al. 12). Among various brain imaging measurements used
in BCI, electroencephalogram (EEG) is widely used for the
classification of motor imagery tasks due to its low cost
and noninvasive nature (Lebedev and Nicolelis 26). How-
ever, inferring the category of actions that the subject is
imagining based on raw EEG signals is not easy, as they
contain cross-channel interdependence of multichannel data,
strong nonstationary characteristics, low signal-to-noise ratio
(SNR), and other hard-to-analyze features (Graimann 14,
Park et al. 38, Wang et al. 55). Therefore, a general approach
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for motor imagery classification with EEG data involves four
steps: (1) pre-processing; (2) feature extraction; (3) feature
selection; (4) learning a classifier. Although deep learning
methods that are recently used for the classification of motor
imagery tasks (Dai et al. 9, Tabar and Halici 51, Zhang
et al. 58) can achieve the above procedures simultaneously,
they still require preprocessing approaches to enhance the
related features of EEG signals (Craik et al. 8, Hernández
and Antelis 15, Wang et al. 55).

Over the past two decades, several techniques have been
proposed for the preprocessing and feature extraction of
motor imagery signals. These methods are based on the
neurophysiological changes of EEG signals in specific fre-
quency bands, such as the mu (8–12 Hz) and beta (18–25
Hz) rhythms, when subjects plan and execute hand or finger
movements. Specifically, during motor imagery, the mu or
beta rhythm exhibits the event-related decrease (ERD) over
the contralateral scalp and the event-related increase (ERS)
over the ipsilateral area, as observed in previous studies (Yuan
and He 56). These changes in the mu and beta rhythms are
then extracted and quantified by the preprocessing and fea-
ture extraction methods.

In the preprocessing stage, most methods are based
on existing signal processing technologies (Graimann 14,
Kevric and Subasi 20, Nicolas-Alonso and Gomez-Gil 36,
Pfurtscheller et al. 41). For example, [41, 42] utilize the
Fourier transform to analyze and filter EEG data for each
channel. However, due to the nonlinear and non-stationary
of EEG data, several researchers have explored the use
of the wavelet transform to separate the original data into
diverse frequency sub-bands, thereby enhancing the features
of specific rhythms (Mousavi et al. 35, Robinson et al. 47).
Despite their usefulness, classical signal processing meth-
ods, including Fourier and wavelet transforms, are limited
by a predefined set of basis functions and cannot provide
highly centralized time–frequency representations of EEG
data (Park et al. 38). Therefore, empirical mode decompo-
sition (EMD), a fully data-driven time–frequency analysis
technique, has also been explored by researchers for the pre-
processing of EEG data (Wang et al. 54).

After the preprocessing stage, feature extraction meth-
ods are used to quantify the filtered signals. These methods
include Common Spatial Patterns (CSP) (Ramoser et al.
43), energy entropy (Hu et al. 16), adaptive autoregressive
models (Anderson et al. 2), and wavelet transform coef-
ficients (Bostanov and Kotchoubey 7). Note that several
previously published studies combine preprocessing and fea-
ture extraction methods into an integrated framework, which
are also referred to as hybrid technologies for feature extrac-
tion. For instance, Common Spatio-Spectral Pattern (CSSP)
optimizes a simple filter that employs a one-time delayed
sample with CSP algorithm (Lemm et al. 27). Additionally,
Ang et al. propose the Filter Bank Common Spatial Pattern

(FBCSP), which combines the bandpass filter bank with the
CSP method to achieve feature extraction (Ang et al. 3).

However, the above-mentioned methods analyze or filter
the signal fromeachEEGchannel separately,without consid-
ering cross-channel interdependence, resulting in a problem
of uniqueness: the decomposed components for each channel
do not correspond in number and frequency (Mandic et al. 33,
Park et al. 40). To address this issue, one widely used method
is multivariate mode decomposition (MEMD) and its noise-
assisted version (NA-MEMD) (Rehman and Mandic 44, Ur
RehmanandMandic 53). [38] haveproposed aMEMD-based
CSP approach for motor imagery classification, which fully
benefits from its enhanced localization properties, the use of
cross-channel information, and improved robustness to noise
and artificial interferences. Inspired by this work, other stud-
ies have focused on improving classification accuracy and
extendingmotor imagery tasks to multiple classes using sim-
ilarMEMD-based frameworks (Bashar and Bhuiyan 4, Gaur
et al. 13). However, the core algorithm,MEMD, still exposes
several unsolved problems: (1) MEMD requires excessively
high computational resources, especially for multivariate
data (such as multichannel EEG) (Lang et al. 24, Rehman
et al. 45); (2) The filter bank structure contained in MEMD
is not stable enough and is vulnerable to measurement noise
and interferences, leading to possible inaccurate decomposi-
tion behaviors like mode mixing (Lang et al. 24). Therefore,
it is challenging for MEMD-based methods to be compatible
with brain–computer interface (BCI) devices and practical
rehabilitation medical environments.

To address these aforementioned problems, this paper
explores the use of fast multivariate empirical mode decom-
position (FMEMD) to analyze motor imagery responses.
FMEMD is a computationally less-expensive alternative to
MEMD that operates by applying univariate EMD on pro-
jected signals to obtain a set of intrinsic mode functions
(IMFs). These IMFs are combined with their corresponding
direction vectors and solved by a least square algorithm to
yield Multivariate IMFs (MIMFs) (Lang et al. 24). FMEMD
offers enhanced computational efficiency and a fairly sta-
ble filter bank property, making it highly robust to noise
when processing low-SNR EEG data. Therefore, this paper
proposes the FMEMD-based architecture for motor imagery
tasks fully utilizing the benefits of FMEMD in terms of com-
putational complexity and noise robustness.

Our proposed approach automatically eliminates redun-
dant frequencybands and selects valuable ones by calculating
the center frequencies of each decomposed component,
thereby improving the characterization of brain activity. A
comparative analysis between FMEMD and MEMD using
simulation signals, similar to rhythms, confirms the superi-
ority of FMEMD.

In addition, classification experiments conducted on two
representative small datasets indicate that the FMEMD
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scheme is proficient in augmenting data features on small
multichannel datasets and can mitigate dimensionality con-
straints caused by computational complexity. It can also
function as a general preprocessing filtering algorithm for
adaptive EEG rhythm separation and can be integrated with
other complex classification models including deep learning
method to enhance the accuracy and robustness of the under-
lying models.

This paper is organized as follows: Sect. 2 introduces
MEMD, FMEMD, and their noise-assisted versions. Sec-
tion3 illustrates the advantages of FMEMD compared to
MEMD using two simulation cases. In Sect. 4, a brief intro-
duction of a representative dataset is provided, and the time–
frequency analysis of bi-channel EEG data using FMEMD
and other existing methods are presented. Finally, Sect. 5
presents a complete FMEMD-based classification scheme,
combining some basic feature extraction and classifiers. In
Section 6, an overall conclusion is presented, summarizing
the contributions and significance of the proposed FMEMD-
based classification scheme for motor imagery tasks

2 Preliminaries

2.1 Multivariate empirical mode decomposition

Empirical mode decomposition (EMD) is a fully data-driven
method used for analyzing nonlinear and non-stationary sig-
nals (Huang et al. 17). It decomposes a signal into a finite set
of intrinsic mode functions (IMFs) that represent AM/FM
components in nature. An IMF must satisfy two conditions:
(1) the difference between the number of extrema and the
number of zero crossings should be no more than one, and
(2) the mean of the upper and lower envelopes defined by
the local extrema should be close to zero. However, EMD is
only applicable for univariate data.

To overcome this limitation, multivariate empirical mode
decomposition (MEMD) was developed to analyze multi-
variate data (Mandic et al. 33, Rehman and Mandic 44,
Rilling et al. 46). InMEMD, the estimationof themultivariate
local mean is a critical step, as the concept of local extrema is
not well-defined for multivariate signals. Following the simi-
lar idea in bivariate empirical mode decomposition (BEMD)
(Rilling et al. 46), theMEMDalgorithmuses real-valued pro-
jections along a set of directions on hyperspheres to obtain
the extrema of multivariate signals. These extrema are then
interpolated channel-wise to yield the desired envelopes. The
multichannel local mean is finally estimated by averaging
these envelopes. To improve the approximation accuracy of
the local mean, MEMD utilizes quasi-Monte Carlo-based
low-discrepancy sequences to generate a suitable set of direc-
tion vectors.

The MEMD method is summarized in Algorithm 1.

Algorithm 1Multivariate empirical mode decomposition.

Input: x1 (t) = x2 (t) = x (t), i = 1;

1: Generate a K uniformly distributed θk .
2: Calculate the kth projection qθk (t) of the input x1 (t) as

qθk (t) = x1(t) · (vθk )T , for all k (k = 1, 2, . . . , K );

3: Find time instants
{
tθki

}
, which correspond to maxima of

the projected signals qθk (t) for all k;

4: Interpolate
[
tθki , x1

(
tθki

)]
to obtain themultivariate enve-

lope eθk (t);
5: For a set of K direction vectors, the mean of envelope

curves, m (t), is given by

m (t) = 1

K

K∑
k=1

eθk (t). (1)

6: Extract the detail signal s (t) using s (t) = x1 (t)−m (t).
If the detail signal satisfies the stopping criterion of
MIMF, di (t) = s (t), go to step 7. Otherwise x1 (t) =
s (t), go to step 2;

7: Update x2 (t) = x2 (t) − di (t). If x2 (t) becomes mono-
tonic, or does not contain enough extrema to form a
meaningful multivariate envelope, stop the above sifting
process, and obtain the trend r (t) = x2 (t). Otherwise,
let i = i + 1 and x1 (t) = x2 (t), go to step 2.

8: return {di (t)}Mi=1 and r (t).

The sifting process of a multivariate IMF can be stopped
when all K projections of the detail signal s (t) satisfy the
aforesaid stoppage criterion of the standardEMD.As a result,
MEMD decomposes a p-variate signal x (t) as

x (t) =
M∑
i=1

di (t) + r (t) , (2)

where the p-variate MIMFs, {di (t)}Mi=1, contain scale-
aligned intrinsic joint rotational modes (Rehman andMandic
44).

Researchers have demonstrated that MEMD enables
cross-channel time–frequency analysis and provides high
localization of specific frequency components (Gaur et al.
13, Mandic et al. 33, Park et al. 38). In a BCI study based
on motor imagery EEG responses, the MEMD algorithm
enhanced multicomponent extraction of the mu and beta
rhythms of interest. In particular, the noise-assisted version
of MEMD (NA-MEMD) allows for a more stable estimation
of time–varying frequency information from multichannel
EEG signals. Despite the powerful capability of MEMD for
analyzing EEG data, there are several obstacles that limit its
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usefulness for clinical applications, most notably its compu-
tational inefficiency when processing multichannel data.

Since MEMD performs cubic spline interpolations in
each data channel for a single sifting process, its compu-
tational complexity increases as the total number of data
channels increases (Lang et al. 24). Therefore, it is difficult
to achieve real-time analysis and discrimination of motor
imagery behaviors using multichannel EEG data. Addition-
ally, the filter bank property of MEMD is not stable enough
for noise disturbances. Therefore, even though using NA-
MEMD, the mode mixing problem1 (poor signal separation
phenomenon) still arises in low-SNR complex signals like
EEG. In the following section, we introduce the FMEMD
algorithmand its noise-assisted version,whichwill be proven
to overcome these problems and used to analyze the time–
frequency variation of EEG data.

2.2 Fast multivariate empirical mode decomposition

FMEMDis a recently introducedmethod that has been shown
to outperform MEMD in processing multivariate data with
less computational cost. It operates by applying univariate
EMD on projected signals to obtain a set of IMFs, which
are combined with their corresponding direction vectors and
then solved by a least squares algorithm to yield multivariate
IMFs (MIMFs) (Lang et al. 24). The details of FMEMD are
listed in Algorithm 2.

Algorithm 2 Fast multivariate empirical mode
decomposition.

Input: x1 (t) = x (t), i = 1

1: Generate a suitable point set for uniform projection;
2: Calculate the kth projection f θk (t) of the input signal

x1 (t) along direction vector vθk , for all k (i.e. k =
1, 2, . . . , K , where K gives the whole set of vectors);

3: Extract the first univariate IMF dθk (t) of the projected
function f θk (t) for all k using EMD algorithm (Huang
et al. 17);

4: Combine all IMFs
{
dθk (t)

}K
k=1 with their corresponding

direction vectors
{
vθk

}K
k=1, the p-variate MIMF di (t) is

obtained by solving the overdetermined equations

{
dθk (t)

}K
k=1 = di (t) · {

vθk
}K
k=1 . (3)

1 The mode mixing problem is defined as a signal IMF either con-
sisting of signals of widely disparate scales, or a signal of a similar
scale residing in different IMFs (Ur Rehman and Mandic 53). The
NA-MEMD method can effectively alleviate the mode mixing since
it enforces the signal decomposition process based on the quasi-dyadic
filter bank structure of MEMD.

5: Calculate the slower mean s (t)=x1 (t) − di (t);
6: If s (t) does not contain enough extrema to form mean-

ingful envelopes, stop the iterative process and obtain the
trend, r (t) = s (t). Otherwise, update the current input
as x1 (t) = s (t) and i = i + 1, then go to step 2;

7: return {di (t)}Mi=1 and r (t);

The stopping criterion used for univariate IMF extraction in
step 3 is borrowed from (Huang et al. 18), where the sifting
is stopped when the number of zero crossings and extrema is
the same number for S successive sifting steps. Typically, a
value of S = 5 has proved successful as the default stopping
criterion.

Similar to the noise-assisted MEMD (NA-MEMD), we
here add the extra noise channels into the original signal,
and utilize FMEMD to decompose the synthesized signal,
thereby eliminating the mode mixing. The noise-assisted
FMEMD (NA-FMEMD) forces the alignment of multivari-
ate IMFs (MIMFs) based on the dyadic filter structure of
FMEMD, where each MIMF carries only one frequency
sub-band. As mentioned before, compared with MEMD,
FMEMD contains a much more stable filter bank property,
thereby exhibiting stronger robustness to noise. Hence, it is
more effective for NA-FMEMD to more effectively solve
the mode mixing problem than NA-MEMD, which will be
illustrated in the following experiments. The details of the
noise-assisted version are outlined in Algorithm 3.

Algorithm 3 Noise-assisted Version of FMEMD.

Input: x (t) = [
x1 (t) , . . . , xp (t)

]

1: Create a q-channel uncorrelated white Gaussian noise
n (t) = [

n1 (t) , . . . , nq (t)
]
, with amplitude of σ ;

2: Append the noise to the input, obtaining an (p+q)-variate
composed signal, c (t) = [x (t) ,n (t)];

3: Obtain a set ofMIMFs
{
dci (t) = [

dxi (t) ,dni (t)
]}M

i=1 and
a final trend rc (t) = [

rx (t) , rn (t)
]
through processing

the signal c (t) by the FMEMD algorithm;
4: Discard the q-channel results corresponding to the noise,

gaining MIMFs
{
dxi (t)

}M
i=1 and the trend rx (t).

5: return
{
dxi (t)

}M
i=1 and rx (t);

3 Comparative analysis on simulation
signals

According to the previously published works (Park et al.
37,38, Rehman and Mandic 44), researchers have designed
two representative simulation experiments on basis of multi-
channel low-SNR data like EEG for illustrating the ability
of MEMD to extract the cross-channel information and
the robustness to noise disturbance. These two experiments
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are called as the extraction of common oscillatory modes
and component estimation, respectively. In fact, MEMD
performs better in these experiments compared with the uni-
variate method EMD (Park et al. 38). As mentioned before,
FMEMD scheme exhibits a fairly stable filter bank struc-
ture and low computational complexity. In this section, we
replicate the aforementioned experiments to illustrate that
FMEMD framework exhibits a more precise, resilient, and
efficient analysis on simulation oscillatory data,which is sim-
ilar to EEG rhythms, as compared to MEMD. Moreover, it
can serve as a general preprocessing filtering algorithm for
adaptive EEG rhythm separation.

3.1 Common oscillatory modes of multivariate IMFs

We apply NA-MEMD and NA-FMEMD to a 3-channel syn-
thetic signal to visually investigate the capability of FMEMD
on the extraction of common oscillatory modes compared
with that of MEMD. We choose the noise-assisted versions
ofMEMDandFMEMDsince these twoalgorithms can effec-
tively alleviate the mode mixing problem.

Note that the number of noise-assisted channels is set to 4.
The Halton and Hammersley sequence is used for generating
a set of K = 64 directions. The stoppage criterion is S = 5,
and end effects are eliminated in advance. The simulation
signal [x1(t), x2(t), x3(t)] is constructed by,

x1(t) =
{

2 sin(2π f1t), t = 1, . . . , 400
2 sin(2π f1t) + 1.5 sin(2π f3t), t = 401, . . . , 1000

x2(t) = 2 sin(2π f1t) + 2 sin(2π f2t), t = 1, . . . , 1000

x3(t) =
{

2 cos(2π f1t), t = 1, . . . , 600
2 sin(2π f2t), t = 601, . . . , 1000

.

(3)

where the sample frequency is fs = 1000, and the frequen-
cies of the signal are as follows: f1 = 6

fs
, f2 = 15

fs
, f3 = 40

fs
.

The time–domain decomposition results are shown in
Figs. 1 and 2. As we can see that the common oscillatory
modes are aligned at the same IMF level, where the 6Hz
frequency mode, common to the three channels, is aligned
by NA-MEMD at the d9 in Fig. 1. However, NA-MEMD
still generates the mode mixing problem, which is observed
in d7 and d8 of Fig. 1. MIMFs extracted by NA-FMEMD
in Fig. 2, by contrast, fully eliminate the mode mixing and
are accurately located within different frequency scales. This
illustrates that the performance of NA-FMEMD achieves a
further improvement over NA-MEMD in terms of alleviating
mode mixing problems, indicating that the FMEMD-based
method enables a more accurate and unified frequency-band
separation across the data channels, which is crucial for the
analysis of multichannel EEG data.

Weneed to highlight that a robust filter bank property is the
internal cause of stably reducingmodemixing phenomenons.
More specifically, the intermittency and the randomness of

Fig. 1 The results decomposed byNA-MEMD.Themodemixing prob-
lem is present in d7 and d8

Fig. 2 The results decomposed by NA-FMEMD. Different frequency
modes are separated to the correspondingMIMFswithout modemixing

multivariate multi-component signals easily lead to the alias-
ing among frequency sub-bands of the filter bank, which
means that NA-MEMD cannot well recover high or low-
frequency oscillations of the original signal. In comparison,
FMEMD utilizes its fairly stable filter bank property to elim-
inate mode mixing with a noise-assisted framework. This
enhanced capability of FMEMD that comes from the sta-
bility of the filter bank structure will be more prominently
verified in the following experiment, component estimation.

3.2 Component estimation

In this section, we conduct the component estimation
experiment to illustrate the improved noise robustness and
higher computational efficiency of FMEMD compared with
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MEMD. The simulation data is a multichannel signal where
all channels contain the same one-component signal s f ,
added by different realizations of white Gaussian noise
(WGN), as shown below

x1 = s f + n1, x2 = s f + n2,

x3 = s f + n3, . . . , xP = s f + nP . (4)

wherenP represents a realizationofWGNin the Pth channel.
In this case, s f represents one fixed sinusoidal signal (with
the frequency 6 Hz or 15 Hz) common to all channels. We
obtain a set of simulation signals by increasing the number of
channels P from 4 to 8 and selecting diverse signal-to-noise
ratios (SNRs) of 5 dB, 0 dB and −5 dB with respect to s f .
Each signal is decomposed by MEMD and FMEMD for 50
trials (corresponding to 50 noise realizations of each signal),
and we select all specific MIMFs where contain the same
frequency with s f as the reconstructed sinusoidal signals. To
conduct the performance assessment, we compute the mean
and variance of new SNRs of these reconstructed signals,
and provide the visual results by error bars. In addition, the
sampling frequency is 1000 Hz and each trial lasts for 1 s.
The parameters used inMEMDandFMEMDkeep consistent
with the previous experiment.

The estimation results are shown in Figs. 3 and 4, cor-
responding to the 6 Hz and 15 Hz frequency component,
respectively. As can be seen that FMEMD outperforms
MEMD for almost all input SNRs under different total num-
bers of channels.

Particularly, the estimation accuracies (the output SNRs)
of MEMD significantly decrease when the input noises
increase (SNRs from 5 to−5 dB), while FMEMD still main-
tains a consistent performance. In addition, for 50 repeated
decomposition trials of each simulation signal, the output
SNRs obtained byFMEMDshow thefluctuations (variances)
in a much smaller range thanMEMD. This again verifies that
FMEMDpresents a fairly stable filter band structure, exhibit-
ing the stronger robustness to different noise disturbances,
resulting in a more accurate component estimation.

We also calculate the average running times of MEMD
and FMEMD with respect to diverse numbers of data chan-
nels when extracting the common sinusoidal signals s f by
these two methods. The results are shown in Fig. 5. Observe
that the computational efficiency of FMEMD to extract the
cross-channel information is greatly improved compared
with MEMD. This phenomenon will become much more
striking if the total number of data channels increases, for
instance, the computational time (59.3 s) ofMEMD is nearly
30 times than that (2.5 s) of FMEMDwhen the8-channel sim-
ulation data is decomposed for obtaining the 6 Hz sinusoidal
signals.

4 Time–frequency analysis of EEG data

The section verifies the time–frequency analysis ability of
FMEMD on practical EEG data. More specifically, we
employNA-FMEMD to detect ERD (event-related decrease)
and ERS (event-related increase) phenomenons in the con-
tralateral and the ipsilateral somatosensory cortex. The
previously published work has illustrated that MEMD pro-
duces more accurate spectrogram estimations of EEG data
over the classic univariate methods, such as the short-time
Fourier transform (STFT) and continuous wavelet transform
(CWT) (Park et al. 37,38,40). In this work, we conduct the
comparison between NA-FMEMD and NA-MEMD in terms
of the extraction of ERD and ERS, thereby illustrating that
FMEMD is a more suitable method for the time–frequency
analysis of EEG data.

4.1 Materials

We here make use of publically available BCI Competition
IV Dataset I to select the EEG data to be analyzed (Blankertz
et al. 5). The dataset was provided by the Berlin BCI group.
EEG signals were recorded using 59 electrodes from four
healthy subjects (a, b, f , and g). For each subject two classes
of motor imagery were selected from three tasks. More pre-
cisely, subjects a and f performed left hand and foot motor
imagery while subjects b and g carried out left hand and right
hand motor imagery. A total of 200 trials were available for
each subject, including 100 trials for each class.

In each trail, the visual cues are displayed in the computer
screen for a period of 4 s duringwhich the subject is instructed
to perform one of the possible tasks. A 2 s blank screen and
a 2 s fixed cross in the center of the screen are followed after
the 4 s motor imagery task. The EEG signals are sampled at
the sampling frequency of 100 Hz. For more details about
BCI Competition IV Dataset I refer to (Blankertz et al. 5).
According to the simulation results in Sect. 3.2, the computa-
tional efficiency of FMEMD almost gets rid of the influence
of the data channel. Hence, we directly apply FMEMD to
each EEG data with total 59 channels. For verifying how the
number of processed channels affects the FMEMD perfor-
mance using real-world EEG data, we have also considered
11 channels from the 59 EEG channels, “FC3”, “FC4”, “Cz”,
“C3”, “C4”, “C5”, “C6”, “T7”, “T8”, “CCP3”, and “CCP4”,
and 4 channels from these 11 channels, “C3”, “C4”, “CCP3”
and “CCP4”, which are followed by [38]. Next, the ERD and
ERS phenomenons on the left hand motor imagery datasets
of subject g from electrode “C3” and “C4” are estimated
using FMEMD and MEMD.
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Fig. 3 The estimation results to
the 6Hz sinusoidal signal by
MEMD (blue lines) and
FMEMD (red lines)

Fig. 4 The estimation results to
the 15Hz sinusoidal signal by
MEMD (blue lines) and
FMEMD (red lines)

Fig. 5 The average
computational times of MEMD
and FMEMD corresponding to
different total numbers of data
channels when the 6 Hz or 15 Hz
sinusoidal signals are extracted
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4.2 Time–frequency analysis using FMEMD and
MEMD

As mentioned before, we only choose MEMD for compar-
ison as the researchers have illustrated its superiority on
time–frequency analysis over other existing univariate meth-
ods. BothMEMD and FMEMDdecompose 11 data channels
with the aid of two additional noise channels, while only the
analysis results of the ipsilateral hemisphere (C3 data chan-
nel) and the contralateral hemisphere (C4 data channel) with
respect to the left hand motor imagery task are displayed.

The extracted mu and beta separated rhythm time series
from −2 to 6 s using NA-MEMD and NA-FMEMD are
shown in Fig. 6. Note that the first 2 s and last 2 s corre-
spond to the fixed-cross and the blank screen, respectively,
while the middle 4s is the duration of motor imagery task. In
order to highlight the ERD and ERS, all time series display
the amplitude changes relative to the mean amplitude of the
first 2 s baseline interval, which are normalized in advance
by the standard deviation of the baseline signal. As men-
tioned in [56, 57], once the subject starts to perform motor
imagery task, the amplitudes decrease (ERD) for approxi-
mately 2 s over the contralateral scalp and the amplitudes
increase (ERS) after 2 s over the ipsilateral scalp in the spe-
cific rhythms, especially mu rhythm.

According to the extractedmu andbeta separated rhythms
by NA-MEMD and NA-FMEMD, the ERD appears between
1.5 and 4 s over the contralateral scalp (C4 electrode),
while the ERS happens around 3s over the ipsilateral scalp
(C3 electrode). In particular, the mu separated rhythm con-
tains more prominent ERD and ERS phenomenons than the
beta separated rhythm, which is consistent with the above
prior knowledge. Besides, compared with NA-MEMD, NA-
FMEMD observes clearer ERS (around 3 s) within the mu
and beta separated rhythms. Similar results are also shown
by the power changes of the time series in Fig. 7. The instan-
taneous powers are computed by the envelopes of the time
series.

Figure8 shows the time–frequency spectra obtained by
NA-MEMD and NA-FMEMD, where the motor imagery
start from 0 to 4 s. The results are derived by decompos-
ing the 11-channel EEG data of left hand motor imagery
and computing the Hilbert-Huang spectra (HHS) from IMFs
corresponding to C3 and C4.

As with the previous analysis results, the time–frequency
spectra of NA-MEMD and NA-FMEMD show the ERS
around 3 s and ERD between 1.5 and 4 s. Compared with the
classic univariate methods, MEMD has been proved to pro-
vide the more localized time–frequency representations of
EEG data (Park et al. 38). In this case, FMEMD also exhibits
the similar ability according to Fig. 8. The difference is that
FMEMD preserves less high-frequency (over 30 Hz) noise
in the obtained spectra than MEMD, which generates the

clearer analysis results with respect to the brain activities of
left hand motor imagery.

4.3 Average preprocessing times of FMEMD and
MEMD

Another comparative experiment is conducted by computing
the average running time of NA-MEMD and NA-FMEMD
for all trials of each subject in BCI Competition IV Dataset
I. The EEG data with diverse data channels of 4, 11 and 59
(as mentioned in Sect. 4.1) are processed by NA-MEMD and
NA-FMEMD. The related parameters of the appliedmethods
are consistent with the previous section. Table 1 shows the
final results. Observe that the increase in the total numbers
of data channels causes less impact on the running efficiency
of FMEMD than MEMD. Moreover, FMEMD improves the
preprocessing time by more than 15 times compared with
MEMD. Hence, FMEMD becomes more compatible with
the real-world BCI systems. On the other hand, the scheme
to consider the cross-channel information of more data chan-
nels simultaneously is more practicable on FMEMD due
to its high calculation rate. Combining the more superior
noise robustness given by the stable filter bank property, the
FMEMD-based method can provide more accurate estima-
tion of brain responses within specific frequency bands over
existing methods, thereby improving the classification accu-
racy of motor imagery tasks.

5 Classification of motor imagery task using
FMEMD

In this section, we propose a FMEMD-based classification
method and evaluate it using two motor imagery datasets.

5.1 Materials

As mentioned before, we have chosen the BCI Competition
IV Dataset I to evaluate the time–frequency analysis abil-
ity of FMEMD. In this section, this dataset is also used to
verify the classification performance of the FMEMD-based
approach over other existingmethods that have employed the
same dataset. Another representative dataset from the Phys-
iobank Motor/Mental Imagery (MMI) database is taken into
consideration (Schalk et al. 48). The dataset consists of a total
of 109 subjects who performed the left and right hand motor
imagery tasks. Each subject perform 45 trials and imagined
one of two tasks for a duration of 4 s. The 64-channel EEG
data are recorded at 160 Hz. Note that we exclude the data of
4 subjects including S088, S092, S100, and S104, since they
had damaged recordings and too little samples (Kim et al.
21). Therefore, totally 105 subjects are considered into this
classification experiment. Out of 64 EEG channels, 11 are
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Fig. 6 Amplitude changes in beta and mu rhythms normalized by the mean and standard deviation of baseline waveform, are estimated by NA-
MEMD and NA-FMEMD. From 1.5 to 4 s, ERS (amplitude increase) in C3 and ERD (amplitude decrease) in C4 can be accurately observed by
NA-FMEMD

Fig. 7 Power changes in beta and mu rhythms are estimated by NA-MEMD and NA-FMEMD. From 1.5 to 4 s, ERS (amplitude increase) in C3
and ERD (amplitude decrease) in C4 can be accurately noted by NA-FMEMD
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Fig. 8 NA-MEMD and
NA-FMEMD spectra within the
ipsilateral and contralateral
scalps (C3 and C4) for left hand
motor imagery tasks

chosen for analysis, including “FC3”, “FC4”, “Cz”, “C3”,
“C4”, “C5”, “C6”, “T7”, “T8”, “CP3”, and “CP4”. The BCI
Competition IV Dataset 2a is also considered to compre-
hensively evaluate the performance of the proposed method.
This dataset includes the EEG signals of four-category MI
recognition tasks (left hand, right hand, feet, tongue) from
9 subjects. For each subject, two sessions of EEG signals
were collected on different days, and there were total 288
trials (72 trials per class) per session. In accordance with the
prompt displayed on the screen, four distinct MI tasks were
performed by the subjects. The sampling frequency of the
EEG signals from 22 electrodes was 250 Hz.

5.2 FMEMD-based classificationmethod

5.2.1 Preprocessing

The motor imagery data from the given datasets are filtered
into the different frequency modes using NA-FMEMD. As
before, NA-FMEMD is applied to decompose the multi-
channel EEG data simultaneously with two additional noise
channels. Note that, in order to examine the relationship
between the number of EEG channels and the FMEMD per-
formance, we select the EEG data with 4, 11 and 59 channels

to conduct the classification experiments. The parameters of
FMEMD itself remain the same as the previous content.

Once a set of MIMFs are obtained, we need to identify
the specific components and their frequency ranges which
contribute to the beta andmu rhythms. One of contributions
of our work is to develop an automatic screening method of
frequency modes by computing the joint mean frequency of
each MIMF.

For amultivariatemodulated oscillation (MIMF), the joint
instantaneous frequency ω(t) is defined as

ω(t) =
∑N

n=0 a
2
n(t)ωn(t)∑N

n=1 a
2
n(t)

, (5)

which is the power-weighted averageof the frequenciesωn(t)
of all N channels. Therein, an(t) denotes the instantaneous
amplitudes of each channel, while the instantaneous powers
are represented as a2n(t). This joint instantaneous frequency
ω(t) is the generalization of the concept of univariate instan-
taneous frequency, which has been interpreted specifically in
[28, 29] and [6]. The joint mean frequency ω̄ for each MIMF
is then computed by,

ω̄ = 1

L

L∑
t=1

ω(t), (6)
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Table 1 Average computational time (s) against diverse data channels

Subject Channel MEMD FMEMD

a 4 3.24 0.26

11 4.74 0.27

59 10.06 1.12

b 4 3.23 0.25

11 4.70 0.26

59 10.24 1.09

f 4 3.17 0.26

11 4.71 0.26

59 10.43 1.09

g 4 3.17 0.30

11 4.61 0.26

59 10.46 1.10

Average 4 3.203 0.267

11 4.690 0.263

59 10.298 1.100

where L is the data length. In fact, these mean frequencies
of MIMFs can be also regarded as the center frequencies
of the power spectrum in the frequency domain. Using these
center frequencies, we can automatically select the frequency
modes corresponding to beta (18–25 Hz) and mu (8–12 Hz)
rhythms, thereby enhancing the characteristics of the motor
imagery responses.

5.2.2 Common spatial patterns

The common spatial patterns (CSP) approach is widely used
as an effective tool to extract numerical features relevant to
motor imagery responses in BCI applications (Kevric and
Subasi 20, Schalk et al. 49). It aims at finding linear spatial
filters that maximize the variance of EEG signals from one
class while minimizing their variance from others (Lotte and
Guan 31). In particular, ERD(S) caused by changing men-
tal/brain states can be detected by CSP filters as the relative
operations are sensitive to power changes of time series. A
i th trial EEG data for one task C is denoted as an N × K
matrix Xi,C , where N is the number of channels and K rep-
resents the total number of selected MIMFs. Then details of
the CSP method are presented in Algorithm 4.

Algorithm 4 Common Spatial Patterns.

1: For the total number ϕC of trials, compute the averaged
normalized spatial covariance of one task as

R̄C = 1

ϕC

∑
i∈ϕC

X̄i,C X̄T
i,C

trace(X̄i,C X̄T
i,C )

. (8)

Note that only two tasks are classified in this work, i.e.,
left hand and right handmotor imagery of subject g. Thus,
their corresponding covariance matrix are denoted as R̄l

and R̄r , respectively;
2: The composite spatial covariance is given by

R = R̄l + R̄r . (9)

Then R is factored as R = U0λUo
T , where U0 is the

matrix of eigenvectors, and λ represents the diagonal
matrix of eigenvalues;

3: Perform whitening operations Sl = P R̄l PT and Sr =
P R̄r PT using the eigenvalue matrix P = √

λUo
T ;

4: Obtain the common eigenvectormatrixUs and the respec-
tive eigenvalue λl as well as λr through the factorizations
of Sl and Sr matrix, as shown below

Sl = UsλlUs
T , Sr = UsλrUs

T , λl + λr = I . (10)

5: Based on the results from 3 and 4, the final spatial filter
is derived via W = Us

T P . This allows us to project the
EEG signals as,

Zi,C = WXi,C , (11)

where the subscript i signifies i th trial of one task and C
denotes left or right hand motor imagery task.

6: Select the m first and last rows of Zi,C to compute the
features of interest υC

p using

υC
i,p = log

⎛
⎜⎝ var(Zi,p)∑

j=1,...m,N−m+1,...,N
var(Zi, j )

⎞
⎟⎠ , (12)

thus generating the feature vector as FC
i = [υC

i,1, υ
C
i,2, ...,

υC
i,p, ..., υ

C
i,2m] with regard to a single trial of one task.

5.2.3 Classification

In this work, the feature vectors, which are yielded by Eq.
6 in Algorithm 4 for m = 1, 2, are classified using different
classifiers. Both the linear discriminant analysis (LDA) and
support vector machine (SVM) algorithms2 were, and still
are, themost popular types of classifiers forEEGbased-BCIs,
particularly for online and real-time BCIs (Lotte et al. 32).
Therefore, we select these two representative classifiers to
perform the classification tasks, while exploring the impact
of different classifiers on the FMEMD-based classification

2 The implementations of LDA and SVM in the MATLAB Classifica-
tion Learner App are used in this paper.
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performance. We divide 200 trial data for each subject from
BCICompetition IVDataset I into 140 training and 60 testing
sets, and the 45 trial data in Physiobank MMI database into
32 subjects for training and 13 for test sets.3

The classification performance of all classifiers are cal-
culated using a five-cross validation, while the classification
tasks of each subject are repeated for 100 times by mixing
the sample order. It is worth noting that the upper limit of
confidence intervals between two classes corresponding to
the number of trials was 56.9% for 200 trails and 64.0% for
45 trails (Kim et al. 21, Loboda et al. 30). Only the subjects
with classification rates over 56.9% or 64.0% are categorized
as significant subjects to display.

The architecture of FMEMD-based classification method
is given by Fig. 9.

Note that, instead of reconstructing the EEG data by cal-
culating the sum of the selectedMIMFs (Gaur et al. 13, Park
et al. 38), we conduct the feature extractions with respect
to different frequency sub-bands using common spatial pat-
tern filters (CSP), respectively, and integrate these features
into a feature vector. This further highlights the advantages
of FMEMD in terms of frequency band separation and mode
alignment, while enabling the feature vectors to containmore
information on brain activities.

5.3 Results

Table 2 shows the classification performances for the four
subjects of BCI Competition IV Dataset I using NA-
FMEMD, NA-MEMD along with LDA and SVM classifiers.

The proposed method-1 applies NA-FMEMD to 11-
channel EEG data for all subjects(NA-FMEMD+CSP+LDA
(11)), and extract the feature vectors using CSP, then
achieving the classification with LDA classifier. In order
to examine the impact of data channels on the clas-
sification performance of FMEMD-based methods, 59-
channel EEG data are used in the proposed method-2(NA-
FMEMD+CSP+LDA(59)). Besides this, the Method-3 clas-
sifies the CSP features from the 11-channel EEG data using
SVM(NA-FMEMD+CSP+SVM(11)), thereby realizing the
comparison between different classifiers. The above three
methods all make use of the proposed FMEMD-based archi-
tecture.

As we can see that since Method-2 considers the informa-
tion from more data channels, it achieves the improvement
of 2.5%, 1.2%, and 1.2% for three subjects (a, b, and f )
over Method-1. However, the accuracy of Method-2 for sub-
ject g is much lower than Method-1. This may be because
the features of subject g are more concentrated on the
selected 11 channels, while the remaining channels cause

3 The parameters of CSP filters are generated by only the training data
sets. Ta
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Fig. 9 Architecture of the proposed FMEMD-based classification approach for left and right hand motor imagery tasks

the adverse effect on the feature extraction. Compared with
Method-3, Method-1 shows a more superior performance
for all subjects, which reveals that the LDA classifier is more
suitable for FMEMD-based method. On average, the best
and robustest performance is obtained by Method-1, where
it achieves a 1.0% improvement over Method-2, a 0.5%
improvement over Method-3.

Table 2 also shows the comparison with other state-
of-art methods, including Method-4 (MEMD-based CSP
with SVM) (Park et al. 38), Method-5 (FBCSP with SVM)
(Kumar et al. 22), Method-6 (CSP-TSMwith SVM) (Kumar
et al. 23) and Method-7(DRL1-CSP) (Jin et al. 19). The
Method-4 exploited NA-MEMD to filter the 11-channel
EEG data. Then it computed the CSP features from manu-
ally selected decomposition components, further classified
by SVM. Method-5 and Method-6 applied a butterworth
bandpass filter to raw EEG data, and performed the feature
extraction stage using FBCSP and CSP-TSM (CSP and tan-
gent space mapping (TSM)), respectively. These features are
then classified by the same SVMclassifier.Method-7 applied
a internal feature selection for CSP based on Difference
and Ratio of Average L1-Norm.Observe that our proposed
method can maintain superior classification performances
for all subjects over other methods. On average, the NA-
FMEMD-based method gives the high accuracies of 83.6%,
a 6.2% improvement over Method-5 (FBCSP with SVM), a
2.3% improvement over Method-6 (CSP-TSM with SVM),
and a 15.6% improvement over Method-7(DRL1-CSP).
AlthoughMethod-4 (NA-MEMD-basedmethod) marginally
outperforms Method-1 by 0.2%, the running rate of the pro-

posed method is 20 times more than Method-4 (see also
Sect. 4.3 and Table 1), which benefits real-time BCIs.

The classification rates for the second dataset, Phys-
iobank MMI database, are obtained by NA-FMEMD and
NA-MEMD with CSP, which are shown in Table 4. Among
FMEMD-based approaches, we chose Proposed Method-1
since it showed the better-synthesized performance in the
experiment of BCI Competition IV Dataset I over proposed
Method-2 and Method-3. The NA-MEMD-based method is
still denoted as Method-4. Followed by [38], we also dis-
played ten subjects for a detailed comparison. Except for
two subjects 25 and 12,Method-1 showed the best classifica-
tion accuracies for the remaining eight subjects. On average,
the proposed method gave a 0.9% improvement over NA-
MEMD (Method-4).

Table 3 shows the average classification rates for all
significant subjects obtained by the proposed method and
other existing approaches. Observe that our proposedmethod
presents a comparable performance over other methods.
Although the FMEMD-based method in this work achieves
a slightly lower accuracy compared to the works in [21] and
[11], we should notice that: (1) the former still uses MEMD
to preprocessing EEG data, which consumes plenty of run-
ning time, especially when the number of data channels
increases. Researchers have illustrated that the SUT-CCSP
(strong-uncorrelating transform based complex CSP) used
in this method shows more superior performance in terms
of feature extraction than the conventional CSP used in our
proposed method (Park et al. 39). Therefore, the newmethod
combining NA-FMEMD with SUT-CCSP may achieve bet-
ter performance thanMEMD-based one; (2) the lattermethod
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Table 3 Overview over other
works performing motor
imagery classification tasks on
the Physiobank MMI dataset for
all subjects, and comparison to
this work’s results

Work Number of channels Accuracy Methods

[39] 58 72.37% SUT-CCSP + SVM

[21] 14 80.05% MEMD + SUT-CCSP + Random forest

[52] 3 68.21% Wavelet transform + DNN

[11] 14 82.66% CNN

This work 11 78.60% NA-FMEMD + CSP + LDA

Table 4 Classification Results (%) for ten subjects of PhysiobankMMI
database using Proposed Method-1 and Method-4

Subject NA-FMEMD+CSP+LDA(11) MEMD-CSP-SVM

1 79.0 ± 10.9 77.2 ± 9.7

2 88.5 ± 7.0 86.0 ± 9.1

4 69.2 ± 11.2 66.4 ± 10.6

7 97.9 ± 5.2 97.1 ± 4.9

12 62.6 ± 10.7 64.0 ± 13.1

13 71.2 ± 13.7 65.5 ± 11.3

15 72.4 ± 11.6 71.2 ± 12.1

25 71.0 ± 10.7 77.6 ± 10.9

26 75.1 ± 12.5 74.2 ± 12.0

29 98.9 ± 3.7 97.4 ± 4.0

Average 78.6 ± 9.7 77.7 ± 9.8

Method-1 shows the results using 11-channel EEG data with LDA
classifier, while Method-4 utilizes NA-MEMD and CSP for feature
extraction, and classifies these features by SVM (Park et al. 38). The
best results are given for all subjects

Table 5 Overview over other works performing motor imagery clas-
sification tasks on the BCI Competition IV Dataset 2a for all subjects,
and comparison to this work’s results

Work Accuracy Methods

61.96% Shallow CNN

[50] 62.15% Deep CNN

[25] 63.50% EEGNet

[34] 62.00% FBCNet

[1] 62.57% ATCNet

This work 62.43% NA-FMEMD + CSP + LDA

based on convolution neural network (CNN) is an end-to-end
learning approach for classification of motor imagery tasks.
It requires a lot of high-quality training data while showing
poor model interpretability, which leads to the low compati-
bility with practical BCI systems. Besides, this method also
lacks verification of other data sets.

Table 5 shows the average classification rates on the BCI
Competition IV Dataset 2a obtained by the proposed method
and popular deep learning methods. Observe that our pro-
posed method presents a comparable performance over other
methods. Although the FMEMD-based method in this work
achieves a slightly lower accuracy compared to the EEGNet

andATCNet, it still surpassesmost other deep learningmeth-
ods. These end-to-end learning approaches for classification
of motor imagery tasks requires a lot of high-quality training
data while showing poor model interpretability, which leads
to the low compatibility with practical BCI systems.

Therefore, among the reviewedmethods for the classifica-
tion of motor imagery tasks, our proposed one is a real-time
BCI oriented approach with the best-synthetic performance.
While it is true that utilizing deep learning methods can
enhance accuracy, FMEMD as a preprocessing method can
also be incorporated into neural network models to replace
segmentation filtering like FBCSP. We will conduct relevant
research in our future work.

5.4 Discussion

In this paper, we applied our recently proposed FMEMD
method to analyze motor imagery EEG data. FMEMD
inherited the ability of MEMD to multivariate analysis,
thereby providing a scale-alignment decomposition and
physically meaningful component estimations for motor
imagery response. It is cleared that FMEMD showed higher
noise robustness due to its fairly stable filter bank property
compared with MEMD. Hence, there is no obvious mode
mixing and mode misalignment problems are introduced by
FMEMD. Besides, it achieved more precise and stable mul-
tivariate component estimations under the disturbances of
White Gaussian noises with different SNR. The above state-
ments were verify in Sect. 3 (simulation data) and Sect. 4
(real-world data).More specifically, Figs. 1, 2, 3, and4 clearly
revealed a more superior decomposition performance exhib-
ited by FMEMD in terms of mode mixing and component
estimation. Particularly, the fewer fluctuations of estimation
results using FMEMD (as shown in Figs. 3 and4) among
all repeated trials for each frequency mode in the compo-
nent estimation experiment again illustrated its stable filter
bankproperty. For the real-world two-channelEEGdata from
BCI Competition IV Dataset I, FMEMD also observed more
prominent ERD and ERS phenomenons from both views of
instantaneous amplitudes (Fig. 6) and instantaneous powers
(Fig. 7). Therefore, the power spectra yielded by FMEMD
not only showed similar enhanced-localization characteris-
tics, but also exhibited the less high-frequency noisy points
than MEMD in the time–frequency plane (see also Fig. 8).
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It was shown that FMEMD enhanced noise robustness
in the improvement of classification rates on two typical
datasets, especially Physiobank MMI dataset (see Table 4).
For the displayed ten subjects, the FMEMD-based method
basically maintained the better classification results than
MEMD, which demonstrated that FMEMD retained more
accurate cross-channel information for each subject. For the
first dataset BCI Competition IV Dataset I, the FMEMD-
based method outperformed most applied methods, except
for showing a slightly lower average classification rate then
MEMD (see Table 2). However, the higher computational
efficiency of FMEMD compensates for this drawback in the
sense of real-time BCIs.

Figure5 (simulation data which is similar to rhythms) and
Table 1 (EEG data with different channels) revealed that
the existing time of FMEMD for processing multichannel
data was much shorter than MEMD, and, in particular, this
superiority became more obvious when the total number of
data channels increased. The greatly reduced computational
load of FMEMD led to the enhanced compatibility with
practical and real-time BCI systems. In addition, FMEMD
allowed the simultaneous analysis of more channels without
the apprehension of increased running time from more data
channels. It showed that more EEG information correspond-
ing to other channels was taken into consideration, which
may resulted in the improved classification performance. In
fact, the comparison of the classification accuracies of pro-
posedMethod-1 (with 11-channel EEG) andMethod-2 (with
59-channel EEG) on subjects a, b, and f in Table 2 verified
this statement.

In this work, we also introduced a more physically mean-
ingful screening index of frequency modes than frequency
measures used in [13]. The index for eachMIMF is computed
by averaging the joint instantaneous frequencies across data
channels. The related information about the joint instanta-
neous frequencies of amultivariatemodulated oscillation can
be found in [28, 29]. Combining the newly proposed select-
ing strategy, we developed the FMEMD-based classification
scheme, as shown in Fig. 9. However, although our proposed
scheme was comparable to other hybrid methods, it failed
to show the highest classification rates (see Table 3) since
the feature extraction method and classifier used in this work
were not further analyzed and optimized.We can find several
effective directions for improving the overall performance
from the experimental results. For examples, LDA classifier
wasmore suitable for the FMEMD-basedmethod than SVM,
as verified by the classification results of proposedMethod-2
and Method-3 in Table 2. Researchers have illustrated that
the nonlinear classifier, such as random forest (RF) can pro-
ducemore superior performance than conventional classifiers
(like LDA) in the application of motor imagery classification
(Kim et al. 21). This finding may also significantly improve
the FMEMD-based classificationmethod. On the other hand,

a suitable selection strategy of data channel is essential for
our proposed method. Overly more data channels sometimes
will damage the extracted EEG features, thereby resulting in
less accuracies for certain subjects. The lower classification
rate of proposed Method-2 on subject g illustrated this point
(see also Table 2). Fortunately, the EEG channel selection
scheme is already a relatively mature technology, moreover,
FMEMD does not need to consider the impact of the number
of channels on the operating efficiency, thus being expected
to further obtain more superior performance of the FMEMD-
basedmethod. It is indicated that FMEMD architecture is not
limited to motor imagery cases but can also be employed in
the analysis of several neural data. A new area of research
has arisen pertaining to the separation and parametrization
of neural oscillations (Donoghue et al. 10), and this method
can make contribution to the development of this field.

6 Conclusion

In this study, our recently proposed FMEMD method has
been explored to EEG rhythm separation and time–frequency
analysis compared with other state-of-art methods. It was
found that FMEMD and its noise-assisted version can sig-
nificantly improve classification performance on BCI Com-
petition IV dataset and attained a comparable performance to
complex methods on the Physiobank MMI dataset and BCI
Competition IV 2a dataset within less executing time. The
stable filter bank property and low computational complexity
of FMEMD enable its accurate component estimation and
high noise robustness, thus providing more accurate brain
activities corresponding to the specific frequency bands,
especially mu and beta rhythms. Future works will con-
centrate on the improvement of the FMEMD-based method
and its implementation. Our intention is to utilize FMEMD
architecture as a novel approach for EEG rhythm separation
to investigate the mechanisms of neurological disorders, aid
in their diagnosis, and conduct classification research on var-
ious cognitive tasks.
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