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Abstract
We systematically investigate the response of neurons to oscillatory currents and synaptic-like inputs and we extend our
investigation to non-structured synaptic-like spiking inputs with more realistic distributions of presynaptic spike times. We
use two types of chirp-like inputs consisting of (i) a sequence of cycles with discretely increasing frequencies over time, and
(ii) a sequence having the same cycles arranged in an arbitrary order. We develop and use a number of frequency-dependent
voltage response metrics to capture the different aspects of the voltage response, including the standard impedance (Z ) and the
peak-to-trough amplitude envelope (VENV) profiles. We show that Z -resonant cells (cells that exhibit subthreshold resonance
in response to sinusoidal inputs) also show VENV-resonance in response to sinusoidal inputs, but generally do not (or do it
very mildly) in response to square-wave and synaptic-like inputs. In the latter cases the resonant response using Z is not
predictive of the preferred frequencies at which the neurons spike when the input amplitude is increased above subthreshold
levels. We also show that responses to conductance-based synaptic-like inputs are attenuated as compared to the response to
current-based synaptic-like inputs, thus providing an explanation to previous experimental results. These response patterns
were strongly dependent on the intrinsic properties of the participating neurons, in particular whether the unperturbed Z -
resonant cells had a stable node or a focus. In addition, we show that variability emerges in response to chirp-like inputs with
arbitrarily ordered patterns where all signals (trials) in a given protocol have the same frequency content and the only source of
uncertainty is the subset of all possible permutations of cycles chosen for a given protocol. This variability is the result of the
multiple different ways in which the autonomous transient dynamics is activated across cycles in each signal (different cycle
orderings) and across trials. We extend our results to include high-rate Poisson distributed current- and conductance-based
synaptic inputs and compare them with similar results using additive Gaussian white noise. We show that the responses
to both Poisson-distributed synaptic inputs are attenuated with respect to the responses to Gaussian white noise. For cells
that exhibit oscillatory responses to Gaussian white noise (band-pass filters), the response to conductance-based synaptic
inputs are low-pass filters, while the response to current-based synaptic inputs may remain band-pass filters, consistent with
experimental findings. Our results shed light on the mechanisms of communication of oscillatory activity among neurons in
a network via subthreshold oscillations and resonance and the generation of network resonance.
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1 Introduction

Subthreshold (membrane potential) oscillations (STOs) in a
variety of frequency ranges have been observed inmany neu-
ron types (Alonso and Llinás 1989; Klink and Alonso 1993;
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Dickson et al. 2000a;White et al. 1995; Dickson et al. 2000b;
Lampl and Yarom 1993, 1997; Gutfreund et al. 1995; Llinás
and Yarom 1986; Llinás et al. 1991; Wang 2010; Yoshida
and Alonso 2007; Yoshida et al. 2011; Morin et al. 2010;
Schmitz et al. 1998; Reboreda et al. 2003; Wu et al. 2001;
Amir et al. 1999; Fernandez and White 2008; Chorev et al.
2007; Zhuchkova et al. 2014; Remme et al. 2014; Boehmer
et al. 2000; Pedroarena et al. 1999;Bourdeau et al. 2007;Des-
maisons et al. 1999; Balu et al. 2004; Giocomo et al. 2007;
Stiefel et al. 2010; Baroni et al. 2014; Khosrovani et al. 2007;
Bilkey and Heinemann 1999; Manis et al. 1999; Chapman
and Lacaille 1999; Bracci et al. 2003; Golomb et al. 2007;
Surmeier et al. 2005; Wilson and Callaway 2000; Einstein
et al. 2017; Amir et al. 2002). In brain areas such as the
entorhinal cortex, the hippocampus and the olfactory bulb,
the frequency of the STOs is correlated with the frequency of
the networks of which they are part (Alonso and Llinás 1989;
Klink and Alonso 1993; Giocomo et al. 2007; Cobb et al.
1995;Colgin 2013;ChapmanandLacaille 1999;Desmaisons
et al. 1999; Balu et al. 2004; Kay et al. 2008; Li and Cleland
2017), thus suggesting STOs play a role in the generation of
network rhythms (Desmaisons et al. 1999; Brea et al. 2009;
Wang 2010), the communication of information across neu-
rons in a network via timing mechanisms (Izhikevich 2002;
Stiefel et al. 2010; Dwyer et al. 2012; Lampl and Yarom
1993), cross-frequency coupling in neurons where STOs are
interspersed with spikes (mixed-mode oscillations; MMOs)
(Bragin et al. 1995; Chrobak and Buzsáki 1998; Colgin et al.
2009; Gireesh and Plenz 2008; Axmacher et al. 2006; Jensen
and Colgin 2007; Gloveli et al. 2005; Belluscio et al. 2012),
and the encoding of information (Hinzer and Longtin 1996;
Burgess et al. 2011) and sensory processing (Einstein et al.
2017). STOs can be generated by cellular intrinsic or net-
work mechanisms. In the first case, STOs result from the
interplay of ionic currents that provide positive and slower
negative effects (e.g., (Dickson et al. 2000a, b; Rotstein et al.
2006; Rotstein 2017)). (Examples of the former are the per-
sistent sodium and calcium activation and examples of the
latter are h-type hyperpolarization-activated mixed sodium-
potassium,M-type slowpotassiumand calcium inactivation.)
In the second case, STOs are generated in networks, but the
individual cells cannot robustly oscillate when isolated (e.g.,
(Manor et al. 1997; Chorev et al. 2007; Loewenstein et al.
2001)).

The communication of oscillatory information among
neurons in a network and across brain areas requires the
generation of spiking patterns that are correlated with the
underlying STOs (e.g., MMOs where spikes occur at the
peak of the STO or at a consistent phase referred to this
peak). It also requires the system to be able to respond to
external inputs in such a way as to preserve the oscillatory
information. Studies on the latter are typically carried out by
using sinusoidal inputs. Subthreshold (membrane potential)

resonance (MPR) refers to the ability of a system to exhibit a
peak in their voltage amplitude response to oscillatory inputs
currents at a preferred (resonant) frequency (Hutcheon and
Yarom 2000; Richardson et al. 2003; Rotstein and Nadim
2014; Rotstein 2015) (in voltage-clamp, the input is volt-
age and the output is current). MPR has been investigated
in many neuron types both experimentally and theoretically
(Pena et al. 2018; Hutcheon and Yarom 2000; Richardson
et al. 2003; Lampl and Yarom 1997; Llinás and Yarom 1986;
Gutfreund et al. 1995; Erchova et al. 2004; Schreiber et al.
2004; Hutcheon et al. 1996a; Gastrein et al. 2011; Hu et al.
2002, 2009; Narayanan and Johnston 2007, 2008; Marcelin
et al. 2009; D’Angelo et al. 2009; Pike et al. 2000; Tseng and
Nadim2010; Tohidi andNadim2009; Solinas et al. 2007;Wu
et al. 2001;Muresan and Savin 2007; Heys et al. 2010, 2012;
Zemankovics et al. 2010; Nolan et al. 2007; Engel et al. 2008;
Boehlen et al. 2010, 2013; Rathour and Narayanan 2012,
2014; Fox et al. 2017; Chen et al. 2016; Beatty et al. 2015;
Song et al. 2016; Art et al. 1986; Remme et al. 2014; Higgs
and Spain 2009; Yang et al. 2009; Mikiel-Hunter et al. 2016;
Rau et al. 2015; Sciamanna andWilson 2011; D’angelo et al.
2001; Lau and Zochowski 2011; van Brederode and Berger
2008; Rotstein and Nadim 2014; Rotstein 2014, 2015, 2017;
Szucs et al. 2017) and it has been shown to have functional
implications for the generation of network oscillations (Chen
et al. 2016; Bel and Rotstein 2019).

The choice of sinusoidal inputs is based on the fact
that for linear systems they can be used to reconstruct the
response to arbitrary time-dependent inputs, and relatively
good approximations can be obtained for mildly nonlin-
ear systems. However, although neurons may be subject to
oscillatory modulated inputs, the communication between
neurons in a network occurs via synaptic connections whose
waveforms are significantly different from pure sinusoidal
functions. Synaptic inputs such as these associated with
AMPA or GABAA synaptic currents rise very fast (almost
instantaneously) and then decay exponentially on a slower
time scale. In contrast to sinusoidal inputs, the rise and decay
of the periodic synaptic inputs occur over a small portion
of the input periods for the smaller input frequencies. The
gradual variation of the sinusoidal inputs causes the voltage
response to reach the stationary regime after a very small
number of cycles, while the abrupt changes in the synap-
tic inputs over a small time interval sequentially activate the
autonomous transient dynamics at every cycle, and therefore
is expected to produce different response patterns than these
for sinusoidal inputs (Pena and Rotstein 2021).

The main goal of this paper is to understand whether and
under what conditions the presence of MPR in a neuron is
predictive of the preferred frequency at which the neuron
will spike in response to periodic presynaptic inputs when
the input amplitude is increased above subthreshold levels.
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From a dynamical systems perspective, single-cell sus-
tained STOs can be in the limit cycle regime (robust to noise,
driven by DC inputs) or in the fluctuation-driven regime
(vanishing or decaying to an equilibrium in the absence
of noise). Noisy STOs in the limit cycle regime reflect the
stationary dynamics of the system in the absence of noise.
In contrast, fluctuation-driven STOs reflect the autonomous
transient dynamics (the transient dynamics of the under-
lying unperturbed system) (Pena and Rotstein 2021). The
effects of the autonomous transient dynamics are captured
by the system’s response to abrupt changes in constant inputs
(Pena and Rotstein 2021). There, the values of the voltage
and other variables at the end of a constant input regime
become the initial conditions for the new one. By repeated
activation of the autonomous transient dynamics, piecewise
constant inputs with short-duration pieces and arbitrarily dis-
tributed amplitudes (not necessarily randomly distributed)
are able to produce oscillatory responses (Pena and Rotstein
2021). Noise-driven oscillations are a limiting case of this
mechanism where the input’s constant pieces have randomly
distributed amplitudes and their durations approach zero.
If the amplitudes are normally distributed, these piecewise
constant inputs provide an approximation to Gaussian white
noise (Allen et al. 1998). Roughly speaking, each “kick” to
the systemby the noisy input operates effectively as an abrupt
change of initial conditions to which the system responds by
activating the transient time scales, and the voltage and other
state variables evolve according to the vector field away from
equilibrium (or stationary state). For example, noise-driven
STOs (White et al. 1998; Rotstein et al. 2006; Chow and
White 1996; Pena and Rotstein 2021) can be generated when
damped oscillations are amplified by noise, and this may
extend to situationswhere the noiseless system exhibits over-
damped oscillations (overshoots) (Pena and Rotstein 2021).

Along these lines of the previous discussion, a series of
dynamic clamp experiments (Fernandez and White 2008)
using artificially generated synaptic conductances and cur-
rents driven by high-rate presynaptic Poisson spike trains
showed that medial entorhinal cortex layer II stellate cells
(SCs) are able to generate STOs in response to current-based
synapses, but not in response to conductance-based synap-
tic currents. SCs are a prototypical example of an intrinsic
fluctuation-driven STO neuron (Dickson et al. 2000a, b; Dor-
val and White 2005; Rotstein et al. 2006) and resonator
(Schreiber et al. 2004). In the response to current-based
synaptic inputs, the STOs have similar frequencies and
amplitudes as the spontaneous STOs (Dickson et al. 2000a, b)
and the resonant responses to sinusoidal inputs (Schreiber
et al. 2004). In response to conductance-based synaptic cur-
rents, STOs may still be present, but highly attenuated as
compared to current-based synaptic inputs. Similar results
were found in Kispersky et al. (2012) for hippocampal CA1
OLM (oriens lacunosum-moleculare) cells and in Farries and

Wilson (2012a, b) for phase-response curves in subthalamic
neurons.

This raises a seeming contradiction between the ability
of the impedance (Z -) profile (curve of the voltage V -
response normalized by the amplitude of the oscillatory
inputs as a function of the input frequency) to predict the
existence of STOs for arbitrary time-dependent inputs, in
particular Gaussian white noise, and the absence of STOs for
conductance-based synaptic inputs in response to Poisson-
distributed spike trains whose effect on the target cells have
been approximated by Gaussian white noise (Brunel 2000;
Amit and Tsodyks 1991; Tuckwell 1989, 1988; Amit and
Brunel 1997; Brunel et al. 2001). This can be partially
explained by the fact that synaptic currents “add linearity” to
the system, but fluctuation-driven STOs can be generated in
linear systems and therefore one could expect only changes
in amplitude and frequency. Another possible explanation is
that while the Z -profile is independent of the input wave-
form, the voltage response power spectral density (PSD) is
not and depends on the current input waveform. The expec-
tation that the PSD be similar for current-based Gaussian
white noise and Poisson-driven current-/conductance-based
synaptic inputs would assume similarity between the differ-
ent input types.

In this paper, we systematically address these issues in a
broader context. Our results shed light on the mechanisms
of communication of oscillatory activity among neurons in a
network via subthreshold oscillations and resonance and the
generation of suprathreshold and network resonance.

2 Methods

2.1 Models

In this paper, we use relatively simple biophysically plausible
models describing the subthreshold dynamics of individual
neurons subject to both additive and multiplicative inputs.

2.1.1 Linear model: additive input current

For the individual neurons we use the following linearized
biophysical (conductance-based) model

C
dv

dt
= −gLv − g1w + Iin(t) (1)

τ1
dw

dt
= v − w, (2)

where v (mV) is the membrane potential relative to the volt-
age coordinate of the fixed-point (equilibrium potential) of
the original model, w (mV) is the recovery (gating) variable
relative to the gating variable coordinate of the fixed-point
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of the original model normalized by the derivative of the
corresponding activation curve, C ( μF/cm2) is the specific
membrane capacitance, gL (mS/cm2) is the linearized leak
conductance, g1 (mS/cm2) is the linearized ionic conduc-
tance, τ1 (ms) is the linearized gating variable time constant
and Iin(t) (μA/cm2) is the time-dependent input current. In
this paper we consider resonant gating variables (g1 > 0;
providing a negative feedback effect). We refer the reader
to Richardson et al. (2003); Rotstein and Nadim (2014) for
details of the description of the linearization process for
conductance-based models.

2.1.2 Conductance-based synaptic input model:
multiplicative input

To account for the effects of conductance-based synaptic
inputs we extend the model (1)–(2) to include a synaptic
current

C
dv

dt
= −gL v − g1w − Isyn(t) (3)

τ1
dw

dt
= v − w (4)

where

Isyn(t) = GsynSin(t)(v − Esyn) (5)

and Gsyn (mS/cm2) is the maximal synaptic conductance,
Esyn (mV) is the synaptic reversal potential (Eex for excita-
tory inputs and Ein for inhibitory inputs) and Sin(t) is the
time-dependent synaptic input.

2.1.3 INap + Ih conductance-basedmodel

To test our ideas in a more realistic model we will use the
following conductance-based model combining a fast ampli-
fying gating variable associated to the persistent sodium
current INap and a slower resonant gating variable associated
to the hyperpolarization-activated mixed cation (h-) current
Ih . The model equations for the subthreshold dynamics read

C
dV

dt
= −GL(V − EL) − Gp p∞(V )(V − ENa)

−Ghr(V − Eh)

+Iapp + Iin(t) − Isyn(t) (6)

τr
dr

dt
= r∞(V ) − r (7)

where

p∞(v) = 1

1 + e−(v−vp,1/2)/vp,slp
, (8)

and

r∞(v) = 1

1 + e(v−vr ,1/2)/vr ,slp
. (9)

This model describes the onset of spikes, but not the spiking
dynamics (Rotstein et al. 2006). Spikes are added by includ-
ing a voltage threshold (indicating the occurrence of a spike
after its onset) and reset values Vrst and rrst for the partici-
pating variables.

Unless stated otherwise, we use the following parame-
ter values: vp,1/2 = −38 mV, vp,slp = 6.5 mV, vr ,1/2 =
−79.2 mV, vr ,slp = 9.78 mV, C = 1 μF/cm2, EL =
−65 mV, ENa = 55 mV, Eh = −20 mV, gL = 0.5 mS/cm2,
gp = 0.5 mS/cm2, gh = 1.5 mS/cm2, Iapp = −2.5 μA/cm2,
and τr = 80 ms.

2.2 Input functions: periodic inputs and realistic
waveforms

The input functions Iin(t) and Sin we use in this paper have
the general form

Iin(t) = AinF(t) and Sin(t) = AinF(t) (10)

2.2.1 Chirp-like input functions: increasingly ordered
frequencies

We will use the three chirp-like input functions F(t) shown
in Fig. 1-a. The sinusoidal chirp-like function (Fig. 1-
a1) consists of a sequence of input cycles with discretely
increasing frequencies over time (Fig. 1-a4). We use inte-
ger frequencies in the range 1 − 100 Hz. These chirp-like
functions are a modification of the standard chirp func-
tion (Hutcheon et al. 1996a) where the frequency of the
sinusoidal input increases (or decreases) continuously with
time (Hutcheon et al. 1996a). Sinusoidal inputs of a single
frequency and sinusoidal chirps withmonotonically and con-
tinuously increasing (or decreasing) frequencies with time
have been widely used to investigate the resonant properties
of neurons both in vitro and in vivo (Hutcheon et al. 1996a;
Stark et al. 2013; Tseng and Nadim 2010).

The square-wave (Fig. 1-a2) and synaptic-like (Fig. 1-a3)
chirp-like functions are constructed in the same manner as
the sinusoidal one by substituting the sinusoidal functions by
squarewaves (duty cycle = 0.5) and exponentially decreasing
functions with a characteristic decay time τDec, respectively.
We refer to them as sinusoidal, square-wave, and synaptic-
like inputs or chirps, respectively (and we drop the “chirp-
like”).

The discretely changing chirp-like functions we use here
are a compromise between tractability and the ability to
incorporate multiple frequencies in the same input signal.

123



Biological Cybernetics (2022) 116:163–190 167

a1 a2 a3

b1 b2 b3

a4 b4

Fig. 1 Chirp-like input functions. (a1) Sinusoidal chirp-like input. (a2)
Square-wave chirp-like input. (a3) Synaptic-like chirp input. (b) Same
input functions as in (a) but with arbitrarily ordered frequencies. (a4)
Increasingly ordered frequencies used to construct (a). (b4) Arbitrarily
ordered frequencies used to construct (b). All panels show frequencies
in the range 1–100 Hz

They combine the notion of input frequency with the notion
of transition between different frequencies in the same signal.
Also, note that the square-wave inputs are an intermediate
between sinusoidal and synaptic-like inputs in the sense that
square-wave inputs have abrupt transitions as synaptic-like
inputs but are closer in shape to the sinusoidal input that is
changed gradually.

2.2.2 Chirp-like input functions: arbitrarily ordered
frequencies

To examine the variability of the cell’s response to the chirp
signals described above and to capture the fact that informa-
tion does not necessarily arrive in a regularly orderedmanner,
we will use modified versions of these chirp inputs where
the cycles are rearranged in an arbitrary order (Fig. 1-b). The
regularly (Fig. 1-a4) and arbitrarily (Fig. 1-b4) ordered input
signals have exactly the same cycles (one cycle for each fre-
quency value within the considered range) and therefore the
same frequency content.

2.2.3 Poisson distributed spikes and white Gaussian noise

To test the oscillatory responses to more realistic inputs we
use spike-trains with distributed spikes following a homoge-
neous Poisson process with rate ν. Each input spike evokes a
synaptic-like input function as described above. In addition,
we use an additive Gaussian noise current Inoise = √

2Dη(t)
where η(t) is a Gaussian white noise input with zero mean
and unit variance (Iin(t) has zero mean and variance 2D).
Unless stated otherwise, ν = 1000 Hz and D = 1 (addi-
tional information is provided in the figure captions).

2.3 Output metrics

2.3.1 Impedance (amplitude) profile

The impedance (amplitude) profile is defined as the magni-
tude of the ratio of the output (voltage) and input (current)
Fourier transforms

Z( f ) =
∣
∣
∣
∣

F{v(t)}
F{I (t)}

∣
∣
∣
∣
, (11)

where F{x(t)} = ∫ T
0 dte−2π i f t x(t). In practice, we use the

Fast Fourier Transform algorithm (FFT) to compute F{x(t)}.
Note that Z( f ) is typically used as the complex impedance,
a quantity that has amplitude and phase. For simplicity, here
we used the notation Z( f ) for the impedance amplitude.

2.3.2 Voltage and impedance (amplitude) envelope profiles

The upper and lower envelope profiles V+/−
ENV are curves

joining the peaks and troughs of the steady state voltage
response as a function of the input frequency f . The envelope
impedance profile is defined as Rotstein (2014, 2015)

ZENV( f ) = V+
ENV ( f ) − V−

ENV ( f )

2Ain
, (12)

where Ain is the input amplitude. For linear systems,
ZENV( f ) coincides with Z( f ).

2.3.3 Voltage power spectral density

In the frequency-domain, we compute the power spectral
density (PSD) of the voltage as the absolute value of its
Fourier transform F{v(t)}. We will refer to this measure as
PSD or VPSD.
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2.3.4 Firing rate (suprathreshold) response

We compute the firing rate response of a neuron by counting
the number of spikes fired within an interval of length T and
normalizing by T

〈x〉 = 1

T

∫

T
x(t)dt (13)

where the neural function x is given by

x(t) =
∑

i

δ(t − ti ), (14)

and ti are the spike times within the considered interval.

2.4 Numerical simulations

We used the modified Euler method (Runge-Kutta, order 2)
(Burden and Faires 1980) with step size �t = 0.01 ms.
All neural models and metrics, including phase-plane anal-
ysis, were implemented by self-developed MATLAB rou-
tines (The Mathworks, Natick, MA) and are available in
https://github.com/BioDatanamics-Lab/impedance_input_
dependent.

3 Results

3.1 Transient and steady-state neuronal responses
to abrupt versus gradual input changes

The properties of the transient responses of dynamical sys-
tems to external inputs depend on the intrinsic properties of
the target cells, the initial conditions of the participating vari-
ables and the nature of the attractors (assumed to exist). The
complexity of the autonomous transient dynamics, defined as
the transient response to abrupt changes in constant inputs,
increases with the model complexity. For example, for the
simplest, passive neuron (a one-dimensional system), the
voltage V evolves monotonically towards the new equilib-
rium value determined by a constant input.

Two-dimensional neurons having a restorative current
with slow dynamics (e.g., Ih , IM , ICaT inactivation) may dis-
play overshoots and damped oscillations (Fig. 2), which can
be amplified by fast regenerative currents (e.g., INap, IK ir ,
ICaT activation), and are more pronounced the further away
the initial conditions are from the equilibrium (not shown)
and the more abrupt is the input change. Here we review the
dependence of the transient response properties of relatively
simple models with the properties of the input and discuss
some of the implications for the steady-state responses of the
same systems to periodic inputs.

3.1.1 The strength of the transient responses to input
changes decreases as the input changes transition
from abrupt to gradual

Anabrupt change in the input current (e.g., stepDC input) can
be interpreted as causing a sudden translation of the equilibria
(for the voltage and other state variables) in the phase-space
diagram from its baseline location (e.g., Fig. 3-a, I = 0,
intersection between the V - and w-nullclines, solid-red and
green, respectively) to the to a new location determined by
the DC value (e.g., Fig. 3-a, I = 1, intersection between
the displaced V - and w-nullclines, dashed-red and green,
respectively). The values of these state variables prior to the
transition become the initial conditions with respect to this
new equilibrium. Therefore, the voltage responses to abrupt
changes in the input currents are expected to exhibit over-
shoots and damped oscillations ( Fig. 3, insets, and Fig. 2,
left ), which are more pronounced the stronger the input (not
shown). As the change in input current becomes more grad-
ual, the transient effects become more attenuated (Fig. 2,
middle) and eventually the voltage response becomes almost
monotonic (Fig. 2, right).

This transition in the strength of the transient responses
is expected since a monotonic input change can be approx-
imated by a sequence of smaller step input changes of
increasing (constant) magnitude, each one producing a tran-
sient response, which becomes smaller the larger the number
of steps (the smaller the step size) since the initial conditions
for each step in the partition are very close to the corre-
sponding (new) steady state. Therefore, for input transitions
between the same constant values, but with different slopes,
the amplitude of the transient response becomes more atten-
uated the more gradual the transition since a larger partition
is required in order to keep the step size constant.

3.1.2 Nonlinear amplification of the transient and
steady-state response to constant inputs

Certain types of nonlinearities have been shown to amplify
the response of neuronal systems (and dynamical systems
in general) to the same input. This is reflected in both the
responses to constant and oscillatory inputs. For illustrative
purposes, in Figs. 3-b and -cwe use a piecewise linear (PWL)
model obtained from the linear model (1)-(2) by making
the v-nullcline a continuous PWL function. It was shown
in Rotstein (2014) that this type of model displays nonlinear
amplification of the voltage response to sinusoidal inputs and
captures similar phenomena observed in nonlinearmodels, in
particular these having parabolic-like V -nullclines describ-
ing the subthreshold voltage dynamics (Rotstein 2015).

Figures 3-a and -b show the superimposed phase-plane
diagrams for the PWL model (b) and the linear (LIN) model
(a) from which it originates for a constant input amplitude
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Fig. 2 Transient response to input decreases as the input changes from
abrupt to gradual. Input current increases from 0 to 1 (black solid line)
but the strength of the transient decreases in every column. Top: Exam-

ple with overshoot, parameters are gL = 0.2 and g1 = 0.4. Bottom:
Example with subthreshold oscillations, parameters are gL = 0.00025
and g1 = 0.25. The insets show a zoom-in on the transients

cba

Fig. 3 Nonlinear transient response amplifications and attenuations
in current- vs. conductance-based inputs. Phase-plane diagrams for
I = 1. The solid-red curve represents the V -nullcline (dv/dt = 0)
for I = 0, the dashed-red curve represents the V -nullcline (dv/dt = 0)
for I = 1, the solid-green curve represents thew-nullcline (dw/dt = 0)
for I = 0, the solid-blue curve represents the trajectory, and the
dashed-gray lines are marking the point where the trajectory initially
starts at (0, 0) (the fixed-point for I = 0), converging to the fixed-
point for I = 1. The insets show the V traces. The 2D linear system
exhibits an overshoot in response to step-constant inputs and resonance
in response to oscillatory inputs (Richardson et al. 2003; Rotstein and

Nadim 2014; Rotstein 2014). a. Linear (LIN) model described by eqs.
(1)-(2). b. Current-based piecewise linear (PWL) model described by
C dv

dt = −gL FPWL (v) − g1w − I (t) and τ1
dw
dt = v − w where

FPWL (v) = v for v < vc and FPWL (v) = vc + gc/gL (v − vc) for v >

vc. c. Conductance-based piecewise linear (PWL) model described by
C dv

dt = −gL FPWL (v)−g1w−Gsyn S(t)(v−Esyn) and τ1
dw
dt = v−w

where FPWL (v) = v for v < vc and FPWL (v) = vc + gc/gL (v − vc)

for v > vc (with S substituted by I ). We used the following parameter
values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 (same as in Fig. 4),
vc = 1 and gc = 0.1

I = 0 (solid-red, baseline) and I = 1 (dashed-red). The w-
nullcline is unaffected by changes in I . The trajectory (blue),
initially at the fixed-point for I = 0, converges towards the
fixed-point for I = 1. For low enough values of I (lower
than in Fig. 3-a and -b) the trajectory remains within the lin-
ear region (the trajectory does not reach the V -nullcline’s
“breaking point” value of V ) and therefore the dynamics
are not affected by the nonlinearity. In both cases (panels a

and b), the response exhibits an overshoot. The peak occurs
when the trajectory is able to cross the V -nullcline. Because
the V -nullcline’s “right piece” has a smaller slope than the
“left piece”, the trajectory is able to reach larger values of
V before turning around. This amplification is particularly
stronger for the transient dynamics (initial upstroke) than for
the steady-state response. Nonlinear response amplifications
in this type of system are dependent on the time scale separa-
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tion between the participating variables. For smaller values
of τ1 this nonlinear amplification is reduced and although the
system is nonlinear, it behaves quasi-linearly (Rotstein 2014,
2015).

3.1.3 Attenuation of the transient and steady-state
response of conductance-based versus current-based
(constant) synaptic inputs

From the phase-plane diagram in Fig. 3-c we see that
increasing values of I (here we have a conductance and a
driving-force in the model) reduces the nonlinearity of the
V -nullcline (dashed-red) and increases (in absolute value)
its slope. Both phenomena oppose the response amplification
(blue) and the overshoot becomes much less prominent. The
triangular region (bounded by the V -axis, the displaced V -
nullcline (dashed-red) and thew-nullcline (green)) is reduced
in size as compared to the current-based inputs (panel b) and
therefore the response is reduced in amplitude. Moreover,
because the displaced V -nullcline in panel c is more vertical
than the baseline V -nullcline, the size of the overshoot in
response to constant inputs is reduced and, in this sense, the
responses become quasi-1D. As a consequence, the initial
portion of the transient responses to abrupt changes in input
is reduced in size and the oscillatory response to PWC inputs
is also attenuated and the resonant peak disappears (Pena and
Rotstein 2021).

3.1.4 Implications for the neuronal responses to structured
(periodic) and non-structured inputs: hypotheses and
questions

An immediate consequence of these observations is the
prediction that a system’s responses to square-wave and sinu-
soidal inputs of the same frequency (and duty cycle) will be
qualitatively different, and these differences will depend on
the stability properties of the unperturbed cells (e.g., stable
nodes versus foci, overshoots versus damped oscillations).
The steady-state response to periodic inputs can be inter-
preted as a sequence of transient responses to input changes.
These transient effects (autonomous transient dynamics) are
expected to be prominent in the steady-state responses to
square-wave inputs, but not in the steady-state responses
to sinusoidal inputs. Sinusoidal and square-wave inputs are
representative of gradually and abruptly changing signals,
respectively, and are amenable for comparison. The result
of these comparisons sheds light on more realistic signals
such as synaptic-like ones. To test these ideas we will use the
chirp-like input currents shown in Fig. 1 (see Section 2.2.1).

A second immediate consequence of the observations
referred to above is the finding that a system’s amplitude
response to piecewise constant (PWC) inputs having the
same set of constant pieces arranged in different order is
variable with respect to each other (Pena and Rotstein 2021).
At the population level (same cell receiving a number of input
signals consisting of permutations of the order of the same
constant pieces of the same baseline signal), the properties
of this variability crucially depend on the cell’s autonomous
transient dynamics. These reflect the multiple ways in which
the cell responds to a given constant piece input from the val-
ues determined by the responses to the previous piece in the
inputs signal, which change across trials. Interestingly, this
phenomenon does not require the constant piece amplitudes
to be randomly distributed, but they can be generated by a
deterministic rule consisting of a baseline input pattern (e.g.,
increasing order of amplitudes) and a subset of all possible
permutations of the constant piece amplitude order. We ana-
lyzed this in detail in the companion paper (Pena andRotstein
2021).

The issues discussed above raise a number of questions.
First, whether and under what conditions the frequency-
preference properties of a system’s response to sinusoidal
inputs are predictive of the response properties of the same
system to other types of inputs. While the Fourier theorem
guarantees that the latter can be reconstructed from the for-
mer if properly normalized, it does not guarantee that the
two will have the same waveform and the same frequency-
dependence properties using metrics that depend on these
waveforms since the normalization factors (related to the
input) may have different frequency dependencies. Second,
whether and under what conditions the differences between
the preferred frequency-band response of sinusoidal and non-
sinusoidal inputs, if they exist, persist in the spiking regime.
Given that the communication between neurons occurs via
synaptic interactions, the failure of the responses to synaptic-
like inputs to replicate the frequency-preference properties
in response to sinusoidal inputs would indicate that the lat-
ter, although useful for the reconstruction of signals, does
not have direct implications for the spiking dynamics. Third,
whether and under what conditions the frequency-preference
properties of a system’s response to structured (deterministic)
inputs are predictive of the responses of the same system to
unstructured (noisy) inputs. Fourth, whether and under what
conditions the oscillatory (intrinsic) and resonant properties
of cells result from the very brief initial transients of their
autonomous dynamics. Fifth, how does the variability of a
cell’s response to different input trials is processed by the
feedback effects operating at the cell level. We address these
issues in the next sections.
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a1 a2 a3

b1 b2 b3

c1 c2 c3

Fig. 4 Neuronal response upon application of three different inputs
(linear model, overshoot). a Sinusoidal chirp. b Square-wave chirp.
c Synaptic-like chirp. (a1,b1, and c1) voltage traces. (a2, b2, and c2)
Voltage-response envelopes in the frequency-domain. (a3, b3, and c3)
Z( f ) (frequency-content) and ZENV ( f ) (envelope) impedance. We
used the following parameter values: C = 1, gL = 0.25, g1 = 0.25,
τ1 = 100 ms, and Ain = 1 (same model as in Fig. 3a)

3.2 Subthreshold resonance in response to
sinusoidal inputs is captured by the impedance
and voltage envelope profiles

3.2.1 Subthreshold resonance

A cell is said to exhibit subthreshold resonance if its volt-
age amplitude response to subthreshold oscillatory inputs
peaks at a preferred (resonant) frequency (Figs. 4-a and
5-a). These responses are typically measured by comput-
ing the impedance Z , defined as the quotient of the power
spectra of the output and input (see Methods). In current
clamp, the input is current and the output is voltage. In
controlled experiments and simulations, the unperturbed
cells are in equilibrium in the absence of the oscillatory
inputs. In response to constant inputs, resonant cells may be
non-oscillators, typically exhibiting an overshoot, or exhibit
oscillatory behavior (e.g., damped oscillations) (e.g., see
Figs. 4-b1 and 5-b1, respectively, where the behavior can
be observed in the first cycle). Therefore, resonance is not
uncovering an oscillatory property of the unperturbed cell,
but rather it is a property of the interaction between the cell
and the oscillatory inputs (Rotstein 2014). Hence, it is not
clear whether and under what conditions subthreshold res-
onance persists in the presence of other types of periodic
inputs with non-sinusoidal waveforms.

In principle, there are various metrics one could use to
characterize the frequency response profiles of neurons (and
dynamical systems in general). The impedance Z -profile

a1 a2 a3

b1 b2 b3

c1 c2 c3

Fig. 5 Neuronal response upon application of three different inputs
(linear model, subthreshold oscillations). a Sinusoidal chirp. b Square-
wave chirp. c Synaptic-like chirp. (a1,b1, and c1) voltage traces. (a2, b2,
and c2) Voltage-response envelopes in the frequency-domain. (a3, b3,
and c3) Z( f ) (frequency-content) and ZENV ( f ) (envelope) impedance.
We used the following parameter values: C = 1, gL = 0.05, g1 = 0.3,
τ1 = 100 ms, and Ain = 1

(curve of the impedance amplitude as a function of the input
amplitude) measures the signal frequency content (Fig. 4-a3,
green). The upper and lower envelope profiles V+/−

ENV (Fig. 4-
a2) capture the stationary peaks and troughs of the voltage
response, respectively as a function of the input frequency.
The peak profiles, in particular, are a relevant quantity since
spikes are expected to occur at the response peaks as the
input amplitude crosses threshold (the voltage response to
this amplitude crosses the voltage threshold). The envelope
impedance ZENV profiles (Fig. 4-a3, blue), consisting of the
stationary peak-to-trough amplitude normalized by the input
amplitude as a function of the input frequency and serves to
connect and compare between the two previous profiles.

For sinusoidal inputs, the Z -profile in response to chirp
inputs typically coincides with the ZENV -profile computed
by using sinusoidal inputs of a constant frequency (over a
range of input frequencies). This remains true for the sinu-
soidal chirp-like input we use here (Fig 4-a). It is always
true for linear systems (Richardson et al. 2003; Rotstein and
Nadim 2014) and certain nonlinear systems (e.g., (Rotstein
and Nadim 2019)). In other words, the frequency content
of the voltage response (green) is reflected by the voltage
upper and lower envelope response profiles and the response
to non-stationary chirp-like inputs coincides with the station-
ary response to sinusoidal inputs of a single frequency. This
is a direct consequence of the fact that the input changes are
gradual.
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3.2.2 Communication of the preferred frequency responses
from the sub- to the supra-threshold regimes

The frequency-dependent suprathreshold response patterns
to periodic inputs result from the interplay of the frequency-
dependent subthreshold voltage responses to the same inputs
and the spiking mechanisms. The subthreshold resonant fre-
quency is communicated to the suprathreshold regime when
neurons selectively fire action potentials in response to oscil-
latory inputs only at frequencies within a small enough range
around the subthreshold resonant frequency. This type of
evoking resonance can be obtained for input amplitudes
sightly above these producing only subthreshold responses,
for example for neurons for which the spiking response to
oscillatory inputs can be thought of as spikes mounted on
the corresponding subthreshold responses. Evoked spiking
resonance captures a selective coupling between the oscilla-
tory input and firing, and it has been observed experimentally
and theoretically (Hutcheon et al. 1996a, b) and the under-
lying dynamic mechanisms have been investigated in detail
(Rotstein 2017). A related measure of the communication
of the subthreshold resonant frequency to the suprathresh-
old regime is that of firing rate resonance (Richardson et al.
2003) where the firing rate in response to oscillatory inputs
peaks at or within a small range around the subthreshold res-
onance frequency. We note that subthreshold resonance does
not necessarily imply evoked spiking resonance (Hutcheon
et al. 1996a), evoked spiking resonance may be observed
as the input amplitude crosses threshold, but lost for higher
input amplitudes (Rotstein 2017), the firing rate (or spiking
frequency) at thefiring rate (evoked) resonant frequencyband
is not necessarily the same as that frequency band (Hutcheon
et al. 1996b; Richardson et al. 2003; Rotstein 2017), and
evoked spiking resonancemay be occluded in the presence of
spontaneous firing, a situation likely to occur in vivo. When
the spontaneous (or intrinsic) firing frequency is relatively
regular, the associated time scale may dominate over the sub-
threshold resonant time scale and determine the firing rate
resonant frequency (Richardson et al. 2003). A third form
of preferred frequency response to oscillatory inputs is the
so-called output spiking resonance (Rotstein 2017) where
the spiking frequency response to oscillatory inputs remains
within a relatively narrow range independently of the input
frequency range. The output spiking resonant frequency and
the subthreshold resonant frequency are not necessarily the
same, but the mechanisms that give rise to both are dynami-
cally related (Rotstein 2017).

While there is no guarantee that subthreshold resonance
implies any of the various types of supra-threshold reso-
nance, the communication of the resonant frequency to the
suprathreshold regime is favored when the neuron’s upper
envelope profile V+

ENV exhibits a peak at the subthreshold
resonant frequency (V+

ENV resonance). For the examples in

Figs. 4-a and 5-a, the models, supplemented with a voltage
threshold for spike generation and a reset mechanism, will
exhibit evoked spiking resonance in response to sinusoidal
inputs at the subthreshold resonant frequency band, and this
is well captured by both the Z and ZENV profiles. However,
while this remains true for a larger class of systems, we note
that this is not necessarily the case for nonlinear systems
exhibiting, for instance if the V+

ENV and V−
ENV are asym-

metric with respect to the equilibrium voltage (Pena et al.
2019). For example, a cell that is an upper envelope low-pass
filter (V+

ENV is a decreasing function of the input frequency),
but a lower envelope band-pass filter (V−

ENV has a trough
at an intermediate input frequency) will show a peak in the
impedance profile Z and therefore will be considered reso-
nant, but this will not necessarily be reflected in the spiking
response since the lower frequencies will be communicated
better to the spiking regime than the intermediate frequencies
as the input amplitude increases above threshold, in particu-
lar, these within the subthreshold resonant frequency band.

This together with our discussion in the previous sec-
tion raises the question of whether the responses of resonant
cells to non-sinusoidal periodic inputs will also show a pre-
ferred frequency response in the resonant frequency band
and whether the Z - and VENV - profiles exhibit the same
filtering properties. This has implications for the frequency-
dependent supra-threshold response patterns to periodic
inputs since the communication between neurons occurs via
synaptic interactions, which exhibit abrupt changes as com-
pared to the sinusoidal inputs, raising in turn the possibility of
a competition between Z - and VENV - profiles in determining
the spiking frequency filtering properties.

3.3 Resonant cells do not necessarily show V+ENV
resonance in response to chirp-like square-wave
inputs

Figures 4-b1 and -b2 illustrate that (Z ) resonant cells
(see Fig. 4-a) may not exhibit envelope band-pass fil-
ter in responses to square-wave inputs. The V+

ENV reso-
nant response for sinusoidal inputs (Figs. 4-a1 and -a2)
is lost for square-wave inputs and, consequently, these
inputs would produce spiking activity preferentially at
the lowest frequencies (no evoked spiking resonance) for
input current amplitudes above threshold. The absence
of V+

ENV -resonance does not imply the absence of Z -
resonant frequency content. In fact, the power spectra
for the responses to sinusoidal and square-wave inputs
(Fig. 4-b3, green) are very similar to the power spectra
for sinusoidal inputs (Fig. 4-a3, green) and all show Z -
resonance (see schematic explanation in Fig. S1). However,
this Z -resonance is not reflected in the V response and
therefore it does not have a direct effect on the communi-
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cation of the subthreshold frequency content to the spiking
regime.

Figure 5-b1 and -b2 shows a representative case where
V+
ENV resonance is still present for square-wave inputs, but

the resonance amplitude Q+
ENV (defined as the quotient of

the values of V+
ENV at the peak and at f = 0) is very

small as compared to Q+
ENV in response to sinusoidal inputs

(Fig. 5-a2). In these cases, the subthreshold resonant fre-
quency will be communicated to the spiking regime, but
only for a small range of input amplitudes as compared to
the responses to sinusoidal inputs (Fig. 5-a), above which
spiking would occur for the lowest frequencies. The fre-
quency content of the voltage response (Fig. 5-b3, green)
is not reflected by the V+

ENV and V−
ENV response profiles

(Fig. 5-b2) and consequently by the ZENV profiles (Fig. 5-
b3, blue).

The main difference between the two cases presented in
Figs. 4 and 5 is the type of autonomous transient dynam-
ics of the two cells. For the parameter values used in
Fig. 4 the equilibrium for the isolated cell is a stable node
(real eigenvalues, no intrinsic damped oscillations) and the
cell displays overshoot transient responses to input changes
(e.g., Fig. 2-a), while for the parameter values used in
Fig. 5, the equilibrium for the isolated cell is a stable focus
and the cell displays damped oscillations in response to
input changes (e.g., Fig. 2-b). Biophysically, the transi-
tion from stable nodes to stable foci is associated with an
increase in the levels of the amplifying currents. In Fig. 5,
this is reflected as a decrease in the linearized conduc-
tance gL , which contains information about fast amplifying
currents such as INap present in the original biophysi-
cal models (Richardson et al. 2003; Rotstein and Nadim
2014).

The persistence of V+
ENV resonance in cells having stable

foci is due to a combination of the (damped) oscilla-
tory response after the abrupt input increase/decrease and
summation. More specifically, the response to the abrupt
input changes (square-wave or synaptic) has two regimes:
a relatively large amplitude response, reflecting the biophys-
ical amplification levels, and a smaller amplitude response
reflecting the stability properties of the equilibrium Veq. The
location of the voltage response V right before the arrival of
the input from the next cycle determines the response ampli-
tude to this input and this location depends on the stability
properties of Veq. When Veq is a node, the voltage response
V decreases below Veq immediately after the abrupt input
change, and then returns to Veq. When the input from the
next cycle arrives, V is below Veq. In contrast, when Veq is
a focus, the oscillatory voltage response may be above Veq
when the input from the next cycle arrives, and therefore,
because it starts at a higher value, V reaches higher values.
This depends on the frequency of the damped oscillations
and the input frequency. If the input frequency is too low,

then the damped oscillations die out before the next input
arrives, while if the input frequency is high enough, then the
damped oscillations are close to their first peak. If the input
frequency is higher, then the value that V has when the next
input arrives is lower because is further away from the first
peak. For still higher input frequencies, the standard summa-
tion takes over.

Figures S2 and S3 show similar results for the non-
linear conductance-based Ih + INap model (the linear
models used for Figs. 4 and 5 can be considered as
linearized versions of this Ih + INap model). For the
lower levels of the INap conductance Gp the Ih + INap

shows no V+
ENV resonance, while V+

ENV resonance persists
for the higher levels of Gp, consistent with the transi-
tion of the equilibrium from a stable node to a stable
focus.

3.4 Dependence of V+ENV resonance in response to
synaptic-like input currents on the current sign
and the cell’s intrinsic properties

3.4.1 Z-resonant cells do not necessarily show V+
ENV

resonance in response to excitatory synaptic-like
inputs currents

As for the square-wave inputs described above, V+
ENV

is absent when Veq is a node (Figs. 4-b1 and -b2) and
present when Veq is a focus (Figs. 5-b1 and -b2), but with
a smaller Q+

ENV than the response to sinusoidal inputs
(Fig. 5a).Also similarly to square-wave inputs, the absence of
V+
ENV -resonance does not imply the absence of Z -resonant

frequency content; The power spectra of the responses to
sinusoidal, square-wave and synaptic-like inputs are very
similar and all show Z -resonance (compare Figs. 4-b3 and
-5-b3, green, with Figs. 4-a3 and -5-a3, green), and therefore
this (Z -) resonance may have no direct effect on the commu-
nication of the subthreshold frequency content to the spiking
regime (since the frequency-dependent properties that gov-
ern the generation of spikes are captured by V+

ENV profiles
and not on the frequency content captured by the Z -profiles).

In contrast to the responses to square-wave inputs, both
the V+

ENV and V−
ENV responses to excitatory synaptic-like

inputs exhibit a trough before increasing due to summation,
which is more pronounced in Fig. 4c (Veq is a node) than
in Fig. 5c (Veq is a focus). The generation of these troughs
are the result of the interplay of the accumulation of synap-
tic inputs and the intrinsic properties of the cell reflected
by the transient responses to individual inputs (overshoots,
damped oscillations), and occur at a different frequency than
the Z -resonant frequency. More specifically, for the lower
frequencies in Fig. 4-c, V exhibits a sag before returning to a
vicinity of Veq . The value V reaches before the arrival of the
next input serves as the initial condition for the next cycle.
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As the input frequency increases, these initial conditions are
lower than for the previous cycles since the periods decrease,
and thereforeV returns to an even lower value after the synap-
tic input wears off. As the input frequency increases further,
standard summation takes over and the combination of sum-
mation and the higher frequency input creates the high-pass
filter VENV patterns with an amplitude that decreases with
frequency. This phenomenon is watered down when Veq is
a focus because the amplification associated to the presence
of damped oscillations as compared to overshoots causes the
voltage response troughs at every cycle to reach lower val-
ues when Veq (Fig. 5c) is a focus than when Veq is a node
(Fig. 4c).

Figures S2 and S3 show similar results for the nonlinear
conductance-based Ih + INap model.

3.4.2 Z-resonant cells show V+
ENV resonance in response to

inhibitory synaptic-like inputs currents in a
Veq-stability-dependent manner

For inhibitory synaptic-like input, the V+
ENV and V−

ENV
responses are qualitatively inverted images of the ones
described above. For linear cells, in particular, the responses
for excitatory and inhibitory synaptic-like inputs are sym-
metric with respect to Veq (= 0). The most salient feature is
the presence of a peak in both V+

ENV and in V−
ENV (Figs. S4- a1

and -b1 and Figs. S4-a2 and -b2), indicating the occurrence
of V+

ENV resonance at a frequency, which is different from
the Z -resonant frequency (Figs. S4 c1 and c2). The mecha-
nism of generation of this V+

ENV band-pass filters is similar
to the one described for the troughs in excitatory synaptic-
like inputs and involves a combination of summation and
intrinsic properties of the cell, reflected in the properties of
the transient response of the cells to individual inputs. More
specifically, the summation acts as a low-pass filter and the
effects of the transient responses to individual neurons, asso-
ciated with the presence of Z resonance, act as a high-pass
filter. We emphasize that the V+

ENV and Z resonances are sig-
nificantly different. We also emphasize that V+

ENV resonance
is not significant when Veq is a focus (Fig. S4–b2) since the
amplification associated to the presence of damped oscil-
lations referred to above obstructs the envelope high-pass
filtering component.

Figures S5 and S6 show similar results for the nonlinear
conductance-based Ih + INap model.

3.4.3 V+
ENV low- and high-pass filtering properties of

synaptic-like currents

The responses to synaptic-like inputs are affected by the sum-
mation effect,whichdepends on the synaptic decay time τDec.
Figs. S7 and S8 illustrate the transition of the response (mid-
dle and right panels) to excitatory synaptic-like inputs (left

panels) for representative values of τDec (including these used
in Figs. 4–c and 5-c). In all cases, the frequency content mea-
sured by the impedance Z (Figs. S7 and S8, green) remains
almost the same. The summation effects, which increases as
τDec increases, strengthens the low-pass filter properties of
the ZENV response. The results for inhibitory synaptic-like
inputs are symmetric to these in Figs. S7 and S8 with respect
to Veq (= 0) (not shown), and therefore, increasing values of
τDec strengthens the low-pass filter properties of ZENV.

3.5 The autonomous transient dynamic properties
are responsible for the poor upper envelope
(V+ENV) resonance (or lack of thereof) exhibited
by (Z-) resonant cells in response to
non-sinusoidal chirp-like input currents

As discussed above, the differences between the V+
ENV

response patterns to square-wave/synaptic-like and sinu-
soidal inputs and the differences between the V+

ENV response
patterns to different types of synaptic-like inputs (excitatory,
inhibitory) are due to the different ways in which individual
cells transiently respond to abrupt and gradual input changes,
which operate at every cycle. Both and the corresponding
sinusoidal inputs share the primary frequency component
determined by the period (see Fig. S1). However, the sinu-
soidal input is gradual and causes a gradual response without
the prominent transients (overshoots and damped oscilla-
tions) observed for the square-wave input, which together
with the summation phenomenon produces VENV peaks. The
responses to square wave inputs, in particular for the lower
frequencies, reach a steady-state value as the responses to
sinusoidal inputs do, but in contrast to the latter, the voltage
envelope for the former is determined by the transient peaks.
These transients appear to be “getting in the way” of the volt-
age response to produce VENV resonance. However, they are
not avoidable. In fact, overshoots in non-oscillatory systems
are an important component of the mechanism of generation
of resonance in response to sinusoidal inputs (Rotstein 2014,
2015) as are damped oscillations.

For comparison, Fig. S9 shows the responses of a pas-
sive cell (g1 = 0) to the three types of inputs. Passive cells
exhibit neither overshoot nor damped oscillatory transient
responses to abrupt input changes, but monotonic behav-
ior. As expected, this cell does not exhibit resonance in
response to oscillatory inputs, but a low-pass filter response
in both Z and VENV (Figs. S9-a). The envelope response
to square-wave inputs is also a low-pass filter (Fig. S9-b),
though it decays slower with increasing values of the input
frequency since, because of the waveform, the square-wave
input stays longer at its maximum value than the sinusoidal
input at each cycle. In contrast to Figs. 4 and 5, the cell’s
response to synaptic-like inputs is a VENV high-pass filter
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(Fig. S9-c) due to summation and the lack of interference
by the transient effects. Fig. S10 shows similar results for
a two-dimensional linear model with a reduced value of
the negative feedback conductance g1 where overshoots and
damped oscillations are not possible. The analogous results
for inhibitory synaptic-like inputs are presented in Figs. S4
(rows 3 and 4).

3.6 Current- and conductance-based synaptic-like
inputs produce qualitatively different voltage
responses and synaptic currents

The synaptic-like inputs considered so far are additive cur-
rent inputs. However, realistic synaptic currents involve the
interaction between the synaptic activity and the postsynaptic
voltage response. In biophysical models, the synaptic cur-
rents terms consist of the product of synaptic conductances
and the voltage-dependent driving force (Eq. 3). Because
the voltage response contributes to the current that produces
this response, the frequency-dependent response profiles for
current- and conductance-based inputs may be qualitatively
different.

3.6.1 Z-resonant cells do not show V+
ENV resonance in

response to conductance-based excitatory
synaptic-like inputs, but they do show troughs in the
V−
ENV response

Figures 6 and 7 show representative comparative examples
for the two Z -resonant cells (in response to sinusoidal inputs)
discussed in Figs. 4 (stable node) and 5 (stable focus), respec-
tively. For the parameter values corresponding to Fig. 4 (no
V+
ENV resonance in response to current-based synaptic-like

inputs, Fig. 6-b, blue), the conductance-based synaptic cur-
rent shows a peak in the upper envelope (Fig. 6-a2), but not
in the voltage response (Fig. 6-b, red), which, instead, shows
a trough as for the current-based synaptic input (Fig. 6-b,
blue). In spite of the similarities between the two profiles,
the ZENV profile for the conductance-based input shows a
peak (Fig. 7-c1, red), but this peak does not reflect a true
ZENV preferred frequency response.

For the parameter values corresponding to Fig. 5 (mild
V+
ENV resonance in response to current-based synaptic-like

inputs, Fig. 7-b, blue), the response to conductance-based
synaptic inputs is similar to that in Fig. 6, but more ampli-
fied. In particular, there is no V+

ENV resonance in response
to conductance-based synaptic-like input (Fig. 7-b, red). In
both cases, the cells show Z resonance (Figs. 6 -c2 and 7-c2).

For comparison, Fig. S11 shows the result of repeating
the protocols used above for a passive cell (g1 = 0, same as
Fig. S9). The frequency response patterns are the standard Z -
and ZENV low-pass filters and the expected V+

ENV high-pass
filter.

3.6.2 Z-resonant cells show V+
ENV resonance in response to

conductance-based inhibitory synaptic-like inputs

Figures S12, S13, and S14 shows the result of repeating the
protocols described above (Figs. 6, 7 and S11, respectively)
using synaptic-like inhibitory conductance-based inputs. The
Z - and ZENV-profiles are qualitatively similar, except for the
relative magnitudes of the synaptic- and conductance-based
ZENV that are inverted. The V+

ENV profile shows a significant
(resonant) peak when the cell has a node (Fig. S12-b), which
is almost absent when the cell has a focus (Fig. S13-b), but
ZENV has a peakwhen the cell is a focus (Fig. S13-c1),while
it is a low-pass filter when the cell has a node (Fig. S12-c1).

Together, these results and the result from the previous
section shows that the frequency content (in terms of Z ) of
resonant cells persists in response to synaptic-like current-
and conductance-based inputs, but the V+

ENV responses are
different between synaptic-like current- and conductance-
based inputs, and these differences depend on whether the
cell has a node or a focus and whether the synaptic-like input
is excitatory or inhibitory. Of particular interest are the peaks
in the conductance-based synaptic inputs (Figs. 6-a2 and 7-
a2, red).

3.7 Amplitude variability in response to chirp-like
inputs with arbitrarily distributed cycles results
from the transient response properties of the
autonomous system

In the previous sections we used discretely changing fre-
quencies (chirp-like or, simply, chirps, see Sect. 2.2.1) as a
compromise between tractability and the ability to incorpo-
rate multiple frequencies in the same input signal, and we
extended this type of inputs to waveforms with more realis-
tic time-dependent properties. In all the cases considered so
far, the chirp-like input cycleswere “regularly” ordered in the
sense that the input frequency monotonically increases with
the cycle number (and with time). In this section, we move
one step forward and consider chirp-like inputs where the
cycles are arbitrarily ordered (see Sect. 2.2.2 and, Fig. 1-b)
in an attempt to capture the fact that information does not nec-
essarily arrive in a regularly ordered manner while keeping
some structure properties (sequence of oscillatory cycles),
which ultimately allows for a conceptual understanding of
the responses.

Each trial consists of a permutation of the order of the
cycles using the regularly ordered cycles as a reference. The
regularly and arbitrarily ordered input signals have exactly
the same cycles (one cycle for each frequency value within
some range) and therefore the same frequency content. The
corresponding responses are expected to have roughly the
same frequency content as captured by the Z -profiles within
the range of inputs considered. However, we expect the
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a1 b c1

c2a2

Fig. 6 Comparison between conductance-based and current-based
inputs (linearmodel, overshoot). a Input currents (see Eqs. 1 and 3). (a1)
Current-based input. (a2) Conductance based input. b Voltage traces
(same colors as in a1 and a2). (c1) ZENV ( f ) (envelope) impedance.

(c2) Z( f ) (frequency-content). We used the following parameter val-
ues: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 ms, and Ain = 1, same
model as in Fig. 4

a1

a2

c1b

c2

Fig. 7 Comparison between conductance-based and current-based
inputs (linear model, subthreshold oscillations). a Input currents (see
Eqs. 1 and 3). (a1) Current-based input. (a2) Conductance based input.
b Voltage traces (same colors as in a1 and a2). (c1) ZENV ( f ) (enve-

lope) impedance. (c2) Z( f ) (frequency-content).We used the following
parameter values: C = 1, gL = 0.05, g1 = 0.3, τ1 = 100 ms, and
Ain = 1, same model as in Fig. 5
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voltage responses to have different frequency-dependent V
responses, captured by the peak-and-trough envelopesV+/−

ENV .
The differences between the V responses for two different
inputs (different cycle orders) are due to the different ways
in which the autonomous transient dynamics are activated
across cycles for these inputs as the result of the transition
between cycles. The values of the participating variables at
the end of one cycle become the initial conditions for the
subsequent cycle.

3.7.1 Emergence of the amplitude variability

In Sect. 3.2.1 (Figs. 4-a and 5-a) we showed that
(Z -) subthreshold resonance is well captured by the V+/−

ENV
profiles in response to chirp-like sinusoidal inputs via the
ZENV -profiles (difference between the V+

ENV and V−
ENV

profiles). In Sect. 3.5 we argued that the transient response
properties of the autonomous (unforced) cells (overshoots,
damped oscillations, passive monotonic increase/decrease)
are responsible for the (frequency-dependent) differences
between the V+/−

ENV profiles and the Z -profiles in response
to both square-wave and synaptic-like chirp-like inputs, and
for the (frequency-dependent) differences among the V+/−

ENV
profiles in response to the three types of chirp-like inputs.

The ordered chirp-like input signals produced V+/−
ENV pro-

files with gradual amplitude variations along with the input
frequency range (and a very small number of increasing and
decreasing portions). The peaks and troughs for each fre-
quency are determined by two parameters: the values of the
variables at the beginning of the corresponding cycle and the
duration of the cycle (the intrinsic properties of the cell are
the same for all input frequencies), which in turn determines
the initial values of the variables in the next cycle. Themono-
tonic increase of the input frequency causes a gradual change
in these parameters along the frequency axis, which in turn
causes gradual changes in the V+/−

ENV profiles.
Because of this dependence of the values of the vari-

ables at the beginning of each cycle with the values of
these variables at the end of the previous cycle, we reasoned
that the voltage response to chirp with arbitrarily distributed
cycles in time will exhibit non-regularly distributed peak and
troughs, leading to amplitude variability in theV+/−

ENV profiles,
while producing at most minimal changes in the Z profiles
(as compared to the responses to input signals with order
cycles) within the frequency range considered. Moreover,
this variability will depend on the type and properties of the
autonomous transient dynamics of the participating cells. The
arbitrary distribution in the order of the cycles in the input
signal is achieved by considering one permutation of the reg-
ularly ordered signal (signal with regularly ordered cycles).
The randomness in the input signals lies in the choice of a
subset of all possible permutations for the considered trials.

Our results are presented in Figs. 8 and 9 for a cell exhibit-
ing an overshoot (Fig. 8; stable node; same parameter values
as in Fig. 4) and damped oscillations (Fig. 9; stable focus;
same parameter values as in Fig. 5) in response to step-
constant inputs. For sinusoidal and square-wave chirp-like
inputs, the output V+

ENV and V−
ENV frequencies were com-

puted as the differences between two consecutive troughs
and two consecutive peaks, respectively, normalized so that
the resulting frequencies have units of Hz. The V+

ENV and
V−
ENV profiles consist of the sequence of maxima andminima

for each frequency (dots superimposed to the v time courses
in the left columns) and include the damped oscillations for
the lower frequencies (e.g., Fig. 9-b1). For the synaptic-like
chirp inputs, we used the V+

ENV and V−
ENV profiles consisting

of the sequence of maxima and minima for each input fre-
quency and do not include the damped oscillations for the
lower frequencies (e.g., shown in Fig. 9-c1, but not present
in Fig. 9-c2).

We use the (regularly changing) responses to inputs with
regularly ordered cycles (blue) as a reference for the variabil-
ity of the responses to arbitrarily ordered cycles (red). In both
Figs. 8 and 9 the responses to the inputwith randomly ordered
cycles (red) have random amplitudes organized around (sinu-
soidal and square-wave; panels a and b) or in a vicinity
(synaptic-like panel c) of the responses to regularly ordered
cycles. The amplitude response variability is stronger for
higher frequencies than for the lower frequencies, since the
responses for the former are more affected by changes in the
initial conditions at the corresponding cycles. Importantly,
the variability is stronger for cells having stable foci (exhibit-
ing transient dampedoscillations; Fig. 9) than for cells having
stable nodes (exhibiting transient overshoots; Fig. 8), reflect-
ing the higher complexity of the latter cells’ autonomous part.
In all cases considered, the Z profiles remain almost unaf-
fected by the order of cycleswithin the input frequency range.
For comparison and completeness, Figs. S15 and S16 show
similar graphs for a passive cell and synaptic-like inhibi-
tion, respectively. An important observation common to the
responses of the three types of cells to synaptic-like inputs
is the identification of the summation effects in the genera-
tion of V+/−

ENV resonances. For example, Fig. S15-c2 (passive
cell) shows that the summation effect in response to regularly
ordered cycles (blue) disappears in the responses to randomly
ordered cycles (red). Furthermore, the V+

ENV resonance in
response to regularly ordered synaptic-like inhibitory inputs
(Fig. S16-a2, blue) also disappears in the responses to ran-
domly ordered synaptic-like inhibitory inputs (Fig. S16-a2,
red).

Together these results show that the disruption of the reg-
ular order of a set of basic input signals, while the basic
signals and their shapes remain unchanged, is translated into
the amplitude variability of the response as compared to the
responses to the regularly ordered sequence of signals, and
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a3a2a1

b3b2b1

c3c2c1

Fig. 8 Comparison of neuronal response between ordered and ran-
dom input (linear model, overshoot). a Sinusoidal chirp. b Square-wave
chirp. c Excitatory synaptic-like chirp. (a1, b1, and c1) voltage traces
with peaks and troughs marked by red circles. (a2, b2, and c2) Voltage-
response envelopes in the frequency domain (blue is ordered input; red

is random input as in Fig. 1b). (a3, b3, and c3) Z( f ) (frequency-content)
for ordered and shuffled inputs. In this 2D linear model, we used the fol-
lowing parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 ms,
and Ain = 1. Same model as in Fig. 4

this variability results from the properties of the transient
dynamics of the (unforced) cells receiving the input.

3.7.2 Dependence of the amplitude response distribution
variance with the cycle frequency and the properties
of the receiving cell

Here we focus on synaptic-like inputs since they are the most
realistic signals cells receive andwe considered both current-
and conductance-based synaptic-like inputs. We used the

model (1)–(2) for current-based inputs and the model (3)–(4)
for conductance-based inputs. We use the same input signal
for both (I (t) = S(t)).

In order to quantify the variability of the voltage response
envelopes (V+

ENV and V−
ENV) to arbitrarily ordered chirp-like

inputs we considered a number of trials (Ntrials = 100) and
computed the cycle-by-cycle variance for the correspond-
ing peaks (V+

ENV) and troughs (V−
ENV). Our results for some

representative cases are presented in Fig. 10. In all cases,
Var(V+

ENV) (blue) is less variable across frequencies than
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a3a2a1

b3b2b1

c3c2c1

Fig. 9 Comparison of neuronal response between ordered and random
input (linear model, subthreshold oscillations). a Sinusoidal chirp. b
Square-wave chirp. c Excitatory synaptic-like chirp. (a1, b1, and c1)
voltage traces with peaks and troughs marked by red circles. (a2, b2,
and c2) Voltage-response envelopes in the frequency domain (blue is

ordered input; red is random input as in Fig. 1b). (a3, b3, and c3) Z( f )
(frequency-content) for ordered and shuffled inputs. In this 2D linear
model, we used the following parameter values: C = 1, gL = 0.05,
g1 = 0.3, τ1 = 100 ms, and Ain = 1. Same model as in Fig. 5

Var(V−
ENV) (red). The latter significantly increases for the

higher frequencies. This high variability is associated with
the phenomenon of summation observed in the regularly
ordered cell. In otherwords,while summation is not observed
in the responses to arbitrarily distributed cycles (e.g., Figs.
8-c, 9-c, and S15-c), it is translated into a high response vari-
ability. In Fig. 10-a, the transition from the P-cell (passive
cell) to the N-cell (node cell) is due to a small increase in
g1 and therefore the Var patterns are similar. The transition
from the N-cell to the F-cell (focus cell) involves changes
in both gL and g1 in order to maintain fres within the same
(small) range. Both V+

ENV and V−
ENV are significantly larger

for the F-cell than for the N-cell, consistent with Figs. 8 and
9. The amplification of the initial portion of the transient
response to constant inputs caused by differences in cell type
is translated into a higher response variability. In Fig. 10-b,
the transition from the P-cell to the N-cell to the F-cell is due
to an increase only in g1 (at the expense of having values of
fres distributed on a longer range than in panels a). The Var
magnitudes are similar among the different cases. Together,
these results reflect the fact that changes in the levels of the
positive feedback effects (captured by the parameter gL in
linear models) have stronger effects on the response variabil-
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FocusNodePassive
a3a2a1

b3b2b1

Fig. 10 Peak and trough envelope (V+
ENV and V−

ENV) variability in
response to synaptic-like chirp-like inputs with arbitrarily distributed
cycles for current- and conductance-based models. We used the linear
model (1)–(2). Each trial (Ntrials = 100) consists of a permutation of
the cycle orders using as reference the ordered input patterns in Figs. 8-c
to S15-c. The blue and red curves represent the variances across trials
for V+

ENV and V−
ENV in response to synaptic-like current-based inputs.

The light-blue and light-coral curves represent the variances across tri-
als for V+

ENV and V−
ENV in response to synaptic-like conductance-based

inputs. Column 1. Passive cells. Column 2. Node (N-) cells. Column
3. Focus (F-) cells. a1. gL = 0.25 and g1 = 0 ( fnat = fres = 0). a2.
gL = 0.25 and g1 = 0.25 ( fnat = 0 and fres = 9). a3. gL = 0.05
and g1 = 0.3 ( fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0
( fnat = fres = 0). b2. gL = 0.1 and g1 = 0.2 ( fnat = 0 and fres = 7).
b3. gL = 0.1 and g1 = 0.8 ( fnat = 12.3 and fres = 14). We used the
additional parameter values: C = 1, τ1 = 100, Ain = 1, Gsyn = 1,
Esyn = 1

ity than changes in the negative feedback effect (captured by
the parameter g1).

3.7.3 The envelope response variabilities are stronger for
current- than for conductance-based synaptic-like
inputs

The Var(V+
ENV) and Var(V−

ENV) for the conductance-based
synaptic-like inputs follow a similar pattern as these for the
current-based inputs (Fig. 10, light-blue and light-coral), but
the magnitudes for the former are lower than these for the
latter inputs, consistent with the attenuation of the initial
portion of the transient response to conductance-based con-
stant synaptic inputs as compared to current-based constant
synaptic inputs discussed in Section 3.1.2. These relation-
ships persist when the Var(V+

ENV) and Var(V−
ENV) patterns

are normalized by the amplitude of the response of the first
synaptic-like input in the ordered patterns (ametric that takes
into account the effects of the differences in parameter values
by the relative magnitude of their responses to the same input
pattern).

3.8 Intrinsic oscillations evoked by Gaussian white
noise may be lost or attenuated in response to
synaptic-like inputs with arbitrarily ordered
frequencies

3.8.1 Oscillations (and lack of thereof) in response to
synaptic-like chirp inputs

Figure 11-a (blue) corresponds to the same parameter val-
ues as Figs. 8-c, 9-c, and S15-c. The most salient feature is
the low-pass filter in the middle panel (a2), while the corre-
sponding Z -profile shows a band-pass filter (Figs. 8-c). For
the parameter values in Fig. 11-b2 both the PSD-profile and
Z -profile (not shown) display a band-pass filter, but the res-
onant peak in the Z -profile is more pronounced than in the
PSD-profile and relatively bigger in comparison to the values
of the same quantities at f = 0. This reflects the different
ways in which the autonomous transient dynamics can be
evoked by different types of input patterns, leading to signif-
icantly different results. This is not unexpected from the sets
of parameter values in this graphs (panels a2 and b2) since
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FocusNodePassive

a3a2a1

b3b2b1

Fig. 11 Average PSD for the V response to synaptic-like chirp-like
inputs with arbitrarily distributed cycles for current- and conductance-
based models. For current-based synaptic-like inputs we used Eqs.
(1)–(2). For conductance-based synaptic-like inputs we used the linear
component of eqs. (3)-(4). The parameter values are as in Fig. 10. Each
trial (Ntrials = 100) consists of a permutation of the cycle orders using
as reference the ordered input patterns in Figs. 8-c to S15-c. The blue and
red curves represent the < PSD > for the responses to synaptic-like

current- and conductance-based inputs, respectively. Column 1. Pas-
sive cells. Column 2. Node (N-) cells. Column 3. Focus (F-) cells. a1.
gL = 0.25 and g1 = 0 ( fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25
( fnat = 0 and fres = 9). a3. gL = 0.05 and g1 = 0.3 ( fnat = 8.1 and
fres = 8). b1. gL = 0.1 and g1 = 0 ( fnat = fres = 0). b2. gL = 0.1
and g1 = 0.2 ( fnat = 0 and fres = 7). b3. gL = 0.1 and g1 = 0.8
( fnat = 12.3 and fres = 14). We used the additional parameter values:
C = 1, τ1 = 100, Ain = 1, Gsyn = 1, Esyn = 1

the autonomous cell has resonance (in response to oscilla-
tory inputs, fres > 0) but not intrinsic damped oscillations
( fnat = 0). For the other panels in Fig. 11 the Z -profile is
a relatively good predictor of the PSD-profiles. These cor-
respond to low-pass filters (panels a1 and b1) and strong
band-pass filters (panels a3 and b3; fres > 0 and fnat > 0).

3.8.2 The oscillatory voltage responses are stronger for
current- than for conductance-based synaptic-like
inputs

This is readily seen by comparing the blue and red curves
in Fig. 11. These results are inherited from the responses of
linear systems to synaptic current- and conductance-based
constant inputs discussed in Section 3.1.2, and they can be
understood in terms of our phase-plane diagrams discussion
(compare Figs. 3-a and -c). Importantly, while in Fig. 11-
a2 both responses show a low-pass filter, in Fig. 11-b2, the
response to conductance-based synaptic inputs is close to a
low-pass filter, while the response to current-based synaptic
inputs is a well developed band-pass filter. In both cases, the

autonomous cells have a stable node, exhibiting resonance,
but not intrinsic (damped) oscillations.

3.8.3 Oscillations (and lack of thereof) in response to
Poisson distributed synaptic-like inputs

Poisson distributed inputs have in principle a very different
structure than the synaptic-like chirp inputs we discussed
above. However, there is a natural transition between the
two types of patterns. Roughly speaking, synaptic-like chirp
patterns can be first extended to include a larger number
of frequencies (not necessarily integer), and more than one
cycle for each input frequency according to some distribu-
tion. Therefore one expects the results discussed above to
extend to Poisson distributed inputs. This is supported by the
fact that for high enough Poisson input rates ν, synaptic-like
inputs approximate constant inputs (this is true for Poisson
distributed pulses with amplitude g → 0 and rate ν → ∞),
and therefore one should expect the voltage response PSD
to approach these for constant inputs reflecting overshoots
(low-pass filters) and damped oscillations (band-pass filters).
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FocusNodePassive
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Fig. 12 PSD for the V response to Poisson synaptic inputs trains
(excitatory rate = 1000 Hz) for current- and conductance-based mod-
els. For current-based synaptic-like inputs we used Eqs. (1)–(2). For
conductance-based synaptic-like inputs we used the linear component
of eqs. (3)–(4). The parameter values are as in Figs. 10 and 11. Poisson
inputs (refractory time = 0.2 ms) were generated for a total duration of
1,000,000ms.White noise had a variance 2Dwith D = 1.Blue dots and
solid curves represent the PSD in response to current-based synaptic-
like inputs. Red dots and solid curves represent the PSD in response
to conductance-based synaptic-like inputs. Green dots and solid curves
represent the PSD in response to white noise. The solid curves are a

smoothed version (“moving”, 13 points) of the corresponding dots. The
dashed curves are rescaled versions of the dots/solid curves toColumn
1. Passive cells. Column 2. Node (N-) cells. Column 3. Focus (F-)
cells. a1. gL = 0.25 and g1 = 0 ( fnat = fres = 0). a2. gL = 0.25
and g1 = 0.25 ( fnat = 0 and fres = 9). a3. gL = 0.05 and g1 = 0.3
( fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0 ( fnat = fres = 0).
b2. gL = 0.1 and g1 = 0.2 ( fnat = 0 and fres = 7). b3. gL = 0.1 and
g1 = 0.8 ( fnat = 12.3 and fres = 14). We used the additional param-
eter values: C = 1, τ1 = 100, Ain = 1, Gsyn,ex = 1, Esyn,ex = 1,
τDec = 25

However, for cells exhibiting overshoots there is a conflict
between the response pattern “dictated” by the Z -profile
(band-pass filter) and the low-pass filter pattern in response
to constant inputs. For these cases, we expect the response
pattern to be highly sensitive to the interplay of the Pois-
son rate ν and model parameters. For other rates we expect
a departure from the overall behavior described above, but
less pronounced.

Our results are presented in Fig. 12 (see also Figs. S17
to S20). The blue and red curves correspond to the V
responses to synaptic-like current- and conductance-based
inputs respectively. The solid curves are smoothed versions
of the dotted ones (to which they are superimposed). The
green dots/solid curves correspond to the V responses to
white noise and are used as a reference for comparison. The
blue and red dashed curves are rescaled versions of the corre-
sponding dot/solid curves so that theymatch the values of the
green curves at f = 1. In all cases, the responses to synaptic-

like inputs are attenuated as compared to the responses to
white noise. The level of attenuation increases with increas-
ing values of the input Poisson rate (ν) aswe discussed below.
Low-pass filters (panels a1 and b1) and strong band-pass fil-
ters (panels a3 and b3, F-cell) remain sowith somevariations.
The responses ofN-cells (panels a2 and b2) vary according to
the input rate ν. Consistent with our results discussed above,
for the cells that have resonance but not intrinsic (damped)
oscillations (panels a2 and b2) and ν = 1000 (Fig. S19), the
response can be either a low-pass filter or a band-pass filter
depending on the model parameters, in particular the level of
the (amplifying) positive feedback effect that increases with
decreasing values of gL (compare panels a2, for gL = 0.25,
and b2, for gL = 0.1). This remains the case for ν = 500
(Fig. S18) for the conductance-based response, but not for the
current-based response (a band-pass filter emerges in panel
a2). For ν = 100 and ν = 10 (Figs. S17 and S20), both the
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current- and conductance-based responses show a band-pass
filter.

The results described above persist when the input synap-
tic train consist of both excitatory and inhibitory synaptic-like
inputs (e.g., Fig. S21).

The emergenceof band-passfilters in response to synaptic-
like inputs is strongly dependent on the synaptic input decay
time τDec. For values of τDec (= 25 ms) larger than in Figs.
S17 to S21 and not realistic for fast synapses the band-pass
filters are attenuated for F-cells (compare Figs. 12-a3 and -
b3 with Figs. S19-a3 and -b3) and the N-cells show low-pass
filters (compare Figs. 12-a2 and -b2 with Figs. S19-a2 and
-b2).

3.8.4 The oscillatory voltage responses are stronger for
current- than for conductance-based synaptic-like
inputs and biophysically plausible in vivo input rates

This is readily seen in Figs. 12 and S19 for the realistic val-
ues of in vivo input rates (ν = 1000) also used in controlled
experiments (Fernandez and White 2008). For lower values
of ν (Fig. S17 for ν = 100, Fig. S18 for ν = 500, Fig. S20
for ν = 10) and when synaptic inhibition is incorporated
(Figs. S21 for excitatory ν = 1000 and inhibitory ν = 500)
the relative magnitudes of the current- and conductance-
based responses depends on the input frequency regardless of
whether the response has a low- or a band-pass filter. For even
lower values of ν (Figs. S17 for ν = 10), the conductance-
based response is stronger than the current-based response).

Together these results and the results from the previous
Sections shed some light on the implications of the exper-
imental findings in (Fernandez and White 2008) where the
intrinsically generated subthreshold oscillations observed in
medial entorhinal cortex layer II stellate cells (SCs) havebeen
shown to be strongly attenuated by current-based synaptic-
like inputs and absent (or almost absent) in response to
conductance-based synaptic-like inputs. Our findings sug-
gest that STOs in SCs are generated by noise-dependent
mechanisms in the presence of subthreshold resonance with
at most strongly damped intrinsic oscillations (Rotstein et al.
2006), but not sustained limit cycle oscillations (Remme et al.
2012) in the presence of noise variability.

4 Discussion

Subthreshold (membrane potential) oscillations (STOs) have
been observed in many neuron types in a variety of brain
areas and have been argued to be functionally important for
the generation of brain rhythms, sensory processing, encod-
ing of information, communication of information via timing
mechanisms and cross-frequency coupling (see more details
and references in the Introduction).

Intrinsically generated STOs in single neurons require
the presence of relatively slow restorative currents provid-
ing a negative feedback effect (currents having a resonant
gating variable) and are amplified by fast regenerative cur-
rents providing a positive feedback effect (currents having an
amplifying gating variable) (see Sect. 3.1 for more details).
From a dynamical systems perspective, sustained STOs can
be generated by limit cycle mechanisms or be noise-driven.
In the latter case, the noiseless system may exhibit either
damped oscillations (F-cells; the equilibrium has complex
eigenvalues) or even overshoots (N-cells; the equilibrium has
real eigenvalues) in response to abrupt changes in constant
inputs. The interaction between Gaussian white noise and
these autonomous transient dynamics may create sustained
STOs (Rotstein et al. 2006; Pena and Rotstein 2021).

Neurons are subject to fluctuating inputs from a large
number of synaptic currents generated by action potentials
whose collective dynamics can be modeled as a high-rate
Poisson process. Due to its high-rate, this synaptic noise
has been approximated by Gaussian white noise or Ornstein-
Uhlenbeck processes (Uhlenbeck and Ornstein 1930) (low-
pass filtered versions of Gaussian white noise) (Brunel 2000;
Amit and Tsodyks 1991; Tuckwell 1989, 1988; Amit and
Brunel 1997; Brunel et al. 2001). Recent experimental results
(Fernandez and White 2008) on medial entorhinal cortex
SCs, a prototypical intrinsic STO neuron (Dickson et al.
2000a, b) and resonator (Schreiber et al. 2004), using arti-
ficially generated current- and conductance-based synaptic
inputs driven by high-rate presynaptic Poisson spike trains,
showed that STOs are still present in response to current-
based synaptic inputs, but absent or strongly attenuated in
response to conductance-based synaptic inputs. This would
suggest that in realistic conditions the STO properties of
SCs are not communicated to the network regime via synap-
tic mechanisms. On the other hand, in SCs and other cell
types exhibiting STOs, the frequency of the STOs has been
found to be correlated with the frequency of the networks in
which they are embedded (Alonso and Llinás 1989; Klink
and Alonso 1993; Giocomo et al. 2007; Cobb et al. 1995;
Colgin 2013; Chapman and Lacaille 1999; Desmaisons et al.
1999; Balu et al. 2004; Kay et al. 2008; Li and Cleland 2017),
suggesting intrinsic STOs in individual neurons may play, at
least, an indirect role in the generation of network oscilla-
tions.

These issues are part of the more general question of
how the response of neurons to periodic inputs (and to
external inputs in general) depends on the interplay of the
neuronal intrinsic properties and the properties of the input.
Typical experiments on subthreshold and suprathreshold
resonance use sinusoidal inputs, which change gradually
with time. These studies are motivated by the fact that
the resulting patterns can be used for the reconstruction
of the system’s response to arbitrary time-dependent inputs
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under certain assumptions on both the input and the system
(e.g., quasi-linearity). However, systems are not necessarily
close to linearity and neuronal communication occurs via
relatively fast synapses (e.g., AMPA and GABAA), which
change more abruptly. These abrupt input changes evoke
the autonomous intrinsic dynamics (damped oscillations
or overshoots), which are occluded in response to gradual
input changes. As a result, periodic (and also non-periodic)
sequences of sinusoidal and synaptic inputs are expected to
produce different patterns and therefore the impedance pro-
file will not be a good predictor of the voltage response to
trains of synaptic inputs under general assumptions.

We set out to clarify these issues in a broader context.
To develop the main set of ideas, we used a relatively sim-
ple neuronal model, the linearization of conductance-based
models subject to additive current-based inputs and multi-
plicative conductance-based synaptic inputs. We then tested
these ideas using a conductance-based model. We used three
representative waveforms over a range of frequencies: sinu-
soidal, synaptic-like and square-wave (duty cycle equal to
0.5). Sinusoidal inputs are typically used to uncover the pre-
ferred oscillatory responses to external inputs as discussed
above. Synaptic-like inputs represent the realistic ways in
which communicationbetweenneurons occurs. Square-wave
inputs can be considered as an intermediate between the first
two. Sinusoidal and square-wave inputs share the waveform
skeleton (they have the same frequency content except for the
high frequency associated with the abrupt changes between
phases), but sinusoidal inputs change gradually. Square-wave
and synaptic inputs involve abrupt changes between minima
and maxima, but the active part of the synaptic-like wave-
forms is independent of the period for a relatively large range
of input frequencies. In addition, we used chirp-like (sinu-
soidal) inputs with discretely changing frequencies in order
to be able to incorporate multiple frequencies in the same
signal and we extended these chirps to include square- and
synaptic-like waveforms.

We developed the notion of the peak/trough voltage enve-
lope profiles V±

ENV( f ) and the peak-to-trough impedance
profiles ZENV( f ) as metrics to investigate the frequency-
dependent voltage responses to periodic inputs in addition
to the (standard) impedance amplitude profiles Z( f ) and
the corresponding voltage PSD (computed using Fourier
transforms of the whole signal). Because the upper (peak)
envelope is the most important quantity regarding the com-
munication of information to the suprathreshold regime, we
often refer to it indistinctly as VENV or V+

ENV. The differences
between VENV (or V+

ENV − V−
ENV) and the voltage PSD are

due to the signal structure (VENV captures only the envelope
of the voltage response). The differences between ZENV and
Z capture the effect of the input signal (ZENV is normalized
by the input signal’s amplitude Ain, while Z is normalized
by the amplitude of its PSD). The differences between the

VENV and ZENV profiles are due to the asymmetries in the
voltage responses.

We showed that cells that exhibit resonance in response
to sinusoidal inputs (Z -resonant cells) also show resonance
in the VENV- and ZENV-responses to sinusoidal chirp inputs
independently of whether they were N-cells or F-cells. This
was expected given the gradual increase of the sinusoidal
waveforms, but it served as a baseline for comparison with
the other input types. For suprathreshold input amplitudes
within some range, the frequency properties of Z -resonant
cells in response to sinusoidal inputs are communicated to
the suprathreshold regime in the form of evoked spiking
resonance (Rotstein 2017) or firing-rate resonance (Richard-
son et al. 2003). In contrast, Z -resonant N-cells are VENV
and ZENV low-pass filters and Z -resonant F-cells have mild
VENV and ZENV resonant properties. In other words, the
cells’ subthreshold frequency-dependent properties, are not
necessarily communicated to the spiking regime in response
to non-sinusoidal inputs. The V±

ENV patterns in response to
these two types of inputs are dominated by the autonomous
intrinsic dynamics and this is particularly strong for the
lower frequencies (longer periods) where the overshoots and
damped oscillations can be prominent. In response to sinu-
soidal inputs, the autonomous transient dynamics develops
gradually and their contribution to the V±

ENV patterns remains
occluded.

We used these protocols to compare the response of these
neuron types to current- vs. conductance-based synaptic-
like inputs. In all cases, the response to conductance-based
inputs was attenuated as compared to the response to current-
based inputs. Each one of the metrics produced different
results, capturing different aspects of the voltage responses
to these two types of inputs and their relationship with the
input signals. For N-cells the responses to both current-
and conductance-based inputs are VENV low-pass filters.
In contrast, for F-cells the VENV responses to current-
based inputs were band-pass filters, while the responses to
conductance-based inputs were low-pass filters. These band-
pass filters were generated as the result of the interplay of the
autonomous transient dynamics (damped oscillations) and
summation.

The ZENV profiles tell a different story. For N-cells, the
ZENV responses to current-based inputs are low-pass fil-
ters, while they are band-pass filters for conductance-based
inputs. For F-cells, the ZENV responses to both current-
and conductance-based inputs are band-pass filters. In both
cases, the ZENV band-pass filters in response to conductance-
based inputs reflect troughs in the V−

ENV profiles rather than
a real preferred voltage response. The Z profiles tell yet
a different story. In all cases considered (N- and F-cells,
current- and conductance-based inputs), the Z profiles are
band-pass filters. For passive cells, where the autonomous
transient dynamics are relatively simple (monotonic increase
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or decrease), the response patterns are dominated by summa-
tion and, while ZENV and Z are low-pass filters, VENV are
high-pass filters.

In order to understand the contribution of the autonomous
intrinsic dynamics to the generation of variability in the neu-
ronal response patterns to external inputs, we used the three
types of chirp-like inputs with arbitrarily ordered cycles.
These inputs are an intermediate step between the regularly
ordered and the fully irregular chirp-like inputs. The proto-
typical example of the latter (and the one we had in mind) are
the synaptic-like inputs generated in response to spike-trains
with Poisson-distributed spike times. The inputs have the
same cycles for all trials, and hence the same frequency con-
tent, but each trial corresponded to a different permutation of
the order of the cycles. The only source of uncertaintywas the
subset of all possible permutations of the cycle period. The
differences in the voltage responses for cycles with the same
period across trials were due to the differences in the initial
conditions across trials for the same period. More specifi-
cally, for a given period (Tk) the previous cycle has different
periods across trials and therefore different voltage values at
the end of these periods, which become the initial conditions
for period Tk . The variability of these initial conditions across
trials involves not only the voltage but the (hidden) recov-
ery variables. Our results demonstrated the emergence of
variability of the voltage responses across trials for all input
waveforms inherited from this mechanism. This variability
was stronger for the F-cells than for the N-cells considered
and, again, it did not require stochastic input fluctuations, but
it was the result of the multiple different ways in which the
inputs evoked the autonomous intrinsic dynamics.

The average voltage PSD (< PSD >) responses
for F-cells were band-pass filters for both current- and
conductance-based synaptic-like inputswith arbitrarily order
periods. For N-cells, in contrast, the < PSD > responses
to current-based input were low-pass filters, while the <

PSD > responses to conductance-based inputs were low-
pass filters or mild band-pass filters. This is consistent with
the results in Fernandez and White (2008) and previous
results showing that STOs in SCs are noise-driven (Dorval
and White 2005; Rotstein et al. 2006) (but see (Remme et al.
2012)). Our protocols consisted of the response of one cell
type to variable inputs.More research is needed to understand
the effects of variability across cells using some baseline
attribute to all of them (e.g., same resonant properties or the
same noise-driven oscillation properties).

Armed with these results, we compared the voltage
responses (VPSD) of these cell types to high-rate Poisson
distributed current- and conductance-based synaptic inputs
and additive Gaussian white noise (noise-driven oscilla-
tions). The VPSD-profiles in response to both current- and
conductance-based synaptic inputs were attenuated with
respect to the response to white noise. The VPSD-profiles in

response to current-based synaptic inputs were low-pass fil-
ters for F-cells and low-pass filters (or mild band-pass filters)
for N-cells. The VPSD-profiles in response to conductance-
based synaptic inputs were low-pass filters for all cell types.
This is, again, consistent with the results in Fernandez and
White (2008) and suggests that in contrast to the noise-driven
oscillations that emerge in both F- and N-cells, the current-
based synaptic-like Poisson-driven oscillation requires a
stronger intrinsic oscillatory structure. These results also
show that the responses to synaptic-like high-rate Poisson-
driven inputs are not necessarily captured by the response to
additiveGaussianwhite noise in contrast to standard assump-
tions. More research is needed to establish the conditions
under which oscillations emerge in response to synaptic-
like inputs. Representative examples show that oscillatory
responses for current- and conductance-based synaptic-like
inputs emerge for both F- and N-cells for lower Poisson
rates. More research is also needed to establish the condi-
tions under which the Gaussian white noise approximation
provides good approximations to high-rate synaptic inputs.

The question arises whether the lack of oscillatory
responses to synaptic-like inputs (almost complete for
conductance-based and partial for current-based) implies the
lack of communication of the intrinsic (noise-driven) oscil-
latory and resonant properties to the suprathreshold regime.
While this requires a detailed analysis and is beyond the
scope of this paper, we conducted a number of simulations
to explore a few representative cases. We used the biophys-
ical (conductance-based) Ih + INap model (6)–(7) having
two-dimensional subthreshold dynamics (Figs. S22 to S25)
and compared them with the results using an integrate-and-
fire model (Fig. S26) for which the subthreshold dynamics
is one-dimensional. The results are mixed, but an important
common theme is that the responses show output firing rate
resonance (the response firing remains within a relatively
small bounded range) even when the subthreshold resonance
is not present. The most salient cases are shown in Fig. S22-
a and -b. This phenomenon is absent in the absence of the
intrinsic oscillatory dynamics for the leaky integrate-and-
fire model (Fig. S22-d, Fig. S26). These results strongly
depend on the input amplitude (Fig. S23 to S26). These
results suggest that the oscillatory properties of individual
neurons may be occluded at the subthreshold level, but they
are still communicated to the suprathreshold regime. One
may potentially contrast these observations against the can-
cellation of frequency-dependent redundant sensory stimuli
in electric fish (Mejias et al. 2013;Benda et al. 2005;Bol et al.
2011, 2013). In such experiments, chirps create responses
that are significantly enhanced compared with slower beats.
This type of experimentation would certainly benefit from
future discussions that derive from our work given the nature
of their oscillatory inputs.
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Our study is focused on a specific type of resonance in
response to deterministic periodic inputs (in the form of
chirps) and leaves out the response of systems to stochastic
inputs that may lead to stochastic and coherence resonance
(Benzi et al. 1982, Gammaitoni et al. 1998; McNamara and
Wiesenfeld 1989;Mato 1989;McDonnell andAbboott 2009;
Douglass et al. 1993; Wiesenfeld and Moss 1995; Collins
et al. 1996; Muratov et al. 2005; Pikovsky and Kurths 1997;
Lindner et al. 2004; Neiman et al. 1997; Lee et al. 1998;
Pradines et al. 1999; Tateno and Pakdaman 2004; DeVille
et al. 2005; Baspinar et al. 2021) (and references therein).
These are related, but different phenomena, which may be
affected by the use of non-sinusoidal inputs of the form
we use here. More research is required to understand these
issues.

The synaptic-like inputs we use in this paper have con-
stant amplitude across cycles. Previous work showed that
synaptic short-term plasticity (STP, depression and facilita-
tion) can lead to the emergence of temporal filters (Fortune
and Rose 2001; Mondal 2021; Mondal et al. 2021) and
synaptic resonance (Drover et al. 2007; Mondal 2021).
Additionally, STP has been shown to play a role in mod-
ulated intrinsic subthreshold oscillations (Flores et al. 2016;
Torres et al. 2011; Uzuntarla et al. 2017). Future work
should consider the effects of adding STP to the proto-
cols we used here. However, this may require the use of
full periodic signals instead of chirps to capture phenomena
mentioned above. A step in this direction has been done in
Mondal et al. (2021).

Simply put, under rather general circumstances, neurons
that exhibit subthreshold resonance in response to sinusoidal
inputs would exhibit spiking resonance in response to the
same inputs (for small enough values of the input amplitude),
but would not exhibit spiking resonance for other types of
inputs, in particular for synaptic-like waveforms, which are
the ones that operate in networks. This includes the difference
between the responses to current- and conductance-based
inputs. These issues have been overlooked in the literature
and, often, claims are made about the implications of reso-
nance in response to sinusoidal inputs for spiking activity in
realistic setups. Our results generate a number of predictions
that can be tested experimentally in vitro using the dynamic
clamp technique (Sharp et al. 1993; Prinz et al. 2003) or in
vivo using optogenetic tools (Zhang et al. 2007; Deisseroth
2011; Bernstein and Boyden 2012; Stark et al. 2013).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00422-021-00919-
0.
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Appendix: Intrinsic and resonant oscillatory
properties of 2D linear systems

Consider
{

x ′ = a x + b y + Ain ei ω t ,

y′ = c x + d y
(15)

where a, b, c and d are constants, ω = 2π f /1000 > 0 is
the input frequency and Ain ≥ 0 is the input amplitude. The
prime sign represents the derivative with respect to t . The
units of t are ms and the units of f are Hz.

Intrinsic oscillations

The characteristic polynomial for the corresponding homo-
geneous system (Ain = 0) is given by

r2 − (a + d) r + (a d − b c) = 0. (16)

The eigenvalues are given by

r1,2 = a + d ± √

(a − d)2 + 4bc

2
, (17)

and the natural (intrinsic) frequency of the (damped) oscil-
lations (in Hz if t has units of ms) is given by

fnat =
√−(a − d)2 − 4bc

4π
1000 (18)

assuming (a − d)2 + 4bc < 0.

Resonance and the impedance amplitude profile

The impedance amplitude profile Z(ω) for system (15)–(16)
is the magnitude

Z(ω) =
√

d2 + ω2

(a d − b c − ω2)2 + (a + d)2 ω2 (19)

of the complex valued coefficient of the particular solution
to the system

Z(ω) = (−d + i ω)

(−a + i ω) (−d + i ω) − b c
. (20)

For 1D system, these quantities are given, respectively, by

Z(ω) = 1√
a2 + ω2

(21)

and

Z(ω) = 1

(−a + i ω)
. (22)
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The resonance frequency fres (in Hz if t has units of ms)
is the frequency at which Z reaches its maximum

fres =
√

−d2 + √
b2 c2 − 2 a b c d − 2 d2 b c

2π
1000. (23)
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