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Abstract

The visual systems of insects are relatively simple compared to humans. However, they enable navigation through complex
environments where insects perform exceptional levels of obstacle avoidance. Biology uses two separable modes of optic
flow to achieve this: rapid gaze fixation (rotational motion known as saccades); and the inter-saccadic translational motion.
While the fundamental process of insect optic flow has been known since the 1950’s, so too has its dependence on contrast.
The surrounding visual pathways used to overcome environmental dependencies are less well known. Previous work has
shown promise for low-speed rotational motion estimation, but a gap remained in the estimation of translational motion, in
particular the estimation of the time to impact. To consistently estimate the time to impact during inter-saccadic translatory
motion, the fundamental limitation of contrast dependence must be overcome. By adapting an elaborated rotational velocity
estimator from literature to work for translational motion, this paper proposes a novel algorithm for overcoming the contrast
dependence of time to impact estimation using nonlinear spatio-temporal feedforward filtering. By applying bioinspired
processes, approximately 15 points per decade of statistical discrimination were achieved when estimating the time to impact
to a target across 360 background, distance, and velocity combinations: a 17-fold increase over the fundamental process.
These results show the contrast dependence of time to impact estimation can be overcome in a biologically plausible manner.
This, combined with previous results for low-speed rotational motion estimation, allows for contrast invariant computational
models designed on the principles found in the biological visual system, paving the way for future visually guided systems.

Keywords Bioinspired - Optical flow - Robotics - Computer vision - Time to impact - Contrast dependence

1 Introduction

Researchers have long been interested in how insects move
so freely through complex environments. Of particular inter-
est are those that use their visual perception systems as the
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primary source of sensory input during locomotion (Collett
and Land 1975; Srinivasan et al. 1996; Borst and Haag 2002;
Ruffier et al. 2003; Serres et al. 2008; Mauss and Borst 2020).

While there is growing neurophysiological support for
the biological processes used by insects to tackle vari-
ous aspects of this complex problem, there still exists a
disconnect between the biological knowledge obtained by
neurophysiologists and the technological capabilities of sys-
tems implemented by roboticists and engineers (Franceschini
et al. 1992; Srinivasan et al. 1999a,b; Cuntz et al. 2007;
Schwegmann et al. 2014; Bertrand et al. 2015; Li et al. 2016;
Medathati etal. 2016; Meyer et al. 2016; Lecoeur et al. 2018).

This paper investigates one possible solution for overcom-
ing the contrast dependence of a time to impact estimator
that is inspired by insect biology. Using methods of adap-
tation that are biologically plausible, an existing algorithm
for correcting for rotational errors during inter-saccadic
motion (Skelton et al. 2019) has been adapted to consis-
tently estimate the time to impact during the periods of
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inter-saccadic translation. Research into biological vision
systems and their implementation as engineered solutions
has shown that these models often contain a large number of
parameters that can be tuned to produce different operating
behaviours depending on the situation tested (Franceschini
etal. 1992; Ruffier and Franceschini 2005; Serres et al. 2008;
Brinkworth and O’Carroll 2009; Schwegmann et al. 2014).
In the research reported here, this is the case: 42 parameters
are used to specify the operating behaviour of the proposed
algorithm. The complex task of tuning this parameter set fol-
lowed a similar approach to that used to tune a rotational
optic flow model (Skelton et al. 2020) and will be reported
in-depth elsewhere.

2 Related work

Humans perceive self-motion from visual inputs, or ‘egomo-
tion’ as itis known (Dodge 1923; Warren 1976). It was found
that humans are capable of detecting and relatively quanti-
fying their motion vector (rotational and translational), from
very sparse amounts of data. However, it was a requirement
that there be contrast changes in the visual inputs for egomo-
tion detection to occur (Lappe and Rauschecker 1993).

This interest in how the world is perceived also extended
to other aspects of biology, where flying insects in particular
have been a large source of research over the years, with the
visual pathways of species such as the fruit fly Drosophila
melanogaster (Fry et al. 2003; Maimon et al. 2008), the hov-
erflies Syritta pipiens (Collett and Land 1975) and Eristalis
tenax (Straw et al 2006; Nordstrom et al. 2008), the blowfly
Calliphora vicina (Hateren and Schilstra 1999; Schilstra and
Hateren 1999; Borst and Haag 2002; Cuntz et al. 2007; Borst
etal.2010; Kernetal. 2012; Ullrich etal. 2015), the honeybee
Apis mellifera (Srinivasan et al. 2000; Barron and Srinivasan
2006; Boeddeker et al. 2010), the tropical sweat bee Mega-
lopta genalis (Warrant et al. 2004), the dragonfly Hemianax
papuensis (Stange et al. 2006; Shabayek et al. 2018), and the
hawkmoths Manduca sexta (Zhu et al. 2020) and Macroglos-
sum stellatarum (Stockl et al. 2019) all being studied. From
these widespread neurophysiological investigations into bio-
logical vision systems, there are some key findings that are
of interest to the field of robotics.

Firstly, it has been shown that both bees (Srinivasan et al.
1996; Barron and Srinivasan 2006) and flies (Collett and
Land 1975; Borst and Haag 2002; Maimon et al. 2008) pos-
sess relatively simplistic visual systems compared to humans.
While humans have both a small region of high acuity,
known as the fovea, which is the point of fixation, and
a large region of low acuity peripheral vision surrounding
the fovea (Campbell and Green 1965; Williams and Coletta
1987; Intriligator and Cavanagh 2001), insects typically have
a wide field of view with relatively low acuity, and no spe-
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cialised fovea (Collett and Land 1975; Franceschini et al.
1992). However, it has also been shown that the males and
females of certain species possess slightly different visual
systems, known as sexual dimorphism (Nordstrom et al.
2008). For example, male flies have regions of higher visual
acuity specifically developed for the detection and tracking
of small objects, and this dimorphism is caused by different
behavioural requirements between the sexes, such as males
chasing females (Hardie 1986; Hornstein et al. 2000). Addi-
tionally, it has been shown that optic flow is used to perform
obstacle avoidance or landing manoeuvres, and this can be
thought of as the perceived time to impact of the insect to
the environment (Krapp et al. 2001; Tammero and Dickin-
son 2002). Without precisely knowing ones’ own absolute
velocity (egomotion), nor the absolute velocity of obstacles
within a dynamic environment (e.g. predator or prey), or even
the distance to objects, it is possible to calculate the time to
impact that object represents by gauging the perceived rela-
tive optical flow. By exploiting motion parallax, objects at a
closer distance will have a shorter time to impact compared
to objects further away—assuming constant velocity—and
will be associated with higher levels of optic flow.

The second finding is the visual behaviour known as sac-
cadic motions, or saccades. Saccades are extremely rapid
gaze fixations that typically last for approximately 40 mil-
liseconds in humans (Castet 2009) and 40-50 milliseconds
in flies (Schilstra and Hateren 1999; Fry et al. 2003). This
behaviour has also been identified in non-flying insects, such
as the ant Formica rufa (Lent et al. 2010) and the pray-
ing mantis Sphodromantis viridis (Rossel 1996), as well
as several species of aquatic life (Land 1999). The pur-
pose of saccades, in both humans (Robinson 1964; Becker
and Fuchs 1969) and insects, is to separate the rapid high-
speed rotational velocities from the low-speed rotational
velocities and the translational velocities. This separation
primarily occurs to allow for the accurate encoding of
low-speed rotational velocity predominantly found during
translational movements (Corthals et al. 2019), and the
ability for motion sensitive neurons to interpret informa-
tion about the spatial layout of the environment during
the inter-saccadic translatory movements without significant
contamination by rotational egomotion (Lindemann et al.
2008). Saccades are also used to overcome large optical dis-
placements typically found during prey-tracking (Egelhaaf
and Kern 2002). Saccades are not only both highly accurate
and reproducible (Clark and Stark 1975; Lee et al. 1988), but
are contextually dependent (Patla and Vickers 1997; Tomsic
and Theobald 2017). This separation between rotational and
translational optic flow calculation is reflected in the separa-
tion between research into the horizontally (yaw) selective
cells, and the translational selective cells (Longden et al.
2017, Strother et al. 2017; Lecoeur et al. 2018).
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Even with the comparatively less complex visual systems
compared to humans (Dyer and Griffiths 2012), flies and bees
are still capable of achieving linear velocities of 1.2 m/s and
accelerations of 10 m/s® (Schilstra and Hateren 1999), as
well as rotational velocities of 1000 °/s and accelerations
of 2000 °/s? (Clark and Stark 1975). These manoeuvres
are achieved during high-speed saccadic motions, while
performing real-time complex tasks such as localisation, nav-
igation, object detection, and object avoidance (Borst and
Weber 2011).

Spatial pooling for optic flow estimation is a well-studied
area, and it has been shown that several insects employ spatial
pooling on their receptive fields for both noise suppression
and object saliency. Both of these are thought to be important
in the context of estimating time to impact as it is desirable for
small targets (e.g. obstacles) to be more prominent features,
and noise can be misconstrued as a small target (Egelhaaf
and Warzecha 1999; Egelhaaf et al. 2002; Borst and Haag
2002).

Optic flow techniques have been used extensively in
research for bridging the gap between biological capabili-
ties and technological implementations (Horn and Schunck
1981; Franceschini et al. 1992; Barth et al. 2012; Kern
et al. 2012). However, egomotion estimation techniques are
largely dependent upon controlled environments, from alter-
nating contrast bars in honeybee navigation studies (Srini-
vasan et al. 1996) and spatially perfect contrast images in
ground robots (Mizutani et al. 2003) to well-lit daytime image
sequences for computing the optic flow of autonomous land-
ing of unmanned aerial vehicles (Thurrowgood et al. 2009;
Shoemaker et al. 2011; Thurrowgood et al. 2014).

Although existing techniques that employ simple models
of biological vision have largely ignored contrast depen-
dency, research has shown that employing ‘elaborated’
models—that is models that more accurately represent
the dynamic nonlinearities inherent within the biological
system—can produce velocity estimates that are more envi-
ronmentally invariant (O’ Carroll et al. 2007; Brinkworth and
O’Carroll 2009; Babies et al. 2011; Schwegmann et al. 2014;
Ullrich et al. 2015) and resilient to noise (Brinkworth and
O’Carroll 2010). These models, such as the fully elaborated,
which rotational optic flow model proposed by Brinkworth
and O’Carroll (2009)), which are more accurate in their rep-
resentation of biological systems, have been shown to be
synergistic in nature. That is, the performance of the system
as a whole is greater than the sum of the individual compo-
nents that make up that system (Brinkworth and O’Carroll
2009).

The foundational mathematical model for optic flow esti-
mation by insects, the Hassenstein—Reichardt elementary
motion detector, is a correlation-based technique. This results
in high levels of contrast dependence as the larger the con-
trast, the larger the difference between samples. It is well

known that the visual systems of a wide variety of animals
adapt to the environment in which they are in, primar-
ily by contrast, and has been shown to occur in flies and
bees (Mileva et al. 2007; Babies et al. 2011; Bahl et al.
2015; Arenz et al. 2017; Wienecke and Clandinin 2020),
as well as humans (Blackwell 1946; Gibson 1950). As the
exact biological process for contrast adaptation is unknown,
several potential applications of feedback and feedforward
adaptation have been proposed with some neurophysiologi-
cal support when dealing with rotational motion (Carandini
and Heeger 2012, 2013; Drews et al. 2020).

While there have been attempts at overcoming the con-
trast dependence of an algorithm based upon Hassenstein—
Reichardt detectors (Hassenstein and Reichardt 1956) in a
translational setting, these have largely been applied locally
to a specific scene, or have failed to incorporate the support-
ing elaborations that have been neurophysiologically proven
to exist within the visual pathways of many insects (Rajesh
et al. 2002; Straw et al. 2008). This work aims to overcome
both of these shortcomings by operating with a complex
dataset, and including biologically inspired elaborations to
overcome the contrast dependence of the algorithm.

There is growing neurophysiological support for contrast
adaptation being handled by separable ON-OFF pathways
in the neural systems of insects such as the Drosophila
melanogaster (Joesch et al. 2010; Kohn et al. 2021). While
this has been shown to be prevalent in motion estimation dur-
ing both rotational (Borst et al. 2020) and translational (Fu
and Yue 2020) motion, these experiments still tend to deal
with idealised contrast grating patterns or simplified visual
inputs.

3 Methods

The research undertaken in this paper has two aspects: the
experimental equipment used, and the new computer vision
algorithm developed. This section describes both of these
in-depth.

3.1 Experimental set-up

The camera used in this research was an Imaging Develop-
ment Systems (IDS) GmbH UI-3060CP-M-GL Rev.2. This
sensor is capable of capturing 12-bit monochrome images,
left padded in 16-bit containers, at aresolution of 1936 x 1216
at up to 166 frames per second. All camera interfacing was
achieved using the IDS C++ SDK. Coupled to this camera
was a Palnon PAL-25G3817-27C omnidirectional annular
lens, providing a full 360° FOV around the azimuth, with
an altitude FOV ranging from —15° to +-38° relative to the
horizon. This lens has a fixed focal length and a fixed iris.
For the purposes of this research, time to impact is defined
as if the observer (e.g. insect, camera, etc.) was capable of
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Fig.1 Diagrammatic representation of experimental set-up: a Top ele-
vation. The camera rail was situated parallel to the wall, with the camera
translating from left to right. The distance between the optical centre of
the camera and the target was given as L. Exact target location along
the x-axis of the rail was not critical as the scene was over-sampled, and
was approximately 800 mm from the left extent in practice. The field
of view (FOV) of each pixel is given (not to scale), with the resultant
spatial sampling width given by S. b A characteristic velocity profile
and algorithm response profile, with indications of where background,
peak target, and baseline (no motion) responses were sampled. Full
recordings occurred between times #y and f5, where the end point 5
was variable based on the velocity (spatial distance along the rail was
equal for all recordings). The periods #( to f; and #4 to t5 were equal
to 1 second of no motion. Recordings were clipped in post-processing
to between f, and 3, where 1, was variable to provide equal adaptation
time for the algorithm(s) before the target entered the receptive field. No
motion and background responses were taken from the full recordings,
with peak response taken from clipped recordings to reduce parameter
tuning times. ¢ Side elevation. The height of the optical centre of the
camera relative to the floor was denoted by H. The positive and nega-
tive FOV’s of the lens used were unequal with +38° and -15° of FOV,
respectively
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instantaneous omnidirectional motion. While this is not bio-
logically plausible, it simplifies the degrees of freedom of
the problem and allows the focus to be on understanding
how the motion energy is dependent upon the contrast, with-
out the need to consider the angular content of the optic flow
vector.

The experimental set-up can be seen in Fig. 1. Two factors
were critical: The distance of the optical centre of the camera
from the optical centre of the target, L; and the height of the
optical horizon of the camera from the floor, H. To ensure
that the target was always within the vertical FOV, the height
of the optical centre of the camera needed to be greater than or
equal to the spatial distance resolved by the negative vertical
FOV at a given distance to target L (Fig. 1c).

Solving the system requirements parametrically, the max-
imum distance that the camera could be from the target, Ly,
is:

H;

- 1
tan @, + tan 6" )

Liax =

where H, is the height of the target, and 6, and 6, are
the positive and negative vertical fields FOV’s of the lens,
respectively. Calculating the spatial distance resolved by the
vertical FOV is given by:

H = Ltano) )
Hg, = Ltan6, 3)

where Hgv and H, are the spatial distances resolved by the
positive and negative FOV’s, respectively. The minimum and
maximum heights of the optical centre of the camera, Hpin
and Hpayx, respectively, are then:

Hmin = Hf;\, 4
Hmax = Hy — Hfﬁv (%)

The results of these equations can be seen in Table 1,
where ideal and actual/practical values are shown. To account
for any angular misalignments that were inadvertently intro-
duced during the experimental set-up, and to provide equi-
spaced data points, the maximum distance of the camera to
the target, Lmyax, was 1000 mm, compared to the 1144 mm
ideal value. While this provided a range of camera heights
that would satisfy the requirement for the target to remain
within the FOV of the camera, H € N [ Hyin, Hmax ], a value
of H = 350 mm was used as this resulted in increased sta-
bility and repeatability on the supporting tripods of the rail.
The minimum camera distance, Ly, was set to 200 mm
due to the physical limitations of camera target geometry
and experimental platform design.

To fulfil these requirements, a custom 2 degree-of-
freedom linear platform was constructed for this research,
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Table 1 Resultant methodological parameters

Parameter Unit Ideal Practical Equation
0 ° - +38

0, ° - —15

Lmin mm - 200

Lmax mm ~1144 1000 (€8}
H;{w mm ~894 ~782 )

Hg,, mm ~306 ~268 3)

Hmin mm ~306 ~268 4

H mm - ~350

Hmax mm ~306 ~418 )

The ideal values are the mathematical boundaries for the given param-
eter, whereas the practical values are those that could be, or were, used
in real-world implementations while still satisfying the requirements of
the system

® STATIONARY
INTERCHANGEABLE
BACKGROUND

STATIONARY

Fig. 2 Experimental set-up constructed for this research with inter-
changeable backgrounds. The primary longitudinal axis, x, had
2600 mm of encoded linear travel (not all shown). The shorter per-
pendicular axis, y, had 300 mm of encoded linear travel, although this
was not utilised in the research reported here. Camera height in the z
axis was measured from the floor to the sensor plane of the camera.
Reflective markers were for a VICON motion capture system used to
calibrate the equipment. The target ‘tree’ projected a shadow on both
sides as it was central to overhead environmental lighting, the effect of
which is later illustrated in the responses shown in Fig. 11. The back-
ground and target remained stationary for all testing, with the camera
being attached to the y-axis platform which itself traversed the x-axis

shown in Fig. 2. The longitudinal x-axis provided 2600 mm
of encoded linear travel at velocities from ~20 mm/s through
to ~130 mm/s. The perpendicular y-axis was capable of pro-
viding 300 mm of encoded linear travel at the same velocities
as the x-axis. However, this functionality was not utilised for
these experiments. This equipment is similar in concept to
that used by Schwegmann et al. (2014). However, it is capa-
ble of recording in real-time at 100 frames per second and

undertaking complex planar motion in 2 dimensions (x and
¥), noting the latter was not utilised in this specific research.
While the camera can achieve higher frame rates, the frame
rate was kept at 100 frames per second as: 1) It is a multiple
of the local AC power frequency; and 2) the velocity profile
of the experimental equipment was matched with the biolog-
ical limitations of the algorithm assuming a 100 Hz sampling
rate. The background and target remained stationary through-
out all testing, with the camera being attached to the y-axis
platform and this platform traversed the x-axis. This config-
uration produces a maximal motion energy magnitude when
the object of interest is perpendicular with the observer. By
disregarding the angular content of the optic flow vector, the
magnitude can be considered to be the time to impact the
object, regardless of whether the object is within the path of
the observer or not, i.e. the time to impact if the direction
of motion was directly towards the camera. This value alone
(without the angular component) is potentially very useful as
it serves as a relative estimation of distance to the object. Fur-
thermore, in a situation where the observed object is assumed
to be stationary, it can be converted to an absolute distance
estimation with the fusion of kinematic information about
the camera platform itself.

Computational power was provided by an NVIDIA Jetson
TK1 and all processing was performed using only the CPU
cores. Recordings were saved uncompressed in a custom
binary file format, ensuring complete and faithful reproduc-
tion of the raw camera data without the added computational
overhead of, or possible loss of data from, data compression
algorithms.

Environmental lighting was controlled (e.g. no natural
lighting) and featured overhead cool white (=4000 K) LED
light fixtures. The stationary target was positioned directly
under a light fixture, with equal spacing to the next fixtures
on either side. This produced a relatively uniform shadow
pattern behind the target.

The video sequences were captured in Polar format (due to
the omnidirectional lens used). These were unwrapped at the
maximum resolution possible without oversampling a pixel.
An optical blur was then applied to mimic the acceptance
angles of biology, and finally, the image was downscaled to
the final working resolution of 180 horizontal pixels by 36
vertical pixels. This process followed that used for rotational
motion and is detailed in-depth in (Skelton et al. 2019).

3.2 Time to impact algorithm

Building on an existing rotational optic flow velocity esti-
mation algorithm (Skelton et al. 2019), a novel algorithm
was developed for estimating the time to impact during trans-
lational motion in a challenging contrast environment. The
complete algorithm can be seen in Fig. 3. It is comprised of

@ Springer
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Fig.3 Diagrammatic representation of: a Our proposed algorithm, con-
sisting of models of the photoreceptor (PR), lamina monopolar cells
(LMC), elementary motion detector (EMD) modelled as a Hassenstein—
Reichardt detector, what we call the medulla-lobula interneurons (MLI),
and the lobula plate tangential cells (LPTC); and b the legend associ-

distinct and separable models of various stages of the visual
pathways of insects.

3.2.1 Photoreceptor (PR) model

The photoreceptors (PR) are part of the retina region and
are responsible for phototransduction (conversion of pho-
tons into electrical signals), dynamic range compression, and
dynamic gamma correction, all to normalise the input lumi-
nance (Drews et al. 2020).
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ated with this representation. On the PR, LMC, and EMD stages, there
are 4 possible points where intensity can be fed forward into the MLI
model for dynamic energy normalisation by contrast. See main text for
justifications for these 4 options, and how the final option was selected.
For best viewing, please see the online version of this article

3.2.2 Lamina monopolar cells (LMC) model

The lamina monopolar cells (LMC), which reside in the
lamina region of the brain, are responsible for signal condi-
tioning. Their primary purposes are the removal of redundant
information, in a spatio-temporally optimal way, and edge
enhancement (van Hateren 1992).

3.2.3 Elementary motion detector (EMD) model

The elementary motion detectors (EMD), which are mod-
elled as Hassenstein—Reichardt detectors (Hassenstein and
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Reichardt 1956) and shown in Fig. 3a, are responsible for
estimating the motion energy. Since the model was applied
to rectangular representations of the images, optic flow
was calculated against both the nearest neighbours (cardinal
directions), and the next-nearest neighbours (ordinal direc-
tions).

Our model of the EMD includes additional spatial high-
pass filtering prior to the temporal low-pass filter on the
delay arm of the HR-EMD. While the output of the preceding
stage (LMC) ends with a linear transform following the spa-
tial high-pass filter there, separable spatial high-pass filters
have been used to represent different biological processes.
These include small target detection, which requires a dif-
ferent signal characteristic out of the LMC when compared
to the egomotion estimation processes (Melville-Smith et al.
2019). As such, to make this model for translational optic
flow estimation compatible with related models for target
detection, separable high-pass filters are retained.

Furthermore, some models of the LMC contain a com-
pressive nonlinearity following the spatio-temporal filter-
ing (Brinkworth and O’Carroll 2009). To remain compatible
with such models, separate filtering at the start of the EMD
stage is required, since it cannot be amalgamated with the
LMC filtering.

3.2.4 Medulla-lobula interneuron (MLI) model

The medulla-lobula interneuron (MLI) is a generic term for
processing thought to occur between the EMD stage, which
has strong neurophysiological support (Hassenstein 1951;
Hassenstein and Reichardt 1956; Reichardt 1962; Haag et al.
2004), and the lobula plate tangential cells (LPTC’s) that have
strong and growing neurophysiological support (Borst et al.
2010; Hardcastle and Krapp 2016; Longden et al. 2017).

In this research, the MLI serves 4 distinct functions.
First, the Cartesian energy estimates produced by the EMD
model—which are estimates of the horizontal and verti-
cal motion present within the scene—require scaling to
account for the distortion to the optic flow introduced
by the panoramic lens. Next, dynamic nonlinear contrast
adaptation occurs where areas of low contrast are gained
and areas of high contrast attenuated. Dynamic nonlinear
motion adaptation then follows, where areas of low motion
are gained and areas of high motion attenuated. Finally,
a Naka-Rushton nonlinearity adjustment is performed to
redistribute the motion energy estimates around a desired
operating point. For example, a skewed distribution of motion
energy—something that is entirely possible with the preced-
ing nonlinear adaptations—can be transformed to a more
normal distribution (Severns and Johnson 1993). This is a
critical transformation that is required by follow-on mathe-
matical functions that have specific ranges in which they are

expecting the signal to be, and mimics biological neurons
that have defined operational bandwidths.

Optical Scaling: To determine the correct scaling and
directionality of the optic flow estimations, the de facto
method comes from Koenderink and van Doorn (1987) which
aims to accurately estimate the per-pixel optic flow vector,
especially when using fish-eye, wide-angle, or omnidirec-
tional lenses (Schwegmann et al. 2014). However, the small
optical resolution of our imagery, intentionally set to the
ommatidial resolution of 180 pixels to represent 360° hor-
izontal field of view (FOV) and 36 pixels to represent
53¢ vertical FOV—a resolution shown to be optimal for optic
flow under rotational motion (Brinkworth and O’Carroll
2009)—causes singularities around the point of expansion
and point of contraction. Additionally, assuming perfect
methodological set-up, the cardinal directions fall between 2
columns of pixels. To overcome this, we implemented cus-
tom scaling functions on the horizontal and vertical optic flow
fields, with an arbitrary offset away from 0. First, the hori-
zontal scaling factor, «, is only dependent upon the current
column:

a(ic) = Sp(ic) (C+(1 —CO)x*

. . (6)
— COoS (271 e © Llc * Nq/NCJ) )

(Ne = Ng)

Where S, (i.) is a horizontal signum scalar used to produce
the correct directionality around the discontinuities, C is a
flat offset to deal with point of expansion and point of con-
traction, i. is the current column index, N, is the number of
sections across the horizontal FOV (4 for front, right, back,
and left), and N, is the number of columns in the image. The
value of C = 0.15 was chosen empirically as it provided no
perceptible motion artefacts around the point of expansion or
point of contraction. Using (6), « exists within a discontinu-
ousrange of [—1.0, —CJand [C, 1.0]. The resulting gradient
can be seen in Fig. 4a, where the discontinuities caused by the
arbitrary offset can be seen at 1/4 (REAR) and 3/4 (FRONT)
of image width.

The vertical scaling factor has both a column dependence
and a row dependence. The vertical column component, .,
is similar to the horizontal scaling factor:

ic — |ic* Ny/N,
Be (ic) = —sin | 2m = Licx No/ e @)
(Ne = Ng)
Where as the vertical row component, j;, is:
Oy — 6O
B, (ir) = sin (eyv,,, —i Oup = bun) 15 — 1)> (8)
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(a) which causes instability in the direction output #, although
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A A

Fig.4 Scaling gradients applied to the output of the elementary motion
detector (EMD) model at the start of the medulla-lobular interneuron
(MLI) model. Gradients exist in [—1.0, 1.0] in application, denoting
negative and positive optic flow energies, respectively. However, these
have been rescaled to [0.0/black, 1.0/white] for display purposes. a The
horizontal scaling component, where black denotes perpendicular right,
white denotes perpendicular left, and the discontinuities at front and rear
of image represent a flat offset to deal with the point of expansion and
point of contraction singularities. b The vertical scaling component,
where tending towards black denotes maximal optic flow away from
camera and tending towards white denotes maximal optic flow towards
camera. The horizontal discontinuity (row 25) represents the horizon of
the camera field of view (FOV), and the vertical discontinuities at left
and right indicate the perpendiculars where no vertical optic flow occurs.
These compensate for the point of expansion and point of contraction
singularities. Unlike the horizontal scaling (FOV = 360°), the vertical
scaling (FOV = 53°) does not reach the extremes of the [—1.0, 1.0]
range

where 6, , is the vertical positive FOV, i, is the index of the
current row, 6, , is the vertical negative FOV, and N, is the
number of rows in the image.

The final vertical scaling factor, 8, is:
B=3S8p*S8*(C+(1—C)*prxpBc) )

where S, is a vertical signum scalar used to produce the cor-
rect directionality around the discontinuities. These values
are entirely dependent upon the exact methodological set-up
used in this research, such as the orientation of the camera
and the preferred directionality, and are trivially derivable
based on the 4 quadrants of the vertical scaling gradient.
The vertical scaling factor also exists within a discontinuous
range of [—1.0, —C] and [C, 1.0]. However, as the vertical
FOV does not span the full 360°, the absolute upper limits of
these ranges are not reached. Figure 4b shows the horizon-
tal discontinuity around the horizon (approximately row 25)
and the vertical discontinuities around the RIGHT and LEFT
perpendiculars.

After this point, we change to dealing with the energy in
Polar coordinates with magnitude R and direction 6. One
major benefit of working in Polar coordinates is that the
EMD suffers from the aperture problem (Reichardt et al.
1988). This presents as the inability to accurately estimate
the true direction of optic flow in a local neighbourhood,
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the magnitude R would be unperturbed. This presents as the
inability to accurately estimate the true direction of optic flow
in a local neighbourhood. This presents as an instability in
the direction output 8, although the magnitude R would be
unperturbed.

Contrast Adaptation: Contrast adaptation in biology has
been shown to be a temporal process (Matulis et al. 2020).
It is also thought to be driven by separable ON-OFF neu-
ral pathways (Drews et al. 2020), where different neuronal
processing occurs based on the contrast transition from dark-
to-light (ON) and light-to-dark (OFF). As the algorithm
proposed in this research does not extend its already exten-
sive elaborations of the complete neural pathway to include
separate ON-OFF pathways, the integration of that theory
into practice is somewhat limited. The fundamental princi-
ple behind how we approach contrast adaptation is based on
spatio-temporal processes used previously for motion adap-
tation (Brinkworth and O’Carroll 2009; Skelton et al. 2019).

First, the contrast of the image is calculated to generate
a contrast map. However, the exact input image used, or the
intensity source, for generating this contrast map is unknown.
While itis unclear from literature whether contrast adaptation
is a feedback or feedforward process (Drews et al. 2020), the
contrast information is largely lost once the optic flow estima-
tion occurs. Therefore, four possible locations were identified
for feedforward contrast adaptation within this specific algo-
rithm, as shown in Fig. 3: (1) the temporal adaptation level
of the PR (essentially a history of the luminance input); (2)
the output of the PR prior to entry into the LMC; (3) the
output of the LMC before entry into the EMD; and (4) the
delay arm of the Hassenstein—Reichardt detector within the
EMD’s. Option 4 was chosen based on results presented later
in Sect. 4.1.

The elaborated Hassenstein—Reichardt detector weights
the optic flow in the cardinal and ordinal directions base on
the geometric distances (1 and 1/+/2, respectively) (Has-
senstein 1951; Hassenstein and Reichardt 1956). Therefore,
a typical measure of local contrast, such as the root mean
square (RMS) contrast, is not suitable (Peli 1990). To
account for scenes with differing luminance ranges, the con-
trast should also be weighted by some factor of the global
luminance. In this work, a previously published metric of
local contrast, known as a local contrast factor (LCF), was
used (Skelton et al. 2019). This metric was built upon the
work of Matkovic et al. (2005) by incorporating weighting
for cardinal and ordinal directions. It begins by calculating
the absolute pixel difference in the local neighbourhood:

Cnn = |Ix,y - Ix,y—1| + |Ix,y - Ix—l,y| (10)
+ |Ix,y - Ix+l,y| + |Ix,y - Ix,y—i—l|
Chnn = |Ix,y - Ixfl‘y7]| + |Ix,y - Ix+1,y71| (11)

+ |Ix,y - x—l,y+1| + |Ix,y - x+l,y+l|
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where cnn is the contrast of pixel at x, y relative to the
nearest neighbours (cardinal directions), C,,;, is the contrast
of pixel at x, y relative to the next nearest neighbours (ordinal
directions), and [ is the pixel intensity for a pixel at coordi-
nate locations x, y. These specific equations relate to interior
“fill” pixels. The ‘edge’ and ‘corner’ pixels are processed in
the same manner with the relevant terms for pixels that do
not exist dropped, such as x-1 pixels for an x=0 pixel, or y-1
pixels for a y=0 pixel. The local contrast for a pixel at x, y
is then calculated as:

a* Cyp + B % Chun *l/m

C ) —
o a* Npy + B * Nypy

12)

where o = 1 is the weighting factor for the nearest neigh-
bours, B = 1/+/2 is the weighting factor for the next nearest
neighbours, Ny, is the number of nearest neighbours (4 for
“fill’, 3 for ‘edge’, and 2 for ‘corner’), Ny, is the number of
next nearest neighbours (4 for ‘fill’, 2 for ‘edge’, and 1 for
‘corner’), and |I] is the mean of the absolute intensity.

Having calculated the per-pixel contrast (contrast map), a
spatio-temporal blur is applied. The spatial filter is realised
as a Gaussian low-pass filter, where the kernel size is derived
from a specified full-width at half maximum (FWHM) of
the Gaussian distribution of the filter, 0. The temporal filter
is realised as a temporal low-pass filter, where the cut-off
frequency, f, is fixed across the entire image. Next, a Naka-
Rushton transform is used to provide nonlinear weighting to
different segments of the contrast map. This nonlinear gain
map is then applied to the magnitude of the optic flow after
optical corrections have been applied.

Motion Adaptation: The motion adaptation used in this
work is the same fundamental procedure as used in
(Brinkworth and O’ Carroll 2009; Skelton et al. 2019). Much
like the generation of the contrast map used previously, the
absolute magnitude of the motion energy estimate is spatio-
temporally blurred to generate a motion adaptation map. This
is then transformed using a Naka-Rushton transform to con-
struct a nonlinear gain that is applied to the input motion
energy.

Nonlinearity Adjustment: The final function of the MLI
is to perform a nonlinearity adjustment to the contrast and
motion adapted signals. Historically, this was implemented
as a square-root operation to correct the squaring that occurs
within the EMD’s (Brinkworth and O’Carroll 2009). How-
ever, it was found in later work (Skelton et al. 2019) that the
algorithm exhibits stronger performance when this nonlin-
earity adjustment uses a gain factor k > 1, making the signal
more nonlinear.

3.2.5 Lobula plate tangential cells (LPTC) model

Part of the lobula plate tangential cells (LPTC) are responsi-
ble for encoding the motion energy estimates into signals, be

that graded (HS) or spiking (H1), for the motor neuron control
centres to influence the flight behaviour of the insect (Haag
and Borst 1997; Longden et al. 2017). In this research, the
HS cells were realised as a spatio-temporal pooling function,
encoded as a spatial low-pass filter followed by a temporal
low-pass filter. From this spatially pooled representation of
the adapted optic flow estimates, a region of interest—known
as areceptive field in biology—was taken from the left quad-
rant of the image. Specifically, the mean of a window 2 pixels
wide and 8 pixels high centred around the horizon and the
left extreme was used. This window was perpendicular to the
direction of motion of the camera, and this experienced the
maximum optic flow as the camera translated past a target.

3.3 Comparative models

To show the improvements of the algorithm proposed in
this research, it was statistically compared to biologically
inspired algorithms featuring lower levels of elaboration, thus
allowing for quantification of the improvement of each elab-
oration.

The most basic algorithm was formed using a non-
elaborated (no additional spatial high-pass filtering)
Hassenstein—Reichardt elementary motion detector (HR-
EMD). This estimates motion energy across cardinal and
ordinal neighbours within a local 3x3 pixel neighbourhood.
To emulate a receptive field, the LPTC-translation model pro-
posed in this research, which is a spatio-temporal filter and
spatial pooling function, is also used. This was used as the
baseline for comparative purposes.

Secondly, the elaborated pre-processing stages, namely
the photoreceptor (PR) and lamina monopolar cells (LMC),
as well as the additional pre-HR-EMD spatial high-pass fil-
tering, was used with the LPTC-translation model. This is
functionally the fully elaborated algorithm proposed with the
novel contrast adaptation and motion adaptation processes
that are present in the medulla-lobula interneurons (MLI) dis-
abled. This version represented a translational equivalent to
previously published work (Brinkworth and O’ Carroll 2007).

Thirdly, the algorithm proposed in this research is used
with the novel approach to contrast adaptation within the
MLI model disabled. This configuration is strikingly simi-
lar to a previously published rotational velocity estimation
model (Skelton et al. 2019), where the major difference is
the lack of an adaptive noise suppression process that was
present within the LPTC model that was instrumental in
facilitating environment invariance for that application. The
spatio-temporal filtering that occurs within the receptive field
LPTC model of the proposed algorithm acts like a noise sup-
pression filter.

Finally, the fully elaborated algorithm proposed in this
research, including the nonlinear spatio-temporal feedfor-
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Table 2 Different colours of backgrounds used in this research with
a qualitative description (the visual colour referred to for simplicity),
the nominal colour in RGB (captured using a Samsung Galaxy S7 with
all colours in frame under identical lighting conditions), the nominal
RGB colour converted to greyscale using (13), and the relative intensity
measured by the monochromatic system used in this research.

Qualitative Measured Nominal Relative
Description Colour Greyscale  Intensity
Black _ 0.000
Dark Green _ 0.036
Blue I 005
Dark Grey _ 0.095
Purple I 015
Light Green _ 0.238
Middle Grey 0.262
Orange 0.476
Light Grey 0.560
Pink 0.690
Yellow 0.798
White 1.000

Differences between the perceptual gradient of the nominal greyscale
and the numerical gradient of the relative intensity were likely caused by
different lighting conditions perceived by the 2 distinct camera systems

ward filtering for contrast invariance, rounded out the testing
configurations.

3.4 Dataset

For this research, a comprehensive calibration dataset was
captured. Common fabric was used as a means to obtain dif-
ferent colours of background that presented to our monochro-
matic system as different shades of grey. These different
backgrounds were utilised as a controlled method of test-
ing the contrast dependence of the estimation of the time
to impact. Using the recommendations widely used from
Rec. ITU-R BT.601-7, a representative greyscale value can
be obtained from a nominal RGB values using:

Y., = 0.2989R, , 4 0.5870G, , + 0.1140B, , (13)

where subscript x, y denotes a pixel coordinate, Y is the
calculated greyscale, or luminance, value for the output pixel,
R is the red component of the input pixel, G is the green
component of the input pixel, and B is the blue component of
the input pixel. The descriptive colour of the different fabrics,
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Fig. 5 Flat ‘skin’ of a tree used to wrap a 90 mm PVC pipe to create
a tree analogue with uniform diameter. Image was printed at 287 mm
wide and 400 mm high (A3 paper with printer borders). This tree texture
closely resembles that of native trees in the vicinity of the laboratory.
a Original colour skin. b Converted to greyscale as both our camera
system and our computer vision algorithm are monochromatic. Image
(a) from www.freeimages.co.uk with (b) derived from (a)

the nominal RGB colour, the nominal greyscale value, and
the relative intensity of each colour with respect to the dataset
can be seen in Table 2, where black has been normalised to
0.0 and white normalised to 1.0.

To construct the targets, 90 mm PVC pipe was used as it
is readily available, inexpensive, and dimensionally accurate
between batches. Sections of 1200 mm length were used. A
tree skin (Fig. 5a) was converted to monochrome (Fig. 5b)
and printed at a physical size of 287 mm x 400 mm (A3 paper
with printer borders) and glued to the PVC pipe to form a tree
analogue. Although 3 individual skins were required to cover
the entire 1200 mm length of the target, simple mirroring of
the texture allowed for alignment between edges. Due to the
fractal nature of a pattern such as a tree, the seams and the
resulting repeating pattern were barely distinguishable to a
human observer.

The camera rail was positioned at different distances from
the target. From Sect. 3.1, the minimum distance, Ly;n, was
200 mm, while maximum distance, Ly, was 1000 mm. The
Hassenstein—Reichardt elementary motion detector (EMD)
model requires the motion per frame to be less than 0.5 pix-
els, or aliasing will occur. This is a side effect of the digital
model of the analogue biological system combined with the
frame rate that a technological implementation operates at
compared to the analogue processing that occurs in nature.
Based on the requirement of 0.5 pixels of motion per frame,
the maximum achievable velocity at a given distance to tar-
get, vmax can be approximated using:

v = oL tan (%P) (14)
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where f; is the sampling frequency (frame rate), L is the
actual distance to target, and ¢, is the angular resolution per
pixel which was 2° for the ommatidial resolution of 180 pix-
els wide that our algorithm is designed to work with. For
the experimental set-up of this research, at a distance of
Linin =200 mm, v2% =349.101 mm/s, and this increases as
the distance to target increases. This style of algorithm can
be tuned to have a soft limit or maximum response below this
Umax value, such as has been shown previously in (Brinkworth
and O’Carroll 2009; Skelton et al. 2017, 2019).

The resulting combinations of distances and velocities,
and the corresponding time to impact recorded for each dis-
tance, can be seen in Table 3. A tick mark (v") indicates that
every frame of the recording was used. A cross mark (x)
indicates that every other frame was used to increase the per-
ceived velocity of the system. Where both a tick mark and
a cross mark (v° x) are present, this indicates the recording
was used both with and without decimation. For example, a
distance of 400 mm at 85.32 mm/s would also be decimated
to a velocity of 170.64 mm/s. This decimation allowed for
processing of velocities that exceeded the capabilities of the
experimental platform, while still respecting the limitations
of the algorithm. Finally, a dash (-) indicates that no record-
ing or decimations occurred at this combination.

Several factors were important when determining these
combinations. Firstly, due to the increased texture present in
the target at 200 mm distance, this distance was required at
all times to impact. Secondly, at least 2 different distances
are required at each time to impact. Thirdly, due to concerns
about introducing flickering from the artificial lighting in
the environment, no more than every other frame could be
skipped, effectively doubling the achievable recording veloc-
ity.

For the 360 different combinations of background colours,
distances to target, and camera velocities, the dataset contains
779,267 frames. However, due to the same spatial sample
being recorded for different velocities—that is, the camera
commenced and terminated recording at the same position
on the rail for each recording, irrespective of velocity—only
321,565 frames were used for analyses after the recordings
at the slower velocities were clipped.

3.5 Time to impact calculation

Using the ground-truth distance to target from the experi-
ment, combined with the known velocity of the experimental
platform (encoded drive motor), the ground-truth time to
impact was calculated as:

b Is] = %[ mm } (15)

mm/s
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Table 3 Velocity and distance pairs that make up the recordings

Distance to Target (mm)

200 300 400 600 800 1000
Velocity (mm/ s)
21.33 v - - - - -
32.00 v v - - - -
42.66 v - v - - -
63.99 v v v v - -
85.32 v - v x - Vb -
95.99 - VX - v x - -
106.65 v - X - - v x
127.98 v v v x V' x v x -
Time to Impact (s)
1.563 v X X - - -
1.875 v - X - - -
2.344 v v X X - -
3.125 v v v X X -
4.688 v v v v X X
6.251 v - v v v -
9.376 v v v v v v

Pairs were selected to ensure multiple distances were present at each
resulting time to impact. A tick mark (v') indicates that the velocity—
distance pair was used as is. A cross mark (x) indicates that every other
frame was decimated during playback to increase the velocity of the
recording. Where both marks (v~ x) are present, the recording was used
both with and without decimation. For example, a distance of 400 mm
at 85.32 mm/s (7 = 4.688 s) would also be decimated to a velocity of
170.64 mm/s (t; = 2.344 s). This decimation allowed for processing of
velocities that exceeded the capabilities of the experimental platform,
while still respecting the limitations of the algorithm

where #; represents the time to impact the targetin seconds, L
denotes the linear distance to the target in millimetres, and v is
the linear velocity of the experimental platform in millimetres
per second. The linear distance to target, L, was taken as
the distance between the optical centre of the camera lens
and the physical centroid of the target. This was done as the
ommatidial resolution of our system (180 x 36) renders the
naturalistic texture within the target undetectable at higher
distances. At the lower values of L, such as 200 mm, the
texture within the object that is the most prevalent source of
optical energy is at 155 mm, not 200 mm. However, at the
larger values of L, such as 1000 mm, the resultant distance
between face and optical centre is now 945 mm; a much lower
difference. This error was deemed to be acceptable as, in a
real-world situation, it is most likely that an arbitrarily large
time to impact would be used as a ’buffer’ around targets.
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3.6 Estimation of time to impact

The algorithm proposed in this work does not directly mea-
sure the time to impact. This is because the available degrees
of sensing are less than the number degrees of freedom for the
system. Unlike rotational motion, where the motion energy
is directly related only to the rotational velocity, translational
motion has two degrees of freedom: (1) the distance between
the observer (e.g. camera) and the object; and (2) the relative
velocity between those two. Without having a priori knowl-
edge of one of these pieces of information (e.g. an accurate
map of the environment), it is not possible to directly com-
pute the time to impact from the motion energy. While the
platform odometry could certainly be used to remove one
of these degrees of freedom and compute a time to impact
directly, this work focussed on the more general case where
this information may not be available and, hence, must esti-
mate the time to impact based on algorithm calibration.
Instead, it estimates the motion energy in a given direction.
To convert this motion energy into a usable time to impact
estimate, previous rotational velocity work (Skelton et al.
2017) has used a logistic curve as it is known that this style of
highly elaborated, biologically inspired optic flow algorithm
produces a sigmoidal response curve on a log-lin graph:

L
E, =

= (16)
1 4+ exp ( - k(ln (Vest) — Umid))

where E,, is the motion energy estimate from the model,
L is the maximum expected curve value, k is the steepness
of the curve, veg is the velocity estimate, and vpig is the
midpoint of the sigmoid. To produce a velocity estimate, this
is rearranged:

Vest = EXP ~+ Umid an

However, it was expected that, due to the inverse-square
law, the response of the algorithm presented in this research
would require a more complex transform. Therefore, this
research used the generalised form of the logistic curve:

K—A
En=A+ — (18)

(C+Q>x<exp(—B>x<ln(t))) /

where A is the lower asymptote, K is the carrying capacity, C
relates to the upper asymptote and is typically 1.0, Q relates
to the value of E,, (0), B is the growth rate, and ¢ is the
time to impact. Rearranging this to produce a time to impact
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estimate based on the motion energy output of the algorithm:

({2099

t =exp (19)

This estimate of the time to impact, in seconds, will later
be fit to the experimental data obtained, as shown in Sect. 4.2.

3.7 Quantification of accuracy

To statistically quantify the ability of our algorithm to
discriminate between each time to impact, we adapted a
previously published metric that quantifies the ability of an
algorithm to statistically discriminate between optic flow out-
puts across different scene and velocity pairs, known as an
adjusted geometric score, or G,gj (Skelton et al. 2019). This
metric has historically been used to quantify data where the
algorithm response is increasing as a function of the con-
trol variable, the sensor velocity. This paper deals with a
decreasing response for the algorithm as the time to impact
increases. Consequently, minor rearrangement of the met-
ric was required. First, the distinctiveness of a response is
calculated by:

D; = PPD; *< (P01 = P5G) )

(P50i_1 - PS,'_]) + (P95i - PSOi)
(20)

where i and i — 1 are the indices of the current and previ-
ous rotational velocity, respectively, D is the distinctiveness
score, and P5, P50, and P95 are the 5th, 50th, and 95th
percentiles, respectively. The goal is to maximise D;. The
PPD; term is the number of test points per decade, and was
calculated using:

1

PPD; =
" logyg (t1:) —logyg (t1i-1)

21

where ?;; is the time to impact at index i, and #;7;_; is the
time to impact at index i-1. This correction was required to
account for the logarithmically spaced time to impacts. To
account for any non-Gaussian distribution of the dataset, the
raw geometric mean of D, G raw, Was calculated across the
entire dataset by means of a natural logarithm transform:

N L 1 ) (1n (D,-))) (22)

i=2

G = exp (

where N, is the number of test velocities. Gyay is thus a
measure of how the statistical distribution of motion energy
responses differs between test velocities. The geometric
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confidence intervals were also calculated using a natural
logarithm transform and are used to demonstrate the vari-
ability of Gy throughout the range of tested velocities. The
final form of the metric, the adjusted geometric score Gdj,
accounts for the confidence range:

Gadj = C_;raw - (GU - GL) (23)

where Gy and G are the upper (95%) and lower (5%)
geometric confidence intervals, respectively. The Gq; is a
measure of not only how well an algorithm can discriminate
between test velocities, as calculated by Graw, but also the
consistency of those discriminations across the velocity range
sampled. It is scale and unit invariant and thus requires no
normalisation or standardisation of algorithm outputs. This
allows for direct statistical comparison between numerous
algorithms without the requirement of having ground-truth
optic flow measurements.

3.8 Quantification of intensity rank ordering

It is well known that correlation-based algorithms, such as
the HR-EMD, are inherently contrast-dependent. To quantify
this dependence, the Spearman’s rank correlation coeffi-
cient (Hinkle et al. 2003), p, was used as it is a well-known
statistical measure of the correlation between the rank order-
ing of two variables:

n
6> d?
i=1

a2 —1) @4

ry =

where r; is the sample statistic, d; is the difference in ranks
between sample X and Y, and #n is the number of samples. In
this work, the two samples were: X, the expected rank based
on the ordered intensities as presented in Table 2; and Y, the
ranked LPTC magnitude, e.g. as presented in Fig. 10.

While the rank ordering of a single sample set, such as
a given background, distance to target, and time to impact
combination, could be of some use, this work is more inter-
ested in the generalised performance across a wide range of
experimental configurations. To this end, we will report the
mean £ 95% CI of the Spearman’s correlation coefficient
across all samples, p, as calculated by:

m
Is;
1

i=

5= (25)
m

where i is an experimental configuration (e.g. one of those

shown in Table 3), m is the total number of experimental

configurations, and ry, is the sample statistic for that config-

uration, calculated using Equation (24).

To interpret the meaning of p, the rules of thumb from
literature (Hinkle et al. 2003; Schober et al. 2018) will be
used. Those are, for positive correlations: 0.0 < p < 0.3
= negligible; 0.3 < p < 05 =1low; 0.5 < p < 0.7 =
moderate; 0.7 < p < 0.9 = high; 0.9 < p < 1.0 = very
high. The negative values hold true for negative correlations.
These are, as stated in literature, arbitrary categorisations
used to provide some form of basic guidance only.

The Python SciPy implementation of Spearman’s algo-
rithm was used. The rank ordering, be that ascending or
descending, bares no impact on the result as the correlation
coefficient, p, is defined as p € R [—1.0, 1.0]. However, as
it is expected that a HR-EMD will produce ascending energy
magnitudes as the contrast increases, and we can simplify the
assumption that as background intensity increases, the con-
trast between background and target also increases, this work
will use ascending rank where black = 1, dark green = 2,
..., yellow = 11, and white = 12.

3.9 Algorithm tuning

When dealing with complex computer vision algorithms that
have a growing number of parameters, a problem arises
when optimally setting the parameter set of the algorithm.
In previous work (Skelton et al. 2020), we presented a
novel application of adaptive evolutionary algorithms for the
purposes of assisting in the development of an elaborated
rotational velocity estimation algorithm (Skelton et al. 2019).
The reader is directed to that manuscript for full implemen-
tation details surrounding the adaptive genetic algorithm.
Alternatively, the corresponding author of this manuscript
can be contacted for further details.

For the research presented in this paper, tuning of the
extensive parameter sets was again required. However, the
complexity and extensiveness of this tuning is outside the
scope of this paper, and will be reported in-depth elsewhere.
In summary, an evolutionary algorithm was used to tune the
parameter set of each algorithm outlined in Sect. 3.3 to a point
of Pareto-optimality. Due to the complex nonlinear and sym-
biotic interactions present throughout the constituent models
within the algorithm proposed, removing an individual or
group of mathematical functions—for example the proposed
novel contrast adaptation within the medulla-lobula interneu-
ron (MLI)—may unfairly misrepresent the capabilities of the
adjusted algorithm. Therefore, tuning the parameter set of
each individual algorithm overcomes this bias and provides
a level playing field for all algorithms.

3.10 Software libraries
The C++ API of the OpenCV computer vision library, specif-

ically version 4.1.0, was used for the implementation of the
computer vision algorithms.
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Fig. 6 Tuning results for the intensity source for the novel con-
trast adaptation proposed within the medulla-lobula interneuron (MLI)
model. Fitness refers to the statistical score calculated using (23) for
different executions of the algorithm with different parameter sets.
Option 1 exists for allele values of 0.0 to 0.25; Option 2 from 0.26
to 0.50; Option 3 from 0.51 to 0.75; and Option 4 from 0.76 to 1.0.
Multiple alleles exist per option to aid integration into our existing evo-
lutionary computation framework, and variability demonstrated within
each option is caused by other parameters. All options are diagram-
matically shown in Fig. 3. The stronger fitness values in response to
Option 4 demonstrate the improvements possible by taking the inten-
sity signals from this section of the elementary motion detector model to
feedforward into the MLI model to use for dynamic contrast adaptation

4 Results

In this research, 4 different algorithms of varying progres-
sions of biological elaboration have been used to provide
context (see Sect. 3.3). This section describes the perfor-
mance of each algorithm, and then closely analyses the
characteristic behaviour of the proposed algorithm.

4.1 Intensity source for contrast map

There were 4 possible sources of intensity used to cal-
culate the contrast map that was used for the novel contrast
adaptation in the medulla-lobula interneuron (MLI) model
(see Sect. 3.2.4). As part of the extensive tuning undertaken
to facilitate this work (see Sect. 3.9), the full algorithm (pre-
viously referred to as Algorithm #4) was free to determine
which intensity source resulted in the highest fitness output.
The results of this search are shown in Fig. 6, where a very
clear preference can be seen for Option 4, which was taken
from the delay arm of the EMD model.

4.2 Comparative algorithm statistical performance

The results of the statistical analyses performed using
Eq. (23) can be seen in Fig. 7. As each algorithm features
the same LPTC receptive field model (e.g. the only spatial
pooling function employed by our algorithm), Fig. 7 rep-
resents the comparison between the baseline (#1) algorithm
and further elaborations (#2, #3, and #4). More detailed anal-
yses of pooled outputs are presented later in Sects. 4.6 and
4.7. Boxes represent 75th (upper), 50th (median), and 25th
(lower) percentiles of the data. Whiskers represent the 95th
(upper) and 5th (lower) percentiles of the data. Outliers that
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are above and below these whiskers are also shown. The
number of outliers varies as a function of the time to impact
as there are a different number of samples in each set (see
Sect. 3.4, specifically Table 2, for reasoning). The left box
of each series (orange) represents the algorithm response to
no motion and was taken as the mean of the last 50 frames
of each full recording. The middle box of each series (white)
represents the algorithm response to the background, and was
taken as the mean response to frames 200 to 300. Finally, the
right boxes (purple) represent the peak algorithm response
to the target. Each recording has a full and a clipped ver-
sion. The full recording includes 1 second (100 frames) of
no motion at both the beginning and the end. The responses
to no motion were taken from the end due to the presence of
spurious initialisation outputs by the algorithm for the first N
frames caused by the dynamic components of the algorithm
adapting to the different scenes upon initialisation.

4.2.1 Algorithm #1

The first algorithm was a raw unelaborated EMD that cal-
culated motion in both cardinal and ordinal directions and
combined this with the LPTC receptive field used in this
research. The energy estimate from the LPTC receptive field
can be seen in Fig. 7a. The raw EMD expressed a statistical
fitness of 0.888. As the contrast dependence of this model is
well known, it was expected that a raw EMD would perform
poorly when processing a diverse dataset. Additionally, the
raw EMD is unable to statistically discriminate between the
responses to no motion (left series, orange) and the back-
ground (middle series, white). Some discrimination can be
seen for the peak target response (right series, purple), both
compared to the no motion and background responses, as
well as between times to impact. By inspection of the mean
and median responses, it can be seen that the data is heavily
positively skewed. That is, a higher proportion of the scenes
have a lower-than-mean LPTC response.

4.2.2 Algorithm #2

The second algorithm built upon Algorithm #1 by adding
the PR and LMC pre-processing stages, as well as the addi-
tional high-pass filtering to the EMD stage, while retaining
the LPTC receptive field. The energy estimate from the LPTC
receptive field can be seen in Fig. 7b. Unlike the raw EMD,
the addition of the PR and LMC pre-processing stages has
allowed the algorithm to begin to discriminate between the
responses to no motion, the background, and the target. As
such, the statistical fitness has increased to 1.786, a 201%
increase over Algorithm #1. As the PR acts as a dynamic
range compressor, contrast normaliser, and gamma correc-
tor, the LPTC responses to the varying backgrounds now
exhibit a largely normal distribution, which is consistent with
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Fig.7 Algorithm response
graphs showing energy
estimates for no motion (left
series, orange), the background
(middle series, white), and the
target (right series, purple), for:
a Algorithm #1, the baseline
elementary motion detector
(EMD) algorithm; b Algorithm
#2, a more elaborated EMD
algorithm including
photoreceptor (PR) and lamina
monopolar cells (LMC)
pre-processing models; ¢
Algorithm #3, the algorithm
proposed in this research with
the novel contrast adaptation
disabled; and d Algorithm #4,
the full proposed algorithm.
Each algorithm features the
same lobula plate tangential cell
(LPTC) receptive field model
for output responses. The LPTC
outputs have been locally
normalised for display purposes
as the comparison between
algorithms is based on statistical
distribution of the responses
using (23), not magnitude. The
elaborations within the
algorithm show a sequential
increase in target
discriminability, including the
ability to estimate the time to
impact to a plain-textured
background distinctly
differently to the target. As only
the response vector magnitude
was considered, and hence all
responses will be greater than 0,
the bidirectional noise that is
typically present will produce an
offset above 0, as shown in all
tests
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literature (van Hateren 1997). The observed motion of the
background is now also increased due to the increased local
contrast produced by the PR and LMC stages.

4.2.3 Algorithm #3

The third algorithm built upon Algorithm #2 by including
local motion adaptation and nonlinearity adjustments within
the MLI model, while retaining the LPTC receptive field. The
energy estimate from the LPTC receptive field can be seen
in Fig. 7c. The statistical fitness of this algorithm was 3.427,
a 192% increase over Algorithm #2, and a 386% increase
over Algorithm #1. The addition of the motion adaptation
and nonlinearity adjustments has allowed for greater statisti-
cal separation between the target and background responses.
However, the extent to which the times to impact of the target
are discriminable is still quite low. There was also minimal
ability to distinguish between responses to no motion and the
background.

4.2.4 Algorithm #4

Finally, the full algorithm proposed in this research builds
upon Algorithm #3 by including a novel approach to con-
trast adaptation within the MLI model. The energy estimate
from the LPTC receptive field can be seen in Fig. 7d. Unlike
the previous algorithms, the proposed algorithm has excel-
lent capabilities of discriminating between the target at the
measured times to impact, with an overall statistical fitness
of 14.910; a 435% increase over Algorithm #3, 834% over
Algorithm #2, and 1679% over Algorithm #1. Not only is the
target discriminable, a large response has also been obtained
for the background (middle series, white). This is unexpected
as the backgrounds are practically devoid of structure, apart
from methodological errors such as a ripple in the fabric
or local changes in luminance. The distance to the back-
ground is the distance to target, L, plus half the thickness of
the target, 45 mm (see Sect. 3.1). The reduced relative dis-
tance between the background and target, plus the optical blur
decreasing the perceived structure of the target, explains why
the response to the background becomes less discriminable
from the response to the target as the distance increases.

4.3 Correlation of intensity rank ordering to
algorithm output ordering

The correlation between the ranking of the background
intensity, hence contrast between background and target,
and the ranking of the algorithm outputs is shown in
Fig. 8. Looking at the mean &+ 95% confidence inter-
vals, Algorithm #1 presents a very high positive correlation
of 0.998 + 0.001, Algorithm #2 a very high negative cor-
relation of —0.987 £ 0.006, Algorithm #3 a low negative
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Fig. 8 Spearman’s Correlation coefficient results for each algorithm
comparing the rank order of the motion energy outputs against the rank
order of the background intensities, where plot ticks represent median
and extrema. As Algorithm #1 is a straight HR-EMD model, it exhibits
a perfect correlation between energy output and intensity rank ordering.
With the inclusion of the PR and LMC models prior to the HR-EMD
in Algorithm #2, an inversion of the correlation is seen, where higher
background intensities now produce lower energy outputs. Further elab-
orations to include the MLI and LPTC models to form Algorithm #3
show the beginnings of a generalisation of energy output, regardless
of background intensity. Finally, the novel contrast adaptation used to
form Algorithm #4 shows further reductions in energy output depen-
dency upon background intensity. It is critical to note that this is merely
the correlation between rank order of the algorithm outputs and back-
ground intensity; it lacks the context to infer relative strength of the
dependence. For that, the other results in this paper must be considered

Transform Estimate
1 ! Actual Responses

1 2 3 4 5
Ground Truth Time to Impact (s)

o

Fig. 9 Output of the full algorithm proposed in this work, Algorithm
#4, including the curve fit of the generalised logistic function from (18)
used to transform the LPTC output into a time to impact estimate. The
exact parameter values for the logistic function are less important than
the ability of the logistic function to accurately represent the response
characteristics. Actual responses are the same as Fig. 7. However, they
are now represented on a log-log graph. Error bars are the 5th and 95th
percentiles as used throughout the statistical analyses

correlation of —0.443 + 0.243, and finally Algorithm #4 a
low negative correlation of —0.336 + 0.151 (see Sect. 3.8
for further details).

4.4 Conversion of LPTC output to time to impact

Transforming the outputs of the LPTC (Fig. 7) into a time
to impact estimate is achieved by performing a nonlinear least
squares fit utilising (19). This equation was fit to the mean
responses of each individual algorithm, and also considered
the deviation (sigma) of the data points. The result of this
curve fit against the actual LPTC outputs is shown in Fig. 9,
where the LPTC responses for the full algorithm proposed
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in this work, Algorithm #4, and the curve fit estimates are
shown.

The estimated time to impact results, as well as the ground-
truth time to impact values, are shown in Table 4. As can
be seen, as the equation has been fit to each algorithm, the
mean time to impact estimates are relatively close to the
ground truth. However, the distribution of the responses at
each ground truth time to impact, and the lack of discrim-
inability between disparate ground-truth times to impact, is
reflected by the variance (&) in the time to impact estimate.
This can also be seen in Fig. 7, where clear overlaps or separa-
tions between LPTC outputs are evident for each algorithm.
As each algorithm has been individually tuned — that is,
they have unique parameter sets and their outputs do not in
any way relate to one another—it is not possible to utilise the
transfer function of one algorithm to quantify the response
or accuracy of another.

4.5 Distribution of results by time to impact

Breaking down the results shown in Fig. 7d, the statistical dis-
tribution of the responses based on the time to impact can be
seen in Fig. 10. No overlap was present between the statisti-
cal limits (5th and 95th percentiles) of any two time to impact
groups. Variations between the responses to different speeds
and distances indicate a complex relationship between the
resolvable texture within the target and the system response.
No clear pattern between target-to-background contrast and
system response was observed.

At the shortest time to impact studied in this research,
t7 = 1.563 s, the responses (Fig. 10a) are as expected, where
the closer distance to target has produced a higher LPTC mag-
nitude output. This is likely caused by the increased visual
structure detectable by the ommatidial resolution at the clos-
est distance (L =200 mm).

Looking at the next time to impact, 1; = 1.875 s (Fig. 10b),
a very similar distribution of the responses can be seen when
compared to the previous one.

For the time to impact of #; = 2.344 s (Fig. 10c), the
distribution is again similar, although the distribution of the
responses at 600 mm to target is larger than those at closer dis-
tances. However, the distribution of the 600 mm responses
does not fall outside the distributions of the previous dis-
tances to target.

Atatime toimpact of #; =3.125 s (Fig. 10d), the responses
for 200 mm to 400 mm distances are largely the same as the
previous times to impact. At a distance of 800 mm, there
is a single outlier on the high side of the LPTC responses.
This outlier is likely caused by a change in environmental
conditions, such as luminance or structure. Disregarding the
outlier, the distribution of the 800 mm distance to target can
be seen to exhibit a lower LPTC magnitude than that of the
600 mm distance to target.

Table 4 Comparison between the ground-truth time to impact, as
calculated from methodological set-up, and the time to impact after
conversion of the motion energy output of each algorithm

Time to Algorithm
Impact (s) #1 #2 #3 #4
1.563 +o NaN 0.983 1.159 1.438
X 1.582 1.593 1.555 1.549
—o NaN 3.173 2.877 1.679
1.875 +o NaN 1.158 1.401 1.745
X 1.820 1.786 1.839 1.865
—o NaN 3.852 3.273 2.019
2.344 +o NaN 1.522 1.769 2212
X 2.425 2.401 2.394 2.371
—o NaN 4.643 3.681 2.546
3.125 +o NaN 2.049 2.392 2913
X 3.131 3.155 3.160 3.138
—o NaN 6.360 4.576 3.363
4.688 +o NaN 3.154 3.680 4.381
X 4.469 4.629 4.701 4.722
—0 NaN 9.877 6.104 5.119
6.251 +o NaN 4.130 4.691 5.854
X 5.903 6.275 6.136 6.177
—0 NaN 14.206 8.172 6.521
9.376 +o NaN 6.208 6.733 8.473
X 12.511 9.382 9.471 9.569
—o NaN 22.528 17.358 11.518

Algorithm #1 is the baseline EMD model. Algorithm #2 improves upon
#1 by inclusion of PR and LMC pre-processing models. Algorithm #3
improves upon #2 by inclusion of MLI and LPTC post-processing mod-
els, with the novel contrast adaptation within the MLI model disabled.
Finally, Algorithm #4 is fundamentally equivalent to #3, with the novel
contrast adaptation within the MLI model enabled. The addition of the
standard deviation of the motion energy, +o, corresponds to a decrease
in the estimated time to impact, and the converse holds true for —o

For the time to impact of #; =4.688 s (Fig. 10e), there are
now samples from all distances to target. The response for
distances from 200 mm to 800 mm is similar to those seen
previously. The distribution of the LPTC magnitudes for a
distance to target of 1000 mm continues to exhibit a lower
magnitude than the previous times to impact.

For the time to impact of #; = 6.251 s (Fig. 10f), the distri-
butions of all samples present are largely the same, apart from
an outlier on the lower magnitude of the 800 mm sample. This
distribution is different to the previous times to impact, where
aclear decline in LPTC magnitude can be seen when moving
from 200 mm to 300 mm. This is followed by an increase
in LPTC magnitude through 400 mm, peaking at 600 mm.
While this behaviour can be seen in the responses at this time
to impact, the peak magnitudes are greatly reduced.

@ Springer



Biological Cybernetics (2022) 116:635-660

652
(a)
o 0950 a ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L pos
E —~
o 20856 E fffffff 8 ———————————————————————————————— - P50
2 -
= 0.762 P5
T T T T T T
(b)
%21 0.763 4 Hfa 77777777777777777777777777777777777777777777777777 - P95
= B R CREnECEE R CRGEEEECETRERPERPRPER - P50
0.700
22 g
e I A " Ps
T T T T T T
(©
& 0.597 8 —————————————————————————— 8- P95
5 o
3 20554 8 ———————————————— E —————————————————————— - P50
e~ L. e e A ] L
= 0512 o) Ps
T T T T T T
(d)
o 0485 e
<
s SR T B - P95
0.45
E S a ———————— B ———————————————————————————— - P50
P R < B A S " PS

~
(¢
~

0.358 1 o

S o e

e —

0.281 "

LPTC Mag.
(AU)

C

LPTC Mag.
(AU)

0.270 ]

(®

02534 E 77777777 a 7777777777777777777777 | pos
0.239 - B ”””” 5 ”””””””””””” é ”””” 8 Lrso
0254 T O 5””'1’5

T T T T T
200 300 400 600 800 1000

LPTC Mag.
(AU)

(h) Distance to Target (mm)

Relative Background Greyscale Value (AU)
I 0.000 I 0.036 Il 0.083 I 0.095 I 0.143 I 0.238
Il 0262 H 0476 E 0.560 = 0.690 J 0.798 J 1.000

Fig. 10 Algorithm response graphs separated by time to impact show-
ing energy estimate variation based on distance to target for times to
impact, f7,0f:a 1.563s;b 1.8755s;¢2.3445;d 3.125s; € 4.688 5; £ 6.251
s; 8 9.376 s. h shows the distribution of relative background intensities.
The different number of samples per time to impact is caused by not
all distance and velocity pairs being present at all times to impact (refer
to Sect. 3.4 for details). The lobula plate tangential cell (LPTC) model
receptive field outputs have been normalised for display. Despite the
varying distances to target, the distributions of the times to impact are
statistically different. The statistical measure used (23) calculates based
on the P5 (5th), P50 (50th, median), and P95 (95th) percentiles, which
are indicated on the secondary y-axis and represented by horizontal
dashed lines
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Lastly, the time to impact of #; = 9.376 s (Fig. 10g) again
exhibits a different characteristic distribution of responses
at the different times to impact. There is now a single clear
peak around the 400 mm and 600 mm samples, with a single
outlier on the 300 mm sample set. After the peak, the response
exhibits lower LPTC magnitudes, which is to be expected.

These results show that there is a higher response at the
closest range, likely caused by the increase in visual structure
thatis present at that distance and/or by the relative difference
between the centre and outer edges of the object being larger.
There is another peak in LPTC magnitude at 600 mm from
target. The cause of this peak is unknown, and will be the
subject of further research.

4.6 Response to changing backgrounds

The individual model responses for a target range of 200 mm,
a velocity of 127.98 mm/s, and three different backgrounds,
namely black (relative intensity 0.000), orange (relative
intensity 0.476), and white (relative intensity 1.000), can be
seen in Fig. 11. It shows the algorithm response after each
separable model element, as depicted in Fig. 3. The final
output of the model (Fig. 11g) is shown to be contrast inde-
pendent; that is, the same response is observed regardless of
the background colour.

Looking at the optical input responses (Fig. 11a), it can be
seen that the structure of the target is relatively independent
of the background colour, which is to be expected. The white
background presents a slightly higher optical intensity for the
target than the black and orange. However, this is expected
as a white background is more reflective of environmental
lighting than a darker background. This also explains the
steeper slope of the intensity drop as the target comes into
view, i550 to igoo: the shadow caused by the target will be
more pronounced on a brighter background. Similarly, when
the target is exiting the FOV (ig50 to i700), it can be seen that
the white background is again at a higher intensity level than
the target.

Next, the responses of the photoreceptors (PR’s) are
shown in Fig. 11b. As the PR’s were adapted to the back-
ground for ~6 seconds prior to the target entering the FOV,
the PR’s have a more aggressive response to change in inten-
sity introduced by the target in the dark backgrounds. This
is caused by the PR’s being in a high-gain state with the
lower intensity. After the initial transition from background to
target (~ ig0o), the PR’s normalise their response to the struc-
ture of the target (~ ig35) irrespective of the input intensity
differences shown previously. Due to the various temporal
components of the PR model, a frame delay of ~6 frames,
or ~0.06 seconds at the 100.027 frames per second that the
dataset was capture at, can be seen between the optical input
and the PR outputs.
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Fig.11 Region of interest responses for the output of each model within
the proposed algorithm, against white (square markers), orange (dia-
mond markers), and black (circle markers) backgrounds, for a distance
of 200 mm and velocity of 127.98 mm/s (t; = 1.563 s): a The optical
input to the algorithm; b The output of the photoreceptor (PR) model; ¢
The output of the lamina monopolar cell (LMC) model; d The horizon-
tal component of the output of the elementary motion detector (EMD)
model; e The vertical component of the output of the EMD model,
normalised the same as d to convey the lower signal magnitude of
the vertical component; f The magnitude output of the medulla-lobula
interneuron (MLI) model; and g The magnitude output of the lobula
plate tangential cells (LPTC) model. All responses have been locally
normalised for graphing purposes as their absolute signal magnitude is
not of importance, just their statistical distribution. The LMC output (c)
is not centred around O due to imperfect high-pass filtering. While the
optical structure of the targets in (a) is similar, the responses of each
model, especially the transition between background and target, are
varied due to the drastic difference in background intensity, and hence
contrast. Although the optical responses differ, the LPTC receptive field
produces a very similar response for each background, although with
some temporal misalignment present due to the adaptive filtering com-
ponents of the algorithm. For best viewing, please see the online version
of this article

The responses of the lamina monopolar cells (LMC’s) can
be seen in Fig. 11c. The purpose of the LMC is to remove
redundant information and enhance intensity transitions. We
can see the effect of the contrast enhancement when compar-
ing the magnitude of the peaks caused by the target to that of
the output of PR’s previously. All three key peaks have been
amplified. However, the outputs of both stages are not com-
parable as Ipr € (0, 1.0], whereas I7 ¢ € [—1.0, 1.0]. The
amplitude offset present in the LMC is also less important
as the high-pass filtering that is present within the next stage
of processing, the EMD, is ideal; it removes all DC signal
components, unlike the leaky high-pass filtering within the
LMC.

Following the LMC'’s are the elementary motion detectors
(EMD’s), the responses of which are seen in Fig. 11d for the
horizontal component and Fig. 11e for the vertical compo-
nent. The fundamental principle of the EMD’s, which are
modelled as Hassenstein—Reichardt detectors, is to correlate
changes in incoming signal intensity between pixels. There-
fore, the maximum response from an EMD will occur at the
steepest part of a dark-to-light or light-to-dark transition pro-
duced by the preceding filtering. This causes the peak EMD
responses to occur between the peaks of the target structure
(outlines and texture), instead of at the boundaries. As the
purpose of this research is to analyse the response to motion
that is perpendicular to the system, the majority of optic flow
that is present is horizontal. However, due to the angular mis-
alignments during experimental set-up, angular components
of the texture on the tree combined with the aperture prob-
lem, as well as noise that is present, some vertical component
to the optic flow does exist. In practice, the magnitude of the
vertical component was measured at ~1% of the horizontal
component. While this component is taken into account in
the later stages of the algorithm, specifically the conversion
from Cartesian to Polar coordinates, it has been graphed here
at the same scale as the horizontal component to convey this
reduction in magnitude. This generalisation to purely hori-
zontal motion is only valid as the receptive field has been
modelled perpendicular to the direction of optic flow. The
vertical component will be critical when other receptive fields
are used as they will deviate from this location.

The output of the EMD’s is processed by what we refer
to as the medulla-lobula interneurons (MLI’s), the responses
of which are shown in Fig. 11f. At this point, the horizontal
and vertical outputs from the EMD have been converted from
Cartesian (x, y) to Polar (R, 0) representations; and this work
focuses on the magnitude of the response, R. In this output,
not only can the target contrast responses be observed, but
the minor imperfections in the backgrounds are enhanced and
can be observed as local contrast peaks which the system can
use to track the optic flow even on uniform coloured cloth.

Finally, the output from the lobula plate tangential cells
(LPTC’s) is seen in Fig. 11g. The effects of the large spatial
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pooling (receptive field) present in this model are evident
when compared to the high frequency responses of the MLI
model, as is the limited impact of any temporal filtering
that also occurs. It is interesting to note the difference in
peak response from this model compared to previous mod-
els, where the white background exhibits a peak response
~30 frames prior to the black and orange backgrounds. This
could potentially be caused by a higher-than-mean response
of the white background (visible in the MLI at i5sqp) caus-
ing the receptive field to be at a higher state than the other
backgrounds prior to the target entering the receptive field.
The orange background shows a higher peak LPTC response
overall, which corresponds to the similar response for the
3 peaks shown in the MLI model. The black background
does have the highest magnitude MLI response (~ i590),
which is most likely because it has the highest contrast dif-
ference between the background and the target. However,
this quickly adapts away and results in a gap or decreased
response (~ ig19) which results in a very similar overall
LPTC response to the other backgrounds. This behaviour
will be the focus of ongoing work.

From these results, it has been shown that irrespective
of the background, or more accurately the contrast between
the background and the target, a consistent estimate of the
time to impact to the target, as measured by the peak ampli-
tude response, can be made. While there is a spatio-temporal
misalignment between the peak LPTC responses of approx-
imately 25 frames between the various backgrounds, this is
unlikely to negatively impact a real-world application as it
represents a time difference of at most 0.25 s in the responses.
This time difference could be reduced by reducing the lev-
els of adaptive filtering in the model, but that would result
in larger response differences as the system would become
more contrast sensitive in the output.

The spatial responses of each model within the algorithm
to the same backgrounds shown for the temporal responses
(Fig. 11) are presented in Fig. 12. These outputs, for a dis-
tance to target of 200 mm and a velocity of 127.98 mm/s
(t; = 1.563 s), are clipped to £34° around the left per-
pendicular to remove redundant/distracting environmental
information from the outputs. It can be seen that there is
a perceptibly large difference in the optical representation
of the target against the background as the intensity of the
background changes (R1). The PR model aids in some-
what normalising the input intensity (R2) and, although it
is imperfect, the high-pass filtering present within the LMC
model is demonstrated (R3). Recall that stronger (perfect)
high-pass filtering is present within the EMD model. The
aperture problem associated with the EMD model is demon-
strated (R4, RS), where the directionality of the optic flow
is swinging both sides of 0, with a custom colour profile
(black/blue/cyan and yellow/red/white) representing oppo-
site directions of optic flow. While there is also some vertical
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Fig. 12 Component model responses at a distance of 200 mm, velocity
of 127.98 mm/s (¢#; = 1.563 s), and for backgrounds: (C1) black; (C2)
orange; and (C3) white. Model responses from processing frame index
0903 of the full recording have been rescaled, and the omnidirectional
frame has been clipped to +34° horizontal field of view around the
left perpendicular, for display purposes. All exposure values and post-
processing gains for display were equal across all scenarios. Each row
represents a different stage of the algorithm: (R1) optical input to the
photoreceptor (PR) model; (R2) output of the PR model; (R3) output
of the lamina monopolar cell (LMC) model; R4) horizontal component
of the output of the elementary motion detector (EMD) model; (R5)
vertical component of the output of the EMD model, shown at the same
scale as R4 where, due to the purely horizontal motion, the columns
will typically sum to an amplitude of 0; (R6) the magnitude output of
the medulla-lobula interneuron (MLI) model, which features the novel
contrast adaptation proposed in this research; and (R7) the output of the
lobula plate tangential cell (LPTC) model prior to the receptive field
window being sampled. The imperfect high-pass filtering in the LMC
model is evident by a lack of sharp definition in the edges of R3. The
aperture problem associated with the EMD is strongly illustrated in
R4 and RS where deep blue and white hot are opposite extremes of a
custom colour scale. The benefit of moving to polar coordinates in the
MLIis shown in R6 where only positive magnitudes (approaching white
hot) are present. Despite the drastic difference in optical inputs (R1),
and different structures within the EMD responses (R4 and RS5), the
adapted output of the MLI model (R6) and the corresponding spatio-
temporal blur of the LPTC (R7) show similar responses across the 3
backgrounds. These results are spatial representations of the temporal
results shown in Fig. 11, where ~ ig3p corresponds to the responses
shown here

motion present (R5), this is a much lower magnitude than
the horizontal energy (R4). To aid in overcoming the aper-
ture problem, the MLI operates in polar coordinates (R6),
specifically utilising only the magnitude of the response vec-
tor. The addition of contrast and motion adaptation with the
MLI can be seen, where there is not only a more consistent
response to the target (central), but also a response to the
background. Once the spatio-temporal blur of the receptive
field of the LPTC model is applied (R7), the responses are
similar for each background shown.
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4.7 Response to changing distance

Figure 13 shows the input—output characteristics of the
responses of the various models within the proposed algo-
rithm as the distance to target, and hence the time to impact,
changes while the translational velocity is constant. In this
figure, the velocity was constant at 127.98 mm/s, the back-
ground was black, and the distances to target were 200 mm
(7 =1.563 s, dark purple, circle markers), 300 mm (¢; =2.344
s, dark green, diamond markers), 400 mm (z; = 3.125 s, light
purple, square markers), and 600 mm (z; = 4.689 s, light
green, plus markers). Although there appears to be similarity
in the peak magnitude of the optical input at each distance,
and hence time to impact, the algorithm is capable of dis-
criminating the time to impact of each distance.

Looking at the optical input to the PR (Fig. 13a), there
is a clear reduction in the perceivable structure of the target
as the distance increases. The response at 200 mm clearly
portrays the 3 stages of the target: the initial transition from
background to target (~ ig15); the central structure within the
target (~ ig35), and the final transition from the target back
to the background (~ iggp). As the distance increases, this
structure is lost primarily due to the low ommatidial resolu-
tion of 180 pixels for 360° horizontal FOV combined with
the anti-aliasing optical blur employed after the dewarping
process prior to resolution reduction. While there is a loss of
registration of the structure, the peak magnitude of the target
(~ i635) remains relatively similar as the distance increases,
which is expected since it is optically the same target. Due to
the spatial distance realised by each pixel increasing as the
distance to target increases, combined with the optical blur,
the target appears wider as the distance increases. So, while
the peak magnitude remains similar, the transition point from
background to target appears earlier, and target back to back-
ground appears later, as the distance to target increases. As
the same background was used for these tests, the optical
responses to the background are virtually identical.

In the output of the PR model (Fig. 13b), it can be seen
that the PR model has nearly normalised the intensity of the
input signal, most evident by the smoothing of the response
to the 200 mm distance.

Next, in the output of the LMC model (Fig. 13c) the
edge enhancement functionality of the LMC’s is evident.
While the PR had worked to normalise the input intensity, the
LMC serves to remove redundant information and to enhance
changes in intensity; in other words, edge enhancement. The
large downward responses at the transition points between
background and target are caused by the reduction in inten-
sity in these regions caused by the shadows, most noticeable
on the methodological set-up shown in Fig. 2. Light to dark
transitions are seen as negative responses, while dark to light
transitions are positive responses.

(a)

Optical (AU)

(b)

PR (AU)

(c)

LMC (AU)

(d)

EMD Hori. (AU)

(e)

EMD Vert. (AU)

()

MLI Mag. (AU)

(g

LPTC Mag. (AU)

Frame Index (#)

Fig.13 Regionof interestresponses for each model within the proposed
algorithm for a black background at a velocity of 127.98 mm/s, for dis-
tances of 200 mm (¢; = 1.563 s, dark purple, circle markers), 300 mm
(t; =2.344 s, dark green, diamond markers), 400 mm (¢; =3.125 s, light
purple, square markers), and 600 mm (#; = 4.689 s, light green, plus
markers): a Optical input; b Output of the photoreceptor (PR) model; ¢
Output of the lamina monopolar cell (LMC) model; d Horizontal output
of the elementary motion detector (EMD) model; e Vertical output of the
EMD model, normalised per (d) to reflect the lower signal magnitude
of the vertical component; f Output of the medulla-lobula interneuron
(MLI) model; and g Output of the lobula plate tangential cell (LPTC)
model. All responses were locally normalised as their absolute signal
magnitude is not of importance, just their statistical distribution. The
LMC output ¢ is not centred around 0 due to imperfect high-pass fil-
tering. Despite similarities between the peak amplitudes at the optical
input, the LPTC is able to distinguish between the different times to
impact caused by the different distances to the target. At the larger
distances, the response to the target becomes less distinguishable com-
pared to the background (see Fig. 7d). The different LPTC responses at
the beginning (i500) and end (i775) are due to the different distances to
the background; that is, the model is tracking the time to impact to the
background, which is almost indistinguishable from the target at farther
distances. For best viewing, please see the online version of this article

@ Springer



656

Biological Cybernetics (2022) 116:635-660

The horizontal component of the EMD model motion
energy estimation (Fig. 13d) conveys the nature of the EMD;
the estimation of motion energy is directly proportional to
the change in intensity of the input signal.

While there is motion estimated by the vertical component
of the EMD model (Fig. 13e), when normalised to the range
of the horizontal component, the relative insignificance of the
vertical component becomes apparent, where signal strength
is ~1% of the horizontal component. This is, of course, due to
the location that the receptive field is sampled from: perpen-
dicular to the direction of travel at the horizon. The vertical
component becomes larger, and more relevant, the further
dorsal or ventral the receptive field is located, and also the
further away from the horizon.

The magnitude output of the MLI model (Fig. 13f), which
features the novel contrast adaptation, shows the behaviour
when the model transitions from a high-gain state caused by
a black background, to the target response (~ is9p). Once
adapted to the new conditions presented by the target, the
magnitude of the responses across all distances attenuates.
While the target previously presented similar magnitudes for
leading and trailing edges in previous progressing stages, this
is no longer the case with the trailing edge of the target much
smaller than the leading edge in all cases.

Finally, the spatial pooling functionality of the LPTC
model (Fig. 13f) is easily seen with a relative smoothing of
the motion energy estimated by the MLI model. Additionally,
the rapid temporal aspect of the spatio-temporal adaptation
is evident, as the peak response to the target roughly cor-
responds to the peak magnitudes of the optical input. That
is to say, no significant spatial offset of the true location of
the target has been introduced by the use of spatio-temporal
adaptation. In the context of using this algorithm as a navi-
gational tool, specifically for obstacle avoidance, this allows
for increased certainty in the location of a detected obsta-
cle, allowing for more accurate navigational decisions to be
made.

5 Discussion

The results presented in this work show that time to impact
of targets is differentiable between, for example, 1.5 seconds
and 1.8 seconds. However, in reality, it is unlikely that a nav-
igational control system of a robotic system, which has been
extensively researched for many years (Khatib 1985, 1986;
Borenstein and Koren 1989, 1991), would want to act on this
resolution. Additionally, this work has only considered the
magnitude of the response vectors in the MLI model. The
benefit of this is that it produces an instantaneous estimate
of time to impact between the camera (e.g. vehicle) and the
environment, regardless of the directionality of movement
of one or the other. Future work will look at integrating the
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direction component as this will be required when used as a
navigational cue.

A key aspect of a biologically inspired algorithm is the
ability to tune it. For example, although several insects
express extreme accelerations and velocities during loco-
motion, that level of response is less important to a large,
slow moving autonomous vehicle. Previous work on the
low-speed rotational velocity estimation component of inter-
saccadic motion (Skelton et al. 2017, 2019) has shown that
the operating range can be tuned based on the platform being
used (Skelton et al. 2020). While the work presented in this
paper has demonstrated the performance of the algorithm in
the operating range of 1.5 seconds to 9.3 seconds, there is
no particular reason why this range could not be expanded
to 1.5 seconds to 93.0 seconds, at the cost of resolution
between those boundaries. Likewise, it is possible to shift the
operating range to longer time to impacts, at the cost of intro-
ducing saturation and/or aliasing at shorter time to impacts.
This environmental adaptation, or contextual tuning, is also
expressed in biology (Arenz et al. 2017).

One of the peculiar aspects of the proposed algorithm is
the separate spatial high-pass filters present towards the end
of the LMC model, and as the first operation of the elabo-
rated EMD model (see Fig. 3a). Although there is a constant
gain applied to the output of the LMC model, this is a lin-
ear transform and thus does not impact the behaviour of the
subsequent high-pass filter. The justification for this separa-
bility is that parallel processing pathways in biology diverge
from the motion estimation pathways between the LMC and
the EMD. For example, the small target detection and track-
ing pipelines have different input signal requirements to the
EMD (Melville-Smith et al. 2019). Thus, the algorithm has
been configured in such a way as to facilitate compatibility
with parallel processing pipelines.

While recent literature in neurophysiology has demon-
strated that contrast adaptation of insects is primarily a
temporal function (Matulis et al. 2020), the work presented
here challenges that by demonstrating that spatio-temporal
contrast adaptation, with an emphasis on the spatial pro-
cessing and little temporal processing, can be extremely
beneficial. The results of rank ordering analysis, presented
in Sect. 4.3, shows that great improvements have been made
to overcoming the contrast dependence of algorithms based
upon the HR-EMD. While a low negative correlation still
exists for Algorithm #4, this must be taken in context with
the discriminability capabilities of the algorithm, as high-
lighted in Fig. 10. It would be entirely possible to create an
algorithm that is not intensity rank order dependent, but is
incapable of discriminating between times to impact. This
work shows that both are possible.

This difference between biological recordings and techno-
logical solutions is a well-known problem, and is character-
istic of neither system being fully explored and understood.
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It is entirely possible that there are spatial aspects to biol-
ogy that have thus eluded neurophysiological investigations.
This is possibly the case as it has been shown (Drews et al.
2020; Carandini and Heeger 2012) that biology handles con-
trast adaptation by an ON-OFF pathway split. This may help
to explain why neurophysiologists observe largely tempo-
ral responses to contrast changes, as the responses driven
by spatial processing would precede the ON—OFF pathway
divergence.

Conversely, it is also entirely possible that the technolog-
ical implementations of the biological systems are not 100%
biomimetic. That is, they do not faithfully mimic the pro-
cesses involved in biology. Realistically, both possibilities
are true; not enough of the biological system is understood to
faithfully reproduce it in a technological solution. However,
this work does hint at the possibility of spatial processing
that could be an exciting avenue of future neurophysiologi-
cal investigations.

Unlike previous research that focussed on the low-speed
rotational velocity estimation required for maintaining a
heading during inter-saccadic movements (Skelton et al.
2017, 2019), the research presented in this paper was not
intended to achieve a real-time real-world implementation.
Several inefficiencies exist within the implementation, such
as computationally expensive division operations used for
the optical scaling (see Sect. 3.2.4) where multiplications
could be used instead, or the spatial pooling of the LPTC
being applied to the entire optical field rather than the recep-
tive field being targeted. Nevertheless, frame rates in excess
of 500 frames per second were achieved on consumer grade
desktop hardware (4-core, 8-thread Intel Core 17-4790 with
8GB system memory); a fundamental benefit of working with
ommatidial resolutions, where it has been demonstrated that
significant sensory information can be derived from very low
resolution inputs (Brinkworth and O’Carroll 2009). The real-
time ability of the proposed algorithm, in combination with
the parallel processing pathways of the insect visual system,
will be the focus of future work.

In this work, only one perpendicular receptive field was
modelled for analysis. In reality, insects utilise a variety
of receptive fields at different locations and scales to per-
form different tasks. There are several possible avenues for
addressing this expansion in information collection, such as
utilising the expected unit vectors at a given location to scale
the optic flow received. This approach, and several others,
will also be the focus on future work.

6 Conclusion

This paper has shown a novel approach for obtaining contrast
independence for time to impact calculation during transla-
tional motion. By applying biologically inspired processing,

statistical discrimination of 15 points per decade has been
achieved within the operating range of 1.3 seconds through to
9.3 seconds of time to impact. This range was chosen as con-
textually for an autonomous ground vehicle it was deemed
to be an acceptable amount of reaction time to cease loco-
motion or undertake avoidance manoeuvres. However, the
algorithm can easily be adapted to other operating ranges by
manipulation of the various temporal, spatial, and spatio-
temporal filters. This work acts as a continuation of the
low-speed rotational component of saccadic motion reported
previously in (Brinkworth and O’Carroll 2009; Skelton et al.
2017, 2019), and provides another step towards true real-time
operation of the complex movement behaviour of insects in
biology. With a plausible approach to overcoming the con-
trast dependence of time to impact estimations presented,
work can now continue on optimisation of the approach to
facilitate high frame rate real-world, real-time deployments
on embedded systems.
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