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Abstract
Deep neural networks have surpassed human performance in key visual challenges such as object recognition, but require
a large amount of energy, computation, and memory. In contrast, spiking neural networks (SNNs) have the potential to
improve both the efficiency and biological plausibility of object recognition systems. Here we present a SNN model that uses
spike-latency coding and winner-take-all inhibition (WTA-I) to efficiently represent visual stimuli using multi-scale parallel
processing. Mimicking neuronal response properties in early visual cortex, images were preprocessed with three different
spatial frequency (SF) channels, before they were fed to a layer of spiking neurons whose synaptic weights were updated
using spike-timing-dependent-plasticity. We investigate how the quality of the represented objects changes under different SF
bands andWTA-I schemes. We demonstrate that a network of 200 spiking neurons tuned to three SFs can efficiently represent
objects with as little as 15 spikes per neuron. Studying how core object recognition may be implemented using biologically
plausible learning rules in SNNs may not only further our understanding of the brain, but also lead to novel and efficient
artificial vision systems.

Keywords Spiking neural networks · Spike-timing-dependent-plasticity · Multi-scale processing · Spike-latency code ·
Winner-take-all inhibition

1 Introduction

Deep convolutional neural network (DCNNs) have been
extremely successful in a wide range of computer vision
applications, rivaling or exceeding human benchmark per-
formance in key visual challenges such as object and face
recognition (He et al. 2015; Sun et al. 2015; Jiang et al. 2022)
or scene categorization (Stivaktakis et al. 2019). However,
state-of-the-art DCNNs require too much energy, computa-
tion, and memory to be deployed on most computing devices
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and embedded systems (Goel et al. 2020). In contrast, the
brain is masterful at representing real-world objects with
a cascade of reflexive, largely feedforward computations
(DiCarlo et al. 2012) that rapidly unfold over time (Ales et al.
2013; Cichy et al. 2016) and rely on an extremely sparse, effi-
cient neural code (for a recent review see Beyeler et al, 2019).
For example, in macaques, faces are processed in localized
patches along the Superior Temporal Sulcus (STS), where
cells detect distinct constellations of face parts (e.g., eyes,
noses, mouths), and whole faces can be recognized from
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a linear combination of neural responses within these face
patches (Chang and Tsao 2017; Majaj et al. 2015).

In recent years, spiking neural networks (SNNs) have
emerged as a promising approach to improving the effi-
ciency and biological plausibility of neural networks such as
DCNNs, due to their potential for low power consumption,
fast inference, event-driven processing, and asynchronous
operation (Gerstner and Kistler 2002; Stuijt et al. 2021). To
facilitate learning in such networks, new learning algorithms
based on varying degrees of biological plausibility have
also been developed recently. For instance, spike-timing-
dependent plasticity (STDP) is an unsupervised learning rule
that is observed in biological systems (Bi and Poo 1998;
Caporale and Dan 2008; Falez et al. 2019) and that can be
used to extract the most notable spike patterns (Feldman
2012; Brzosko et al. 2019; Hao et al. 2020) by adjusting the
efficacy of synaptic connections based on the relative tim-
ing of presynaptic and postsynaptic spikes. Studying how
object recognition may be implemented using biologically
plausible learning rules in SNNs may not only further our
understanding of the brain, but also lead to the development
of energy efficient systems, implementable on neuromorphic
hardware.

Here we present a SNN model that uses spike-latency
coding (Chauhan et al. 2018, 2021) and winner-take-all inhi-
bition (WTA-I) (Maass 2000) to efficiently represent visual
stimuli using multi-scale parallel processing. Part of this
work (Sanchez-Garcia et al. 2022) was previously presented
at the CVPR’22 NeuroVision workshop1. Given an input
image, stimuli were preprocessed with parallel spatial fre-
quency (SF) channels mimicking the sensitivity of neurons
in early visual cortex (De Valois et al. 1982a). The resulting
combination of the SF channels was then fed to a layer of
spiking neurons whose synaptic weights were updated using
STDP (Gütig et al. 2003b).We show that STDPcan learn effi-
cient object representations from the MNIST (LeCun 1998),
FASHION-MNIST (Xiao et al. 2017),CIFAR10 (Krizhevsky
and Hinton 2009), and ORL (Samaria and Harter 1994)
datasets. In addition, we investigate how the quality of the
represented objects changes under different SF bands and
WTA-I schemes. Remarkably, our network is able to repre-
sent objects with as little as 200 neurons and 15 spikes per
neuron.

The rest of the paper is organized as follows: Sect. 2 briefly
introduces some of the most recent related works. Section3
explains the main framework and the model equations. Next,
we report the results of a computational study in which we
explored the quality of the represented objects and the spar-

1 https://sites.google.com/uci.edu/neurovision2022

sity trade-off for the different networks schemes (see Sect. 4).
Finally, a brief Discussion summarizes the main results and
gives some perspectives in Sect. 5.

2 Related work

Significant efforts have been expended in recent years to
demonstrate the efficacy of SNNswith STDP in object recog-
nition applications (Vigneron and Martinet 2020; Liu et al.
2020; Fu and Dong 2021). Previous studies have used STDP
to extract visual features of low or intermediate complex-
ity from images and without supervision. Yu et al. (2013)
proposed a novel SNN with a supervised learning rule and
temporal coding scheme to generate temporal spike patterns,
which could be used to classify a subset of handwritten digits
found in the MNIST database. Liu and Yue (2016) com-
bined Gabor filter banks with rank-order coding and STDP
to push the MNIST classification rate to 82%. Beyeler et al.
(2013) achieved 92% on MNIST using a Calcium-based
STDP learning rule, which was later surpassed by Diehl
and Cook (2015) using standard STDP and lateral inhibi-
tion. Masquelier and Thorpe (2007) used the STDP rule in
an asynchronous feedforward SNN that mimics the ventral
visual pathway and showed the emergence of selectivity to
intermediate-complexity visual features when the network
was presented with natural images.

More recent articles designed a deep SNN, comprising
several convolutional and pooling layers trainable with either
standard STDP (Kheradpisheh et al. 2018) or reward-based
STDP (Mozafari et al. 2019). Bing et al. (2019) used a
supervised reward-modulated STDP learning rule to train
two SNN-based sub-controllers on obstacle avoidance tasks.
Zhou and Li (2022) proposed a SNN with STDP learning
and first-spike coding to extract object features from Gabor
filters and even-driven convolutions.

Studying how object recognition may be implemented
using biologically plausible learning rules in SNNs may not
only further our understanding of the brain, but also lead to
new efficient artificial vision systems.

Numerous studies in visual neuroscience demonstrated
the existence of multiple channels, or multiple receptive field
(RF) sizes, in early visual cortex and their implications for the
processing of the spatial frequency (SF) content of images
during object recognition (Kauffmann et al. 2014; Ginsburg
1986; Field 1987; Tolhurst et al. 1992; Hughes et al. 1996).
Because RFs of neuronal populations in the visual pathway
vary in size, the responses of different subsets of neurons
would constitute a neural representation at some particular
scale, allowing us to represent visual scenes as a combination
of SF channels (Campbell 1973).

Selectivity for SF is one of the fundamental and most
thoroughly studied properties of visual neurons (Henriksson
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Fig. 1 Multi-scale network, illustrated using images from the ORL
dataset (Samaria andHarter 1994). Imageswere convolvedwithONand
OFF center/surround kernels to simulate LGN responses. To simulate
the multiple SF channels of the visual system, we used a pre-processing
scheme where LGN maps were obtained from spatial filters at low,
medium and high spatial frequencies (further illustrated in Fig. 2). The
threeLGNresponseswere added, converted to spike latencies, and fed to
one layer spiking neural network (SNN) of firing-rate neuronswith plas-

tic synapses implementing spike-timing-dependent-plasticity (STDP)
and winner-take-all inhibition (WTA-I). The propagated LGN spikes
contributed to an increase in the membrane potential of V1 neurons
until one of the V1 membrane potentials reached threshold, resulting in
a postsynaptic spike and inhibition of all other V1 neurons until the next
iteration. Objects were reconstructed by taking a linear combination of
spiking activity across the V1 population

et al. 2008; Shapley andLennie 1985;DeValois et al. 1982b).
Theprimary visual systemprocesses low-level andhigh-level
stimulus properties using inputs from the retina via the lat-
eral geniculate nucleus (LGN). In the earliest stages of the
visual pathway, the processing of different stimulus attributes
occurs in a parallel fashion. This means that images are fil-
tered by parallel, SF-selective channels (Enroth-Cugell and
Robson 1966), which may converge in V1 (Nassi and Call-
away 2009). The visual information from the LGN passes
through V1 and multiple strategies might be used to transfer
parallel input into multiple output streams.

3 Methods

3.1 Network architecture

The network architecture of our model is shown in Fig. 1.
Inspired by Chauhan et al. (2018), our network consisted of
an input layer corresponding to a simplified model of the
LGN, followed by a layer of spiking neurons whose synaptic
weights were updated using STDP. The LGN layer consisted
of simulated firing-rate neurons with center-surround RFs,
implemented using DoG filters which simulate the compu-

tations performed by the retinal ganglion cells and the LGN
(Enroth-Cugell and Robson (1966); Derrington and Lennie
(1982); further illustrated in Fig. 2). Based on Chauhan et al.
(2018), the RF sizes were chosen to reflect the size of repre-
sentative LGN center-surround cells. It is well known that the
SFs of these neurons can differ by about a factor of 3. Some
cells are therefore tuned to high SFs, while others are tuned
to low SFs (Derrington et al. 1979). Here, we used the three
following sizes of center-surround RFs: 0.375◦/0.75◦ for low
SF, 0.25◦/0.5◦ for medium SF and 0.125◦/0.25◦ for high SF
(see Solomon et al, 2002). These values corresponded to the
widths of the Gaussian used for the DoG filter.

The SF curves for the LGN images were thus fitted using
a DoG model defined as follows:

LGNON = 1

2πσ 2
center

e
− x̂2

2σ2center − 1

2πσ 2
surround

e
− x̂2

2σ2surround (1)

LGNOFF = − 1

2πσ 2
center

e
− x̂2

2σ2center + 1

2πσ 2
surround

e
− x̂2

2σ2surround

(2)

where LGNON and LGNOFF were the LGN maps, x̂ was
the input image, and σcenter and σsurround were the center-
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Fig. 2 LGN preprocessing. To simulate the computations performed
by the retinal ganglion cells and the LGN, the images were convolved
with ON and OFF center-surround kernels (Chauhan et al. 2018).
Specifically, we chose three sizes based on an earlier study (Chauhan

et al. 2018): 0.375◦/0.75◦ for low SF, 0.25◦/0.5◦ for medium SF and
0.125◦/0.25◦ for high SF (Solomon et al. 2002). The resulting images
processed with these filters correspond to low-scale, medium-scale and
high-scale LGN maps, respectively

surround standard deviations used for the SF scales. The out-
puts of these filters, respectively, led to low-scale, medium-
scale and high-scale images which were subsequently added
together and converted into spikes using an intensity-to-
latency conversion (Delorme andThorpe 2001). These spikes
were transmitted to the V1 layer, which was composed of
integrate-and-fire neurons fully connected to the outputs of
the LGN (see Fig. 1). In addition to this multi-scale architec-
ture, we also developed an approach based on lateral scales,
which is detailed in Appendix 7.

3.2 Neuronmodel

The membrane potential En(t) of the n-th V1 neuron at time
t within the iteration was given by:

En(t) =
⎧
⎨

⎩

∑

m∈LGN
wmn · H(t − tm), t < min

t

{
t | max

n∈V 1
En(t) ≥ θ

}

0, otherwise.
(3)

where tm was the spike time of them-th LGN neuron, H was
the Heaviside or unit step function, and θ was the threshold
of the V1 neurons (assumed to be a constant shared by the
entire population). The expression min{t | max En(t) ≥ θ}
denoted the timing of the first spike in the V1 layer. Mem-
brane potentials were calculated up to this point in time, after
which a WTA-I scheme (Maass 2000) was triggered and all
membrane potentials were reset to zero. In this scheme, the
most frequently firing neuron exerted the strongest inhibition
on its competitors and thereby stopped them from firing until
the end of the iteration.

3.3 Spike-latency code

Following Chauhan et al. (2018), we converted the LGN
activity maps to first-spike relative latencies using a sim-
ple inverse operation: y = 1/x , where x was the LGN input
and y was the assigned spike-time latency. Any monoton-
ically decreasing function would lead to equivalent results
(i.e., where the most active units fire first, while units with
lower activity fire later or not at all) (see (Masquelier and
Thorpe 2007)). In this way, we ensured that the most active
units fired first, while units with lower activity fired later or
not at all.

3.4 Spike-timing-dependent-plasticity

The weights of plastic synapses connecting LGN and V1
were updated using multiplicative STDP, which is an unsu-
pervised learning rule that modifies synaptic strength,w, as a
function of the relative timingof pre- andpostsynaptic spikes,
�t (Gütig et al. 2003b). LTP (�t > 0) and LTD (�t ≤ 0)
were driven by their respective learning rates α+ and α−,
leading to a weight change (�w):

�w =
{

−α− · wμ− · K (�t, τ−),�t ≤ 0

α+ · (1 − w)μ
+ · K (�t, τ+),�t > 0,

(4)

where α+ = 5× 10−3 and α− = 3.75× 10−3, K (�t, τ ) =
e−|�t |/τ was a temporal windowing filter, and μ+ = 0.65
and μ− = 0.05 were constants ∈ [0, 1] that defined the non-
linearity of the LTP and LTDprocess, respectively. STDP has
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Fig. 3 Example RFs of three representative neurons (columns in each panel) of the simulated population for low-scale, medium-scale, high-scale
and multi-scale networks (rows). With STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient
and frequent

the effect of concentrating high synaptic weights on afferents
that systematically fire early, thereby decreasing postsynap-
tic spike latencies for these connections.

In this implementation, computation speedgreatly increased
by making the windowing filter K infinitely wide, which is
equivalent to assuming τ± → ∞ or K = 1 (Gütig et al.
2003a). A ratio α+/α− = 4/3 was chosen based on previous
experiments that demonstrated network stability (Masquelier
and Thorpe 2007). Also, Chauhan et al. (2018) showed that
the results were robust to variations of this ratio. The thresh-
old of the V1 neurons was fixed through trial and error at
θ = 20. This value was unmodified for all experiments.

Initial weight values were sampled from a random uni-
form distribution between 0 and 1. After each iteration, the
synaptic weights for the first V1 neuron to fire were updated
using STDP (Eq.4), and the membrane potentials of all the

other neurons in the V1 population were reset to zero. The
STDP rule was active only during the training phase.

3.5 Winner-take-all inhibition

We used a hard WTA-I scheme such that, if any V1 neuron
fired during a certain iteration, it simultaneously prevented
other neurons fromfiring until the next sample (Maass 2000).
This scheme computes a function WTA-In : Rn → {0, 1}n
whose output 〈y1, . . . , yn〉 =WTA-In (x1, . . . , xn) satisfied:

yi =
{
1, if xi > x j for all j 
= i

0, otherwise.
(5)

For a given set of n different inputs x1, . . . , xn , a hard
WTA-I scheme would thus yield a single output yi with
value 1 (corresponding to the neuron that received the largest
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Fig. 4 Multi-scale network. (a) Reconstruction error (MSE) of test set.
(b) Spike count per neuron: number of spikes fired by an active neuron.
(c) Lifetime sparsity: active stimuli during the lifetime of a neuron. (d)
Population sparsity: neurons active at any point in time.Mean responses
and standard deviation grouped by type of network (low-scale, medium-

scale, high-scale andmulti-scale). Error bars have been averaged across
neurons for lifetime sparsity and averaged across images for population
sparsity. ∗∗∗ = p < .001; ∗∗ = p < .01; ∗ = p < .05; ns = p > .05.
All t tests paired samples, two-tailed

input xi ), whereas all other neuronswould be silent. Sanchez-
Garcia et al. (2022) showed that a hard WTA-I scheme was
essential for enforcing competition among neurons, which
led to sparser object representations and lower reconstruc-
tion error compared to softer WTA-I schemes.

3.6 Stimulus reconstruction

The activity map ξ j of the i-th V1 neuron was estimated as
follows:

ξ j ≈
∑

j∈LGN

wi jψ j , (6)

where ψ j was the RF of the j-th LGN afferent, and wi j

was the weight of the synapse connecting the j-th afferent to
the i-th V1 neuron.

Stimuli k were then linearly reconstructed from the V1
population activity:

ORk =
∑

j∈V 1

rk jξ j , (7)

where rk j was the response of the j-th V1 neuron to the k-
th image and ξ j was its activity map. Reconstruction error
for an image k was calculated as the pixel-wise mean square
error (MSE) between the LGN (LGNk) and the V1 activity
maps ORk .
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Table 1 Global results for type of networks

Dataset Network RE (MSE) RE (SSIM) SC LS PS

ORL Low-scale 4.54e−2±8.40e−3 0.70±0.19 21.4±1.08 3282.5±1525.4 84.0±11.97

Medium-scale 4.54e−2±8.43e−3 0.70±0.12 24.5±1.48 5404.5±704.3 100.8±18.32

High-scale 4.30e−2±3.99e−3 0.73±0.14 27.2±1.72 3732.7±559.5 78.0±9.24

Multi-scale 2.91e−2±6.07e−3 0.76±0.09 19.5±1.78 7320±847.0 169.4±11.7

MNIST Low-scale 1.81e−2±4.53e−3 0.83±0.07 10.8±0.77 1483.7±695.0 26.6±11.9

Medium-scale 2.07e−2±1.29e−2 0.79±0.06 11.9±0.78 3788.0±103.2 70.6±5.14

High-scale 1.51e−2±4.84e−3 0.86±0.04 15.1±0.81 2386.7±295.9 40.9±3.31

Multi-scale 1.16e−2±3.77e−3 0.89±0.05 10.0±0.79 4500.1±782.7 95.0±19.9

FASHION-MNIST Low-scale 1.49e−2±5.99e−3 0.62±0.10 19.0±1.07 2037.5±735.4 42.1±19.8

Medium-scale 1.37e−2±6.87e−3 0.62±0.05 19.3±1.39 3822.9±493.8 73.5±11.12

High-scale 1.90e−2±6.17e−3 0.60±0.13 18.0±1.38 3201.8±591.0 50.1±10.39

Multi-scale 9.34e−3±5.15e−3 0.69±0.12 13.6±1.76 6105.0±907.9 102.5±25.2

CIFAR10 Low-scale 3.10e−2±6.66e−3 0.73±0.16 22.8±1.72 4179.9±795.7 85.5±3.29

Medium-scale 2.13e−2±3.43e−3 0.82±0.09 21.3±1.40 3542.4±693.9 75.0±11.18

High-scale 3.07e−2±6.61e−3 0.75±0.15 24.0±1.75 3692.9±1006.7 83.2±8.32

Multi-scale 2.15e−2±8.22e−3 0.80±0.13 19.5±1.06 8599.5±830.7 161.5±10.8

Comparison of mean responses and standard deviation grouped by type of network and dataset. Best performing networks for each dataset and
error metric are highlighted in italics

3.7 Sparsity

We computed a sparsity metric for the population activity in
the network schemes according to the definition of sparsity
by Vinje and Gallant (2000). On average, we measured how
many neurons were activated by any given stimulus (popu-
lation sparsity) and for all active neurons, how many stimuli
any given neuron responded to (lifetime sparsity), as can be
seen in Eq.8).

sparsity =
(

1 − 1

N

(
∑

n=1 ri )
2

∑
n=1 r

2
i

)/ (

1 − 1

N

)

, (8)

For population sparsity, ri was the response of the i-th
neuron to a particular stimulus, and N was the number of
model neurons. For lifetime sparsity, ri was the response
of a neuron to the i-th stimulus, and N was the number of
stimuli. Population sparsity was averaged across stimuli, and
lifetime sparsity was averaged across neurons (Beyeler et al.
2016). We also calculated the average number of spikes per
stimulus.

3.8 Dataset

To demonstrate the generality of our approach, we assessed
the ability of our SNN network to represent visual stimuli
from the MNIST (LeCun 1998), FASHION-MNIST (Xiao
et al. 2017), CIFAR10 (Krizhevsky and Hinton 2009) and
ORL (Samaria andHarter 1994) datasets.MNIST is a dataset

of handwritten digits and consists of 60,000 training patterns
and 10,000 test patterns. FASHION-MNIST is a dataset of
Zalando article images consisting of a training set of 60,000
examples and a test set of 10,000 examples. Each exam-
ple of both, MNIST and FASHION-MNIST, is a 28 × 28
grayscale image, associated with a label from 10 classes. The
CIFAR10 database consists of 60,000 32 × 32 color images
in 10 classes, with 6000 images per class. There are 50,000
training images and 10,000 test images. The ORL database
of faces contains 400 images from 40 distinct subjects. The
size of each image is 92 × 112 pixels, with 256 gray levels
per pixel.

We enlarged images from theCIFAR10 andORLdatabase
using data augmentation with different orientations of the
original images to match the data size with MNIST and
FASHION-MNIST datasets.

3.9 Statistical analysis

Datawere analyzed using two-wayANOVAand post hoc test
with Tukey’s method to evaluate simultaneously the effect
of the two grouping variables (Dataset and Networks/WTA-I
schemes/V1 neurons) on the following response variables:
reconstruction error (RE), spike count/neuron (SC), lifetime
sparsity (LS), population sparsity (PS), and recognition time
with ∗ ∗ ∗ = p < .001; ∗∗ = p < .01; ∗ = p < .05
and ns = p ≥ .05. For the reconstruction error, we have
used the mean squared error (MSE) which is the most
widely used metric reference and the Structured Similarity
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Fig. 5 Representative object
representation (OR) examples
using low-scale, medium-scale,
high-scale and multi-scale
networks (columns). The
number below each image
indicates the reconstruction
error (MSE) for that particular
image. The black frame
highlights the image with the
smallest error
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Fig. 6 V1 neurons. (a) Reconstruction error (MSE) of test set using dif-
ferent number of V1 neurons: 100, 200, 400 and 600. (b) Spike count
per neuron: number of spikes fired by an active neuron. (c) Lifetime
sparsity: active stimuli during the lifetime of a neuron. (d) Popula-
tion sparsity: neurons active at any point in time. Mean responses and

standard deviation grouped by type of network architecture (low-scale,
medium-scale, high-scale and multi-scale). Error bars have been aver-
aged across neurons for lifetime sparsity and averaged across images
for population sparsity

Indexing Method (SSIM) which compare the structural and
feature similarity measures between reconstructed and orig-
inal images on the basis of perception.

4 Results

4.1 Object representation usingmulti-scale network

Theperformanceusing a single-scale (i.e., low-scale,medium-
scale, or high-scale networks) and multi-scale network is
summarized in Fig. 4. The results show the reconstruction
error, lifetime sparsity, population sparsity and spike count
per neuron (mean ± standard deviation) achieved on the test
sets for all databases (see Table 1). The reconstruction error
for the four networks (low-scale, medium-scale, high-scale
and multi-scale) is shown in Fig. 4a. We found similarity
between the reconstruction errors of the three single net-

works (low-, medium- and high-scale) for all datasets, with
some slight discrepancy in the more complex CIFAR10 and
ORL datasets. Interestingly, the use of multi-scale manages
to further reduce the reconstruction error, being the same
trend for all datasets. We also performed a test to determine
if themean difference between networks are statically signif-
icant using two-tailed test with a significant level α = 0.05.
The analysis of the average reconstruction error reveals a
significant difference between networks (low-/multi-scale,
medium-/multi-scale and high-/multi-scale). Examples of
object representations for all datasets can be found in Fig. 5.

Figure 4b shows the number of spikes per neuron needed
for object representation. The number of spikes needed to
represent an object decreased with the Multi-scale scheme
compared to low-, medium- and high-scale networks. On the
other hand, we found that the CIFAR10 and ORL dataset,
which we considered two of the most complex of the four
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Table 2 Global results for V1 neurons

Dataset V1 neurons RE (MSE) RE (SSIM) SC LS PS

ORL 100 3.73e−2±7.09e−3 0.76±0.04 12.4±1.7 4092.1±1058.3 58.7±14.9

200 2.91e−2±6.07e−3 0.76±0.09 19.5±1.78 7320±847.0 169.4±11.7

400 3.90e−2±7.90e−3 0.73±0.02 75.5±8.8 7769.2±1151.9 370.5±9.0

600 4.17e−2±7.70e−3 0.73±0.08 120.4±12.5 8288.6±828.0 513.7±45.3

MNIST 100 2.62e−2±8.61e−3 0.87±0.08 10.3±0.8 3667.8±718.3 35.2±9.3

200 1.16e−2±3.77e−3 0.89±0.05 10.0±0.79 4500.1±782.7 95±19.9

400 2.94e−2±7.72e−3 0.86±0.05 59.7±13.1 5719.3±1568.7 206.2±9.3

600 3.47e−2±8.29e−3 0.82±0.09 101.8±13.4 6379.4±388.3 445.4±38.7

FASHION-MNIST 100 2.56e−2±4.38e−3 0.67±0.012 9.9±1.5 3893.7±694.5 43.1±10.2

200 9.34e−3±5.15e−3 0.69±0.12 13.6±1.76 6105.0±907.9 102.5±25.2

400 2.78e−2±4.48e−3 0.68±0.16 53.4±11.9 6251.3±979.1 216.7±31.8

600 3.09e−2±5.45e−3 0.66±0.11 87.8±13.3 6585.8±279.6 486.5±37.1

CIFAR10 100 3.15e−2±9.37e−3 0.79±0.09 11.1±1.4 4374.1±1173.1 61.2±18.3

200 2.15e−2±8.22e−3 0.80±0.13 19.5±1.06 8599.5±830.7 161.5±10.8

400 3.71e−2±7.60e−3 0.79±0.08 70.3±12.3 6498.8±1005.8 354.0±29.2

600 4.37e−2±1.01e−2 0.75±0.05 126.1±12.1 8404.8±876.3 498.3±41.8

Comparison of mean responses and standard deviation grouped by type of V1 neurons and dataset. Best performing in each cell for each dataset
and error metric is highlighted in italics

Fig. 7 Object representation
with Multi-scale network
varying the number of V1
neurons: 100, 200, 400 and 600
neurons. The number below
each image indicates the
reconstruction error (MSE) for
that particular image. The black
frame highlights the image with
the smallest error
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Fig. 8 WTA-I schemes. (a) Reconstruction error (MSE) in the test
phase as a function of the number of spikes included in the STDP algo-
rithm (WTA-I) for 200 V1 neurons. (b) Spike count per neuron: number
of spikes fired by an active neuron. (c) Lifetime sparsity: active stimuli

during the lifetime of a neuron. (d) Population sparsity: neurons active
at any point in time. Mean responses and standard deviation grouped
by the WTA-I schemes. Error bars have been averaged across neurons
for lifetime sparsity and averaged across images for population sparsity

datasets, needed the highest number of spikes per neuron for
all networks.

Figure 4c shows the number of distinct stimuli the neuron
responds to during the lifetime of a neuron. The multi-scale
network showed a higher number of active stimuli for all
datasets compared to the single networks. Moreover, we
found significant differences between the networks, being
more significant for medium-/multi-scale and high-/multi-
scale. The same trend was found for the population sparsity,
where the multi-scale presented more active neurons than
the low-, medium- and high-scale networks and significant
differences were found between them (see Fig. 4d).

4.2 Object representation usingmulti-scale network
with varying number of V1 neurons

Figure 6a shows the reconstruction error after training for the
test set using different numbers of V1 neurons (see Table 2).
We found that the reconstruction error went through a min-

imum (at roughly 200 V1 neurons) for all databases, which
is consistent with the bias-variance dilemma (Beyeler et al.
2019). It seems that using a larger number of neurons with
our multi-scale network leads to overfitting and a less sharp
reconstruction, as can be seen in Fig. 7.

In addition, the number of neurons needed to represent
an object increased with the number of V1 neurons, nearly
tripling the spikes from 200 to 400 neurons and quintupling
from 200 to 600 (Fig. 6c). Increasing the V1 population
beyond 200 neurons did therefore not lead to any visible ben-
efits in reconstruction error (Fig. 7). We therefore limited our
V1 population to 200 neurons for all subsequent simulations
and analyses.

4.3 Object representation using softWTA-I schemes

We also tested object representation using various softWTA-
I schemes, where we varied the number of V1 neurons
allowed to be active for each training image (see Fig. 8). Fig-
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Table 3 Global results for WTA-I schemes

Dataset WTA-I RE (MSE) RE (SSIM) SC LS PS

ORL WTA-I-1 2.91e−2±6.07e−3 0.76±0.09 19.5±1.8 7320.0±847.0 169.4±11.7

WTA-I-10 3.06e−2±6.19e−3 0.76±0.15 19.2±1.8 7461.8±745.6 169.5±12.1

WTA-I-50 3.48e−2±6.48e−3 0.72±0.12 31.7±1.8 6254.8±716.5 124.7±27.3

WTA-I-100 3.90e−2±6.10e−3 0.70±0.09 72.2±4.2 8643.1±517.1 134.3±29.9

WTA-I-200 4.16e−2±4.90e−3 0.70±0.12 90.1±11.6 8107.6±405.9 134.9±3.13

MNIST WTA-I-1 1.16e−2±3.77e−3 0.89±0.05 10.0±0.8 4500.1±782.7 95.0±19.9

WTA-I-10 1.18e−2±4.33e−3 0.88±0.09 9.8±0.8 4319.9±773.7 95.7±22.4

WTA-I-50 2.67e−2±1.18e−2 0.86±0.10 20.1±1.3 4695.9±536.7 87.5±25.4

WTA-I-100 3.41e−2±7.48e−3 0.84±0.08 49.9±5.5 7919.3±558.42 109.2±28.3

WTA-I-200 3.93e−2±9.61e−3 0.84±0.15 70.1±5.4 7094.6±458.8 128.9±28.1

FASHION-MNIST WTA-I-1 9.34e−3±5.15e−3 0.69±0.12 13.6±1.7 6105.0±907.9 102.5±25.2

WTA-I-10 9.72e−3±5.31e−3 0.68±0.12 13.2±1.7 5968.1±822.1 104.6±23.7

WTA-I-50 2.56e−2±3.82e−3 0.64±0.16 19.0±1.3 6337.5±693.2 78.1±22.9

WTA-I-100 3.14e−2±5.82e−3 0.65±0.14 56.9±4.6 8020.3±455.9 101.2±25.3

WTA-I-200 3.73e−2±1.10e−2 0.67±0.13 82.1±8.8 7530.2±321.6 131.8±11.1

CIFAR10 WTA-I-1 2.15e−2±8.22e−3 0.80±0.13 19.5±1.1 8599.5±830.7 161.5±10.8

WTA-I-10 2.20e−2±8.13e−3 0.80±0.16 19.3±1.1 8401.2±928.3 162.2±10.3

WTA-I-50 4.09e−2±7.14e−3 0.78±0.13 30.12±1.4 6884.8±642.5 129.3±19.7

WTA-I-100 4.51e−2±8.14e−3 0.79±0.10 68.9±4.5 8500.2±625.1 136.2±22.1

WTA-I-200 5.38e−2±1.24e−2 0.77±0.11 84.5±10.1 8269.7±408.53 130.0±5.37

Comparison of mean responses and standard deviation grouped by type of WTA-I schemes and dataset. Best performance in each cell for each
dataset and error metric is highlighted in italics

Fig. 9 Object representation
using different WTA-I schemes,
where between 1 (harder WTA-I
1) and 200 (softer WTA-I 200)
neurons were active for each
training sample. The number
below each image indicates the
reconstruction error for that
particular image. Target and
prediction images were
normalized in [0, 1]. The black
frame highlights the image with
the smallest error in each row

123



Biological Cybernetics (2023) 117:95–111 107

ure 8a shows the reconstruction error on the test set across the
range of possibleWTA-I schemes, ranging from hard (where
only one neuron was active per image) to soft (where all 200
neurons were active).

We found that the softer theWTA-I scheme, the higher the
reconstruction error (see Table 3). The reason for this became
evident when we visualized the resulting object representa-
tions (Fig. 9). WTA-I schemes where at most 10 neurons
were allowed to be active were instrumental in maintaining
competition among neurons. In the absence of a strongWTA-
I scheme, multiple neurons ended up learning similar visual
features, which resulted in poor object reconstruction (right
half of Fig. 9). Also, due to this overlap between neurons,
the final feature set was quite limited.

We also found that both the active stimuli during the life-
time of a neuron and the active neurons increased with the
number of V1 neurons allowed to be active during training
(see Fig. 8c, d). Furthermore, the number of spikes needed
to represent an object showed the same trend (Fig. 8b).

5 Discussion

In thiswork,wehaveproposed anSNNmodel that uses spike-
latency coding and WTA-I to efficiently represent visual
stimuli using multi-scale parallel processing. In particular,
this paper developed an extension of earlier work (Chauhan
et al. 2018, 2021; Sanchez-Garcia et al. 2022) to investigate
how the quality of the represented objects changes under dif-
ferent schemes of the primary visual system processing with
subsets of neurons tuned to different SF scales.

We found that the multi-scale network outperformed all
three single-scale networks across all datasets (Fig. 4), sac-
rificing sparsity for a lower reconstruction error. However,
it is interesting to note that the multi-scale network used
the smallest average number of spikes per neuron (Fig. 4b)
across all datasets, indicating that it favored a code where
many neuronswereweakly activated. In all cases, the learned
receptive fields (Fig. 3) were in agreement with nonnegative
sparse coding (NSC), which is an efficient population cod-
ing scheme based on dimensionality reduction and sparsity
constraints that promotes sparse and parts-based population
codes (Beyeler et al. 2019).

We also studied how the number of V1 neurons in the net-
work affected reconstruction error and sparsity of the learned
population code. In agreement with previous work on NSC
(Beyeler et al. 2016, 2019), we found that the reconstruction
error (on the test set) goes through a minimum as a function
of network size (Fig. 6a). This minimum is though to indicate

the optimal model complexity according to the bias-variance
dilemma, that is, the point at which the model’s general-
ization error is minimized. Curiously, this “sweet spot” was
found to be at roughly 200 V1 neurons for all tested datasets
(Fig. 7). On the other hand, sparsity increased monotoni-
cally with network size (Fig. 6b–d), which is more in line
with the traditional sparse coding literature (Olshausen and
Field 1997).

We also implemented various soft WTA-I schemes to
investigate how the quality of represented objects changed
(Fig. 8). The WTA-I soft schemes consisted of 10, 50, 100,
and200 (i.e., all) neuronsfiringduring a given iteration,while
all other neurons were silent. We found that the softer the
WTA-I scheme, the larger the reconstruction error (Fig. 8a)
and the number of spikes needed to represent an object
(Fig. 8b). The reason for this became clear when we visu-
alized the resulting object representations (Fig. 9). In the
absence of a strong WTA-I scheme, multiple neurons ended
up learning similar visual features, thus resulting in poor
object reconstructions (Fig. 9).

Although our network was able to efficiently represent
images from various datasets, an important issue that we did
not address in this paper is a comparison with other SNNs
with other forms of STDP (e.g., with an additive instead of a
multiplicative rule) and/or to SNNs trained with other learn-
ing scheme (e.g., SNNs trained with the surrogate gradient).
In addition, a future extension of the model might focus on
deeper architectures with parallel processing with multiple
scales and more challenging visual stimuli.

6 Conclusion

In conclusion, we have shown that a network of spiking
neurons tuned to different SFs can represent objects with
as little as 15 spikes per neuron using spike-latency coding
and WTA-I. WTA-I schemes were essential for enforcing
competition among neurons, which led to sparser object rep-
resentations and lower reconstruction errors. Studying how
object recognition may be implemented using biologically
plausible learning rules in SNNs may not only further our
understanding of the brain, but also lead to new efficient arti-
ficial vision systems.
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Fig. 10 Lateral-scale network. Images from the ORL dataset (Samaria
and Harter 1994) were convolved with ON and OFF center-surround
kernels to simulate responses in the LGN. We used three LGN sub-
networks processed based on a particular SF: low-scale, medium-scale
and high-scale (see Fig. 2). The three LGN responses were converted to

spike latencies and fed to aSNNeach, resulting in three lateral SNNwith
plastic synapses implementing STDP and WTA-I. The reconstructed
images resulted of the three lateral networks were added at the end for
the object reconstruction

7 Comparison betweenmulti-scale and
lateral-scale network architectures

We propose another network architecture called ‘lateral-
scale’ that also uses parallel processingofmultiple scales (see
Fig. 10). In this case, the LGNpreprocessing is the same as in
the multi-scale network architecture, but now the three LGN
responses were converted to spike latencies and fed to a SNN
each, resulting in three lateral SNN with plastic synapses
implementing STDP and WTA-I. The reconstructed images
resulted of the three lateral sub-networks were added at the
end of the training for the object representation.

As shown in Fig. 11a, the lateral-scale network results in a
lower but very similar reconstruction error than the proposed
multi-scale network. This may be because the lateral-scale
scheme recognizes a few more details corresponding to fine
details in the image (seeFig. 12). Lateral-scalewas not signif-
icantly better thanmulti-scale ifwe refer to the representation
of objects (see Fig. 12 but used significantly more spikes
(Fig. 12b). The number of spikes required for reconstruction
increases by approximately double spikes/neuron in some
datasets. One drawback in lateral-scale network is that we
are training three lateral sub-networks, thatmeans three times
more trainable weights.

See Table 4.
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Fig. 11 (a) Reconstruction error (MSE) of test set usingmulti-scale and
lateral-scale networks. (b) Number of spikes per neuron needed for the
object representation using multi-scale and Lateral-scale networks. (c)
Lifetime sparsity: active stimuli during the lifetime of a neuron. (d) Pop-

ulation sparsity: neurons active at any point in time. ∗ ∗ ∗ = p < .001;
∗∗ = p < .01; ∗ = p < .05; ns = p > .05. All t tests paired samples,
two-tailed

Fig. 12 Object representation
for multi-scale and lateral-scale
network architectures using 200
V1 neurons. Two examples of
object representation (image A
and image B) for multi-scale
and lateral-scale architectures
and for the four databases. The
lateral-scale scheme recognizes
some finer details in the image
compared to multi-scale, where
the image details are coarser.
The number below each image
indicates the reconstruction
error (MSE) for that particular
image. The black frame
highlights the image with the
smallest error
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Table 4 Global results for multi- and lateral-scale

Dataset Network RE (MSE) RE (SSIM) SC LS PS

ORL Multi-scale 2.91e−2±6.07e−3 0.76±0.23 19.5±1.78 7320±847.0 169.4±11.7

Lateral-scale 2.28e−2±4.84e−3 0.80±0.19 25.1±1.5 7233.0±1241.5 168.3±17.4

MNIST Multi-scale 1.16e−2±3.77e−3 0.89±0.05 10.0±0.79 4500.1±782.7 95.0±19.9

Lateral-scale 8.27e−3±4.04e−3 0.66±0.18 12.5±1.4 5867.9±444.1 115.6±4.9

FASHION-MNIST Multi-scale 9.34e−3±5.15e−3 0.59±0.20 13.6±1.76 6105.0±907.9 102.5±25.2

Lateral-scale 6.93e−3±3.53e−3 0.71±0.14 14.4±1.2 7160.4±745.1 161.2±11.5

CIFAR10 Multi-scale 2.15e−2±8.22e−3 0.80±0.13 19.5±1.06 8599.5±830.7 161.5±10.8

Lateral-scale 1.87e−2±4.23e−3 0.87±0.02 21.9±1.2 8258.7±1130.5 182.4±19.2

Comparison of mean responses and standard deviation grouped by type of Multi and Lateral-scale and dataset
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