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Abstract
Noises are ubiquitous in sensorimotor interactions and contaminate the information provided to the central nervous system
(CNS) for motor learning. An interesting question is how the CNS manages motor learning with imprecise information. Inte-
grating ideas from reinforcement learning and adaptive optimal control, this paper develops a novel computational mechanism
to explain the robustness of human motor learning to the imprecise information, caused by control-dependent noise that exists
inherently in the sensorimotor systems. Starting from an initial admissible control policy, in each learning trial the mechanism
collects and uses the noisy sensory data (caused by the control-dependent noise) to form an imprecise evaluation of the
performance of the current policy and then constructs an updated policy based on the imprecise evaluation. As the number of
learning trials increases, the generated policies mathematically provably converge to a (potentially small) neighborhood of
the optimal policy under mild conditions, despite the imprecise information in the learning process. The mechanism directly
synthesizes the policies from the sensory data, without identifying an internal forward model. Our preliminary computational
results on two classic arm reaching tasks are in line with experimental observations reported in the literature. The model-free
control principle proposed in the paper sheds more lights into the inherent robustness of human sensorimotor systems to the
imprecise information, especially control-dependent noise, in the CNS.
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1 Introduction

Although goal-directed movements have been extensively
studied in the field of sensorimotor control in the past
decades, its underlying computational mechanism is still not
fully understood yet (Todorov and Jordan 2002; Harris and
Wolpert 1998; Franklin et al. 2003; Burdet et al. 2001, 2006;
Wolpert et al. 1995; Selen et al. 2009; Zhou et al. 2017; Kadi-
allah et al. 2011; Mistry et al. 2013; Česonis and Franklin
2020). Various computational models have been proposed

Communicated by Benjamin Lindner.

This work has been supported in part by the U.S. National Science
Foundation under Grants ECCS-1501044 and EPCN-1903781.

B Bo Pang
bo.pang@nyu.edu

Leilei Cui
l.cui@nyu.edu

Zhong-Ping Jiang
zjiang@nyu.edu

1 Department of Electrical and Computer Engineering, New
York University, 370 Jay Street, Brooklyn, NY 11201, USA

to account for sensorimotor control and learning (Shadmehr
and Mussa-Ivaldi 2012; Krakauer et al. 2019). One widely
accepted theory is that the CNS selects trajectories that mini-
mize a cost function (Flash and Hogan 1985; Uno et al. 1989;
Harris and Wolpert 1998; Todorov 2005; Jiang and Jiang
2014; Bian et al. 2020). In particular, the authors of Todorov
and Jordan (2002) suggest that the CNS uses a model-based
optimal feedback principle to coordinate body movement
by minimizing an integral-quadratic cost index that trades
off energy consumption with constraints. Such optimal con-
trol frameworks have been found to successfully explain
diverse phenomena, such as approximately straight move-
ment trajectories and bell-shaped velocity curves (Morasso
1981), variability patterns and flexibility of arm movement
trajectories (Todorov and Jordan 2002; Liu and Todorov
2007), adaptation to force fields and visuomotor transforms
(Ueyama 2014; Braun et al. 2009), kinematic invariance
despite the sacrifice of optimality (Mistry et al. 2013), fast
timescale ofmotor learning (Crevecoeur et al. 2020), to name
a few. A common assumption in these studies is that the
CNS first identifies the system dynamics and then solves the
optimal control problem using the identified model. (This
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kind of mechanism is referred to as model-based mecha-
nism, according to Haith and Krakauer (2013)). However,
currently there is no strong experimental evidence about how
theCNSmanages to generate an internal representation of the
environment, especially for complex environments. To this
end, model-free learning approaches, such as reinforcement
learning (RL) and adaptive dynamic programming (ADP),
are utilized to explain sensorimotor learning behavior (Haith
andKrakauer 2013; d’Acremont et al. 2009; Fiete et al. 2007;
Jiang and Jiang 2014; Bian et al. 2020). RL and ADP are
biologically inspired learning approaches that study how an
agent iteratively modifies its control policies toward finding
the optimal policymaximizing a cumulative reward function,
directly using the observed responses from its interactions
with the environment (Sutton and Barto 2018; Bertsekas
2019; Jiang et al. 2020; Jiang and Jiang 2017). Thus, an
intermediate internal representation of the environment is not
needed in the computation of the optimal control policy any-
more. (This kind of mechanism is referred to as amodel-free
mechanism, according to Haith and Krakauer (2013)). The
computational models based on RL and ADP also succeed in
explaining many experimental observations in sensorimotor
control and learning, see (Fiete et al. (2007), d’Acremont
et al. (2009), Huang et al. (2011), Izawa and Shadmehr
(2011), Shmuelof et al. (2012), Haith and Krakauer (2013),
Jiang and Jiang (2014), Vaswani et al. (2015) and Bian et al.
(2020)). Some other related but independent works include
the iterative model reference adaptive control framework
presented in Zhou et al. (2011), and the direct policy updat-
ing framework (Hadjiosif et al. 2021). The main difference
between these models and the RL/ADP models is that the
former is not based on the optimal control framework.

Noise exists at all levels of sensorimotor interactions
(Parker et al. 2002; Orbán andWolpert 2011). Sensory inputs
are noisy, which limits the accuracy of our perception. Motor
commands are also noisy, which leads to inaccurate move-
ments. Thenoisy sensory inputs andmotor commands further
result in imprecise estimation of the state of the environment
and our body, and ambiguity of the parameters that charac-
terize the task (Orbán andWolpert 2011). Although the CNS
may usemechanisms in the style ofKalman filter or Bayesian
integration to minimize the effects (estimation errors) caused
by the noise in sensorimotor interactions (Parker et al. 2002;
Körding and Wolpert 2004; Körding and Wolpert 2006;
Wolpert 2007; Orbán and Wolpert 2011; Bach and Dolan
2012), the estimation errors can never be completely sup-
pressed (Sternad et al. 2011; Acerbi et al. 2017). Then, a
natural question to ask is: How does the CNS manage to
learn near-optimal policies or adapt to the new environment,
in the presence of estimation errors? Motor adaptation and
learning often involve iterative (trial-by-trial) improvement
processes (Haith and Krakauer 2013). From the computa-
tional perspective, even small errors in the iterative processes

may accumulate or be amplified over the iterations, to finally
cause divergence or failure of the process (Bertsekas 2011).
Thus, it is a nontrivial questionwhy the learning performance
of CNS is not affected by the estimation errors, or equiva-
lently, why the learning performance of the CNS is robust
to estimation errors in the learning processes. This question
is not addressed in most of the model-based mechanisms
mentioned previously, since the internal models are often
assumed perfect and accurate. Although the effects of the
parameter estimation errors for the uncertain force fields are
explicitly investigated in the computational models proposed
in Mistry et al. (2013) and Crevecoeur et al. (2020), the par-
tial knowledge of the internal model is still needed there.
Most of the model-free mechanisms mentioned in the last
paragraph have no formal theoretical treatment on this issue
either. The computational models proposed in Zhou et al.
(2011) and Hadjiosif et al. (2021) are able to adjust the con-
trol policies iteratively without formulating an intermediate
internal model, by utilizing the estimation errors of the sen-
sory output through model reference adaptive control and
direct policy updating, respectively. However, these mod-
els do not reflect the objective of minimizing the metabolic
cost, which can be naturally embedded in the optimal control
framework and is widely deemed to be one of the underly-
ing principles which the CNS obeys to choose the control
policies (Todorov and Jordan 2002; Liu and Todorov 2007;
Burdet et al. 2001; Franklin et al. 2008; Selen et al. 2009;
Franklin and Wolpert 2011).

With the above discussions inmind, in this paper we argue
that our recently developed robust reinforcement learning
theory (Bian and Jiang 2019; Pang et al. 2021) provides a new
model-free adaptive optimal control principle candidate for
explaining the robustness features observed in human motor
adaptation and learning. Previous theoretical studies of RL
and ADP often implicitly assume that the algorithms can be
implemented or solved exactlywithout any estimation errors,
which is a strong assumption since model uncertainties and
noisy data are common in reality. In Bian and Jiang (2019)
and Pang et al. (2021), it is shown by theoretical analysis that
the value iteration and the policy iteration, two main classes
of learning algorithms in RL and ADP, are robust to errors
in the learning process aimed at solving a linear quadratic
regulator (LQR) problem. More concretely, in Pang et al.
(2021) we prove that the policy iteration algorithm is small-
disturbance input-to-state stable. In other words, whenever
the estimation error in each iteration is bounded and small, the
solutions of the policy iteration algorithm are also bounded
and enter a small neighborhood of the optimal solution of the
LQR problem. In light of this robustness result, we propose a
novel model-free computational model in this paper, named
optimistic least-squares policy iteration (O-LSPI), to explain
the robustness of the learning and adaptation of the CNS
in the arm reaching task. We demonstrate through numeri-
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cal studies that although the unmeasurable control-dependent
noise in the human arm movement model introduces estima-
tion errors into the learning algorithm,O-LSPI is still capable
of finding near-optimal policies in different force fields and
producing nearly identical results as observed in experiments
conducted by Burdet et al. (2001, 2006) and Franklin et al.
(2003).

The rest of this paper is organized as follows: Sect. 2 intro-
duces the robust reinforcement learning, or more precisely
the O-LSPI algorithm, as a novel computational principle of
human movement, in the context of the general LQR prob-
lem with control-dependent stochastic noise. In Sect. 3, the
proposed O-LSPI algorithm is applied to the human move-
mentmodel, to reproduce the arm reaching task in simulation.
Section 4 presents some discussions about the proposed
mechanism. Section 5 closes the paper with some concluding
remarks.

2 Theory of robust reinforcement learning

2.1 Problem formulation

Consider linear stochastic systems with control-dependent
noises

dx = (Ax + Bu)dt + B
q∑

k=1

Ckudwk, (1)

where A ∈ R
n×n and B ∈ R

n×m are constant matrices
describing the systemdynamics,u ∈ R

m is the control signal,
Ck ∈ R

m×m is the gain matrix of control-dependent noise,
and wk is independent one-dimensional Brownian motion
for k = 1, 2, . . . , q. It is assumed that pair (A, B) is control-
lable. The control-dependent noise in (1) is used to capture
the psychophysical observations that the variability of motor
errors increases with the magnitude of the movement (Har-
ris and Wolpert 1998; Liu and Todorov 2007). Although the
actual human arm system is nonlinear due to the complex
behaviors of its components, e.g., tendon and muscles, as
demonstrated in Harris andWolpert (1998), Liu and Todorov
(2007), Zhou et al. (2011), Crevecoeur et al. (2020) and
Mistry et al. (2013), for the simple arm reaching task consid-
ered in this paper (introduced in detail in the next section),
the nonlinear dynamics can be linearized (Khalil 2002) and
approximated well using the linear dynamics (1).

Following Todorov and Jordan (2002) and Liu and
Todorov (2007), the optimal control problem is to find an
optimal control policy to minimize the following cost with
respect to the nominal system of (1) without the control-

dependent noise

J (x(0), u) =
∫ ∞

0

(
xTQx + uTRu

)
dt, (2)

where Q ∈ S
n and R ∈ S

m are positive definite constant
weighting matrices, with Sn denoting the set of all real sym-
metric matrices of order n. It is well known (Liberzon 2012,
Section 6.2.2) that the optimal control policy is u∗ = −K ∗x ,
where K ∗ = R−1BTP∗ and P∗ ∈ S

n is the unique positive
definite solution of the algebraic Riccati equation (ARE)

ATP + PA + Q − PBR−1BTP = 0. (3)

In addition, K ∗ is stabilizing in the sense that A − BK ∗ is
Hurwitz or its eigenvalues have negative real parts. Define

A(K ) = In ⊗ (A − BK )T + (A − BK )T ⊗ In

+
q∑

k=1

(BCkK )T ⊗ (BCkK )T.

As it can be directly checked (Kleinman 1969), the system
(1) in closed loop with u = −Kx is mean-square stable in
the sense of Willems and Willems (1976 Definition 1.) if
A(K ) is Hurwitz. In particular, if K is stabilizing and the
gain matrices Ck of the control-independent noise are small
enough, then A(K ) is Hurwitz.

2.2 Policy iteration

Notice that (3) is a nonlinear matrix equation in P , which
is hard to be directly solved. Policy iteration is an iterative
method to find P∗ by solving successively a sequence of
transformed linear matrix equations.

For any P ∈ S
n and any K ∈ R

m×n , define

G(P) �
[
Q + ATP + PA PB

BTP R

]

=
[ [G(P)]xx [G(P)]Tux

[G(P)]ux [G(P)]uu
]

.

and

H(G(P), K ) = [
In −KT

]
G(P)

[
In

−K

]
.

The following policy iteration method was originally pre-
sented in Kleinman (1968).

Algorithm 1 (Kleinman’s Policy Iteration)

(1) Choose a stabilizing control gain K1, and let i = 1.

123



310 Biological Cybernetics (2022) 116:307–325

(2) (Policy evaluation) Evaluate the performance of control
gain Ki , by solving

H(Gi , Ki ) = 0 (4)

for Pi ∈ S
n, where Gi � G(Pi ).

(3) (Policy improvement) Get the improved policy by

Ki+1 = [Gi ]−1
uu [Gi ]ux . (5)

(4) Set i ← i + 1 and go back to Step (2).

The following properties were proved in Kleinman (1968).

(i) A − BKi is Hurwitz for all i = 1, 2, . . ..
(ii) P1 ≥ P2 ≥ P3 ≥ · · · ≥ P∗.
(iii) limi→∞ Pi = P∗, limi→∞ Ki = K ∗.

2.3 Robust policy iteration

Clearly, the implementation of Kleinman’s policy iteration
algorithm relies upon the exact knowledge of the system
matrices A and B. In the absence of the exact knowledge
of A and B, only an estimate of G in Algorithm 1 obtained
from data can be used, which leads to the following inexact,
yet implementable, policy iteration algorithm:

Algorithm 2 (Inexact Policy Iteration)

(1) Choose a stabilizing control gain K̂1, and let i = 1.
(2) (Inexact policy evaluation) Obtain Ĝi ∈ S

m+n as an
approximation of G(P̂i ), where P̂i is the solution of

H(G(P̂i ), K̂i ) = 0. (6)

(3) (Policy update) Construct a new control gain

K̂i+1 = [Ĝi ]−1
uu [Ĝi ]ux . (7)

(4) Set i ← i + 1 and go back to Step (2).

With the error �Gi � Ĝi − G(P̂i ) in each iteration, the
sequences {Ĝi }∞i=1 and {K̂i }∞i=1 generated by Algorithm 2
would be different from the sequences {Gi }∞i=1 and {Ki }∞i=1
generated by Algorithm 1. Thus, a natural question to ask
is: Is policy iteration robust to the errors in the learning pro-
cess? In other words, in the presence of error �Gi , when
will K̂i still converge to a small neighborhood of K ∗? In our
recent work (Pang et al. 2021), we provide an answer to this
question, as shown in the following theorem.

Theorem 1 For any given stabilizing control gain K̂1 and
any ε > 0, there exists δ(ε, K̂1) > 0, such that if Q > 0 and
‖�G‖∞ < δ,

(i) [Ĝi ]uu is invertible, K̂i is stabilizing, ‖K̂i‖F < M0,
∀i ∈ Z+, i > 0, where M0(δ) > 0.

(ii) lim supi→∞ ‖K̂i − K ∗‖F < ε.
(iii) limi→∞ ‖�Gi‖F = 0 implies limi→∞ ‖K̂i−K ∗‖F =

0.

Intuitively, Theorem 1 implies that in Algorithm 2, if the
error signal �G is bounded and not too large, then the gen-
erated control policy K̂i is also bounded and will ultimately
be in a neighborhood of the optimal policy K ∗ whose size is
proportional to the l∞-norm of the error signal. The smaller
the error is, the better the ultimately generated policy is. In
other words, the algorithm described in Algorithm 2 is not
sensitive to small errors in the learning process.

2.4 Optimistic least-squares policy iteration

This subsection presents a specific method to construct the
estimation Ĝi in Step (2) of Algorithm 2 from the input/state
data generated by system (1) (sensory data generated in
the sensorimotor interactions), without the knowledge of
systemmatrices A, B, gainmatrices {Ck}qk=1 and the control-
dependent noise. Thus, the resulting Algorithm 3, named
optimistic least-squares policy iteration (O-LSPI), is a novel
model-free computational mechanism and an instantiation of
Algorithm 2.

The O-LSPI is based on the following lemma.

Lemma 1 For any stabilizing control gain K , its associated
PK satisfying (4) is the unique stable equilibrium of linear
dynamical system

Ṗ = H(G(P), K ), P(0) ∈ S
n, (8)

and lim
t→∞G(P(t)) = G(PK ).

Proof Vectorizing (8), we have

vec(Ṗ) =
(
In ⊗ (A − BK )T + (A − BK )T ⊗ In

)

× vec(P) + vec(Q + KTRK ).

(9)

Since (A− BK ) is Hurwitz, obviously this linear dynamical
system admits a unique stable equilibrium PK . ��
Lemma 1 implies that in Algorithm 1, instead of solving (4),
one can solve the ODE (8). This is actually the continuous-
time version of the optimistic policy iteration in Tsitsiklis
(2002) and Bertsekas (2011) for finite state and action spaces
(thus the name “optimistic”). Lemma1 is awell-known result
in control theory (Mori et al. 1986), where (4) and (8) are in
fact the algebraic Lyapunov matrix equation and the Lya-
punov matrix differential equation, respectively.

Now, we show how Ĝi in Algorithm 2 can be estimated
by CNS directly using the sensory data, i.e., input/state data
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collected from system (1), based on (8) and least squares.
Suppose in the i-th iteration, a control policy

ui = −K̂i x + y (10)

is applied to the system (1) to collect data, where y ∈ R
m is

the exploration noise. For any P̄i ∈ S
n , Ito’s formula (Pavli-

otis 2014, Lemma 3.2) yields

d(xT P̄i x) = 2xT P̄i (Ax + Bu)dt + uTΣ(P̄i )udt

+ 2xT P̄i B
q∑

k=1

Ckudwk,

where Σ(P̄i ) = ∑q
k=1 C

T
k B

T P̄i BCk . Define t j = j�t ,
where j = 0, 1, . . . , M , �t > 0 and M is a positive integer.
Integrating the above equation from t j to t j+1, we have

xT(t j+1)P̄i x(t j+1) − xT(t j )P̄i x(t j ) (11)

=
∫ t j+1

t j
zTθ(P̄i )zdt +

∫ t j+1

t j
2xT P̄i B

q∑

k=1

Ckudwk,

where z = [
xT, uT

]T
and

θ(P̄i ) �
[
AT P̄i + P̄i A P̄i B

BT P̄i Σ(P̄i )

]

=
[ [θ(P̄i )]xx [θ(P̄i )]Tux

[θ(P̄i )]ux [θ(P̄i )]uu
]

.

Taking the expectation on both sides of (11) yields

(X j+1 − X j )
T svec(P̄i ) = ZT

j svec(θ(P̄i )), (12)

where for any Y ∈ S
m

svec(Y ) = [y11,
√
2y12, . . . ,

√
2y1m, y22,

√
2y23,

. . . ,
√
2ym−1,m, ym,m]T ∈ R

1
2m(m+1),

X j = E[svec(x(t j )xT(t j ))],

Z j = E

[∫ t j+1

t j
svec(zzT)dt

]
.

Rewriting the above linear equations (12) for j = 0, . . . , M−
1 into a compact form, we obtain

Φi,M svec(θ(P̄i )) = Ψi,M svec(P̄i ), (13)

where

Φi,M = [Z0, Z1, . . . , ZM−1]T,

Ψi,M = [X1 − X0, X2 − X1, . . . , XM − XM−1]T,

and i in the subscriptions of Φ and Ψ is used to emphasize
that we are using (10) as the control policy. The following
assumption is made.

Assumption 1 Φi,M has full column rank.

Remark 1 Assumption 1 is in the spirit of persistent excita-
tion condition in adaptive control (Åström and Wittenmark
1995). Similar assumptions are needed in other RL meth-
ods, see Jiang and Jiang (2014, 2017), Kamalapurkar et al.
(2018), Kiumarsi et al. (2018), Bian et al. (2016, 2020), Bian
and Jiang (2019), Pang and Jiang (2020, 2021), Pang et al.
(2019, 2020). Assumption 1 makes the data-based differen-
tial equation (18) a good approximation of the model-based
differential equation (8), which is a key component in the
convergence analysis of the O-LSPI in the sequel. The pres-
ence of exploration noise y is necessary for Assumption 1;
otherwise, u will always be linearly dependent on x .

Under Assumption 1, (13) can be rewritten as

svec(θ(P̄i )) = Φ
†
i,MΨi,M svec(P̄i ), (14)

where Φ
†
i,M denotes the Moore–Penrose pseudoinverse of

Φi,M . Notice that (8) can be rewritten as

˙̄Pi = H(θ(P̄i ) − 0n ⊕ [θ(P̄i )]uu + Q ⊕ R︸ ︷︷ ︸
=G(P̄i )

, K ) (15)

with P̄i (0) ∈ S
n , where

0n ⊕ [θ(P̄i )]uu =
[
0n 0n×m

0m×n [θ(P̄i )]uu
]

,

Q ⊕ R =
[
Q 0n×m

0m×n R

]
.

If (14) is inserted into (15), then (15) only depends on the
data-based matrices Φi,M and Ψi,M , i.e., the precise knowl-
edge of system matrices A, B and {Ck}qk=1 is not needed.
However, the expectations in Φi,M and Ψi,M are not known
directly. Thus, they need to be estimated from the data. Sup-
pose there are in total N trajectories of state and input data
of length tM that are collected along the solutions of system
(1) with control policy (10). Then, we can construct approx-
imation θ̂ (P̄i ) of θ(P̄i ) using

svec(θ̂(P̄i )) = Φ̂
†
i,M,N Ψ̂i,M,N svec(P̄i ), (16)
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where

Φ̂i,M,N = [Ẑ0,N , Ẑ1,N , . . . , ẐM−1,N ]T,

Ψ̂i,M,N = [X̂1,N − X̂0,N , X̂2,N − X̂1,N ,

. . . , X̂M,N − X̂M−1,N ]T,

Ẑ j,N = 1

N

N∑

l=1

∫ t j+1

t j
svec

(
z(l)[z(l)]T)

dt, z(l) =
[
x (l)

u(l)

]
,

X̂ j,N = 1

N

N∑

l=1

svec
(
x (l)
t j [x (l)

t j ]T)
, j = 0, . . . , M − 1.

and x (l), u(l) are the l-th state trajectory and input trajec-
tory, respectively. By the strong law of large numbers, almost
surely

lim
N→∞ Φ̂i,M,N = Φi,M , lim

N→∞ Ψ̂i,M,N = Ψi,M . (17)

This implies that the solution of the following ordinary dif-
ferential equation

˙̌Pi = H(θ̂(P̌i ) − 0n ⊕ [θ̂ (P̌i )]uu + Q ⊕ R, K ), (18)

with P̌i (0) ∈ S
n would be close to the solution of (15), if N

is large enough and P̄(0) = P̌(0). Thus by Lemma 1, P̌i (s)
and θ̂ (P̌i (s)) would be close to P̂i and θ(P̂i ) in Algorithm 2,
respectively, for N and s > 0 large enough. In view of the
relationship between θ(·) and G(·) in (15), an estimation Ĝi

of G(P̂i ) can be constructed as

Ĝi = θ̂ (P̌i (s)) − 0n ⊕ [θ̂ (P̌i (s))]uu + Q ⊕ R (19)

in Algorithm 2. The O-LSPI algorithm is summarized in
Algorithm 3.

Algorithm 3 (Optimistic Least-Squares Policy Iteration)

(1) (Initialization) Choose a stabilizing control gain K̂1,
number of trajectories N, time step �t > 0, length of
samples M, length of policy evaluation s > 0, number
of iterations Ī . Let i = 1.

(2) Collect input/state data to construct data matrices
Φ̂i,M,N and Ψ̂i,M,N in (16), by applying control policy
(10) to (1).

(3) (Inexact policy evaluation) Obtain Ĝi defined in (19)
by solving the initial value problem of equation (18) on
[0, s] with initial value P̌i (0) = 0n.

(4) (Policy update) Construct a new control gain

K̂i+1 = [Ĝi ]−1
uu [Ĝi ]ux . (20)

(5) Set i ← i + 1. If i < Ī , go back to Step (2).

(6) Use u Ī = −K̂ Ī x as the approximately optimal control
policy.

It is worth emphasizing again that Algorithm 3 does not
need the knowledge of system matrices A and B, gain matri-
ces {Ck}qk=1 and the control-dependent noise wk . Based on
Theorem 1, the convergence of Algorithm 3 is given in the
following theorem, whose proof is given in “Appendix 1.”

Theorem 2 For any given stabilizing control gain K̂1 and
ε1 > 0, there exist an integer N0, an integer Ī and a constant
s0 > 0, such that if Assumption 1 is satisfied for all i =
1, . . . , Ī , then for any N > N0 and s > s0, almost surely

‖K̂ Ī − K ∗‖F < ε1,

and K̂i is stabilizing for all i = 1, . . . , Ī .

2.5 An example: double integrator

To verify the effectiveness of the O-LSPI algorithm and its
convergence result Theorem 2, consider a double integrator
disturbed by control-dependent stochastic noise,

dx =
[
0 1
0 0

]
xdt +

[
0
1

]
(udt + 0.1udw1). (21)

It is assumed that the system parameters in (21) are unknown
and the stochastic noise w1 is unmeasurable, but an initial
stabilizing control gain K̂1 = [11, 9] is available. Setting
Q = I2 and R = 1, we run O-LSPI with parameters N =
104, �t = 0.05, M = 7, s = 10, Ī = 10, and exploration
noise

y =
100∑

j=1

sin(η j t),

where {η j }100j=1 are drawn independently and identically from
theGaussian distributionwithmean−250 and standard devi-
ation 500. The simulation results are shown in Fig. 1, where
the relative errors of K̂i and P̂i with respective to their opti-
mal values K ∗ and P∗ are plotted, respectively. One can see
that the relative errors converge to a small neighborhood of
zero, which implies that K̂i and P̂i converge to a small neigh-
borhood of their optimal value, respectively.
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Fig. 1 Simulation results on the double integrator

3 Numerical studies in motor learning and
control

3.1 Human armmovementmodel

We consider the sensorimotor control tasks studied in Harris
and Wolpert (1998), Burdet et al. (2001, 2006) and Franklin
et al. (2003), where human subjects make point-to-point
reaching movements in the horizontal plane. The objective
is to reproduce similar results to those observed from experi-
ments in Burdet et al. (2001, 2006) and Franklin et al. (2003),
using the proposed O-LSPI algorithm.

In our numerical experiment, the dynamics of the arm are
simplified to a point-mass model (Liu and Todorov 2007) as
shown below,

ṗ = v,

mv̇ = a − bv + f ,

τ ȧ = u − a + C1uξ1 + C2uξ2,

(22)

where p = [px , py]T, v = [vx , vy]T, a = [ax , ay]T,
u = [ux , uy]T, f = [ fx , fy]T are the two-dimensional hand
position, velocity, actuator state, control input and external
force generated from the force fields, respectively;m denotes
the mass of the hand; b is the viscosity constant; τ is the
time constant; ξ1 and ξ2 are Gaussian white noises (Pavliotis
2014); and

C1 =
[
c1 0
c2 0

]
, C2 =

[
0 c2
0 c1

]

are gain matrices of the control-dependent noise (Harris and
Wolpert 1998). To fit this model into the optimal control
problem formulated in Sect. 2.1, (22) is rewritten in the form
of state-space model,

dx = (Ax + Bu)dt + B(C1udw1 + C2udw2) + Df dt

(23)

where w1 and w2 are one-dimensional standard Brownian
motions, and

x =
⎡

⎣
p
v

a

⎤

⎦ , A =
⎡

⎣
02 I2 02
02 − b

m I2
1
m I2

02 02 − 1
τ
I2

⎤

⎦ ,

B =
⎡

⎣
02
02
1
τ
I2

⎤

⎦ , D =
⎡

⎣
02
I2
02

⎤

⎦ .

The weighting matrices in cost function (2) are chosen as

Q =

⎡

⎢⎢⎢⎢⎢⎢⎣

2000 −40 0 0 0 0
−40 1000 0 0 0 0
0 0 20 −1 0 0
0 0 −1 20 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01

⎤

⎥⎥⎥⎥⎥⎥⎦
,

R = 0.01I2.

The term f in (23) is used to model possible external
disturbances exerted on the hand (Liu and Todorov 2007)
from the force fields. Three kinds of disturbances are con-
sidered here: the null field (NF) (Burdet et al. 2001, 2006;
Franklin et al. 2003), f ≡ 0, where no external disturbances
are exerted; the velocity-dependent force field (VF) (Burdet
et al. 2006; Franklin et al. 2003),

f = χ

[
13 −18
18 13

] [
vx
vy

]

where χ ∈ [2/3, 1] is a constant that can be adjusted to the
subject’s strength; the divergent force field (DF) (Burdet et al.
2001, 2006; Franklin et al. 2003),

f =
[

β 0
0 0

] [
px
0

]
(24)

where β > 0 and a negative elastic force disturbance per-
pendicular to the target direction is produced.

Table 1 Parameters of the arm movement model

Parameters Description Value

m Hand mass 1.3 kg

b Viscosity constant 10 Ns/m

τ Time constant 0.05 s

c1 Noise magnitude 0.075

c2 Noise magnitude 0.025
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The model parameters used in our simulations are given
in Table 1.

3.2 Sensorimotor control in velocity-dependent
force field

In the experiments conducted by Franklin et al. (2003) and
Burdet et al. (2006), subjects sat in a chair and moved the
parallel-link direct drive air-magnet floating manipulandum
(PFM) in a series of forward reaching movements performed
in the horizontal plane. Subjects performed reaching move-
ments from a start circle to a target circle with total distance
0.25 m. They firstly practiced in the NF until they achieved
enough successful trials. Trials were considered successful
if they ended inside the target within the prescribed time
0.6 ± 0.1 s. Then, VF was activated without informing the
subjects in advance. Subjects practiced in VF until achiev-
ing enough successful trials. Next they took a short break
and performed several trials in the NF. These trials were
called after-effects and were recorded to confirm that sub-
jects adapted to the force field. It was observed (Franklin et al.
2003;Burdet et al. 2006) that initial trials of the subjects inVF
were distorted drastically, but subjectsmade straightermove-
ments gradually. After learning through enough trials, the
trajectories were relatively straight and consistently reached
the final target position. Inspection of the stiffness,whichwas

defined as graphical depiction of the elastic restoring force
corresponding to the unit displacement of the hand for the
subject in the force fields (Burdet et al. 2001, 2006), revealed
that after adaptation endpoint stiffness was selectively mod-
ified to the direction of the instability. See Gomi and Kawato
(1996) and Franklin et al. (2003) for more details.

In this subsection, we apply O-LSPI to the human arm
movement model (23) to reproduce the experimental results
in Franklin et al. (2003) and Burdet et al. (2006).

The experiments in NF are firstly simulated. The O-LSPI
starts with an initial stabilizing control gain K̂1 ∈ R

2×6, such
that A−BK̂1 is Hurwitz. Such a control gain can be found by
robust control theory (Zhou and Doyle 1998), if some upper
and lower bounds of the elements in A and B are available
and the pair (A, B) is stabilizable. Indeed, the first several
trials in the NF can be interpreted as the searching for an
initial stabilizing control gain, by estimating theboundsof the
parameters b, m and τ and using robust control techniques.
If the CNS figures out that b ∈ [−8, 12], m ∈ [1, 1.5] and
τ ∈ [0.03, 0.07] in the first several trials, an initial control
gain can be chosen as

K̂1 =
[
100 0 10 0 10 0
0 100 0 10 0 10

]
.

Fig. 2 Simulated movement trajectory generated by O-LSPI. a Five
movement trajectories of the subject after learning in the NF. b The first

five consecutive movement trajectories of the subject in the VF. c Five
consecutive movement trajectories of the subject after 30 trials in the
VF. d Five after-effect trials in the NF
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Fig. 3 Simulated velocity and endpoint force curves generated by O-
LSPI. a Simulated curves of the subject after learning in the NF. b
Simulated curves of the subject in several trials when firstly exposed
to the VF. c Simulated curves of the subject after 30 trials in the VF.
d After-effect trials in the NF. x-velocity and y-velocity curves are
shown in the first and second rows, respectively. Bell-shaped velocity
curves are clearly observed in y-velocity curves. x-endpoint force and

y-endpoint force curves are shown in the third and fourth rows, respec-
tively. A comparison of the first and third figures in the x-endpoint
force suggests that subjects adapted to the VF by generating compensa-
tion force to counteract the force produced by VF. The shapes of these
curves resemble closely the experimental results reported in Franklin
et al. (2003); Burdet et al. (2006)

Then during the i-th trial, we collect input/state data gener-
ated by control policy (10) and construct estimation Ĝi from
the data to update the control policy.1 After 30 trials, the
control policy is updated to

K̂30 =

1 To construct good enough data matrices Φ̂i,M,N and Ψ̂i,M,N in Step
(2) of Algorithm 3, stochastic differential equation (23) needs to be
solvedover a long time interval,which is time-consumingonanordinary
laptop. We avoid this difficulty by directly computing Φi,M and Ψi,M

based on (23) and setting Φ̂i,M,N = Φi,M + ω1 and Ψ̂i,M,N = Ψi,M +
ω2, where each element in ω1 and ω2 are drawn from the uniform
distribution. All the simulations in this section are conducted in this
way. Elements in ω1 and ω2 are drawn from uniform distribution over
[−10, 10] in NF and VF, and over [−1, 1] in DF, respectively.

[
446.21 −6.98 49.80 −0.94 1.41 −0.02
−5.46 315.00 −0.84 43.38 −0.01 1.31

]

(25)

which is nearly optimal since the optimal policy in NF is

K̂ ∗
NF =

[
447.19 −5.91 49.70 −0.94 1.41 −0.01
−4.27 316.17 −0.91 43.34 −0.01 1.30

]
.

Next, the experiments in VF are simulated. Since the
velocity force field is activated without notifying the sub-
jects, the first trial in VF was under the same control policy
as learnt in NF. After the first trial, the CNS can realize that
it is facing with a new environment different from NF. So
O-LSPI is applied starting from the second trial. The initial
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control gain we use for the second trial is obtained by tripling
the gains in (25) in the NF. This is to mimic the experimen-
tal observation (Franklin et al. 2008) that muscle activities
increased dramatically after the first trial. After 30 trials, the
control policy is updated to

K̂30 =[
426.00 100.54 66.30 −12.56 1.65 −0.04

−155.75 299.92 5.93 61.57 −0.04 1.59

]

which is nearly optimal since the optimal policy in NF is

K̂ ∗
VF =

[
419.42 101.30 65.99 −12.37 1.65 −0.04

−155.19 299.56 6.05 61.80 −0.04 1.59

]
.

The simulated movement trajectories, the velocity curves
and the endpoint force curves are shown in Figs. 2 and 3. It
can be seen that the simulated movement trajectories in the
NF are approximately straight lines, and the velocity curves
along the y-axis are bell-shaped. The subject successfully
reaches the target in the first trial in VF, but the trajectory is
heavily distorted to the upper-left side, since the subject is
still using the near-optimal control policy learnt in NF when
firstly exposed to VF. Although VF produces a stable inter-
action with the arm, the near-optimal control policy learnt
in NF is far from being optimal in the new environment VF.
The O-LSPI takes effect from the second trial in VF. Motor
adaptation can be observed by comparing the first five con-
secutive trials, where the movement trajectories are getting
straighter and straighter. After 30 trials, the movement tra-
jectories return to be straight lines, and the velocity curves
become bell-shaped again. This implies that after 30 trials
in the VF, the CNS can learn well the optimal control pol-
icy using data, without knowing or using the precise system
parameters, and the unmeasurable control-dependent noise.
The stiffness ellipses after 30 trials are shown in Fig. 4. The
stiffness in the VF increases significantly in the direction of
the external force, compared with the stiffness in the NF.
Finally, our numerical study shows clearly the after-effects
of the subject behavior when the VF is suddenly deactivated.
These observations are a clear testament that motor adapta-
tion to VF indeed occurs. One can find through comparison
that our simulation results in Figs. 2, 3 and 4 are consistent
with the experimental observations in Franklin et al. (2003)
and Burdet et al. (2006).

The relative estimation errors of Ĝi in Algorithm 3 are
shown in Fig. 5. One can see that the errors are as large as
16% in the learning process. This implies that the CNS is
able to adapt to VF with imperfect or noisy information.
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Fig. 4 Illustration of the stiffness geometry to the VF. Compared with
the stiffness in the NF (green), the stiffness in the VF (red) increased
significantly in the direction of the external force
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Fig. 5 Relative estimation error �Gi between Ĝi and its true value
G(P̂i ) in O-LSPI in the VF. Although the estimation errors exist in the
learning process and can be as large as 16% of the true value measured
by the Frobenius norm, the subject is still able to adapt to the VF

3.3 Sensorimotor control in divergent force field

The effects of the divergent field to the subjects in the arm
reaching movement are also studied in Burdet et al. (2001,
2006) and Franklin et al. (2003), whose experimental results
are reproduced using our proposed computational method in
this subsection. We set β = 300 in (24).

The simulation of movements in the NF before the DF is
applied is the same with that presented in the last subsection.
However, with β = 300 the DF produces an unstable inter-
actionwith the arm, so that the near-optimal policy learned in
the NF is not stabilizing anymore. Therefore, when we apply
the same near-optimal control policy learnt in the NF to gen-
erate themovements for the first five trials in the DF, unstable
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Fig. 6 Simulated movement trajectory generated by O-LSPI. a Five
movement trajectories of the subject after learning in the NF. b Five
independent movement trajectories of the subject when firstly exposed
to DF. For safety reasons, the DF is turned off when the trajectory devi-

ates more than 2.5 cm from the y-axis. The black lines indicate this
safety zone. c Five consecutive movement trajectories of the subject
after 30 trials in the DF. d Five after-effect trials in the NF

behaviors are observed, as shown in Fig. 6b. In this case, it is
hypothesized that the CNS re-learns a new initial stabilizing
controller using the robust control theory (see Remark 2 for
an example), such that

A − BK̂1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0
β
m 0 − b

m 0 1
m 0

0 0 0 − b
m 0 1

m
0 0 0 0 − 1

τ
0

0 0 0 0 0 − 1
τ

⎤

⎥⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
1
τ

0
0 1

τ

⎤

⎥⎥⎥⎥⎥⎥⎦
K̂1

is Hurwitz. Here, we increase the first entry in the first row of
the control gain in (25) by 600 and set the resultant stabilizing
control gain to be the initial stabilizing control gain. After 30
trials in the DF, the O-LSPI has updated the control gain to

K̂30 =
[
1462.15 4.70 81.59 −0.14 1.87 0.01
−7.06 310.12 −0.88 43.09 0.00 1.31

]
,

which is near-optimal, since the corresponding optimal con-
trol gain is

K ∗
DF =

[
1481.89 −4.86 82.19 −0.76 1.88 −0.01
−6.65 316.19 −0.799 43.34 −0.01 1.30

]
.

The simulated movement trajectories, the velocity curves
and the endpoint force curves are shown in Figs. 6 and 7.
It can be seen that the simulated movement trajectories in
the NF are approximately straight lines, and the velocity
curves along the y-axis are bell-shaped. Due to the control-
dependent noise, the movement trajectories differ slightly
from trial to trial. Since DF produces an unstable interactions
with the arm, unstable behaviors are observed in the first sev-
eral trials when the subject is first exposed to the DF. Then,
O-LSPI is applied, and after 30 trials, the movement trajec-
tories become approximately straight as in the NF, which
implies that the CNS has learned to adapt to the DF. The
stiffness ellipses after 30 trials are shown in Fig. 8. It is clear
that the stiffness in theDF increases significantly in the direc-
tion of the divergent force, and the change of stiffness along
the movement direction is not significant, compared with the
stiffness in the NF. Finally, the after-effects of the subject
behavior are simulated when the DF is suddenly deactivated.
The after-effects movement trajectories are even straighter
than the trajectories in the NF. The reason is that the CNS
has learned to compensatemore to the displacement along the
x-axis. One can find through comparison that our simulation
results in Figs. 6, 7 and 8 are consistent with the experimental
observations in Burdet et al. (2001, 2006) and Franklin et al.
(2003).
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Fig. 7 Simulated velocity and endpoint force curves generated by O-
LSPI. a Simulated curves of the subject after learning in the NF. b
Simulated curves of the subject in several trials when firstly exposed to
theDF. cSimulated curves of the subject after 30 trials in theDF.dAfter-
effect trials in the NF. x-velocity and y-velocity curves are shown in
the first and second rows, respectively. Bell-shaped velocity curves are
clearly observed in y-velocity curves. x-endpoint force and y-endpoint

force curves are shown in the third and fourth rows, respectively. The
third figure in the x-endpoint force suggests that subjects adapted to the
DF by generating compensation force in the x-direction to counteract
the force produced by DF. The shapes of these curves resemble closely
the experimental results reported in Burdet et al. (2001, 2006); Franklin
et al. (2003)

The relative estimation errors of Ĝi in Algorithm 3 are
shown in Fig. 9. The errors can be as large as 90% of the true
values in the learning process. This implies that the CNS is
able to adapt to DF in the presence of the large imperfect or
noisy information.

Remark 2 By robust control theory (Zhou and Doyle 1998),
an initial stabilizing controller can be found provided that the
bounds of the parameters of a linear system are known. For
example, suppose the CNS has access to the bounds of the
unknown system parameters:

0.5 ≤ m ≤ 5, 2 ≤ b ≤ 20,

0.02 ≤ τ ≤ 0.5, 200 ≤ β ≤ 500,
(26)

in the DF. Then, with these bounds at hand, a direct appli-
cation of robust control theory (an application of the Robust
Control Toolbox (Balas et al. 2007) in terms of the code
implementation) yields:

K =[
15854 −17.23 477.10 −7 29.76 −270.88
−11.65 3.89 −1.43 4.55 −0.04 58.57

]

that stabilizes the hand inDF for all possible parameters satis-
fying the conditions in (26). In this way, an initial stabilizing
(but generally not optimal) control gain required by the O-
LSPI algorithm can be found, without the exact knowledge
of the system dynamics.
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Fig. 9 Relative estimation error �Gi between Ĝi and its true value
G(P̂i ) in O-LSPI in the DF. Although the estimation errors exist in the
learning process and can be as large as 90% of the true value measured
by the Frobenius norm, the subject is still able to adapt to the DF

Remark 3 It should be mentioned that if the bounds of the
parameters are completely unknown, the value iteration, an
alternative reinforcement learning algorithm, can be used
to find the optimal LQR control policies and reproduce the
experimental results in the divergent field (Bian et al. 2020),
without any initial stabilizing control policy. Please see Bian
and Jiang (2019), Pang and Jiang (2020) and Bian et al.
(2020) for details.

3.4 Fitts’s law

In this subsection, we further validate our computational
model using the Fitts’s law (Fitts 1954; Schmidt et al. 2018).
Fitts’s law is one of the widespread formal rules in the study

of human behavior. The law dictates that themovement dura-
tion t f required to rapidly reach a target area is a function of
the distance d to the target and the size of the target γ . There
are multiple versions of Fitts’s law (Schmidt et al. 2018),
two of which are used in our validation. The first one is the
logarithmic law (log law)

t f = α0 + α1 log2

(
2d

γ

)
,

where α0 and α1 are two constants. The second one is the
power law

t f = α0

(
d

γ

)α1

.

In our case, γ is the diameter of the target circle, and d is
the distance from the starting point to the center of the target.
We generate trials using the after-learning control polices in
the NF, VF and DF, respectively. The movement duration t f
is defined as the time when the hand cursor enters the target.
The data fitting results are shown in Fig. 10 and Table 2. It
can be seen that our simulation results are consistent with the
predictions of Fitts’s law.

4 Discussion

4.1 Model-free learning

Most of the previous computational models for sensorimo-
tor control assume that the CNS has the exact knowledge
of the motor system and the environment that it is inter-
acting with Wolpert et al. (1995), Todorov (2005), Liu and
Todorov (2007), Todorov and Jordan (2002), Harris and
Wolpert (1998), Mussa-Ivaldi et al. (1985), Yeo et al. (2016),
Česonis and Franklin (2020), Zhou et al. (2017), Mistry et al.
(2013), Ueyama (2014), Cluff and Scott (2015) and Gaveau
et al. (2014). Then, the optimal control policies are com-
puted based on this assumption. In contrast, our proposed
computational model Algorithm 3 is a model-free approach
which does not need accurate model information or esti-
mate the unknown model parameters. Algorithm 3 informs
that near-optimal policies are derived using the sensory data
and are robust to the control-dependent noise. The numerical
experiments in the last section show that out proposed model
can generate typical movement trajectories, stiffness ellipses
observed in previous experiments in different settings. As
one of the key differences with the sensorimotor models
mentioned above, our proposed computational mechanism
suggests that, when confronted with unknown environments
and imprecise dynamics, the CNS may update and improve
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Fig. 10 Log and power versions of Fitts’s law. Crosses in the first row,
the second row and the third row represent after-leaning movement
durations simulated in the NF, the VF and the DF, respectively. Solid

lines in A, C, E are least-squares fits using the log Fitts’s law, and solid
lines in B, D, F are the least-squares fits using the power Fitts’s law

Table 2 Parameters in the log law and power law estimated by least
squares

Parameters NF VF DF

α0 (Log law) 0.0715 0.0696 0.0676

α1 (Log law) 0.1002 0.1015 0.1015

α0 (Power law) − 1.3950 − 1.3833 − 1.3919

α1 (Power law) 0.2969 0.2954 0.2975

its command signals for movement through learning and
repeated trials using sensory data.

Two model-based computational mechanisms that do not
require an accurate internal model are proposed in Mistry
et al. (2013) and Crevecoeur et al. (2020). Assuming that
the parameters in the uncertain force fields are unknown,
modified and adaptive linear quadratic Gaussian control
is proposed in Mistry et al. (2013) and Crevecoeur et al.
(2020), respectively, to explain the experimental phenomena
observed there. However, the accurate models for the arms
and the rest of the environments are still needed to be known.
Furthermore, the parameters in the uncertain force fields

need to be estimated explicitly. By contrast, our proposed
mechanism assumes that all the parameters in the model are
unknown, and the control policies are directly generated from
the sensory data, and no parameter in the arm and environ-
ment models is explicitly estimated.

Model-free approaches based on the optimal control
framework are also developed in Jiang and Jiang (2014,
2015), Bian et al. (2016, 2020) for sensorimotor control.
Although these model-free approaches successfully repro-
duce the experimental observations in arm reaching task,
they assume implicitly that the control-dependent noises
{wk}∞k=1 in (23) are measurable and explicitly use the noise-
corrupted data in the computation of iterative estimates of
the optimal policy. In this paper, we conjecture that the CNS
makes decisionswithout direct access to anynoise-dependent
data, so the name of model-free is more relevant to the pro-
posed computational model. Interestingly, both theoretical
and numerical studies have shown that, without cancelling
exactly the noise-dependent terms, human motor learning
and control is inherently robust to the small noise occurring
in the learning process.
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Model-free approaches not based on the optimal control
framework are proposed in Zhou et al. (2011) and Hadjiosif
et al. (2021). The model in Zhou et al. (2011) synthesizes
iterative learning control and model reference adaptive con-
trol to reproduce the behavior observed in the human motor
adaptation, so that the motion command is carried out with-
out the need for inverse kinematics and the knowledge of
disturbance in the environment. It is assumed in Zhou et al.
(2011) that the CNS aims at letting the arm track an ideal tra-
jectory of a reference model. Although this mechanism does
not require internal models of the human arm and the envi-
ronment, the reference model needs to be identified from
the experimental data or specially designed. The model in
Hadjiosif et al. (2021) takes the derivative of the movement
errors with respect to the parameters in control policies,
such that the control policies are directly updated by gra-
dient descent without the knowledge of an forward model.
Although this model successfully characterizes some prop-
erties of the implicit adaption under mirror-reversed visual
feedback, the relationship between the sensory output and the
control policy is simply modeled as a static function, rather
than a dynamical system used in our paper [see Eq. (1)].
Besides, both the models in Zhou et al. (2011) and Hadjiosif
et al. (2021) only aim at minimizing sensory output errors,
without minimizing the metabolic cost, which is considered
in our model and is deemed to be one of the fundamental
principles in sensorimotor systems by many previous studies
(Todorov and Jordan 2002; Liu and Todorov 2007; Burdet
et al. 2001; Franklin et al. 2008; Selen et al. 2009; Franklin
and Wolpert 2011).

4.2 Robust reinforcement learning

With the control-dependent noise unmeasurable, we can only
solve the data-based approximate ODE (18) of the model-
based precise ODE (8), which is the main factor that causes
the discrepancies �Gi between Ĝi and its true value G(P̂i )
inAlgorithm3.The simulation results in the last section show
that even if the errors �Gi are present and can be as large
as 90% of the true value (see Figs. 5 and 9), O-LSPI still
successfully reproduces movement trajectories, velocity and
endpoint force curves, stiffness geometries similar to those
observed in experiments in Burdet et al. (2001, 2006) and
Franklin et al. (2003). This is consistent with our theoretical
result Theorem 1 on the robustness of reinforcement learning
algorithms and suggests that the CNS is able to learn to adapt
to the new environment and external disturbances in an error-
tolerant, robust way. Such observations and implications are
not included or explored in the previously proposed com-
putational mechanisms based on optimal control theory in
Todorov and Jordan (2002), Harris andWolpert (1998), Bur-
det et al. (2001, 2006), Franklin et al. (2003), Wolpert et al.
(1995), Selen et al. (2009), Zhou et al. (2017), Kadiallah et al.

(2011), Mistry et al. (2013), Česonis and Franklin (2020),
Haith and Krakauer (2013), d’Acremont et al. (2009), Fiete
et al. (2007), Jiang and Jiang (2014) and Bian et al. (2020).

It is worth emphasizing that the robustness issue stud-
ied in this paper is different from the robustness problem
considered inUeyama (2014), Jiang and Jiang (2015), Creve-
coeur et al. (2019), Gravell et al. (2020) and Bian et al.
(2020). The robustness of the closed-loop system consist-
ing of the optimal controller (the optimal policy learned by
the CNS) and the controlled plant (the sensorimotor system
and the environment that the CNS is interacting with) to
external disturbances is analyzed in Ueyama (2014), Jiang
and Jiang (2015), Crevecoeur et al. (2019), Gravell et al.
(2020) and Bian et al. (2020), while this paper is devoted
more exclusively to investigating the robustness of the learn-
ing algorithm, Algorithm 3, against the errors in the learning
process.

4.3 Exploration noise

For the convergence of our proposed computational algo-
rithm, it is necessary to add the exploration noise y to the
state-feedback term−K̂i x in (10). Indeed,without adding the
exploration noise, the control input ui is a linear combination
of the state x , i.e.,ui = −K̂i x , and thus,Assumption1 cannot
hold. As a result, there is no guarantee that the least-squares
problem in (16) has reasonable solutions and Algorithm 3
will converge to a small neighborhood of the optimal solu-
tion. In other words, our computational mechanism suggests
that the intrinsic control-dependent noises ξ1 and ξ2 in the
human arm movement model (22) alone are not enough to
guarantee that the CNS is able to successfully adapt to the
force fields in the arm reaching experiments, and extrinsic
exploration noise actively added to the control input is indis-
pensable in the sensorimotor learning. This is consistent with
the discoveries in the literature that the CNS actively regu-
lates themotor variability through extrinsic noise to facilitate
motor learning (Wu et al. 2014; Sternad 2018). In fact, it is
reported that noise is even able to teach people to make spe-
cific movements (Thorp et al. 2017). Evidences can also be
found in the study of songbird learning (Fiete et al. 2007;
Tumer and Brainard 2007). The song-related avian brain
area—robust nucleus of the arcopallium (RA)—is respon-
sible for the song production (Hahnloser et al. 2002), i.e., the
controller of the avian song control system. It is found in Fiete
et al. (2007) that another song-related avian brain area lateral
magnocellular nucleus of the nidopallium (LMAN) produces
fluctuatingglutamatergic input to areaRA, to generate behav-
ioral variability in the songbirds for trial-and-error learning.
In particular, lesion of area LMANhas little immediate effect
on song production in adults, but arrests song learning in
juveniles (Fiete et al. 2007). Thus, the extrinsic signal pro-
vided to area RA by area LMAN in songbird learning plays
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the same role to that of the extrinsic exploration noise in our
Algorithm 3.

4.4 Infinite-horizon optimal control

In our proposed computational method, the cost function
(2) penalizes the trajectory deviation and the energy con-
sumption over an infinite time horizon, which yields a
time-invariant control policy in each trial. This infinite-
horizon optimal control framework has a main advantage
that movement duration needs not to be prescribed by the
CNS (Huh et al. 2010; Huh 2012; Qian et al. 2013; Li et al.
2015; Česonis and Franklin 2021). Intuitively this seems to
be more realistic because the duration of each movement is
difficult to be prescribed and is different from each other
as a result of randomness in the trajectories caused by the
signal-dependent noise. The finite-horizon optimal control
framework is utilized in Liu and Todorov (2007), where
the cost function is integrated over a prescribed finite time
interval and the resultant control policy is time-varying. It
is suggested in Liu and Todorov (2007) that if the target is
not reached at the prescribed reaching time, the CNS can
similarly plan an independent new trajectory between the
actual position of the hand and the final target, and the final
trajectory will be the superposition of all the trajectories.
By contrast, our model matches the intuition that the motor
system keeps moving the hand toward the target until it is
reached.

Although both finite-horizon models and infinite-horizon
models have beenwidely and successfully used to explain the
goal-directed reaching tasks, it is still an unsettled problem
which kind of models humans actually use (Li et al. 2015).
Both of these models have unique merits and limitations (see
Česonis and Franklin 2021 and the references therein for
details). Recently, a novel model combining the strengths
of the finite-horizon optimal control and the infinite-horizon
optimal control is proposed in Česonis and Franklin (2021)
to address their individual limitations.

5 Conclusion

In this paper, we have proposed a new computational mech-
anism based on robust reinforcement learning, named opti-
mistic least-squares policy iteration (O-LSPI), to model the
robustness phenomenon in motor learning, control and adap-
tation. The O-LSPI model suggests that in spite of the esti-
mation errors caused by the unmeasurable control-dependent
noise, the CNS could still find near-optimal control policies
directly from the noisy sensory data. Simulated movement
trajectories, velocity and endpoint force curves and stiffness
geometries consistent with the experimental observations in
Burdet et al. (2001, 2006) and Franklin et al. (2003) are

reproduced using the O-LSPI model, with estimation errors
as large as 90% of the corresponding true values. Therefore,
we argue that human sensorimotor systemsmay use amecha-
nism in the spirit of robust reinforcement learning to achieve
motor learning, control and adaptation that are robust to the
estimation errors present in the sensorimotor interactions.

Appendix A Proof of Theorem 2

Let ε = ε1/2 in Theorem 1. We firstly show that for each
stabilizing K̂i ∈ R

m×n , there exist an integer Ni and a con-
stant si > 0, such that if Assumption 1 is satisfied, then for
any N > Ni and s > si , almost surely

‖�Gi‖F < δ. (27)

By definition,

‖�Gi‖F = ‖G(P̂i ) − Ĝi‖F ≤ 2‖θ(P̂i ) − θ̂ (P̌i (s))‖F
= 2‖θ(P̂i ) − θ(P̌i (s)) + θ(P̌i (s)) − θ̂ (P̌i (s))‖F
≤ 2C0‖P̂i − P̌i (s)‖F + 2‖θ(P̌i (s)) − θ̂ (P̌i (s))‖F ,

where C0 > 0 is a constant. Then, we only need to show that
for any N > Ni and s > si ,

‖P̂i − P̌i (s)‖F <
δ

4C0
, ‖θ(P̌i (s)) − θ̂ (P̌i (s))‖F <

δ

4
.

Vectorizing (15) yields

˙̄pi = T (Φi,M,N , Ψi,M,N , K̂i ) p̄i

+
[
In,−K̂T

i

]
⊗

[
In,−K̂T

i

]
vec(Q ⊕ R),

(28)

where p̄i = vec(P̄i ), i.e., the vectorization of matrix P̄i ,

T (Φi,M,N , Ψi,M,N , K̂i )

=
[
In,−K̂T

i

]
⊗

[
In,−K̂T

i

] (
I(m+n)2 − (0n ⊕ Im)

⊗(0n ⊕ Im)) Dm+nΦ
†
i,M,NΨi,M,N D†

n,

and for Y ∈ S
n , Dn ∈ R

n2× 1
2 n(n+1) is the unique matrix with

full column rank (Magnus and Neudecker 2007, Page 57)
such that

vec(Y ) = Dn svec(Y ), svec(Y ) = D†
n vec(Y ).

Vectorizing (18) yields

˙̌pi = T (Φ̂i,M,N , Ψ̂i,M,N , K̂i ) p̌i

+
[
In,−K̂T

i

]
⊗

[
In,−K̂T

i

]
vec(Q ⊕ R),

(29)
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where p̌i = vec(P̌i ). Since (8), (9), (28) and (15) are mutu-
ally equivalent with Assumption 1, by (17)

lim
N→∞ T (Φ̂i,M,N , Ψ̂i,M,N , K̂i )

= T (Φi,M,N , Ψi,M,N , K̂i )

=
(
In ⊗ (A − BK̂i )

T + (A − BK̂i )
T ⊗ In

)
.

(30)

Since K̂i is stabilizing, by continuity, there exists an integer
Ni,1, such that for any N > Ni,1, T (Φ̂i,M,N , Ψ̂i,M,N , K̂i ) is
Hurwitz. Then, we have

lim
t→∞ P̄i (t) = P̂i , lim

t→∞ P̌i (t) = P̊i , (31)

where

vec(P̂i ) = −T †(Φi,M,N , Ψi,M,N , K̂i )[
In,−K̂T

i

]
⊗

[
In,−K̂T

i

]
vec(Q ⊕ R),

vec(P̊i ) = −T †(Φ̂i,M,N , Ψ̂i,M,N , K̂i )[
In,−K̂T

i

]
⊗

[
In,−K̂T

i

]
vec(Q ⊕ R).

By continuity of matrix inversion, (17) and (31), there exist
an integer Ni,2 ≥ Ni,1 and si > 0, such that for any N > Ni,2

and s > si

‖P̂i − P̌i (s)‖F ≤ ‖P̂i − P̊i‖F + ‖P̊i − P̌i (s)‖F <
δ

4C0
,

and

‖θ(P̌i (s)) − θ̂ (P̌i (s))‖F
≤ ‖Φ̂†

i,M,N Ψ̂i,M,N − Φ
†
i,M,NΨi,M,N‖F‖P̌i (s)‖F <

δ

4
.

Setting Ni = Ni,2 completes the proof of (27). By Theo-
rem 1, there exists an integer Ī , such that if

‖�Gi‖F < δ, i = 1, . . . , Ī , (32)

then ‖K̂ Ī − K ∗‖F < ε1. Condition (32) can be satisfied by
setting

N0 = max(N1, . . . , NĪ ), s0 = max(s1, . . . , sĪ ).

This completes the proof.
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