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Abstract
Neuronal network synchronization has received wide interest. In the present manuscript, we study the influence of initial
membrane potentials together with network topology on bursting synchronization, in particular the sequential order of stabi-
lized bursting among neurons. We find a hierarchical phenomenon on their bursting order. With a focus on situations where
network coupling advances spiking times of neurons, we grade neurons into different layers. Together with the neuronal
network structure, we construct directed graphs to indicate bursting propagation between different layers. More explicitly,
neurons in upper layers burst earlier than those in lower layers. More interestingly, we find that among the same layer, bursting
order of neurons is mainly associated with the number of neurons they connected to the upper layer; more stimuli lead to
earlier bursting. Receiving effectively the same stimuli from the upper layer, we observe neurons with fewer connections
would burst earlier.

Keywords Bursting hierarchy · Neuronal network · Synchronization · Bursting pattern

1 Introduction

The studyof brain rhythmsand synchronizationof oscillatory
activity has attracted substantial attention. In the brain, there
is abundant experimental evidence of neuronal synchroniza-
tion, which is associated with cognitive processes, such as
visual cognition (Tallon-Baudry 2009), memory formation
(Axmacher et al. 2006) and directed attention (Missonnier
et al. 2006). Two typical rhythm synchronizations of coupled
neurons are spiking synchronization which is equivalent to
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phase synchronization and bursting synchronization which
characterizes temporal patterns between phase onset or offset
times across neurons. Bursting synchronization occurs more
often than spiking synchronization in neuronal networks (Shi
and Lu 2007) and is widely viewed as a hallmark of seizures
(Bergman and Deuschl 2002). Moreover, compared to single
spikes, bursts of spikes in the nervous system allow neurons
to enhance information transmission (Naud and Sprekeler
2018).

Based on some physiological experiments, a number of
mathematical models have been developed to describe neu-
ronal activity and bursting in various networks, such as the
Hudgkin–Huxley model (Hodgkin and Huxley 1990) and
its simplified versions including the leaky integrate-and-fire
neuron models, Izhikevich neuron models, and the adaptive
exponential integrate-and-fire neuronmodel (aEIF) (Lu et al.
2020; Izhikevich 2003; Stein 1965; Tsigkri-DeSmedt 2018;
Brette andGerstner 2005; Protachevicz et al. 2018). In partic-
ular, the aEIF model has an exponential spiking mechanism
combined with adaptation (Brette and Gerstner 2005) which
has been shown to predict with high accuracy the spike tim-
ing of real pyramidal neurons under noisy current injection
(Jolivet et al. 2007; Clopath et al. 2007; Naud et al. 2008).
Moreover, based on the aEIF model, Borges et al. (2017)
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verified that bursting synchronization was more robust than
spiking synchronization.

The spike timingwithin bursts is suggested to be an impor-
tant factor in providing efficient and reliable information
transmission between neurons (Szücs et al. 2005). It has been
suggested that spatiotemporal chaos of neurons can be tamed
by synaptic strength and results as ordered bursting synchro-
nization (Wang et al. 2007).Herewe study the spatiotemporal
patterns of burst synchronization by means of an aEIF neu-
ral model, in particular the bursting order of neurons and
its association with network structures and initial membrane
potentials. With a focus on situations where neuronal net-
work coupling advances spiking times of all neurons, we
grade neurons into different layers and find bursting hierar-
chy. Among the same layer, we find that neurons receiving
more stimuli (i.e., affected by more connected neurons) from
the upper layer would burst earlier; providing that neurons
receive effectively the same stimuli from the upper layer,
those with fewer connections would bust earlier.

The manuscript is organized as follows: Sect. 2 describes
the aEIF neuronal network model. Effects of initial mem-
brane potentials on network synchronization and bursting
hierarchy among neurons are investigated in Sect. 3 for regu-
lar networks and small-world networks. Conclusion are given
in Sect. 4.

2 Neuronal networkmodel

In this section, we first introduce the aEIF model and show
parameter space giving bursting and spiking synchronization
patterns in Sect. 2.1 and then introduce the network model
in Sect. 2.2.

2.1 The aEIF model

The aEIF model is a two-dimensional spiking neuron model
given by the following differential equations (Brette andGer-
stner 2005):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
dV

dt
= −gL(V − EL) + gL�T exp

(
V − VT

�T

)

− w + I ,

τw

dw

dt
= a(V − EL) − w,

(1)

where parameters are related to physiological quantities:
V (t) is the membrane potential, w is the adaptation current,
I is the injected current, C is the membrane capacitance,
gL is the leak conductance, EL is the resting potential, VT
is the threshold potential, �T is the slope factor, τw is the
time constant and a is the level of threshold adaptation. Due
to the exponential term, when the membrane potential V is

high enough, the trajectory will quickly diverge. When V (t)
reaches the threshold VT , the membrane potential V is reset
to Vr (referred as the reset potential) and the adaptation cur-
rent w is increased by b as in Touboul and Brette (2008):

{
V → Vr ,

w → w + b.

In this aEIF model, many different firing patterns could
occur including tonic spiking, regular bursting and adapta-
tion (Borges et al. 2017; Touboul 2008). In this manuscript
we focus on regular bursting, i.e., the potential converges
to a stable spiking cycle containing a specific number of
spikes, and there will be a quiescent period before spiking
sequence occurs regularly (Touboul 2008). It is known that
the injected current I and reset potential Vr play important
roles in generating different firing patterns, as the magnitude
of I will affect the position of V -nullcline and w-nullcline
of Eq. (1) (Borges et al. 2017; Touboul 2008). We mainly
consider influence of reset potential Vr and injected cur-
rent I when fixing other parameters C = 281.0 pF, gL =
30.0 nS, EL = −70.6 mV, VT = −50.4 mV,�T =
2 mV, τw = 20 ms, a = 4 nA, b = 0.5 nA, as used pre-
viously (Touboul and Brette 2008).

We employ coefficient of variation (CV) of neuronal inter-
spike intervals (ISI) (Ostojic 2011) to distinguish different
firing patterns:

CV = σISI

ISI
, (2)

whereσISI is the standard deviation of ISI normalized by their
mean ISI. If CV < 0.5, the neuron fires in a spiking pattern;
while CV ≥ 0.5, it fires in a bursting pattern (Borges et al.
2017). Figure 1a shows two types of firing in Vr -I parameter
space according to CV given in Eq. (2).When the reset mem-
brane potential Vr is small, spiking patterns occur, whereas
when Vr is large, bursting patterns occur (Touboul and Brette
2008; Touboul 2008). Figure 1b, c shows examples of tonic
spiking and regular bursting patterns; in the bursting pattern,
it fires 3 spikes per burst. With an input current, the neu-
ron keeps a periodic firing pattern after a certain period of
adjustment as seen from trajectories shown in Fig. 1b3, c3.

2.2 aEIF neuronal networkmodel and
synchronization

Next, we consider the aEIF neuronal network coupled
through chemical synapses via the following differential
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(a) (b)
(b1)

(b2)

(b3)

(c)
(c1)

(c2)

(c3)

Fig. 1 a shows the parameter space of the reset potential Vr and input
current I for two firing patterns. Bursting pattern (type I, CV ≥ 0.5)
and spiking pattern (type II, CV < 0.5) are separated by the red line.
b, c show examples of spiking (type I) and bursting (type II) patterns,
respectively, indicated by red stars given in a in each region with CV
values indicated in each panel; (b1, c1) show the time evolution ofmem-
brane potential (V) with zoom in (b2, c2) for a small time window; (b3,

c3) show corresponding trajectories in V -w phase; the trajectory in (b3)
converges to a stable spiking cycle containing 3 spikes, while the tra-
jectory in (c3) converges to a limit spiking cycle containing only one
spike; red and black dashed curves in (b3, c3) represent the V -nullcline
and w-nullcline of Eq. (1), respectively. For visual display of curves in
b, c we fix VT = 0 mV, and set I = 0.66 nA, Vr = −44 mV in b, and
I = 0.70 nA, Vr = −57 mV in c

equations (Borges et al. 2017):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dVi
dt

= −gL(Vi − EL) + gL�T exp

(
Vi − VT

�T

)

− wi + I + (VREV − Vi )
N∑

j=1

Mi j g j ,

τw

dwi

dt
= a(Vi − EL) − wi ,

τg
dgi
dt

= −gi ,

(3)

where Vi , wi , gi represent the membrane potential, adapta-
tion current and synaptic conductance of neuron i , VREV is
the synaptic reversal potential, τg is the synaptic time con-
stant, M is the adjacency matrix with elements Mi j = 1 or 0
depending on whether or not there exists coupling between
neurons i and j . The synaptic conductance decays exponen-
tially with a synaptic time constant τg . Parameters τw, a and
EL are set as in the single neuron model in Sect. 2.1.We con-
sider the connectivity between neurons is given by excitatory
synapses. When Vi reaches the threshold VT for some neu-
ron i , its state variables are updated as follows (Protachevicz
et al. 2019):

⎧
⎪⎨

⎪⎩

Vi → Vr ,

wi → wi + b,

gi → gi + gexc,

(4)

where gexc = 0.05 nS as used previously (Protachevicz et al.
2019) unless otherwise stated.

Equation (3) indicates that in addition to the external input
current I , synaptic current is also generated by interactions

between neurons. Thus, in a network of N neurons, the total
current affecting neuron i reads as:

I itotal(t) := −wi + I + (VREV − Vi )
N∑

j=1

Mi j g j .

We take the same choice of single neuron aEIF model
parameters as in Sect. 2.1, fix τg = 2.728 ms, VREV = 0 mV
(Protachevicz et al. 2019), and set initial values of wi (0) =
0 nA and gi (0) = 0 nS. Moreover, we fix I = 0.66 nA
which will generate consecutive action potentials, and fix
Vr = −44 mV. Firing patterns with 3 spikes per burst are
robust for the input current I when Vr > −45 mV as seen
from Fig. 1a. We use these model parameters throughout the
manuscript unless otherwise stated and study the effect of
initial potentials Vi on bursting synchronization.

Synchronization parameter

We introduce a synchronization parameter which focuses on
the bursting patterns with specifically K spikes per burst.
We record the time of each spike and denote as Ti (m) for
the m-th spike of neuron i . In particular, we denote T n, j

i :=
Ti ( j+K (n−1)) for the j-th spiking time ( j = 1, 2, . . . , K )
at the n-th burst for neuron i . We then calculate the standard
deviation of T n, j

i between neurons and refer to it as σn, j , i.e.,

σn, j :=

√
√
√
√

1
N

∑N−1
i=0

(
T n, j
i

)2 −
(

1
N

∑N−1
i=0 T n, j

i

)2

N − 1

where N is the number of neurons in the network. We then
define the synchronization parameter at the n-th burst (with
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Fig. 2 Illustration of spiking time difference TDi ( j) = Ti ( j) − T̂i ( j)
of a neuron i at its j-th spike where Ti ( j) and T̂i ( j) are calculated from
time series in a coupled (blue) or uncoupled (orange) network for the
i-th neuron at its j-th spike, respectively

K spikes) as the average of standard deviations σn, j :

δ(n) := 1

K

K∑

j=1

σn, j .

This synchronization parameter is adapted from Zheng and
Lu (2008). For the model parameters we focus, the system
generates regular bursts with 3 spikes per burst, i.e., K = 3.
Moreover, when the synchronization parameter δ(n) stabi-
lizes, we define the stabilized synchronization parameter of
the network as δ := limn→+∞ δ(n). Smaller δ indicatesmore
clustered spiking times and higher synchronization of neu-
rons.

Spiking time difference

In order to quantify the effect of network coupling on burst-
ing, for each neuron i , we calculate its j-th spiking time Ti ( j)
in a coupled network with an adjacency matrix M and also
the spiking time T̂i ( j) in the same scenario except that the
network is uncoupled (i.e., the adjacency matrix elements
Mi, j = 0). We then calculate the spiking time difference
TDi ( j) := Ti ( j) − T̂i ( j) of each neuron i between cou-
pled and uncoupled networks as sketched in Fig. 2. Note
that for spikes in the same burst, their corresponding spiking
time difference would be the same. A spiking time differ-
ence TDi ( j) < 0 (resp. > 0) of one neuron indicates that
the network connections advance (resp. delay) the response
of its action potential, while TDi ( j) = 0 indicates that net-
work connections have effectively no effect on its spiking
time. Once the firing pattern and corresponding inter-burst
period of neurons in the network are stabilized, TDi ( j) keeps
constant and we denote this stabilized time difference as
TDi := lim j→+∞ TDi ( j). We use TDi ( j) and TDi for the
j-th and stabilized spiking time difference of each neuron i ,
and we drop the subscript i sometimes without ambiguity.

3 Results

We first investigate in Sects. 3.1 and 3.2 the influence of
initial membrane potentials on network synchronization in
regular networks where each neuron is connected to an equal
number of neighbors. Giving identical initial potentials in a
regular network, all neurons would evolve identically the
same and thus spike at the same time, thus giving syn-
chronization parameter δ = 0 ms. In contrast, for neurons
with different initial potentials, different spiking times could
occur. With the calculation of spiking time difference, we
find bursting hierarchy among neurons.We then examine this
bursting hierarchy phenomenon in small-world networks in
Sect. 3.3 and discuss the bursting sequence order in rela-
tion with degree and initial membrane potentials of neurons
within the same layer in the hierarchic structure.

3.1 Influence of initial potentials on synchronization

To investigate the interaction between neurons in the coupled
neuronal network, we start with a toy model of two neurons.
Without loss of generality, we consider two initial membrane
potentials V0 ≥ V1. Figure 3 shows the stabilized synchro-
nization parameter δ for various V0,1 and updated synaptic
conductance gexc which effectively gives different coupling
strength between neurons.

When the updated synaptic conductance gexc = 0 nS,
two neurons with initial synaptic conductances g0,1(0) =
0 nS are uncoupled. In this case, two neurons evolve inde-
pendently; the neuron with a larger initial potential would
burst earlier. Thus the stabilized synchronization parameter
δ increases with the initial potential difference V0 − V1 as
shown in Fig. 3a. For positive gexc, neural interactions may
play a role in their bursting synchronization. From Fig. 3a–
d we observe that a higher interaction strength gexc gives a
lower stabilized synchronization parameter δ providing that
the difference between the two initial potentials is sufficiently
large. Figure 3e shows examples of spiking sequences for
two initial potentials V0 = −60 mV and V1 = −70.6 mV
(i.e., V0 − V1 = 10.6 mV) with different gexc; the spiking
of neuron 1 is advanced and closer to the spiking of neuron
0 for gexc = 0.05 nS or 0.5 nS, compared to the uncou-
pled case (gexc = 0 nS), indicating the effect of coupling on
bursting synchronization. In this coupled example, neuron 0
spikes first, updates its synaptic conductance via Eq. (4) once
its potential reaches the threshold VT , and then the updated
synaptic conductance tries to affect neuron 1 to burst via
coupling term in Eq. (3); when bursting synchronization is
stabilized, bursting time difference between neurons remains
constant.

Moreover,we observed in Fig. 3b, c that the stabilized syn-
chronization parameter δ increases with the initial potential
difference V0−V1 to a saturate value denoted as δc. This satu-
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rated stabilized synchronization parameter δc is independent
ofV0,1, but is expected tobe reducedwith increasing coupling
strength gexc as higher gexc enhance neural synchronization
by comparing Fig. 3b, c. Note that spiking of neurons could
be evoked by its own dynamics with or without interactions
with others. The insets in Fig. 3b, c show that when V0 − V1
is small, δ(1) ≈ δ, i.e., the synchronization parameter at the
first burst is close to the stabilized synchronization parame-
ter, indicating that the first bursting state is already close to
the stabilized bursting state, and coupling has little effects on
its synchronization. In contrast, when V0 − V1 is sufficiently
large (where δc is reached), the synchronization parameter at
the first burst δ(1) is much larger than the stabilized synchro-
nization parameter δ = δc and the larger V0 − V1 the larger
δ(1); with the coupling effect, two neurons evolve to reach
stabilized synchronization parameter δ = δc. These results
suggest that when V0 − V1 is sufficiently large such that δc
is reached, coupling plays a role in synchronization.

To better understand the saturation of the stabilized syn-
chronization parameter, we show in Fig. 3f examples of
spiking sequences for three different initial potentialswhere δ

is saturated giving gexc = 0.05 nS.We note that with a larger
V0, neuron 0 spikes earlier and affects neuron 1 to spike via
the given coupling strength gexc, and the state of locked phase
shifts for different V0,1 while the relative spiking time dif-
ference between two neurons remain the same after the state
is stabilized; this gives the same stabilized synchronization
parameter δ for different V0. We remark here that two neu-
rons could be more clustered with a higher coupling strength
gexc as seen from Fig. 3e. Moreover, by the definition of
synchronization parameter, in this two-neuron model, with
equal spiking time difference of three spikes in each burst
between two neurons, δ reads as a half of the corresponding
spiking time difference of two neurons; in this example, neu-
ron 1 bursts 3 ms behind neuron 0 when stabilized, giving
δ = 1.5 ms.

Next, we investigate effects of initial potentials on neu-
ronal synchronization in regular networks with more neu-
rons. We start with a simple case where initial membrane
potentials are the same except for one neuron, say neu-
ron 0 with initial potential V0 and V0 > Vi , i �= 0 as in
the two-neuron model. Figure 4b shows the stabilized syn-
chronization parameter δ for various V0, while other initial
potentials are Vi = −70.6 mV, i �= 0 (the same as resting
potential EL ) in a regular network of 7 neurons as shown in
Fig. 4a. In this example, as V0 is the largest initial potential,
neuron 0 would spike first; when V0(t) reaches the thresh-
old VT , variables V0, w0, g0 are updated; in particular g0 is
increased by gexc which indicates a stronger interaction with
neurons (i.e., neurons {1, 2, 5, 6} connected to it.

In this example, we observe from Fig. 4 that when V0 <

−61 mV , the stabilized synchronization parameter δ exhibit
approximately linear increase with V0. When V0 increases,

the initial potential differenceV0−Vi increases aswell.While
for larger V0 (V0 > −61 mV, i.e., larger V0 − V1), δ is
saturated and keeps unchanged when increasing V0. This is
similar to the saturation observed in the two-neuron example
in Fig. 3. These results suggest that in neuronal networks,
the stabilized synchronization parameter δ could be saturated
when initial potential difference is large enough.

Figure 4c shows the evolution of the synchronization
parameter δ(n) for different V0 and Fig. 4d1–f2 illustrates
the transition of bursting patterns shown as raster plots from
the first burst (i.e., n = 1) to the stabilized burst (at n = 100)
for three different initial potentials V0. We note that for
V0 = −67 mV which is close to others Vi = −70.6 mV, the
first burst is already stabilized and no difference is observed
on two raster plots (see Fig. 4f1, f2); for V0 = −63 mV,
a small change of spiking time difference between neurons
is observed from the first (at n = 1) to stabilized bursts (at
n = 100) in Fig. 4e1, e2; for V0 = −52 (where V0 − V1
is large and δ is saturated as seen from Fig. 4b), the first
bursting pattern in Fig. 4d1 is far different to the stabilized
burst in Fig. 4d2. Note that for all three different V0, neuron
0 which has the largest initial potential bursts first, and then
tries to affect other neurons to burst with the given coupling
strength. This is similar to two-neuron model, when initial
potential difference is larger (in particular when δ is stabi-
lized), larger transition from the first to the stabilized burst
would be expected, whereas when initial potential difference
is small (before δ is saturated), δ(1) ≈ δ. These suggest that
synchronization parameter δ stabilizes faster for smaller V0
(i.e., smaller initial potential difference V0 − Vi (i �= 0)), as
shown in Fig. 4c.

Moreover, we observe in Fig. 4d2, e2 that neurons with
the same initial membrane potentials could burst at different
times by neuronal network connections. Here, neuron 0 has
the largest initial potential and generates the action potential
first. Once updating its variables, neuron 0 affects its neigh-
boring neurons {1, 2, 5, 6} via coupling and results different
bursting time to neurons {3, 4} as seen in Fig. 4d2, e2. In par-
ticular, we calculate the spiking time difference TD for all
neurons. When V0 = −67 mV, TDi = 0 for all i , meaning
neurons burst as effectively independent neurons, and equal
initial potentials of neurons burst at the same time. When
V0 = −63mV, TD0,3,4 = 0,whereas TD1,2,5,6 < 0which is
consistent with neurons {1, 2, 5, 6} burst earlier than neurons
{3, 4}, though they have the same initial potentials. When
V0 = −52 mV, TD0 = 0 and TDi < 0 for all i �= 0, mean-
ing that the bursting time of neurons is advanced except for
neuron 0 due to network connections. We remark here when
V0 > −61 mV the stabilized synchronization parameter δ

is saturated as seen from Fig. 4b, and similar to the two-
neuron model in Fig. 3f that for different initial potentials
V0 > −61 mV, the stabilized bursting states shift forward or
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(a) (b) (c)

(d)

(f)

(e)

Fig. 3 Stabilized synchronization parameter δ in a model with two neu-
rons. a–c show the stabilized synchronization parameter as a function
of initial potential difference V0 − V1 for three different initial mem-
brane potential V0 as indicated when updated synaptic conductance
gexc = 0 (a), 0.05 nS (b) or gexc = 0.5 nS (c). The insert panels in
b, c show the synchronization parameter for the first burst δ(1) and
stabilized synchronization parameter δ for V0 = −60 mV. d shows
the stabilized synchronization parameter δ of two neurons decreases
with the updated synaptic conductance gexc in the range considered,

giving initial potentials V0 = −60 mV and V1 = −70.6 mV. e shows
the stabilized spiking sequences of two neurons with initial potentials
V0 = −60 mV and V1 = −70.6 mV (i.e., V0 − V1 = 10.6 mV) for
three updated synaptic conductance gexc as indicated. f shows the spik-
ing sequences of two neurons with initial potentials V0,1 (where the
stabilized synchronization parameter δ is reached) for a updated synap-
tic conductance gexc = 0.05 nS. The inset shows the zoom in of the
indicated time window. Note in e, f neuron index is shifted to avoid
overlaid for visualization effects

backward and the relative states of phase locking remain the
same.

3.2 Bursting hierarchy in regular networks

We next consider more general initial membrane potentials
of neurons. With some arbitrary neuron initial potentials for
the same network structure as in Fig. 4a, we findmore variety
of phase locking states. Examples are shown in Fig. 5 (cases
1–3) and Fig. 6 (cases 4–6), and their initial potential and
corresponding stabilized synchronization parameters δ are
given in Table 1.

In both cases 1 and 2, neuron 6which has the largest initial
potential, generates action potential first (Fig. 7a). Moreover,
we note that neuron 6 has TD6(k) = 0 for all spikes (Fig. 7c),
indicating that neuron 6 spikes as its own independent spiking
pattern, unaffected by the network, and TDi < 0 for all other
neurons i �= 6, suggesting that spiking times of these neurons
are advanced due to network connections. We consider this
as neuron 6 sends stimuli to other neurons connected to it and

affects their spiking times. This is similar to simple examples
in Sect. 3.1. We remark here cases 1 and 2 share the same
largest initial potential and the same locked phase though
they have other different initial potentials. These suggest that
neuron 6 dominates network interactions and bursting prop-
agation. Similarly, neuron 2 in case 3 which has the largest
membrane potential and TD2(k) = 0 for all spikes, domi-
nates the bursting propagation in the regular network.

Inspired by the dominant role of neuron 6 (resp. neuron
2) in bursting from cases 1 and 2 (resp. case 3), we grade
neurons into different layers. More precisely, neurons with
large initial potentials together with |TD| sufficiently small
are graded as primary neurons, such as neuron 6 in case 1.We
remark here that the neuron with second largest membrane
potential and TD ≈ 0 (say |TD| < 0.1 ms) is also graded as
a primary neuron, but not neurons with relatively low initial
potentials and TD = 0. We grade neurons connected to pri-
mary ones as secondary neurons and among the remaining
neurons, those connected to secondary neurons are graded as
tertiary neurons, etc.
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(a)

(b)

(c)

(d1)

(d2)

(e1)

(e2)

(f1)

(f2)

Fig. 4 a shows a regular network of 7 neurons where each neuron is
connected to its nearest 4 neighbors. b shows stabilized synchronization
parameter δ when varying initial membrane potential V0 in the regular
network (a). c shows the evolution of synchronization parameter δ(n)

for initial membrane potential V0. d1–f2 show raster plots excitatory

neurons at n = 1 and n = 100 for different V0. Other initial poten-
tials Vi = −70.6 mV the same as the resting potential and the updated
synaptic conductance gexc = 0.05 nS. Note that black lines highlight
the same spiking times of neurons. Also note that the width of each
burst is the same for different V0

Table 1 Initial membrane
potential values Vi (in unit of
mV) of each neuron i in a
regular network of 7 neurons
shown in Fig. 4a, and the
corresponding stabilized
synchronization parameter
δ (ms)

Case V0 V1 V2 V3 V4 V5 V6 δ

1 −63.3 −69.7 −70.0 −63.4 −64.6 −55.7 −52.0 0.7337

2 −65.0 −65.0 −65.0 −65.0 −65.0 −65.0 −52.0 0.7337

3 −64.6 −60.4 −54.9 −61.6 −70.0 −69.9 −59.8 0.7296

4 −51.0 −57.8 −65.1 −57.0 −56.9 −56.5 −51.3 0.7081

5 −70.0 −67.1 −58.1 −66.1 −57.0 −60.1 −69.8 0.6704

6 −51.0 −65.0 −65.0 −51.0 −65.0 −65.0 −65.0 0.5552

Neurons in upper layers burst earlier than those in lower
layers as seen from Fig. 5. Based on neurons network struc-
ture and ignoring interactions of neurons within the same
layer, we construct a bursting propagation graph as in
Fig. 5e, f to indicate the propagation of bursts from layers
to layers. Such bursting propagation graph gives a coarse
bursting order of neurons.

For neurons in the same layer, they may or may not burst
at the same time. We now study bursting order of neurons
within the same layer in more details. In case 1, secondary
neurons {0, 5} burst at the same time as seen fromFig. 5a.We
interpret this from the bursting propagation graph in Fig. 5e
that secondary neurons {0, 5} share the same connected pri-
mary neuron and propagate to the same number of tertiary
neurons. We remark that neurons {0, 5} burst at slightly later
time compared to secondary neurons {1, 4}. This might be
complicated combined effects from coupling to non-primary

neurons and might be due to more connections within the
same secondary layer for neurons {0, 5} compared to neurons
{1, 4}. Moreover, tertiary neurons {2, 3} in case 1 burst at the
same time because the bursting times of their upper-layer
neurons are equivalently the same. Note that tertiary neurons
{5, 6} in case 3 burst at different times with effectively the
same stimuli from secondary neurons. This is probably due
to TD6 = 0.8 ms > 0 in case 3 which indicates a short
delay in spiking though it has a relatively large initial poten-
tial. These suggest that bursting hierarchy of neurons as well
as locked phases of neurons can be understood largely from
bursting propagation graph in particular when TD ≤ 0 for
all neurons.

In cases 1–3, there is only one primary neuron. With dif-
ferent initial membrane potentials, we may have two or more
primary neurons. We consider situations with two primary
neurons in the same regular network as in Fig. 4a; more pri-
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Fig. 5 a, b show locked phases for cases 1–3. Note that black (red)
lines highlight the same (different) time of neurons. c shows the spiking
time difference TD(k) for each neuron in the network when comparing
with neurons in the uncoupled network using the same initial membrane
potentials as given in case 1 in Table 1. d shows stabilized time differ-

ence T D for all 7 neurons in cases 1–3. Note that TD6 = 0.8 ms in
case 3. e, f show bursting propagation graphs from primary to tertiary
neurons in cases 1–3. The network coupling structures are the same as
in Fig. 4a

mary neurons could be studied similarly. In particular we
focus on situations with TD � 0 for all neurons. For the
network structure in Fig. 4a, there are three topologically
different bursting propagation graphs with two primary neu-
rons as shown in Fig. 6c1–c3: (1) two primary neurons are
connected in the network, and all neurons are graded into
three layers; (2) two primary neurons are connected in the
network, and all neurons are graded into two layers; (3) two
primary neurons are not directly connected in the network.
Figure 6a1–a3 shows examples of locked phases with cor-
responding model parameters given as cases 4–6 in Table 1
and bursting propagation graphs in Fig. 6c1–c3, respectively.
The bursting propagation graphs are constructed based on
network connection and stabilized spiking time difference
TD shown in Fig. 6b.

Similarly, bursts are initiated in primary neurons, which
propagate to secondary and then tertiary neurons. Neurons
within the same layer of neurons may burst at different times.
In case 4, for the two primary neurons {0, 6}, neuron 0 which
has a larger initial potential than neuron 6, bursts earlier than
neuron 6. Secondary neurons {1, 5} burst at the same time
as they are both stimulated from two primary neurons {0, 6}
and propagate to the same tertiary neuron. Secondary neu-
ron 2 receives stimulus from its primary neuron 0 earlier
than secondary neuron 4 receiving stimulus from its primary

neuron 6, and bursts earlier. Similarly, comparing secondary
neurons {5, 6} (which is connected to primary neuron 4) and
neurons {0, 1} (which is connected to primary neuron 2) in
case 5, their primary neuron 4 bursts earlier than primary neu-
ron 2 and secondary neurons {5, 6} burst earlier than neurons
{0, 1}; see Fig. 6a2, c2. In case 6, secondary neurons {1, 2, 5}
receiving stimuli from both primary neuron {0, 3} burst ear-
lier than secondary neurons {4, 6} which receive stimulus
from only one primary neuron as seen in Fig. 6a3, c3.

These results suggest that earlier bursting of neurons
would stimulate and promote neurons connected to it in the
next layer to burst earlier.Receiving stimuli frommore upper-
layer neurons would promote neurons to burst earlier as well.
Moreover, we note that with the same number of neurons in
the regular network, the stabilized synchronization param-
eters (see Table 1) are lower with fewer layers in bursting
propagation graphs; this is consistent with that more clus-
tered spiking would lead to higher synchronization.

3.3 Bursting hierarchy in small-world networks

In this subsection, we consider small-world networks which
are more realistically simulated neuronal networks (Rubi-
nov and Sporns 2010). For simplicity, we focus on situations
where TD � 0 for all neurons; this usually occurs when the
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(a1)

(c1) (c2)

(a2) (a3)

(c3)

(b)

Fig. 6 a1–a3 show raster plots of locked phases; black (red) lines high-
light the same (different) spiking time. b shows the stabilized spiking
time difference TD for all neurons in cases 4–6. c1–c3 show the cor-

responding bursting propagation graphs. Network coupling structures
are the same as in Fig. 4a. Initial membrane potentials in each case are
given in Table 1

initial potentials of primary neurons are far away fromothers.
Figure 7a1, b1 shows two examples of small-world networks
with 7 and 9 neurons, respectively (referred as cases 7–8).
These small-world networks are constructed from regular
network models with 4 nearest neighbors and each connec-
tion is rewiredwith probability 0.5. Similar to cases in regular
networks,we construct bursting propagation graphs as shown
in Fig. 7a3, b3, based on neuronal initial potentials (listed in
Table 2), neuronal network, and their spiking time difference
TD. As expected, primary neurons burst first and propagate
to the secondary, and then tertiary neurons.

To examine the influence of upper-layer neurons on one
neuron, we count the number of those upper-layer neurons
connected to it from the bursting propagation graph and
denote the number as dr (listed in Table 2). We note that
tertiary neurons {2, 8} in case 8 receive stimuli from 3 sec-
ondary neurons (i.e., dr2,8 = 3), which is larger than dr0 = 2
for neuron 0. Figure 7b4 shows that neurons {2, 8} burst ear-
lier than neuron 0. This agrees with that neurons receiving
more stimuli from upper layer would burst earlier.

In both cases 7 and 8, there is only one primary neuron,
meaning secondary neurons receive stimulus from the pri-
mary neuron equally. However, we observe different bursting
times among secondary neurons fromFig. 7a4, b4. In contrast
to regular networks, neurons in small-world networks may
have different degrees.We consider the potential influence of
the connection degree in bursting times and list their degrees
as d in Table 2. In case 7, secondary neurons have the degree
order d4 < d3,5 < d1,2. Interestingly, we note that secondary
neurons burst sequentially consistent with their degree order
in case 7. Such consistency between connection degrees and
bursting hierarchy is also observed for secondary neurons in
case 8. For these secondary neurons, they all connected to

the same primary neuron, thus we consider the effect from
primary neuron on their spiking is the same; the slightly dif-
ferent spiking times within secondary neurons might be the
minor effects of interactions with other neurons (except the
primary neuron). We remark here that neurons with the same
degree do not necessary burst at the same time. For instance,
tertiary neurons 2 and 8 in case 8, have the same degree
(d2,8 = 3) and are connected to secondary neurons {1, 3, 7}
and {1, 3, 4}, respectively, from Fig. 7b3; this might be that
secondary neuron 7 bursts earlier than neuron 4, and pro-
motes neuron 2 (which is connected to neuron 7) to burst
earlier than neuron 8 (which is connected to neuron 4).

We next examine small-world networks with large num-
ber of neurons. Figure 8 shows an example of a small-world
network with 20 neurons. With some chosen initial mem-
brane potentials, the constructed bursting propagation graph
and simulated locked phase are shown in Fig. 8b, c. We
observe that the upper-layer neurons burst earlier than lower-
layer neurons. In this example, all the secondary neurons are
connected to the only primary neuron. We list the degree
of secondary neurons in ascending order in Table 3. Com-
bined with Fig. 8, we note that neurons with smaller degree
burst earlier. Tertiary neurons are more complex than sec-
ondary neurons, as they may connect to different groups of
upper-layer neurons and may also have different connection
degrees. In this example, tertiary neurons have 4 different
dr, as given in Table 4. Neuron 19 receives stimulus from
only one secondary neuron (with dr19 = 1), and bursts latest
among the tertiary neurons. Neurons {5, 10} have dr5,10 = 5
and both connect to secondary neuron {6, 9, 12, 14, 17}.
Neuron 5 bursts earlier than neuron 10 which is consis-
tent with their connection degree order d5 < d10. Neurons
{2, 4, 8, 11, 16, 18} receive stimuli from equal number of
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(a)
(a1)

(a3) (a4)

(a2) (b1)

(b3) (b4)

(b2)

(b)

Fig. 7 a1, b1 show the topological structure of small-world networks
with 7 and 9 neurons as cases 7 and 8, respectively. a2, b2 show spiking
time difference TD(k) compared to neurons in uncoupled network with
the same initial membrane potentials given in Table 2. Note that the

TD5,7(k) curves are overlapped. a3, b3 show corresponding bursting
propagation graphs. a4, b4 show raster plots of locked phases; black
(red) lines highlight the same (different) spiking times

Table 2 Initial membrane
potential values Vi (in unit of
mV), degree di , and connected
neuron number dri from upper
layer based on the bursting
propagation graphs in Fig. 7 for
each neuron i

Primary Secondary Tertiary

Case i 6 1 2 3 4 5 0

Vi −51.9 −69.7 −70.0 −63.1 −64.6 −55.7 −63.3

7 di 5 5 5 4 2 4 3

dri – 1 1 1 1 1 3

i 6 1 3 4 5 7 0 2 8

Vi −52.6 −61.6 −56.1 −68.2 −69.1 −69.1 −69.7 −67.2 −63.6

8 di 5 6 4 5 4 4 2 3 3

dri – 1 1 1 1 1 2 3 3

secondary neurons (though not necessary the same group);
similar for neurons {0, 7, 1, 3}. In particular, neurons {2, 4}
share the same group of connected secondary neurons (and
similarly neurons {5, 10}); their bursting order is consis-
tent with their degree. Neurons {11, 16} (similarly neurons
{2, 8}) connect to the same number but different groups of
secondary neurons. For instance, neuron 11 receives stim-
uli from {9, 14, 15}, while neuron 16 receives stimuli from
{12, 14, 15}; earlier bursting of neuron 12 than neuron 9
together with d16 < d11 leads to earlier bursting of neuron
16 than neuron 11.

These results suggest that neurons withmore stimuli (here
larger dr) would burst earlier than others in the same layer.
For neurons in the same layer receiving effectively the same
stimuli (i.e., two neurons share effectively the same bursting
time of connected upper-layer neurons), those with smaller
degree would then burst earlier. For neurons in the same layer

Table 3 Degree (di ) and bursting order in a small-world network given
in Fig. 8a for each secondary neuron i

Neuron i 17 6 12 9 14 15

Degree di 7 8 8 9 10 11

Bursting order 1 2 2 4 5 6

receiving the same number of stimuli and having the same
degree, those receive stimuli earlier (e.g., connected upper-
layer neurons burst earlier) would burst earlier.

4 Conclusion

In this manuscript, we study bursting synchronization and
the corresponding locked phases of steady bursting patterns
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(a) (b) (c)

Fig. 8 a A small-world network of 20 neurons. b Bursting propagation graph of a large small-world network given in a. c Raster plot of locked
phase in this small-world network; only first spiking times in the burst are shown for visual effects; black (red) lines highlight the same (different)
spiking times

Table 4 Degree of tertiary
neurons di , received number dri
from upper-layer neurons base
on the bursting propagation
graph Fig. 8b, and bursting
order for each tertiary neuron in
a small-world network given in
Fig. 8a

Neuron i 5 10 4 18 2 8 16 11 0 7 1 3 19

dri 5 5 3 3 3 3 3 3 2 2 2 2 1

di 9 10 5 8 9 7 7 8 7 6 7 11 7

Bursting order 1 2 3 4 5 5 5 8 9 9 11 12 13

in the aEIF neuronal network model. In particular, we focus
on influence from initial membrane potentials, together with
network connections. Our simulations suggest that bursting
synchronization could be saturated when the initial poten-
tial difference is sufficiently large by coupling. In order to
measure the effect of network coupling on neuron bursting
rhythm, we calculate the spiking time difference TD between
coupled and uncoupled networks with the same initial poten-
tials.We focus on caseswhereTD � 0.Combinedwith raster
plots of locked phases, we find that the neurons which have
the highest initial potential always bursts first and their TD is
approximately equal to 0. We grade neurons in the network
as primary, secondary and tertiary neurons etc, and construct
corresponding bursting propagation graphs; neurons in the
upper layer burst earlier than those in lower layers.Moreover,
our simulation results suggest that among the same layer: (1)
neurons receive more stimuli (larger dr) from upper-layer
neurons would burst earlier; this is consistent with that the
onset of synchronydepends on the number of signals received
by each neuron (Belykh et al. 2005); (2) with effectively the
same stimuli from upper layers, neurons with smaller degree
would then burst earlier; (3) for neurons receiving the same
number of stimuli fromupper layer and have the samedegree,
neurons would burst earlier if their connected upper-layer
neurons burst earlier.

For large networks, neurons may receive the same num-
ber but different groups of stimuli from upper layer and have
different connection degree; such as neurons {2, 8} in the
small-world network (Fig. 8 and Table 4). In this case neuron
2 receives stimuli from {6, 12, 15}, whereas neuron 8 receive

stimuli from {6, 9, 15}; besides the common upper-layer neu-
rons {6, 15}, neuron 2 is connected to the upper-layer neuron
12 which bursts earlier than neuron 9; however neuron 2
has larger degree than neuron 8 (i.e., d2 > d8); the combined
influence of degree and the upper-layer neurons in such cases
remain unclear in determining their bursting hierarchy.

Our results are mainly based on TD � 0, and this situa-
tion occurs when initial potentials of neurons are relatively
scattered, or large initial potentials are close to each other. In
cases with TD > 0 for some neurons (i.e., network connec-
tions effectively delay neurons to burst), how to determine
primary neurons and bursting propagation graph remain to
be investigated in the near future.

Previous studies show that increasing the number of net-
work connections can enhance synchronization (Fink 2016).
They consider heuristically that with more connections, the
average shortest path length decreases,which enhances infor-
mation transmission within a network, thereby enhancing
synchrony. Using our bursting propagation graph, we could
explain this as follows: with an equally fixed number of
neurons, networks with more connections would lead to
fewer layers, and neurons in the same layer burst at simi-
lar times; thus, smaller synchronization parameter δ would
be expected with fewer layers. In our regular network cases,
we do observe fewer layers (e.g., cases 5 and 6) in the bursting
propagation graphs have smaller synchronization parameter
(given in Table 1).

Last but not least, the model we consider focuses on con-
nection given by excitatory synapses. However, there are also
inhibitory synapses (Protachevicz et al. 2019, 2020) that
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inhibit the next neuron to generate the action potential. It
would be interesting to extend our model with inclusion of
both excitatory and inhibitory synapses to examine the influ-
ence of initial membrane potentials on the phase locking as
well as bursting hierarchy of neurons.
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