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Abstract
Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It
is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying
mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such
as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via
a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model
replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are
described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD.
We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation.
This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes.
We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both
the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation
of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance
between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime
of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially
homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.
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1 Introduction

Most sounds, speech sounds in particular, make sense only
when perceived against the backdrop of what came imme-
diately before, in a time window extending some seconds
into the past—the so-called psychological present (Michon
1978). The task of the auditory system is to retain information
and to integrate it with representations of incoming stimuli.
This process of memory and integration is likely to occur
in auditory cortex, whereas the subcortical auditory path-
way carries out the analysis of spectral structure and sound
source localisation (Nelken 2004). While our understanding
of the functioning of auditory cortex is limited, especially
in comparison to that of the visual cortex (King and Nelken
2009), a number of memory phenomena have been iden-
tified in auditory cortex that operate on the time scale of
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hundreds of milliseconds to seconds. As reviewed below,
these include context-sensitivity: the dependence of a neu-
ronal response not just on the eliciting stimulus but also on
preceding stimuli—the historical context. Further, the mem-
ory phenomena observed in the physiological responses of
auditory cortex have been linked to behaviourally measured
sensory memory (Tiitinen et al. 1994) and working memory
(Brechmann et al. 2007; Huang et al. 2016).

The simplest form of context sensitivity can be observed
by repeating the stimulus within a time window on the order
of seconds. The repeated stimulus elicits an auditory response
with a reduced amplitude, with the reduction tending to be
inversely related to the stimulus onset interval (SOI). This
phenomenon is called adaptation, and it is also known as
repetition suppression or habituation (Megela and Teyler
1979; Pérez-González and Malmierca 2014). Adaptation is
observed in both non-invasive and invasive measurements.
When adaptation does not generalise to all stimuli, a neuron
can produce a large-magnitude response to a stimulus that is
different from the repeated one. This is known as stimulus-
specific adaptation (SSA), a phenomenon seen in the primary
auditory cortex of animal models (Ulanovsky et al. 2003,
2004). In magnetoencephalography (MEG) and electroen-
cephalography (EEG) measurements in humans, adaptation
manifests itself most clearly in variations of the most promi-
nent auditory evoked response, the N1m or N1, respectively.
Here, we use N1(m) to denote both the MEG and EEG vari-
ety of the response. Several studies have shown that the peak
amplitude of the N1(m) attenuates with stimulus repetition
and is inversely related to stimulation rate (see, for example,
Davis et al. 1966; Hari et al. 1982; Imada et al. 1997; Ioan-
nides et al. 2003; Loveless et al. 1996; Lü et al. 1992; Lu et al.
1992; McEvoy et al. 1997; Megela and Teyler 1979; Nelson
et al. 1969; Sable et al. 2004; Wang et al. 2008; Zacharias
et al. 2012). Further, this adaptation develops rapidly in that
already the second stimulus elicits a diminished response
(e.g., Budd et al. 1998; May and Tiitinen 2004; Rosburg
et al. 2010). The monotonic increase of the N1(m) ampli-
tude as a function of SOI which then plateaus out at large
SOI (>5 s) can be approximated with an exponentially satu-
rating function. The time constant of this function provides
an estimate of the time span it takes for the auditory system to
recover from adaptation (Lü et al. 1992; Lu et al. 1992). The
picture becomes complicated when short SOIs of under 500
ms are used. In this case, the SOI dependence of the N1(m)
amplitude can take on a non-monotonic v-shape (Budd and
Michie 1994; Wang et al. 2008; Zacharias et al. 2012), and
the rapid presentation of tones elicits a sustained response
upon which the diminished N1(m) responses ride (May and
Tiitinen 2004, 2010).

Adaptation due to stimulus repetition can be found in
all parts of the auditory system. It tends to have a shorter
recovery time subcortically than in cortex, especially in the

lemniscal pathway (for a review, see, Pérez-González and
Malmierca 2014). For example, the auditory nerve recov-
ers within 25-35ms (Yates et al. 1983). In the superior
olivary complex, both the onset and the recovery from adap-
tation have respective time constants of 20ms and 106ms
(Finlayson and Adam 1997). Studies using relatively high
stimulus rates of above 3Hz have reported adaptation in the
inferior colliculus (IC) (Palombi and Caspary 1996; Nud-
ing et al. 1999). For the majority of units in the IC, SSA
requires SOIs shorter than 250ms (Pérez-González et al.
2005; Malmierca et al. 2009). However, Zhao et al. (2011)
observed SSA in the IC even with a SOI of 1 s, although
these authors were not able to determine whether the units
were in the lemniscal or non-lemniscal pathway. The lemnis-
cal division of the auditory thalamus shows SSA only with
SOIs shorter than 250ms, although SSA could be observed
in the non-lemniscal thalamus even with SOIs of up to 2 s
(Antunes et al. 2010). Neurons in auditory cortex display
SSA with SOIs up to several seconds (Tasseh et al. 2011).

The most plausible mechanism underlying cortical adap-
tation is short-term synaptic depression, STSD (Wehr and
Zador 2003, 2005), a form of synaptic plasticity based on
vesicle depletion as well as inactivation of release sites and
calcium channels (Fioravante and Regehr 2011). This type
of plasticity has decay times of hundreds of milliseconds to
several seconds, and this coincides with the time course of
cortical adaptation (Ulanovsky et al. 2004). STSD is also
present in subcortical stations (for a review, see, Friauf et al.
2015). STSD can contribute to efficient information trans-
fer between two neurons (Benda et al. 2005; Salmasi et al.
2019), to temporal filtering occurring at synapses (Fortune
and Rose 2001; Rosenbaum et al. 2012), and to gain con-
trol (Abbott et al. 1997). Also, recovery from STSD during
communication pauses has been linked to maximising the
effect of post-pause communication signals (Kohashi et al.
2021). Computational models show that STSD accounts for
different forms of context sensitivity in the AC (Loebel et al.
2007; May and Tiitinen 2010; Mill et al. 2011; Wang and
Knösche 2013; May and Tiitinen 2013; Yarden and Nelken
2017; Kudela et al. 2018). Further, simulations show that
STSD can function as a memory mechanism that allows for
the representation of temporally extended, complex auditory
information such as speech and species-specific communi-
cation sounds (David and Shamma 2013; May and Tiitinen
2013; Motanis et al. 2018). In sum, rather than signifying
mere neuronal fatigue, adaptation might instead reflect the
fundamental dynamics of synaptic depression which endows
the auditory cortexwith the ability to represent auditory infor-
mation across different time scales (Benda 2021).

Adaptation of the N1(m) has been linked to information
processing in auditory cortex. The recovery time from adap-
tation is a subject-specific parameter, and it correlates well
with the time span ofworkingmemory in a forced-choice dis-
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crimination task (Lü et al. 1992; Lu et al. 1992). Adaptation is
also themajor determinant in the evoked responses elicited in
the oddball paradigm. Here, standard stimuli presented with
a high rate elicit a smaller event-related field (ERF) response
than the infrequent deviant stimuli (Butler 1968), and the
difference in response amplitude is termed the mismatch
negativity (MMN) (Näätänen et al. 1978). The mismatch
response is brimming with functional significance: it might
serve the orienting reflex, it is linked to a large number of
memory and learning phenomena, and it is altered in several
clinical conditions ( for reviews, see, Näätänen 1990, 1992;
May and Tiitinen 2010). Adaptation is likely to be at the root
of the mismatch response both directly and indirectly. First,
the differential between the deviant and standard response
reflects the high and low level of adaptation of the N1(m)
response elicited by the standards and deviants, respectively,
due to their different presentation rates (Butler 1968; May
et al. 1999;MayandTiitinen 2010). Further,May et al. (2015)
used simulations of auditory cortex to show that short-term
synaptic depression has multiple consequences: not only
does it cause the adaptation of the response elicited by the fre-
quently presented standards, but it could be the mechanism
which integrates auditory information across time more gen-
erally. This integration shows up as context-sensitive single-
and multi-unit responses to tone pairs (Brosch et al. 1999;
Brosch and Schreiner 2000), and as mismatch responses in
the ERF to deviations in tone-sequence structure (Näätänen
et al. 1993). In this view, STSD not only underlies repetition
suppression and themismatch response, but it also allows the
auditory cortex to represent complex, temporally-evolving
sounds. Note that the adaptation-related explanation of the
mismatch response (May and Tiitinen 2010;May et al. 2015)
is only one alternative. Näätänen (1990, 1992) proposed that
MMN is unrelated to adaptation of the evoked response,
instead reflecting a process separate from that generating
the N1(m). Also, the currently dominant predictive coding
explanation suggests that repetition suppression is due to a
top-down, inhibitory prediction signal matching the bottom-
up sensory signal, and that the MMN is an indication of
prediction error when the two signals do not match (Friston
2005; Bastos et al. 2012) (however, see, Rescorla 2021; May
2021).

Observing adaptation in the human brain generally requi-
res the use of non-invasive techniques. MEG and EEG are
well suited to this because they have a high temporal reso-
lution of milliseconds, the time scale of neuronal responses.
However, these methods have the drawback that it is difficult
to identify the sources of the activity and their distribu-
tion. The response to a stimulus represents the simultaneous
activation of around a million synapses on pyramidal cells
forming an intricate network across auditory cortex, but what
we observe is a spatial average of this activity (Hämäläi-
nen et al. 1993). Therefore, MEG and EEG measurements

in themselves reveal very little of the underlying neuronal
dynamics. One way to move forward beyond observation is
to use computational modelling. The aim of such modelling
needs not be a faithful reproduction of the brain. Instead,
modelling attempts to explain experimental observations by
capturing the key mechanisms of the system under investi-
gation. While no model should be required to duplicate the
modelled system, a useful model is a device which reveals
something about the system which would otherwise remain
hidden, buried in the experimental data.

In our previous work (Hajizadeh et al. 2019, 2021), we
sought to understand the generation of the event-related field
in terms of a dynamical system with the spatial organisation
of the auditory cortex (Kaas and Hackett 2000; Hackett et al.
2014). Our starting point was the model introduced by May
and Tiitinen (2013) and May et al. (2015). This describes
auditory cortex as a system of hundreds of units represent-
ing cortical columns, distributed across multiple fields in the
core, belt, and parabelt areas. Synaptic strengths are dynam-
ically modulated by STSD so that the interactions between
the units become dependent not only on the current stimu-
lus but also on the stimulation history. As explained above,
this model captures the phenomenology of context sensitiv-
ity of auditory responses. However, it is highly non-linear
and analytically impenetrable, and can only be studied one
simulated trajectory at a time. Therefore, in Hajizadeh et al.
(2019), we made the original model tractable by assuming
that the input-output relationship of the model unit is lin-
ear and by using fixed connection strengths thereby ignoring
the effects of STSD. This allowed us to study the explicit
solutions of the dynamical equations of the model and to
characterise the system in terms of its oscillatory properties.
In this view, while the cortical column is the system’s struc-
tural unit, the dynamical building block is the normal mode:
a damped harmonic oscillator emerging out of coupled exci-
tation and inhibition.

The approach in Hajizadeh et al. (2019), which we also
adopt here, is not just to replicate the ERF so as to explain it
in terms of parameter dependencies. Rather, we are exploring
and interpreting ERF generation in the context of a funda-
mentally new view on AC activity: First, auditory cortex
behaves as a set of independent oscillators—normalmodes—
each characterised by a specific frequency, decay rate, and
spatial profile. These oscillators do not reside in any one unit
of auditory cortex but, rather, each oscillator is spread across
the whole auditory cortex. Conversely, the activity of each
unit is a weighted superposition of all the normal modes
of the system. Second, the neural activity observed at the
local level of individual columns as well as that observed
on the global level as the ERF are both explicitly depen-
dent on the anatomical structure of the entire AC. Third, the
spatiotemporal pattern of the cortically generated ERF repre-
sents a superposition of all the oscillating normal modes. The
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ERF in the normal-mode picture is therefore fundamentally
a system property of thewhole AC. In a sense, this interpreta-
tion is an alternative to the classical equivalent-current dipole
(ECD)description of discrete (see, for example, Scherg 1990;
Mosher et al. 1992; Scherg and Berg 1996) and distributed
(see, for example, Dale and Sereno 1993; Hämäläinen and
Ilmoniemi 1994; Mosher and Leahy 1999) source modelling
approaches in which ERFs are considered to arise from a lin-
ear sum of multiple spatially distributed point-like sources
(ECDs). The magnetic fields generated by ECDs are deter-
mined by the physics of electromagnetic fields described
by the quasi-static Maxwell’s equations. Importantly, the
ECD approach does not account for the dynamical interac-
tion between the sources but instead limits the explanation to
which location is active at any time point. The normal-mode
approach, however, lays emphasis on the ERF as an emer-
gent property of the systems dynamics of the entire auditory
cortex. In this normal-mode view, adaptation is the result of
a complete reorganisation of AC dynamics rather than of a
reduction of activity in discrete sources. From this point of
view, the spatially distributed normal mode is an even more
fundamental building block of the ERF than the individual
source.

The aim of the current study is to understand adapta-
tion of the ERF. Building on our previous work presented
in Hajizadeh et al. (2019), May and Tiitinen (2013), and
May et al. (2015), we focus on this issue by extending nor-
mal mode analysis when the stimulus is repeated. To this
end, we first provide general solutions to the state equations
of the model, without the constraints that were necessary in
our previous study (Hajizadeh et al. 2019). This allows us
to reintroduce short-term synaptic depression into the model
and to probe its adaptation behaviour when stimuli are pre-
sented at different repetition rates. Comparisons of model
simulations with experimental MEG data are made. We go
beyond describing adaptation of ERFs merely as an attenu-
ation of the ERF response amplitude. Instead, we describe
how the normal modes of the network dynamics, that is, the
dynamics of the entire auditory cortex, changes as a result
of stimulus repetition. Further, we investigate how adapta-
tion lifetime depends on other factors than the dynamics of
synaptic depression, namely gross anatomical structure and
the balance between excitation and inhibition.

2 Unfurling themodel of auditory cortex

2.1 Model description

We start with the model of AC, developed by May and col-
leagues (May and Tiitinen 2010, 2013; May et al. 2015;
Westö et al. 2016). The model is based on the anatomical
core-belt-parabelt organisation of AC. This coarse struc-
ture of auditory areas is similar across mammals, although

species strongly differ in the number of auditory fields per
area and the connectivity between fields (Kaas and Hack-
ett 2000). The dynamics of the model were inspired by
the work of Wilson and Cowan (1972) and Hopfield and
Tank (1986). Its basic unit is a simplified description of
the cortical column and comprises a mean-field excitatory
and a mean-field inhibitory cell population that are charac-
terised by the state variables u(t) = (u1(t), . . . , uN (t))�
and v(t) = (v1(t), . . . , vN (t))�, respectively, where N is the
number of columns. Moreover, the dynamics of the excita-
tory state variables is also coupled with the synaptic efficacy
q(t) = (q1(t), . . . , qN (t))�. The dynamics of the model are
then governed by the following set of coupled first-order dif-
ferential equations (May and Tiitinen 2013; May et al. 2015;
Hajizadeh et al. 2019)

τm u̇(t) = −u(t) + WeeQ(t) · g[u(t)] − Wei · g[v(t)] + iaff,e(t),

(1)

τm v̇(t) = −v(t) + Wie · g[u(t)] − Wii · g[v(t)] + iaff,i(t), (2)

q̇(t) = − q(t)g[u(t)]
τo

+ 1 − q(t)

τrec
, Q(t) = diag(q(t)). (3)

Here, τm is the membrane time constant. The connections
between excitatory (e) and inhibitory (i) cell populations are
organised according to the anatomical structure of auditory
cortex (Kaas and Hackett 2000) and are expressed by the
four weight matrices Wee, Wei, Wie, and Wii. The elements
of thematricesWee andWie describe excitatory-to-excitatory
and excitatory-to-inhibitory connections, respectively, and
encompass all the connections between the columns. Note
that only Wee includes long-range connections between
areas, and Wie describes lateral inhibition. Wei and Wii

comprise local inhibitory-to-excitatory and inhibitory-to-
inhibitory connections, which only occur within a column,
and thesematrices are, thus, diagonal. The firing rates g[u(t)]
and g[v(t)] are component-wise sigmoid functions of the
form g[x] = tanh[αx] where x stands for u(t) or v(t). The
parameter α is a scalar which determines the sensitivity of
the firing rate to the value of the respective state variable. The
variables iaff,e(t) and iaff,i(t) are time-dependent subcortical
afferent inputs. Equation (1) indicates that the excitatory-to-
excitatory connections are not static and are modulated by
short-term synaptic depression, which is defined as d(t) =
1 − q(t). This is expressed by the matrix multiplication of
the elements of Wee with the synaptic efficacy Q(t), which
is a time-dependent diagonal matrix. Further, τo and τrec are
the time constants of the release and the replenishment of
neurotransmitters at each synapse; and 1 is the 1-vector of
size N . Note that q(t) is also a vector and the multiplication
between the vectors is a component-wise operation. Equa-
tion (3) implies that the synaptic strength between pre- and
post-synaptic cell populations depends only on the activity of
the state variable u(t) of the pre-synaptic excitatory cell pop-
ulation. Inclusion of synaptic plasticity as it is given in Eq. (3)
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in the model was inspired by Tsodyks and Markram (1997)
and Loebel et al. (2007). With known connectivity matrices
Wee, Wei, Wie, and Wii as well as the input terms iaff,e(t)
and iaff,i(t), the nonlinear system described by Eqs. (1)–
(3) can be solved numerically to provide a picture of the
spatiotemporal activity of AC.

There is a richness of dynamical behaviour that the model
can display. This is because the diagonal entries of the con-
nectivity matrices determine the oscillator properties of each
column. For values used in our parametrisation (see Table 1),
any single column without coupling and input behaves as a
damped oscillator. For larger values on the diagonal elements
of Wee and Wei, self-sustained oscillations can appear. For
the case of damped oscillators, we may use linear firing rates
g[x] = αx such that Eqs. (1) and (2) with fixed synaptic
efficacy q(t) = q behave essentially as a network of coupled
linear filters. However, when synaptic efficacy is a dynamical
variable due to STSD, the full model represented in Eqs. (1),
(2), and (3) remains nonlinear through the Q(t)u(t) terms in
Eqs. (1) and (3).

2.2 Solution by normal modes

Hajizadeh et al. (2019) demonstrated that, under certain
assumptions, the solutions for Eqs. (1) and (2) can be written
as a linear combination of normal modes. These assumptions
are that the firing rate is linear (g[x] = αx) ( see also, Allen
et al. 1975; Katznelson 1981;May andTiitinen 2001), synap-
tic efficacy is constant, i.e., Q(t) ≡ I , and the connection
matrices are symmetric. Hajizadeh et al. (2019), then, real-
ized eigenvalue decomposition by first transforming Eqs. (1)
and (2) into second-order differential equations which refer
to the oscillating nature of brain activity.

In contrast to the approach of Hajizadeh et al. (2019),
we strive here for general solutions of Eqs. (1) and (2) by
including the dynamics of STSD and without a diversion via
a system of second-order differential equations. To this end,
the homogeneous part of Eqs. (1) and (2) is rewritten in the
form of a standard linear system

(
u̇(t)
v̇(t)

)
= M

(
u(t)
v(t)

)
with

M = 1

τm

(
αWeeQ − I −αWei

αWie −αWii − I

)
,

(4)

where I is the identity matrix. The general solution to Eq. (4)
is then given by linear combinations

(
u(t)
v(t)

)
=

2N∑
n=1

cnexp(λnt)

(
xn
yn

)
, (5)

where λn ∈ C, n = 1, . . . , 2N are the eigenvalues of the
coefficient matrix M in Eq. (4). The eigenvectors

(
xn, yn

)�

are the normal modes, where xn and yn represent the collec-
tion of the u and v components of the n-th eigenvector. For
a specific initial condition (u(0), v(0))� = (u0, v0)�, the
complex coefficients cn are given as scalar products

cn =
〈(

u0
v0

)
,

(
ξn
ηn

)〉
, (6)

with the corresponding left eigenvectors
(
ξn, ηn

)� of the
coefficientmatrixM . For all reasonable choices of theweight
matrices in Eq. (4), the matrix M is stable, that is, all the
eigenvalues λn = γn + iωn for a given angular frequency ωn

have a decay rateγn < 0. Ifωn �= 0, the normalmodedynam-
ics are of the underdamped type and, thus, the eigenvalues
and their corresponding eigenvectors appear in complex
conjugate pairs. For real initial values (u(0), v(0))�, the cor-
responding pair of complex coefficients cn has to be complex
conjugate as well. The modulus of the complex coefficient
cn is the initial amplitude of the mode whilst its argument
provides the initial phase. If ωn = 0, the normal modes are
of the overdamped type, and the eigenvectors together with
their coefficients are real.

2.3 Dynamics of STSD and the slow-fast
approximation

Here, we study adaptation dynamics in AC using a paradigm
where the AC is excited by a sequence of tones periodically
delivered S times with an identical stimulus onset interval
between two consecutive stimuli.With repetitive stimulation,
the system responds most strongly to the first stimulus; we
refer to this condition as the initial state. Within the next few
stimuli, STSD increases and, therefore, the response mag-
nitude rapidly decreases and finally approaches a constant
value.Wecall this state of the system theadapted state, where
further incoming stimuli induce only small changes in the
response. The adapted state is described by a balance between
fast depression and recovery from depression—governed by
the time constants in Eq. (3)—and strongly depends on the
temporal pattern of the stimulation.Without any further stim-
ulation, the system recovers back to its initial state with the
time constant τrec, which is much larger than τo.

Assuming that the stimulus duration is short compared to
the time scales of the system, we can include the stimuli in
our model as input functions of the form
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iaff,e(t) = a
S∑

s=0

δ(t − ts), (7)

where the s-th stimulus appears at ts = s ·SOI, and the vector
a gives the input strengths at each column in the network.
Here, only the first element of a is non-zero. That is, the
afferent input occurs only and specifically in the excitatory
cell population of IC, i.e., iaff,i(t) = 0. From IC the signal
propagates to the AC via thalamus. Note that, in principle,
the model is able to deal with any type of input function.
However, describing the stimuli as delta functions allows us
to treat the impact of the stimuli as jumps of u(t) and v(t) at
the stimulation times ts , while in the time intervals between
the stimuli, we can use the homogeneous Eq. (4). Together
with further slight simplifications of the model, which we
describe below, thiswill enable us to perform a stimulus-wise
normal mode analysis of the system as it adapts to repetitive
stimulation.

Since τo � τrec, the dynamics of q(t), given in Eq. (3),
is characterised by two different time scales: First, there is
a fast drop-off (−1/τo)(q(t)g[u(t)]) occurring directly after
a stimulus when the firing rate g[u(t)] is non-zero. Second,
there is a slow recovery phase when the firing rates g[u(t)]
have decayed and Eq. (3) is governed by the recovery term
(1/τrec)(1− q(t)). Following the general mathematical the-
ory for slow-fast systems (see, for example, Kuehn 2015),
we can use this time-scale separation to introduce a slow-fast
approximation of the STSD process. We keep the synaptic
efficacy at a constant value Q(t) = Qs in each time interval
t ∈ [ts, ts+1] between two consecutive stimuli and update it
together with the stimulus-induced jumps of u(t) and v(t) at
the stimulation times ts .

For the updating Qs �→ Qs+1, we separate the processes
of fast drop-off during the stimulus-induced activity from
the slow recovery after the stimulus-induced activity. The
fast drop-off Fs(qs) is obtained by integrating the first term
in Eq. (3)

Fs(qs) = qsexp
(

− 1

τo

∫ ts+1

ts
g[u(t ′)]dt ′

)
, (8)

whereby we treat neurotransmitter release as a process inde-
pendent of vesicle replenishment. Inserting this as initial
value into the slow recovery process, which can be explicitly
integrated, we obtain the combined update as given by

qs+1 = 1 − (
1 − Fs(qs)

)
exp

(
− ts+1 − ts

τrec

)
. (9)

Inserting the general solution from Eq. (5) in Eq. (8),Fs(qs)
can be rewritten as

Fs(qs) = qs

2N∏
n=1

exp

(
−cn,s

(
exp

(
λn,s (ts+1 − ts)

) − 1
)

τoλn,s
xn,s

)
.

(10)

Note that for each time interval [ts, ts+1], we have to use
the step-wise adapting coefficient matrix Ms = M(Qs) to
recalculate the normal modes

(
xn,s, yn,s

)�, the eigenvalues
λn,s , and the coefficients cn,s for which we also need the left

eigenvectors
(
ξn,s, ηn,s

)�. Further, we assume that between
two consecutive stimuli the state variables u(t) and v(t) have
decayed to zero so that the next stimulus induces an abrupt
increase of u(t) and v(t). This means that at each time point
ts , based on the stimulus history, the dynamics of Eq. (4)
are reparameterised by updating Qs , and u(t) and v(t) are
set to a new stimulus-induced starting value. In particular,
although the input aδ(t − ts) is the same at the beginning of
each interval, the effective input to the normal modes differs.
It is determined by the adapting connectivity pattern of the
network, which itself depends on the stimulus history by
means of STSD. In this way, the slow-fast approximation
allows for stimulus-wise normal mode analysis of Eq. (4)
in each time interval t ∈ [ts, ts+1] between two consecutive
stimuli, where the synaptic efficacy variables Q(t) = Qs

stay piecewise constant. We will use this later as a tool for
analysing the STSD induced changes in the generation of the
ERF signals.

2.4 An auditory cortexmodel with a simplified
structure

For the simulations presented in this work, we used a model
with a strongly simplified anatomical structure that encom-
passed two subcortical areas, viz. IC and thalamus, and three
cortical areas representing the core, the belt, and the parabelt
(see Fig. 1a). For reasons of simplicity, each of the five areas
consistedof onlyone auditoryfield,which, in turn, comprised
just one column with an excitatory and an inhibitory cell
population. A central feature of this network is its serial con-
nectivity, i.e., only neighbouring areas are directly connected
with each other via feedforward and feedback connections, as
illustrated for the connection matrixWee in Fig. 1b. The only
type of connection between two columns are excitatory-to-
excitatory connections. All other connections are assumed to
be local and existingwithin a single area. Therefore, their cor-
responding connectionmatrices are diagonal and of the order
five given by Wie = w

(d)
ie I , Wei = w

(d)
ei I , and Wii = w

(d)
ii I .
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a b

Fig. 1 Schematic representation of the anatomical structure of the
model. a The structure is divided into subcortical and cortical regions.
The subcortical areas IC and thalamus provide the afferent input to the
AC. The AC consists of the serially organised core, belt, and parabelt
areas. There are therefore a total of five areas, and each area is rep-
resented by a population of excitatory and a population of inhibitory
neurons; each population is described by a single state variable. Addi-

tionally, the connections from each excitatory population aremodulated
by STSD. Thus, the model is a 15-dimensional system of coupled
first-order differential equations. b The structure is represented in the
connection matrix Wee with non-zero matrix elements w

(ff)
ee (feedfor-

ward, blue), w(fb)
ee (feedback, red), and w

(d)
ee (lateral, yellow). Note that

the other three weight matrices, not shown here, are diagonal square
matrices of order five

Figure 2a shows an example of the model output in terms
of the state variable u(t) based on the slow-fast approxi-
mation for a repeated stimulation of the network with SOI
= 0.5 s. The parameters used for the computation are sum-
marised in Table 1. For each stimulus, the peakmagnitudes of
u(t) gradually decrease—and the corresponding peak laten-
cies increase—as one moves up the hierarchy from the core
to the parabelt. The excitatory-to-excitatory connections of
Wee weaken due to STSD (i.e., due to a lowering of synaptic
efficacy Q in Eq. (4)). Consequently, in each area, the peak
amplitude of u(t) decreases across stimulus presentation.

Figure 2b shows the state variable u(t) from the numeri-
cal simulations with nonlinear (blue) and linear (black) firing
rates, and from the slow-fast approximation (red).All simula-
tions were computed using the same set of model parameters
displayed in Table 1 and the identical input function given in
Eq. (7). There is a close correspondence between the simu-
lations: the simplifications induced by linear firing rates and
the slow-fast approximation have no relevant impact on the
waveforms and their adaptation. The evolution of the corre-
sponding STSDvariables d(t) = 1−q(t) is shown in Fig. 2c.
Again, there are only minor discrepancies between the non-
linear (blue) and linear (black) solutions. For the slow-fast
approximation, the STSD variables are updated only at the
stimulation times ts (red points). Figure 2d illustrates the
operation of the slow-fast approximation where, in Eq. (4),
the evolution of u(t) and v(t) is computed using the piece-
wise constant values (green) of the STSD process. Note that,
as explained in the Sect. 2.3, the combination of the approx-
imations for the fast drop (Eq. (8)) and the slow recovery
(Eq. (9)) (red dashed) are only used to obtain the values
of qs which stay piecewise constant during the evolution

of u(t) and v(t). Note also that the lemniscal subdivisions
of IC and thalamus have much faster recovery time con-
stants compared to the cortical regions (Asari and Zador
2009; Pérez-González andMalmierca 2014; Ulanovsky et al.
2004). Therefore, in our simulations, IC and thalamus do
not adapt, i.e., the corresponding values of synaptic effi-
cacy Q(t) for the two subcortical areas are set to unity in all
simulations. Figure 2 demonstrates that the slow-fast approx-
imation, described in Sect. 2.3, provides good estimations of
the numerical simulations of Eqs. (1), (2), and (3). There-
fore, it can be used in lieu of numerical solutions to study the
adaptation dynamics of AC.

2.5 ComputingMEG signals

MEG signals are generated mainly by primary currents
running in the apical dendrites of synchronously active pyra-
midal cells in the cortex (Hämäläinen et al. 1993). The apical
dendrites are locally aligned with each other and point in a
direction perpendicular to the cortical surface. When a por-
tion of the cortex becomes active, its contribution to theMEG
signal is proportional to the total current running in the apical
dendrites. This isweighted by the distance to theMEGsensor
and by the orientation of the current, which is determined by
the local gyrification of the cortical surface. The primary cur-
rent in each apical dendrite is driven by the synaptic inputs to
the dendrite. This means that each synaptic input contributes
to the MEG signal, and the magnitude and polarity of this
contribution depends on the location of the synapse on the
dendritic tree and on the type of the synapse (Ahlfors and
Wreh 2015). An excitatory synapse near the cell body will
cause a positive current to be pumped up the tree, towards
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a

b

c

d

Fig. 2 State variable u(t) and STSD d(t) derived with the slow-fast
approximation compared with the numerical simulations of the full
model given in Eqs. (1)–(3). a The state variable u(t) as a response
to a sequence of identical stimuli with constant SOI of 0.5 s is shown
for core (blue), belt (red), and parabelt (green) areas. For each area, the
first stimulus generates the largest response.Although the state variables
decay to zero during the interval between two consecutive stimuli, the
excitatory-to-excitatory connections are weakened by STSD and this
effect carries over the silent period of the SOI so that the peak ampli-
tude of u(t) decreases until it levels off after a few stimuli. b The state
variable u(t) as a response to one stimulus computed with the slow-fast
approximation (red) is contrasted with that gained in numerical simu-
lations using nonlinear firing rates g[x] = tanh(αx) (blue) and linear
firing rates g[x] = αx (black). The solutions based on the slow-fast

approximation provide a good estimation of numerical solutions. The
high-, intermediate-, and low-amplitude responses are from the core,
belt, and parabelt, respectively. c The STSD time course estimated with
the slow-fast approximation (red) agrees well with the numerical sim-
ulations with nonlinear (blue) and linear (black) firing rates. The red
dashed lines represent solutions to Eq. (9), and the red dots indicate the
onset of stimulus presentation, at which the fast drop-off according to
Eq. (8) is computed. d This plot is an enlarged version of the STSD vari-
able of the corresponding time interval shown in (b). In order to compute
the state variables using the slow-fast approximation, we assumed that
STSD is piecewise constant in the time interval between the onsets of
two consecutive stimuli as indicated by the green horizontal line. The
corresponding STSDvalue at each stimulus onset (red dots) was derived
from the slow-fast approximation given in Eqs. (8) and (9)

the cortical surface. Conversely, an excitatory synapse near
the distal end of the tree will cause the current to travel in
the opposite direction, away from the cortical surface. Con-
sequently, feedforward connections, which generally target
the proximal dendrites in layer IV, result in a current pointing
towards the cortical surface. In contrast, feedback input arriv-
ing in the upper layers produce a current pointing downward
(Ahlfors et al. 2015).

We modelled MEG generation with the above consider-
ations in mind. Given that the MEG signal of a pyramidal
cell is quite well approximated by the synaptic input current
of the neuron (May 2002), the MEG contribution from each
area is assumed to be proportional to the input to the column
representing the area. These inputs are defined by the sec-

ond and third term on the right hand side of Eq. (1). Each
input is weighted by a connection-specific multiplier which
depends on the connection type (feedforward, feedback, exci-
tatory, inhibitory) (for more information, see Hajizadeh et al.
2019, 2021). This topological information is expressed in the
matrices K1 and K2, whose structures are shown in Fig. 3.
They specify how each synaptic connection contributes to the
MEG signal by an element-wise multiplication (Hadamard
product ◦) with the matrices Wee and Wei. Thus, the total
MEG signal is the product of K1 and K2 representing the
topography, the synaptic strengths represented in Wee and
Wei, and the firing rate of the pre-synaptic cell population.
Therefore, the MEG signal R(t) is computed as
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Table 1 Default parameter
values used for the simulations.
These values were chosen to
replicate realistic-looking ERFs

Dynamical parameters Value Topographical parameters Value

w
(d)
ee 2 k(d)1 −1

w
(ff)
ee 0.5 k(ff)1 −1

w
(fb)
ee 0.4 k(fb)1 15

w
(d)
ie 3.5 k(d)2 2

w
(d)
ei 2.2

w
(d)
ii 2.5

τm 0.03s

τo 0.04 s

τrec 5 s

a 0.02

α 1

a b

Fig. 3 The K1 (a) and K2 (b) matrices, which contain the information
about the topology of the primary currents, provide connection-specific
multipliers of Wee and Wei in the computation of the MEG signal,
respectively. a The green (k(ff)1 ) and purple (k(fb)1 ) elements in K1 rep-
resent feedforward and feedback connections, respectively. The cyan

elements (k(d)1 ) on the diagonal represent the lateral connections. Con-
tributions of IC and thalamus to the MEG are zero, but the excitatory
connections from the thalamus to the core contribute to the MEG. b
The yellow elements (k(d)2 ) in K2 represent the weights of inhibitory
connections

R(t) =
2N∑
j=1

[(
K1 ◦ Wee O

O K2 ◦ Wei

) (
u(t)
v(t)

)]
j
, (11)

where j runs over the number of cortical columns in the
model, and O is the zero matrix of order N .

In Fig. 4, we compare experimental MEG data with simu-
lations based on the slow-fast approximation using Eq. (11).
MEG signals were recorded from a single subject who pas-
sively listened to sequences of tones. These tones (audio
frequency 1.5kHz, duration 100ms, sound-pressure level
80dB) were presented in five different blocks (111 tone repe-
titions per block) with constant SOI between two consecutive
tones. The SOIs of the blocks were 0.5 s, 1 s, 2.5 s, 5 s, and
10s, corresponding to stimulation rates of 2Hz, 1Hz, 0.4Hz,
0.2Hz, and 0.1Hz, respectively (Zacharias et al. 2012). Fig-
ure 4a shows the trial-averaged waveforms for the five SOIs.

With increasing SOI, the N1m peakmagnitude and the corre-
sponding peak latency (except for the 0.5-s SOI) increases,
thus presumably reflecting the different speed of recovery
from STSD for short and long SOIs. Furthermore, the rising
slope of theN1m is unaffected by the SOI,whereas the falling
slope clearly differs between the five waveforms. Also, P2m
seems to be more affected by the adaptation process than the
P1m deflection.

Using the same stimulation paradigm as described for the
experimental data, we performed simulations of ERFs based
on the normal mode analysis (Eq. (11)) with the slow-fast
approximation and using the parameters given in Table 1. As
shown in Fig. 4b, the simulations replicate the main char-
acteristics of the experimental data (Fig. 4a): (1) As SOI is
increased, both the peak amplitude and the peak latency of
the N1m become larger, (2) the rising slope of the N1m is
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a b

Fig. 4 Comparison of experimental and simulated ERFs showing
the dependence of the ERF response on SOI. a Trial-averaged ERF
responses from an MEG sensor in the vicinity of auditory cortex
recorded from a single subject. The peak amplitude of the N1m shows
a high sensitivity to changes in SOI (data from Zacharias et al. (2012)).
b Simulated ERF responses calculated by use of the slow-fast approx-

imation. These replicate all the major landmarks of the dependence of
the experimental ERF on SOI: the P1m as well as the rising slope of the
N1m are least affected by SOI. As SOI is increased, the peak latency of
the N1m grows and the falling slope of the N1m becomes steeper. We
have added a 30-ms shift to the simulated waveforms to account for the
time delay due to sub-cortical processing

unaffected by SOI, (3) the falling slope of the N1m becomes
systematically steeper as SOI grows, and (4) the width of the
N1m waveform increases as a function SOI. With the use of
the slow-fast approximation we have now a tool at hand that
enables us to investigate how stimulus repetitionmodifies the
dynamics of AC.

3 Modelling results: novel views on ERF
adaptation

In this section, we first show how normal modes in time
and space contribute to the formation of ERFs and to their
adaptation with stimulus repetition. Second, we show how
ERF adaptation can be viewed from the perspective of dif-
ferent physiological connections. Third, we demonstrate that
the recovery from adaptation depends not only on the system
parameters, such as time constantswhich directly regulate the
STSD dynamics. Rather, adaptation reflects also the network
structure and varies from area to area in terms of recovery
time. Finally, we use our model to quantify the adaptation of
the N1m for smaller and larger SOIs and in this way discuss
the limitations of thewidely-used single exponential function
as a description of adaptation recovery.

3.1 Adaptation of ERFs as a result of adapting
normal modes

According to Eq. (11), the MEG signal R(t) is a function
of the excitatory and inhibitory state variables u(t) and v(t).
By a change of coordinate, R(t) can be expressed in terms
of normal modes so that the only time-varying term is the
normal mode amplitude, whereas the oscillation frequency

and damping rate remain constant. Substituting Eq. (5) in
Eq. (11) results in

R(t) =
2N∑
j=1

[(
K1 ◦ Wee O

O K2 ◦ Wei

) 2N∑
n=1

cnexp(λnt)

(
xn
yn

)]

j

.

(12)

The left column of Fig. 5 shows the simulated ERF wave-
forms and the underlying normal modes of the adapted states
for the five different SOIs presented in Fig. 4b. The ERFs
are displayed as grey curves, with the same shades of grey
used in Fig. 4b. The normal modes are depicted in different
colours; they are identifiable by their characteristic frequen-
cies ν = ω/2π in the legend. The ERF decomposition results
in normal modes whose polarities are preserved across SOI.
For all SOIs, each normal mode peaks well before the N1m,
during the first 50ms. The two normal modes with the lowest
ν (purple and green curves) show by far the largest ampli-
tude. They have opposite phases and a peak latency at around
50ms. In contrast, the two modes with the highest frequen-
cies (blue and red) have much smaller magnitudes and decay
faster. The mode with the intermediate frequency (yellow)
has a prominent peak magnitude with a small latency. As a
consequence of this diversity of normal modes, the P1m of
the ERFs is composed from all the modes, whereas the N1m
and P2m are predominantly formed by the two modes with
the lowest frequencies.

The middle column of Fig. 5 shows the dispersion rela-
tion of the normalmodes underlying the ERFs. At both initial
and adapted states, the normalmodes are of the underdamped
type because their frequencies ν are non-zero and their corre-
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Fig. 5 Decomposition of the
simulated ERFs into normal
modes. a–e Each ERF (shaded
grey) is displayed together with
the underlying normal modes,
represented by different colours
which stay consistent in the left,
middle, and right columns of
this figure. The ERFs are the
same as those presented in
Fig. 4b. For each SOI, all
normal modes peak earlier than
the corresponding N1m, and the
main contributor to the ERFs are
the low-frequency normal
modes (purple and green)
appearing in opposite phase.
The high-frequency normal
modes (blue and red) decay fast
and contribute only very weakly
to the N1m and P2m responses.
f–j Dispersion relation between
frequency (Im(λ)/2π = ν) and
the absolute value of the decay
rate (|Re(λ)| = |γ |). The
spectral information shows that
all normal modes are of the
underdamped type. The grey
discs represent the dispersion
relation at the initial state, which
is the same for all SOIs. The
coloured discs correspond to the
dispersion relation of the
adapted state. In general,
frequency and decay rate of the
normal modes increase with
decreasing SOI. The size of the
discs are proportional to the
initial amplitude |cn | of the
normal modes. In both the initial
state and the adapted state, the
low-frequency normal modes
have a larger amplitude than the
high-frequency normal modes.
k–o The spatial wave patterns
for different modes in different
SOIs are given in the

eigenvectors
(
xn, yn

)�. Here,
the real and the imaginary parts
of the excitatory state variables
u(t) are shown, which, for each
mode individually, follow the
same pattern. As indicated in
panel k, the different shades
signify different SOIs. The
high-frequency modes k–l occur
with large spatial wave number,
whereas the low-frequency
modes m–o appear with low
wave number in space.
Moreover, the same spatial wave
pattern is observed for all SOIs

a
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d

e

f
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sponding decay rates γ are negative. Moreover, for all SOIs
there is a typical common dispersion relation between fre-
quency and decay rate, implying that modes with higher
frequency also decay faster. Additionally, for all SOIs, the
frequencies and the decay rates of the modes in the adapted
state shift to larger values compared to the initial state; this
shift is larger the smaller the SOI is. For the largest SOI, there
are only minute differences between the dispersion relation
at the initial and the adapted state, because the 10-s interval
between two successive stimuli provides sufficient time for
the synaptic efficacy q(t) to return to the initial state.

Stimulus history changes not only the frequency and the
decay rate of the normalmodes but also their initial amplitude
|cn| after each stimulus (see Eq. (6)). These amplitudes are
indicated by the size of each disc in Fig. 5f–j: the larger the
size of a disc, the larger the initial amplitude of the respec-
tive normal mode. Further, Fig. 5 shows that, in the initial
state (grey discs), there is a gradual decrease of the initial
amplitude |cn| from low- to high-frequency modes, whereas
in the adapted state there is no systematic pattern except that,
for all stimulation rates, the normal mode with the highest
frequency (blue discs) has the smallest initial amplitude.

Normal modes are not only oscillations in time but they
manifest themselves as spatial wave patterns. This infor-
mation is provided by the eigenvectors

(
xn, yn

)� of the
coefficient matrix M . The real and the imaginary parts for
the state variables u(t) for the five areas of the network are
represented in the right column of Fig. 5, with the mode with
the highest frequency ν on top and the onewith the lowest fre-
quency ν at the bottom of the column. As indicated in Fig. 5k,
different shades of each colour stand for different SOIs. Note
the strong similarity of the spatial wave patterns between the
real and imaginary parts of u(t) for all modes. For all SOIs
and for both the real and imaginary parts of u(t), the wave
number in space decreases from the high-frequency mode
(blue, Fig. 5k) to the low-frequency mode (purple, Fig. 5o).
The same pattern is also observed for the state variable v(t),
which is not shown here.

Input efficiency and MEG efficiency
Figure 5 indicates that the normal modes contributing to the
generation of the ERFs are all different from one another.
According to Eq. (12), these different contributions do not
only originate from the differences in the initial amplitudes.
Reformulating Eq. (12) as

R(t) =
2N∑
n=1

cnκnexp(λnt) with

κn =
2N∑
j=1

[(
K1 ◦ Wee O

O K2 ◦ Wei

) (
xn
yn

)]
j
,

(13)

we see that the contribution of each normalmode to theMEG
signal is proportional to two factors:

(1) the initial amplitude |cn| of the mode, interpreted as the
input efficiency with respect to the stimulation pattern,
and

(2) the MEG efficiency κn , describing to which extent the
MEG device is able to detect the mode.

This information is illustrated in Fig. 6, where the input effi-
ciency |cn | andMEGefficiencyκn of eachnormalmode in the
initial (grey) and adapted (coloured) states are characterised
by a rectangle of width |cn| and height κn . The area of each
rectangle is proportional to the absolute value of the total con-
tribution of a given normal mode to the ERFs presented in
Fig. 4b. This figure shows that the two low-frequency modes
(purple and green) are the major contributors to the MEG
signals. As SOI decreases, the MEG efficiency of the low-
est frequency normal mode (purple) decreases, but its input
efficiency increases. In contrast, the contribution of the sec-
ondmode (green) increases inMEG efficiency and decreases
in input efficiency. The input efficiency of the third mode
(yellow) is relatively unaffected by SOI, whereas its MEG
efficiency decreases considerably for smaller SOIs. The total
contribution of the two high-frequency modes is negligibly
small.

Initial phases and mode interference
In order to fully understand the composition of the MEG
signal in terms of the normal modes, one has to appreciate
that the result of a linear superposition of damped oscillations
does not only depend on the amplitude of each contribution,
but also on the corresponding phase.Wecan see fromEq. (12)
that a single oscillating normal mode leads to a complex
contribution of the form rn(t) = cnκn exp(λnt) to the ERF.
For a complex conjugate pair λn and λn+1 = λn , we obtain
the real contribution to the MEG of the form

rn(t) + rn+1(t) = 2Re(rn(t))

= 2|cn|κn exp(γnt) cos (ωnt + arg(cn)) .

(14)

Summing up such oscillatory terms with different initial
phases arg(cn) and different angular frequencies ωn leads to
complicated interference patterns, where terms at different
time points may add up or cancel each other. This is illus-
trated in Fig. 7, which shows the amplitude and the phase of
each normal mode at three time points: at stimulus onset, at
the peak latency of the P1m, and at the peak latency of the
N1m. Each dot represents the contribution rn(t), while the
corresponding complex conjugate rn+1(t) = rn(t) is omit-
ted. At stimulus onset, the leading modes (purple and green)
have almost opposite phases such that their real parts cancel
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Fig. 6 Characterisation of normal modes in terms of MEG efficiency
κn and input efficiency |cn |. The normal modes are clustered accord-
ing to the five frequency bands and they are colour-coded as in Fig. 5.
Frequency increases from left to right. Within each band, each nor-
mal mode is represented by a rectangle, whose width (�x) and height
(�y) is equivalent to |cn | and κn , respectively. SOI is represented by
the colour shade, with dark shades indicating the smallest and light

shades the largest SOI. The initial state is in grey. For all SOIs, the two
low-frequency modes (purple and green) contribute most to the ERFs,
whereas the contributions of the two high-frequency modes (red and
blue) are negligible. Input efficiency shows less variability than MEG
efficiency, with the exception of the normal mode with the second-
lowest frequency (green)

a b c

Fig. 7 Normal modes rn underlying the ERF presented in the complex
plain at three distinct time points. aAt stimulus onset, the normalmodes
are at their largest complex amplitudes. However, due to their phases
they form a destructive pattern such that the sum of their correspond-
ing complex amplitudes is zero. b At the peak latency of the P1m, the
largest contributions are from the two lowest-frequency modes (green
and purple). These appear in nearly opposite phases, and the summed

amplitude is low. c At the peak latency of the N1m, the normal modes
with the second-lowest frequency (green) have a minute real part for all
SOIs, meaning that they barely contribute to the N1m peak. Notably,
the N1m peak is predominately formed by the mode with the lowest
frequency (purple). The colour coding is the same as in Figs. 5 and 6,
and the entire ERFs are shown in Fig. 4b

out each other (Fig. 7a). The contributions from the higher-
frequency modes (blue, red) are negligible. The same holds
for the P1m peak shown in Fig. 7b, where the two lead-
ing modes have very similar amplitudes but almost opposite
phases. Therefore, their overall contributions are quite small,
explaining why the P1m has a relatively low amplitude even
though the underlying normal modes are near their extrema.
After the P1m, a constructive superposition of the first and
second mode starts to emerge. This superposition builds into

a large-amplitude N1m (Fig. 7c). This shows that the main
frequency component of an ERF can be explained as a beat-
ing frequency, that is, the frequency difference between the
two leading modes. Moreover, the N1m emerges as late as
it does because the leading modes are initially in opposite
phase. This means that the N1m should not be interpreted as
a delayed response produced by some dedicated N1 gener-
ator. This is underlined also by the fact that the activity in
the core area peaks at a much earlier latency than the ERF
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response (see Fig. 2). The results shown in Fig. 7 highlight
the fact that ERF generation is a result of a complex inter-
play between the spatial and temporal structure of the AC
response given by the mode spectrum and the correspond-
ing input efficiencies. Additionally, the spatial shapes of the
normal modes determine their different MEG efficiencies.

3.2 Adaptation of ERFs in terms of different types of
connections

We have shown above that ERF responses can be represented
as a superposition of the contributions of different normal
modes. Alternatively, we can decompose the ERF accord-
ing to the physiological structure in our model illustrated in
Fig. 1b. Recall that according to Eq. (11), MEG signals arise
as a weighted sum of contributions from individual connec-
tions in Wee and Wei. These connections can be viewed in
three ways: First, each area can be characterised in terms
of the incoming connections received by that area (Fig. 8a).
Second, we can describe each area according to its outgo-
ing connections, those originating from the area (Fig. 8b).
Third, connections can be categorised as feedforward (lead-
ing away from the midbrain), feedback (leading towards the
midbrain), and of the lateral (intrafield) type (Fig. 8c). In
terms of the connection matrices, the rows of Wee and Wei

represent incoming connections per area and the columns
represent outgoing connections per area. The diagonal ele-
ments of Wee and Wei are the lateral connections, and the
elements below and above the diagonal of Wee represent
feedforward and feedback connections, respectively. Equa-
tion (11) enables us to break down the MEG signal into the
contributions from these different types of connections.

Figure 8a1 to a5 show the decomposition of the simulated
ERFs (grey) into the contributions of each area according
to the incoming connections (Fig. 8a). This is equivalent to
“sourcemodelling”, looking at the contribution that the activ-
ity in each area directly contributes to the ERF in virtue of it
generating a magnetic field. Note that we are assuming that
the ERF is blind to activity in IC and thalamus. For all SOIs,
the core area (purple) is the sole generator of the P1m and it
is also the largest contributor to the N1m. The core (purple)
and the belt (red) together account for almost the entire ERF,
including the P2m, whereas the contribution of the parabelt
(green) is minute. Note that the ratio between the magnitude
of the belt and the core contribution decreases with decreas-
ing SOI. Further, the simulations reveal an increase in the
latency of the contribution to the N1m as one moves from
the core to the belt and then to the parabelt.

Figure 8b1 to b5 show how the outgoing connections
(Fig. 8b) contribute to the ERF (grey). These results look
at the indirect contribution that each area makes via its out-
put to other areas and to itself. Connections originating in the
thalamus (blue) drive activity in the core through feedforward

connections and thereby contribute to the P1m response. For
the short SOIs of 0.5 s and 1s, the core (purple) makes the
largest contribution to the N1m, whereas for the longer SOIs
of 2.5 s, 5 s, and10s, the belt’s contribution is the largest (red).
The parabelt (green) with its long peak latency remains the
weakest contributor to the N1m throughout all SOIs.

Figure 8c1 to c5 show how the input arriving via feedfor-
ward (purple), feedback (orange), and lateral (blue) connec-
tions contribute to the ERF. We assume that feedforward and
lateral connections drive currents away from the cortical sur-
face, whereas feedback connections drive currents towards
the surface (Ahlfors and Wreh 2015; Ahlfors et al. 2015).
Therefore, feedforward and lateral connections account for
the P1m and P2m deflections, whereas the feedback and the
inhibitory connections are responsible for the N1m. A clear
pattern can be seen: the contributions driven by the feed-
forward and lateral connections grow only a little as SOI
is increased from 0.5 s to 10s. In contrast, the contribution
from the feedback connections show strong adaptation, with
a three-fold increase in magnitude over the SOI range. This
differential in adaptation behaviour explains why the P1m
has a weak SOI dependence and why the N1m shows the
strongest adaptation.

3.3 The role of network structure in ERF adaptation

To inspect whether the anatomical structure of AC impacts
on adaptation, we derived the lifetime of adaptation in
three versions of the AC model. The default version (net-
work DEF) was the one described above, implementing
the serial anatomical structure of AC (Hackett 2015). In
the second version (network CP), we modified Wee by
adding a direct excitatory-to-excitatory connection between
core and parabelt. In the third version (network TB), we
included a direct connection between the thalamus and the
belt. CP and TB represent steps towards full connectivity
and are no longer serial networks. The inclusion of extra
excitatory-to-excitatory connections in these networks alters
the excitation-inhibition balance compared to that of theDEF
network. Therefore, we also constructed normalised versions
of networks CP and TB, where Wee is modified such that it
has the same norm as Wee in the DEF network. The norm is
defined as the sum of all matrix elements. The normalised
structures CPN and TBN retained the excitation-inhibition
balance of the original default network.

Simulations employed the stimulus-repetition paradigm
described in Sect. 2.5. We used the traditional method for
calculating adaptation lifetime (Lüet al. 1992;Lu et al. 1992).
This was to measure the peak amplitude of the N1m for each
SOI and then to fit the following exponential function to the
measurements
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Fig. 8 ERF contributions by connection type and area. a1–a5 When
inspecting the contributions to the ERF according to incoming connec-
tions (equivalent to source modelling), the relative contributions from
each area remained the same across SOI, and each contribution was
scaled similarly by the adaptation process. The main contributors to the
ERF are the core (purple) and the belt (red). b1–b5 The contributions
according to outgoing connections present a different picture. Here,
the belt (red) and the parabelt (green) contributions show the strongest
adaptation. They both increase steeply with increasing SOI, whereas

the thalamus (blue) and core (purple) contributions remain relatively
stable. c1–c5 Feedback connections (orange) contribute to the ERF
with a strongly adapting component which grows as a function of SOI.
In contrast, the contributions from feedforward connections (purple),
responsible for the P1m, show only weak adaptation. The contribution
from lateral connections (blue) displays intermediate adaptation. There-
fore, the adaptation of the N1m is largely due to the adaptation of the
feedback connections

Pfit(SOI) = A

(
1 − exp

(
−SOI − t0

τsoi

))
. (15)

Here, τsoi is the time constant expressing the lifetime of adap-
tation; t0 is the intercept with the abscissa, and A is the
amplitude at which the exponential function saturates. All

three parameters in Eq. (15) were fitting parameters. Note
that in the model the saturation level A is equivalent to the
peak amplitude of the response to the first stimulus, i.e., the
initial state. For fitting we implemented an integral linear
regression method to find suitable initial values (Jacquelin
2009) and, then, used a nonlinear regression function (nlin-
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Fig. 9 The impact of network structure and excitation-inhibition bal-
ance on adaptation. The recovery time constant τsoi and the intercept t0
were obtained by fitting Eq. (15) to the peak amplitude of the simulated
N1m (star), and of the state variables u(t) of core (circle), belt (square),
and parabelt (diamond). Blue symbols show τsoi and t0 for the default
AC network (DEF, see Fig. 1). Adding a thalamocortical connection
between thalamus and belt area (TB, red) has the strongest effect on
τsoi and t0. The same network with normalised balanced excitation-
inhibition (TBN, yellow) leads to smaller values of τsoi and to little
change of t0. The addition of a corticocortical connection between core
and parabelt (CP, cyan) leads to an increase of τsoi everywhere except
in parabelt. However, the same network with normalised excitation-
inhibition balance (CPN, green) shows smaller values of τsoi

fit) from MATLAB (The MathWorks, version R2018b) to
estimate the fitting parameters. We performed the fitting pro-
cedure not only to the N1m peak amplitudes, but also to the
peak amplitudes of the state variables u(t) of the core, belt,
and parabelt.

Figure 9 shows the fitting parameters τsoi and t0 character-
ising the SOI-dependence of the peak amplitude in the case of
the ERF (star) and of the core (circle), belt (square), and para-
belt (diamond) state variable u(t). The results demonstrate
that these parameters are sensitive to the network structure as
well as to the excitation-inhibition balance. Two important
observations can be made. First, the impact of the structural
changes can be identified by comparisons between the default
network (DEF, blue) and the normalised TBN (yellow) and
CPN (green) network, which differ fromDEF solely in terms
of structure.Whereas τsoi appears to beweakly affected, with
values between 2.3 s and 2.7 s, the variation of t0 is stronger,
covering the range from −1.5 s to −0.5 s. Second, the effect
of the excitation-inhibition balance on τsoi and t0 is revealed
by comparisons between TBN (yellow) and TB (red) and
between CPN (green) and CP (cyan). In each case, the nor-
malised network versions TBNandCPN show less excitation
than the non-normalised versions TB and CP.We see that the
effect of adding excitation is to push τsoi up by 500ms. In

contrast, t0 of core and parabelt is only weakly affected by
added excitation. Taken together, Fig. 9 shows that the modi-
fication of the excitation-inhibition balance has a larger effect
on τsoi and t0 than a change of the network structure.

3.4 Is a single exponential function sufficient to
explain recovery from adaptation?

Adaptation is traditionally quantified through fitting the
single-exponential function of Eq. (15) to the peak ampli-
tudes of the N1m. But does a single exponential actually
describe the dependence of the ERF amplitude on SOI? Fig-
ure 10a indicates that this appears to be the case, at least
when the number of data points is low. However, with our
model we can easily generate ERF peak amplitudes for an
arbitrary number of SOIs which would not be feasible exper-
imentally. This is illustrated in Fig. 10b where 99 simulated
ERF peak amplitudes (red points) are plotted as a function
of SOI together with the corresponding fit (blue line). Fig-
ure 10b shows a systematic deviation of the fitting function
(Eq. (15)) from these data. This deviation is highlighted in
Fig. 10c where the data points in Fig. 10b are transformed
by the log(x) function. Figure 10c shows that at small SOIs
(≤1.5 s), the simulated data deviatemuch stronger from thefit
than data at larger SOIs. This deviationmight seemnegligibly
small. However, it indicates two major shortcomings of such
exponential functions for explaining recovery from adapta-
tion. First, the strong deviation at small SOIs, highlighted
in the logarithmically scaled plot in Fig. 10c, puts a ques-
tionmark on the general applicability of a single-exponential
function for the description of the recovery process. Second,
it questions the explanatory power of the fitting parameter t0.
This deviation between fit and data can be quantified more
precisely by the local exponential saturation rate

f j = Fj − Fj+1

(Fj − Finf)(SOI j+1 − SOI j )
, (16)

where the Fs are simulated ERF peak amplitudes and j is the
index of the data points (red points in Fig. 10b–d). Finf is the
amplitude at which the data points saturate. It is equivalent
to the ERF peak amplitude at the initial state, this being the
maximum possible value the simulated ERFs can have. The
results of the computation of the local exponential saturation
rate for the simulated data as well as the fit are shown in
Fig. 10d, which for the fitting function given in Eq. (15)
always provides the constant value 1/τsoi. However, it also
shows that simulated data points (red) deviate substantially
from a constant value for SOIs smaller than 5s.

In summary, the above results show that our description
of the adaptation process as a collective reorganisation of
the AC as a dynamical network also captures the behaviour
of the N1m peak amplitude variation as a function of SOI.
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a b

c d

Fig. 10 A single exponential function does not capture the recovery
from adaptation. a The fitting function of Eq. (15) appears to offer
a reasonable approximation (blue line) of the SOI-dependence of the
N1m peak amplitudes (red points) when there are only a few measure-
ment points. b The situation, however, is different when a much larger
number of SOIs can be used for revealing the true SOI-dependence of
the N1m. There is a systematic deviation between the fitting function
and the peak amplitudes. c The log(x) transformation of the data points

emphasises that there are clear differences between the data points and
the fit for small and larger SOIs. d This deviation between the data
points and the fit can be quantified by computing the local saturation
rate f , given in Eq. (16), for any two consecutive data points. For the
exponential fit, the local saturation rate f is constant, whereas for the
simulated data points it monotonically decreases with increasing SOI
and converges towards a constant value (≈ 0.2), different from the f
obtained from the fit (≈ 0.3), only at large SOIs (≥10s)

It turns out that for smaller SOIs this adaptation behaviour
differs substantially from the widely-used single exponential
function. As a consequence, if one estimates adaptation life-
times through fitting such a function to amplitude data, the
result might strongly depend on the choice of the sampling
point.

4 Discussion

4.1 Main findings

We used mathematical modelling to investigate context sen-
sitivity of auditory cortex specifically, how STSD modifies
the systems dynamics of auditory cortex and how this mod-
ification becomes visible as the adaptation of the ERF
associated with stimulus repetition. We took an approach
similar to the one in our previous study (Hajizadeh et al.
2019) whereby the auditory cortex was characterised as a set
of spatially distributed, mutually independent oscillators—

normal modes—exposed through explicitly solving the state
equations. Each normal mode is a global feature because it
contributes to the activity of all cortical columns and depends
on the anatomical structure of the entire auditory cortex.
Compared to the traditional view that the ERF arises out
of spatially discrete, local generators, our approach offers an
alternative: the ERF is generated by a set of processes where
each one is distributed over thewhole network of the auditory
cortex. That is, we go beyond describing activity of auditory
cortex in terms of amplitude variations of the activity of spa-
tially fixed cortical columns. In contrast, in our account, the
activity of auditory cortex is described as oscillations of nor-
mal modes which are spread over the whole AC anatomy. In
this view, the activity of an individual column emerges out
of the interplay between the amplitudes, frequencies, and
phases of all the normal modes of the system. An analogy
for understanding stimulus-elicited brain activity in terms of
normal modes is to think of a pebble thrown into a still pond.
The ripples formed on the water’s surface are functions of
the size, shape, and the speed of the pebble (i.e., the stimula-
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tion), but also depend on the size, shape, and water quality of
the pond (i.e., the system). If new pebbles are thrown before
the previously formed ripples fade away, different locations
on the pond surface oscillate based on the interference pat-
tern of the old and the new ripples. The dynamics of AC as
a spatially extended structure is no different than the pond.
By stimulating AC, the activity propagates in time and space
through the system. This propagation is then a function of the
stimulus and of the anatomical structure of AC. The activity
at each AC location oscillates as a result of the interference
pattern of the normal modes which are spread over the whole
AC (see Fig. 5k–o). That is, each location participates inmul-
tiple, overlapping oscillations that are occurring both in time
and space. The MEG device then projects these oscillations
onto single magnetic field values.

Expanding from Hajizadeh et al. (2019), the current study
addressed adaptation due to stimulus repetition through the
introduction of dynamical synapses to the model. This was
achieved through two manoeuvres: First, we derived com-
plete solutions to the system of Eqs. (1) and (2) even in cases
where the connections are asymmetric, such as when STSD
is in operation. Second, we used time-scale separation of the
dynamics of STSD (Eq. (3)), exploiting the relative slowness
of recovery from STSD in comparison to the fast evolution
of the state variables (Eqs. (1) and (2)). As a result, we were
able to describe the adapting auditory cortex as a set of nor-
mal modes modulated by the stimulation. In this approach,
all possible system trajectories are solved in one go rather
than simulated one at a time.

The current model replicates the experimentally observed
adaptation of theERF resulting fromstimulus repetition.This
can be observed as, for example, the peak amplitude of the
N1m increasing monotonically as a function of SOI, roughly
according to an exponentially saturating function. The N1m
can be understood as an interference pattern of the super-
imposed normal modes, and in this view, its adaptation is
explained as resulting from the modulations not only of the
amplitudes but also of the angular frequencies ωn of the nor-
mal modes. Indeed, adaptation should be seen as a complete
reorganisation of the AC network where the reduction of the
N1m amplitude is a by-product of the stimulation shifting
the dispersion of the angular frequencies ωn and decay rates
γn of the normal modes.

While the adaptation of the N1m can be accounted for by
changes in the underlying normal modes, the N1m is only a
single landmark in the ERF. To gain a more complete view of
how the dynamics of the system are modulated by previous
stimulation, we inspected how the normal modes change as
a function of SOI in the adapted state. The main characteris-
tics of a normal mode are its frequency ν and decay rate γ ,
as displayed in Fig. 5f–j. Two observations could be made.
First, there is a neat dispersion of the normal modes in the
ν-γ plane where they land on a monotonically increasing

curve, so that the higher the frequency, the faster the decay
rate. Second, the effect of STSD is to push the normal modes
upwards on this dispersion curve with respect to the initial
state, this effect being larger the smaller the SOI is. We can
thus view adaptation of the ERF in a novel way: each incom-
ing stimulus leaves a memory trace behind as a change in the
systemdynamics so that all normalmodes are shifted towards
higher frequencies and faster decay rates. During the inter-
val between successive stimuli, the memory trace decays so
that the normal modes slide back towards their respective
unadapted states. The degree to which a normal mode con-
tributes to the MEG signal depends on two efficiency factors
(see Eq. (13) and Fig. 6) and their product determines the
actual contribution made by the normal mode to the MEG
signal. Adaptation due to stimulus repetition shows up as
a modulation of the efficiencies, which can either expand,
shrink, or remain the same as SOI is modulated, depending
on the normal mode.

Further, we found that adaptation is a network effect that
depends not only onSTSD.Namely, changing the anatomical
structure of the network and/or the balance between excita-
tion and inhibition led to marked changes in the lifetime of
N1m adaptation, even though the parameters of STSD were
kept constant. Also, inspecting the individual contributions
to the ERF from the various areas, we found that the lifetime
of adaptation varied across anatomical location.

4.2 Adaptation of the N1m: what are wemeasuring?

The current model of the AC replicates well the experimen-
tally observed SOI-dependence of the ERF (see Fig. 4), and
all main features of the waveforms can be traced back to the
distinct contributions of the individual cortical areas, as laid
out in Fig. 8. The identical rising slopes of the waveforms
derive from the core, which provides the largest contribution
to the MEGwaveform at all SOIs and is also the main source
of variation of the magnitude of the N1m peak. The belt
also contributes to the overall amplitude, especially at longer
SOIs. The magnitude of the parabelt contribution to the ERF
is negligible at all SOIs. However, this disguises the influ-
ence of the parabelt on the overall dynamics of the system, as
shown by our previous results (Hajizadeh et al. 2019): small
changes in the connection values within the parabelt result
in sizeable modulations of the N1m response, even though
the parabelt’s direct contribution to the N1m is minimal. Fur-
ther, we found that the adaptation of the N1m is largely due
the adaptation of the contribution generated by the feedback
connections, while the feedforward and lateral (intrafield)
components remained relatively stable across SOI (Fig. 8).

We emphasise that in the model, the ERF signal is the
weighted superposition of multiple normal modes as dis-
tributed over the core, belt, and parabelt (Fig. 5). Therefore,
the N1m peak represents an event in an interference pattern
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rather than anything real. That is, the peakof theN1mat about
100ms is incidental in the sense that it does not represent the
peak of any normal mode nor that of the activity of any indi-
vidual area in the AC. In consequence, observing adaptation
as SOI-related changes in the N1m on its own reveals very
little of how the underlying dynamics are changing. To under-
stand what is driving N1m adaptation, we investigated how
the interference pattern of the normal modes changes as SOI
is varied.

Figure 5 shows the ERF in terms of its normal mode com-
ponents, which paint a consistent pattern across the five SOI
conditions. These components come in a variety of peak
amplitudes and latencies, and they can also have opposite
phases, which contributes to mutual cancellations when the
modes are summed up to the ERF signal (see also Fig. 7).
Interestingly, each normal mode reaches its global absolute
peak well before the N1m even starts to emerge. Yet, in the
ERF, the N1m is the dominating wave. This is due to the low-
frequency modes largely cancelling each other out during
the first 70ms, when the modes reach their global extrema.
Because of this cancellation effect, the P1m response has a
low amplitude, even though it occurs when the normalmodes
are at their most vigorous (see Fig. 7). Subsequently, when
all the normal modes are well into their decay phase, the
N1m emerges as an interference pattern of the two low-
frequency normal modes with the highest amplitudes but
opposite phases.

On the above basis, we can understand the adaptation of
the N1m in terms of the behaviour of the two dominating
normal modes of auditory cortex. That is, adaptation arises
out of two factors which contribute unequally in different
SOI ranges. As shown in the left column of Fig. 5, with
the fast stimulation rates (SOIs of 0.5 s, and 1s), the nor-
mal modes are clearly attenuated in amplitude compared to
their counterparts in the 10-s SOI condition (representing
the unadapted state). Furthermore, mirroring the adaptation
of the N1m (Fig. 4), this attenuation is much larger when
SOI is 0.5 s than when SOI is 1 s. In contrast, when the SOI
is larger (2.5 s, 5 s, and 10s), the amplitudes of the normal
modes become insensitive to changes in SOI. Indeed, the nor-
mal mode with the lowest frequency (purple curve in Fig. 5)
decreases slightly in amplitude as SOI is increased from 2.5 s
to 10s, while the N1m grows in amplitude. In this case, the
attenuation of the N1m is explained by the changes in the fre-
quencies rather than the amplitudes of the two dominating
normal modes: the mode with the largest absolute magnitude
(green curve in Fig. 5) remains relatively stable in terms of
amplitude and frequency, while the mode with the second-
largest magnitude but opposing phase (purple curve in Fig. 5)
increases in frequency as SOI decreases. Because of this dif-
ference in their frequency behaviour and phase, the dominant
normalmodes sumup to anN1mresponse that decreaseswith
decreasing SOI.

The adaptation of the N1m is usually described with the
single exponentially saturating function of Eq. (15). This
captures the behaviour of the peak amplitude of the N1m,
namely, its initially rapid increase as a function of SOI fol-
lowed by a levelling off at longer SOI. This descriptionmight
be adequate when the number of data points is low (Fig. 10a).
However, our model predicts that the true dependence of the
N1m peak amplitude on SOI is insufficiently described by
a single exponential function (Fig. 10b–d). This could be a
consequence of the N1m peak amplitude being determined
by two different normal-mode properties, viz. due to normal
mode modulations at short SOIs and to frequency modula-
tions at longer SOIs. Thus, adaptation lifetime as estimated
with the single exponential might work better as a relative
rather than an absolute measure. Even if it fails to describe
amplitude behaviour at short SOIs, it still allows one to com-
pare lifetimes across experimental conditions, brain regions,
and subjects.

4.3 Linking ERF adaptation to the network structure
of auditory cortex

Physiological studies usually consider the link between
STSD and adaptation from the point of view of single-
unit dynamics (Ulanovsky et al. 2004; Wehr and Zador
2003, 2005).When one observes a global, spatially-averaged
measure of neuronal activity such as the ERF, our results
indicate that STSD is not the only factor shaping adaptation.
Instead, adaptation becomes a system property, modulated
by anatomical structure. This is unsurprising given that all
normal-mode properties (angular frequency ω, decay rate γ ,
phase, spatial structure) arise from the coefficient matrix in
Eq. (4), which in turn depends on the anatomical structure of
AC as expressed in the weight matrices. We varied the struc-
ture of the original AC model (Fig. 1) by adding shortcut
connections from the thalamus to the belt, or from the core
to the parabelt. We also varied the balance between excita-
tion and inhibition. All other aspects of the model were kept
untouched, including the time constants of the state equations
and those of STSD. Nevertheless, the structural modulations
in themselves caused sizeable variations in the way the N1m
became adapted by repeated stimulation: the parameter t0
varied between -1.4 and -0.9 s, and τsoi, the adaptation life-
time, varied between 2.5 and 3.1 s. In general, changing the
excitation-inhibition balance by adding excitatory connec-
tions increased the lifetime of adaptation.

We also derived the individual contributions from each
cortical area (core, belt, parabelt) to the overall ERF in order
to inspect whether adaptation has a spatial variation. This
was done for all the structural modulations studied above.
Experimentally, this would be equivalent to applying source
modelling to the ERF signal to tease out the contributions
from various areas of cortex. We found that, in general, the
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adaptation of the ERF did not coincide with that of any of the
contributions of the individual areas in terms of t0 and τsoi.
The lifetime of adaptation tended to be some 200 ms shorter
in the core than in the belt. The parabelt had the shortest
τsoi, except in the default AC model, where the belt and the
parabelt had similar lifetimes of adaptation. These results
agree qualitatively with those of Lu et al. (1992), who found
that the contribution of primary auditory cortex to the N1m
has a shorter lifetime of adaptation (by seconds) than the
contribution from association areas. A similar pattern was
observed by Uusitalo et al. (2006) in visual cortex, where
the adaptation lifetime increases (by seconds) as one moves
further away fromprimary visual cortex. The spatial variation
of adaptation lifetime produced by ourmodel ismuch smaller
than that found experimentally, and the factors determining
the size of this effect will be addressed elsewhere.

Importantly, the above spatial variation of adaptation
belies a much stronger effect of anatomy on adaptation. This
is evident in Fig. 8b1–b5 which break down the ERF accord-
ing to the connections originating from each area. For each
area, this measure is proportional to the output emanating
from that area, that is, to the firing rate multiplied by the
connection strength. It can therefore be interpreted as the
de facto impact that the area has on its neighbours and on
itself. The impact of the core remains stable, increasing only
around 10% over the SOI range. In stark contrast, the impact
of the belt and parabelt is highly sensitive to stimulation rate:
it increases linearly by a factor of three as one increases SOI
from 0.5 s to 10s. That is, there is hardly any adaptation
present in the impact that the core has, while the impact of
the belt and the parabelt exhibits strong adaptation. Although
we did not determine τsoi for these impacts, it is evident that
on this metric, adaptation lifetime is orders of magnitude
larger in the belt and parabelt than in the core. We empha-
sise that these effects are not directly visible in the ERF,
even if one measures τsoi separately for each area (corre-
sponding to source modelling). Further, the presence of a
spatial gradient of adaptation lifetime would have interesting
implications for understanding memory in auditory cortex.
Namely, the anatomy of AC may serve as a temporal map,
where secondary areas, in functional terms, hold information
over several seconds andwhere the core integrates the current
signal with the memory-laden feedback from the secondary
areas. This style of temporalmappingmight be crucial for the
processing of auditory signals with a complex spectrotem-
poral structure and warrants further investigation.

4.4 Comparison to other models of auditory cortex
and ERF generation

The role of STSD in AC dynamics has been investigated
in a number of previous modelling studies. Loebel et al.
(2007) developed a model of the primary AC where each

iso-frequency column was described as a network with Wil-
son and Cowan (1972) dynamics and with STSD. The model
can account for multiple experimental findings such as the
frequency tuning curves of neurons and the dependence of
forward masking in two-tone stimulation on the temporal
separation between the tones. In a later work, Yarden and
Nelken (2017) demonstrated that this model is able to repli-
cate stimulus-specific adaptation. Goudar and Buonomano
(2014) modelled primary auditory cortex with simulated
spiking neurons and found that short-term synaptic plasticity
accounted for context-dependent suppression and enhance-
ment of the response to the second tone in a two-tone
paradigm. Similar order-selectivity in responses to vocali-
sation stimuli was found by Lee and Buonomano (2012),
who modelled a single cortical column with spiking neu-
rons. Again, STSD accounted for the neurons responding
differentially to vocalisations presented in the forward and
reverse directions. Wang and Knösche (2013) replicated the
adaptation of the N1m due to stimulus repetition in a model
of a single cortical area, where each unit was an expanded
version of the neural mass model of Jansen and Rit (1995),
which describes interactions betweenneurons in the granular,
supragranular, and infragranular layers. The model included
STSD of excitatory synapses, and good agreement with
experimental data was achieved by adjusting the inter- and
intralaminar connections via Bayesian inference.

The above studies are thematically related to the current
approach in that synaptic depression is shown to account
for experimental data. However, they are limited to describ-
ing either primary auditory cortex or a single column with
a relatively high resolution and, with the exception of Wang
and Knösche (2013), replicate single-unit activity. In con-
trast, our approach for understanding ERF generation is to
capture the dynamics of the whole of AC, rather than that
of a single field. To this end, we implemented the serial
core-belt-parabelt structure in amodel that anchors ERF gen-
eration to spatially distributed normal modes. Therefore, our
approach diverges from the above studies in terms of how
AC is described and in the kind of explanation given for the
data. We note that while we employed the extreme low reso-
lution of describing each area as a single unit, our approach is
not wedded to any particular spatial resolution. Our previous
studies (Hajizadeh et al. 2019, 2021) used spectral methods
similar to the ones employed here (thoughwithout STSD) for
investigating the normal modes in a system of 240 units rep-
resenting cortical columns distributed over subcortical areas
and 13 tonotopically organised cortical fields. Importantly,
the current results open up the possibility of applying spec-
tral methods for studying STSDmodulation of AC dynamics
in an expanded model with a much higher spatial resolution
than here. We note that boosting the number of units adds
very little computational cost. Numerical simulations based
on Eqs. (1), (2), and (3) are computationally expensive for
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large coupled networks and can be error-prone due to numer-
ical errors and sensitivity to initial conditions. The spectral
approach championed here, in comparison, is computation-
ally fast and readily unveils the dependencies between the
systems parameters and the solutions.

Probably the most influential style of neural mass mod-
elling is Dynamic Causal Modelling (DCM) introduced by
Friston et al. (2003). This estimates the coupling between dif-
ferent brain regions and how this ismodulated by stimulation.
Each region is described by a biophysical neural massmodel,
and Bayesian inference is then used for the parameter esti-
mation to identify the best model to explain the experimental
data. TheDCMapproach has been applied to ERPs andERFs
(see, for example, David et al. 2006; Garrido et al. 2007;
Kiebel et al. 2006, 2009), the hemodynamic response of
functional magnetic resonance imaging (fMRI) (for example
Friston et al. 2019; Stephan et al. 2007) and the neurovas-
cular coupling underlying combined fMRI and MEG/EEG
data (for example, Friston et al. 2019; Jafarian et al. 2020).
When applying the method to ERPs and ERFs, the biophys-
ical model is based on the Jansen and Rit (1995) approach.
Estimates are then derived for intrinsic connections within
brain regions as well as for feedforward, feedback, and lat-
eral connections between brain regions.

While our spectral approach and DCM both seek to
explain evoked responses, the two diverge on a number of
points. First, DCM aims to explain single-subject ERF data
in terms of connection strengths between discrete sources.
Themethod is essentially a refinement of source localisation,
where source location is complemented by information about
the coupling strength between the sources. In contrast, our
approach regards individual sources and their connections as
only part of the explanation. From the point of view of the
systemdynamics, the spatially distributed normalmodes pro-
vide amore revealing account of the ERF. Of course, whether
normal modes can be observed experimentally is an interest-
ing question beyond the scope of the current study. Second,
while the spatial resolution in the current model was at one
unit per cortical area—the same as in Garrido et al. (2009)—
spatial resolution is not a limiting issue in our approach, as
discussed above. In comparison, DCM places bounds on the
size of the network that can be used for modelling brain
activity. Namely, increasing the number of units leads to an
exponential increase in the number of connections, which
are all free parameters to be estimated. As pointed out by
Garrido et al. (2009), this results in inter-subject variability
becoming larger, making it hard to establish patterns of cou-
pling changes across subjects. Third, DCM is designed to
be used with discrete source models of the ERP and ERF,
with each area represented by a single unit of the biophysical
model. In contrast, the number of units per area is not lim-
ited in our approach, and is determined by the phenomenon
to be explained. For example, modelling frequency interac-

tions (e.g., the frequency mismatch response) with one unit
per area can be donewith DCM (Garrido et al. 2007) but with
our approach, an expansion of themodel to include tonotopic
maps in each area would be required. This essentially reflects
the fundamentally mechanistic nature of our modelling style.

5 Outlook

There is scope for expanding the current model in sev-
eral ways. First, as mentioned above, the modelling of
cross-frequency effects would require the implementation
of tonotopic maps, such as in the previous versions of the
model (Hajizadeh et al. 2019, 2021; May and Tiitinen 2013;
May et al. 2015). This would allow one to gain fresh insight
into the generation of the MMN and SSA in terms of normal
modes. Time constants for SSA have been reported to occur
on multiple time scales (Ulanovsky et al. 2004), and there
might be scope to study this with our modelling approach, in
view of our finding that anatomical structure in itself intro-
duces variations to adaptation lifetime, even when the time
constants for STSD are spatially homogeneous.

Second, while the core-belt-parabelt structure of AC is
a common feature among the auditory cortices of mam-
mals (Hackett 2015), there is a wide variety in the size
and organisation of AC areas across species, and the func-
tional consequences of this variety are unknown. Hence, a
logical next step would be to expand the model towards
more realistic structures of auditory cortex of different
species, and to investigate to what extent adaptation is
a network effect whose cross-species variations can be
explained in terms of differences in the anatomical struc-
ture of the AC. Further, one might be able to use the
current methodology as a tool for exploring the currently
unknown organisation of the human auditory cortex. One
possibility might be to combine the current methods with
DCM by using the current model as the biophysical DCM
model. The free parameters would be the STSD time con-
stants as well as the parcellation of the core, belt, and
parabelt into individual fields, each one represented by a
unit of the model. While the STSD would presumably be
subject-specific, the parcellation would be fixed across sub-
jects.

Lastly, while the brain is usually regarded as highly non-
linear, it might turn out to be a clandestine self-lineariser,
using STSD as a mechanism which pushes the system
dynamics into the linear range. This might allow the tran-
sition from chaotic regions into states where normal modes
appear. As Kerschen et al. (2009) pointed out, normal modes
of linear systems differ from those of non-linear systems in
that they are decoupled from one another. This means that
they have two special properties: (1) invariance, whereby
several normal modes can coexist in the system at the same
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time without modulating each other; (2) modal superposi-
tion whereby the oscillations of a unit is a linear combination
of individual normal modes. We suspect that these proper-
ties could have functional benefits: normal modes of linear
systems, each with its own spatial profile, could function
as stable and overlapping representational tokens supporting
population coding, where each neuron can take part in rep-
resenting more than one thing at the same time. This style
of representation might aid processes such as sensory bind-
ing and attention control. Namely, the features of sensory
stimuli are represented in a distributed fashion, in specialised
regions across cortex, yet this information is melded together
into unitary percepts. Sensory binding refers to this pro-
cess of melding, and it seems to involve the long-distance
synchronisation of the spatially disparate neuronal popu-
lations representing the individual features (Bertrand and
Tallon-Baudry 2000; Ghiani et al. 2021). Selective attention
is likewise associated with coherence: the cortical neu-
rons representing the attended stimulus produce enhanced,
synchronised gamma-band oscillations (Fries 2015). Nor-
mal modes could provide instantaneous coupling needed in
binding and attention, allowing for individual cortical neu-
rons separated by long distances to become synchronised
even without direct connections between them. The domi-
nant normal mode in cortex might then correspond to the
attended, perceptually bound stimulus. A corollary of this
is that functional cell assemblies generated in this fashion
cannot be predicted just by observing the anatomical con-
nections between the cells. This widens the view onto the
generation of cell assemblies, which are usually understood
in terms of communication between senders and receivers
(Hahn et al. 2019) and strong interconnections arising out
of Hebbian learning (Gerstein et al. 1989; Wennekers et al.
2003). With normal modes, the synchronisation between
two cells depends more on the afferent stimulation and sys-
tem dynamics than it does on the strength or quality of
the interconnection. Moreover, normal modes might provide
the mechanism whereby weakly connected populations can
synchronise, before Hebbian learning has had time to take
effect.
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