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Abstract
We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks.
We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences
between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends
the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions.
Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple
parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical
properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency
ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the
GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the
two-frequency model.

Keywords Hebbian plasticity · Neural network · Neural oscillation · Nonlinear resonance · Synchronization

1 Introduction

Hebbian learning is a widely accepted principle of synaptic
plasticity which attributes strengthening of synaptic effica-
cies to correlated activation of pre- and post-synaptic neurons
(Hebb 1949; Caporale and Dan 2008). While various math-
ematical formulations of the Hebb rule have been studied
(Gerstner and Kistler 2002; Shouval 2007), here we inves-
tigate Hebbian plasticity in networks of neural oscillators
(Maslennikov and Nekorkin 2017). Previous work showed
that adaptive networks, in which the states of oscillatory
elements (nodes) and the coupling weights between them
(links) interact and co-evolve, exhibit collective dynamical
effects, such as self-assembled multiclusters (Aoki and Aoy-
agi 2011), chimera states (Kasatkin et al. 2017), emergence of
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modular topology (Assenza et al. 2011) and transient switch-
ing dynamics (Maslennikov and Nekorkin 2015). However,
previous models have mainly accounted for synchroniza-
tion in 1:1 frequency ratio while multifrequency learning
between distinct but resonant frequencies (e.g., harmonics
and integer ratios) has not received much attention, despite
its implications for auditory processing (Humphries et al.
2010) and cross-frequency coupling (Hyafil et al. 2015). In
this paper, we study a model of multifrequency adaptive net-
work (Large et al. 2010; Large 2010), which is an extension
of a model of single-frequency Hebbian learning (Hoppen-
steadt and Izhikevich 1996a, b).

Hoppensteadt and Izhikevich (1996a, 1997) derived a
generic model for weakly connected neural networks near a
multiple Andronov–Hopf bifurcation (Andronov et al. 1971;
Guckenheimer and Holmes 1983) when all oscillators have
equal or ε-close natural frequencies,

z′i = bi zi + di zi |zi |2 +
n∑

j �=i

ci j z j , i = 1, . . . , n

where ′ = d/dτ , τ = εt is ‘slow’ time, ε > 0 represents
the strength of synaptic connections in the original weakly
connected system, and z, b, d and c are complex numbers.
They called it a canonical model which they defined to be
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a simple mathematical model that can be derived using nor-
mal form theory from a family of biophysicallymore detailed
models that share certain dynamic properties (Hoppensteadt
and Izhikevich 2001). For example, they showed that weakly
connected Wilson–Cowan-type models (Wilson and Cowan
1972), when each of them is near an Andronov–Hopf bifur-
cation, can be transformed to the above canonical model via
a continuous change of variables (Hoppensteadt and Izhike-
vich 1996a, Theorem 1).

Hoppensteadt and Izhikevich (1996b, 1997) showed that
the canonical network can memorize the phase differences
between oscillators zi and z j in the phase of complex-valued
connection ci j if ci j evolves in time according to a Hebbian
learning rule of the form,

c′
i j = −γ ci j + ki j zi z̄ j , i �= j,

where γ and k are positive real numbers. They demonstrated
that a plastic network consisting of equal-frequency oscilla-
tors can serve as a model of associative memory and pattern
recognition (Hoppensteadt and Izhikevich 2000).

Large et al. (2010) extended the single-frequency network
of Hoppensteadt and Izhikevich into a gradient frequency
neural network (GrFNN), a network of neural oscilla-
tors tuned to a range of distinct frequencies. A canonical
model for GrFNNs consisting of oscillators poised near
an Andronov–Hopf bifurcation or a Bautin bifurcation
(Kuznetsov 2004) is given by

z′i = zi

(
ai + bi |zi |2 + εdi |zi |4

1 − ε|zi |2
)

+
n∑

j �=i

ci j
z j

1 − √
εz j

1

1 − √
ε z̄i

,

where z, a, b, d and c are complex numbers. Unlike the
single-frequency model which describes only the interac-
tions between oscillators tuned to identical frequencies, the
GrFNN model includes a full expansion of higher-order
terms to capture nonlinear resonances between distinct fre-
quencies (e.g., harmonics and integer ratios).

Large (2010, 2011) proposed a Hebbian learning rule of
the form,

c′
i j = −γ ci j + ki j

zi
1 − √

εzi

z̄ j
1 − √

ε z̄ j
, i �= j,

which enables the GrFNN model to learn and remember the
frequency and phase relationships in multi-frequency sig-
nals. It has been shown that the GrFNN model can predict
and explain nonlinearities in auditory peripheral and neural
processing (Lerud et al. 2014, 2019), the universal struc-
tural properties found inmusical cultures (Large 2010, 2011;
Large et al. 2016), and the perception and learning ofmusical

patterns (Large 2011; Large et al. 2015; Kim 2017; Tichko
and Large 2019).

In this paper, we study the dynamic properties of multifre-
quency Hebbian learning by analyzing the above canonical
models, which are mathematically simple and tractable. Our
analysis focuses on Hebbian learning in two coupled oscilla-
tors,whichweuse to examine numerical simulations of larger
networks. We start with an analysis of the single-frequency
model of Hoppensteadt and Izhikevich (Sects. 2.1, 2.2) since,
to our knowledge, no detailed analysis of themodelwas given
before. We extend the single-frequency model by stabiliz-
ing it for the entire range of parameters (Sect. 2.3) and by
introducing frequency detuning (Sect. 2.4). Next, we study
multifrequency learning by analyzing a model for two dis-
tinct frequencies (Sect. 3.1) and by extending it to a gradient
frequency network with arbitrary frequency relationships
(Sect. 3.3). We also study frequency scaling for networks
with logarithmically spaced frequencies (Sect. 3.2) and end
with a discussion of the findings (Sect. 4).

2 Analysis of single-frequency learning

We first study Hoppensteadt and Izhikevich’s canonical
model for single-frequency neural networks. As will be
shown, the single-frequency model shares many dynamical
properties with the multifrequency GrFNN model, but they
also exhibit distinct behaviors. Here we analyze the simplest
case of single-frequencynetwork, namely two coupled equal-
frequency oscillators.

The dynamics of two weakly coupled equal-frequency
oscillators, each near anAndronov–Hopf bifurcation (or sim-
ply, a Hopf bifurcation), is described by the canonical model
(Hoppensteadt and Izhikevich 1996a, 1997),

{
ż1 = z1

(
α1 + iω − |z1|2

) + c12z2

ż2 = z2
(
α2 + iω − |z2|2

) + c21z1
, (1)

where zi ∈ C represents the state of the ith oscillator, ci j ∈ C

is the coupling coefficient from the jth to the ith oscillator,
αi ∈ R is the bifurcation parameter, ω ∈ R is the com-
mon natural frequency, and the roman i is the imaginary unit.
Since our goal is the analysis of the canonical model, not its
derivation using averaging theory, we use˙= d/dt instead of
′ = d/dτ for slow time τ . When uncoupled (i.e., ci j = 0),
the equations become the normal form of a Hopf bifurcation
(Murdock 2003), which is also known as the Stuart–Landau
equation (Stuart 1958). An autonomous oscillator exhibits
spontaneous limit-cycle oscillation if α > 0 or an equilib-
rium at zero if α ≤ 0.
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The complex-valuedHebbian learning rule (Hoppensteadt
and Izhikevich 1996b, 1997),

{
ċ12 = −γ c12 + κ12z1 z̄2
ċ21 = −γ c21 + κ21z2 z̄1

, (2)

allows the connection ci j to learn and memorize the phase
difference between the oscillators zi and z j , where γ > 0
is the decay rate, and κi j > 0 is the learning rate. For the
simplicity of analysis, we assume α1 = α2 = α and κ12 =
κ21 = κ , and notate

{
żi = zi

(
α + iω − |zi |2

) + ci j z j
ċi j = −γ ci j + κzi z̄ j

, (3)

where i, j = 1, 2, which is a shorthand for (i, j) = (1, 2)
for the equations for z1 and c12, and (i, j) = (2, 1) for the
equations for z2 and c21.

2.1 Neutral stability of connection phase

Let us bring the system to the polar coordinates using zi =
ri eiφi and ci j = Ai j eiθi j ,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙi = αri − r3i + Ai jr j cos(θi j + φ j − φi )

φ̇i = ω + Ai j r j
ri

sin(θi j + φ j − φi )

Ȧi j = −γ Ai j + κrir j cos(φi − φ j − θi j )

θ̇i j = κri r j
Ai j

sin(φi − φ j − θi j )

, (4)

where i, j = 1, 2. Since the angular variables appear only
as θi j − φi + φ j , we define ψi j = θi j − φi + φ j and call
them system phases. This turns the above eight-dimensional
system into a six-dimensional one,

⎧
⎪⎪⎨

⎪⎪⎩

ṙi = αri − r3i + Ai jr j cosψi j

Ȧi j = −γ Ai j + κrir j cosψi j

ψ̇i j = −
(

κri r j
Ai j

+ Ai j r j
ri

)
sinψi j + A ji ri

r j
sinψ j i

, (5)

where i, j = 1, 2.
Equation (5) indicates that ψ̇i j = 0 when the system is in

a steady state. As will be shown below, an obvious solution is
ψ∗
12 = ψ∗

21 = 0 (the asterisk denotes a steady-state solution),
in which case θ̇i j = 0 and θ12 = −θ21 = φ1 − φ2 (see Eq. 4
and the definition of ψi j above). The solution only requires
that connection phases θ12 and θ21 match the relative phase
of the oscillators±(φ1−φ2), without specifying steady-state
values of the connection phases or the relative phase (or phase
difference).

Figure 1 shows numerical simulations of the system start-
ing from five different randomly generated initial conditions.
Connection amplitudes Ai j and system phases ψi j con-
verge to identical steady-state values, respectively, indicating
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Fig. 1 Numerical simulations of coupled equal-frequency oscillators
(3) for five different initial conditions. Parameters used: α = 1, γ = 1,
κ = 0.5, and ω = 1
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Fig. 2 Perturbation of coupled equal-frequency oscillators (3). A per-
turbation is delivered to the first oscillator z1 at t = 10. See the caption
for Fig. 1 for parameters

the presence of an attractor. Connection phases θi j , on the
other hand, converge to different values, but the steady state
of each simulation satisfies the aforementioned condition
θ12 = −θ21 = φ1 − φ2. This suggests that plastic connec-
tion phases are neutrally stable, that is, they converge to a
value which is not attracting (Strogatz 1994). A simulation
of perturbation confirms this (Fig. 2). When the system is
perturbed, ψi j are pulled back to the attractor at zero while
θi j converge to new values (which are again symmetric to
each other), instead of being attracted back to the previous
steady-state values.1

The neutral stability of connection phases makes sense
given that the learning rule (2) allows plastic connections to
memorize the phase difference between the oscillators they

1 The amount of change in connection phases θi j after a perturbation
depends on connection amplitudes Ai j . Once the connections grow
strong enough compared to the magnitude of perturbation, and when
learning is slow (with small γ and κ), the plastic connections act like
fixed coupling and are not altered significantly by sporadic perturba-
tions of small amplitudes. Accordingly, the oscillators are attracted back
to the previous relative phase after a small perturbation. Thus, plastic
connections which are neutrally stable on a long timescale constitute an
attractor on a short timescale. For the purpose of demonstrating neutral
stability, the simulation shown in Fig. 2 used fast learning and a strong
perturbation.
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Fig. 3 Externally forced and mutually coupled equal-frequency oscil-
lators simulated with five different initial conditions. In addition to the
coupling terms in (3), each oscillator zi is driven by external forcing
Fi ei(ωt+ϑi ) where F1 = F2 = 2, ϑ1 = π

2 and ϑ2 = 0. The initial
conditions and other parameter values are identical to those used for
Fig. 1

connect (Hoppensteadt and Izhikevich 1996b, 1997). When
the oscillators are not forced to have certain phase differ-
ences, as is the case for (3), the connection phases can have
arbitrary steady-state values because the oscillators are free
to have arbitrary phase differences (Fig. 1). However, when
certain phase differences are forced on the oscillators, for
instance, by external forcing, the connection phases are not
neutrally stable but are attracted to the forced phase differ-
ences. Fig. 3 shows that when the oscillators are forced to
have the phase difference φ1 − φ2 = π

2 , connection phases
θ12 and θ21 are attracted to π

2 and −π
2 , respectively.

2.2 Stability analysis

We study the single-frequency model (3) further by exam-
ining the existence and stability of steady-state solutions.
Below we discuss zero, asymmetric, and symmetric solu-
tions.
Stability of zero and asymmetric solution. First, it is obvious
that zi = ci j = 0 is a solution of (3) regardless of parameter
values. We find that the zero solution is stable for α < 0 and
unstable for α > 0, which can be shown by examining the
signs of ṙi and Ȧi j for small perturbations from zero (ψi j is
not defined at zero). Thus, zero is stable or attracting when
autonomous (uncoupled) oscillators have an equilibrium at
zero (α < 0), and it is unstable or repelling when they exhibit
spontaneous oscillations (α > 0). For α = 0, zero is stable
if γ > κ (strong forgetting), unstable if γ < κ (strong learn-
ing), and neutrally stable if γ = κ (along with other infinite
solutions, see below).We also find that asymmetric solutions
do not exist for (5). From the steady-state equations, we can
show A∗

12 = A∗
21 which leads to r∗

1 = r∗
2 .

Nonzero symmetric solution. When the oscillators and the
learning rules have identical parameters as we assume here, it
is likely that the systemhas symmetric solutionswith r∗

1 = r∗
2
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Fig. 4 Symmetric steady-state oscillator amplitude r∗ as function of
learning rate κ for the original single-frequency model (3), two stabi-
lizedmodels (8) and (9), and the fully expandedmodel (15). Parameters
used: α = 0.1, γ = −λ = 1, β = β1 = β2 = −1, and k = m = 1

and A∗
12 = A∗

21. Examining (5), we find that the symmetric
plane r1 = r2, A12 = A21, ψ12 = −ψ21 is an invariant
manifold because ṙ1 = ṙ2, Ȧ12 = Ȧ21, and ψ̇12 = −ψ̇21 on
any point on the plane. Once the system is on the symmetric
plane, it remains there indefinitely.

To examine the dynamics on the symmetric plane, we
substitute ri = r , Ai j = A and ψ12 = −ψ21 = ψ in (5) and
get

⎧
⎪⎨

⎪⎩

ṙ = αr − r3 + Ar cosψ

Ȧ = −γ A + κr2 cosψ

ψ̇ = −
(

κr2
A + 2A

)
sinψ

. (6)

We obtain a nonzero symmetric solution by solving steady-
state equations ṙ = 0, Ȧ = 0, and ψ̇ = 0,

r∗ =
√

γα

γ − κ
, A∗ = κα

γ − κ
, ψ∗ = 0. (7)

Since r and A are positive real numbers, the solution exists if
α > 0 and γ > κ , or if α < 0 and γ < κ . In either case, both
r∗ and A∗ diverge at γ = κ (Fig. 4).Whenα = 0, no nonzero
solution exists unless γ = κ for which infinite solutions
satisfying r∗2 = A∗ exist (including the zero solution as
discussed above). In the parameter regimes without nonzero
solutions, the system either decays to zero or diverges to
infinity depending on the stability of zero (see Table 1).

We can determine the linear stability of the nonzero sym-
metric solution (7) by evaluating the Jacobian matrix at the
solution (Arnold 1978; Strogatz 1994). By solving the char-
acteristic equation, we obtain the following eigenvalues of
the Jacobian matrix,

λ1 = −γ − 2A∗ < 0,

λ2,3 = −(
2r∗2+γ

)±
√
(2r∗2+γ )

2−8(γ−k)r∗2
2
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= −(
2r∗2+γ

)±
√
(2r∗2−γ )

2+8kr∗2
2 .

Thus, if γ > κ (and α > 0), all three eigenvalues are neg-
ative, indicating the solution is a stable node (see Ai j and
ψi j approach fixed points monotonically in Fig. 1). In this
case, the nonzero solution is the only stable solution because
zero is not stable. If γ < κ (and α < 0), the Jacobian matrix
has two negative and one positive eigenvalues, indicating the
solution is a saddle point. The two-dimensional stable man-
ifold of this saddle point serves as a separatrix between the
stable zero and the divergence to infinity.

Table 1 summarizes the steady states of the original single-
frequencymodel for different regimes of parametersα, γ and
κ . In many parameter regimes, the original model does not
have a stable steady-state solution but diverges to infinity
unless it is precisely at zero. Below we discuss ways to sta-
bilize the model in all its parameter regimes, and we extend
it further by introducing frequency detuning.

2.3 Stabilization of learning dynamics

The nonzero steady-state solution of the single-frequency
model, given in (7), diverges at γ = κ (see Fig. 4) because
the input term Ar cosψ in the oscillator amplitude equation
in (6) is, with A∗ growing linearly with r∗2, effectively of
the same order of r as the highest-order intrinsic term −r3.
We can prevent the system from diverging by adding higher-
order stabilizing terms in the oscillator equations and/or the
learning equations. Let us first consider adding a quintic term
to the oscillator equations (and making the cubic coefficient
β),

{
żi = zi

(
α + iω + β|zi |2 − |zi |4

) + ci j z j
ċi j = −γ ci j + κzi z̄ j

(8)

where i, j = 1, 2.2 Now, the oscillators can be near a double
limit cycle bifurcation when β > 0 (also known as saddle-
node or fold bifurcation of periodic orbits; Arnold 1988;
Kuznetsov 2004). For the interest of space, however, here
we limit our analysis to the parameter regimes around a Hopf
bifurcation by restricting β < 0.

By bringing the system to the polar coordinates and solv-
ing symmetric steady-state equations, we get

r∗ =

√√√√√1

2

⎛

⎝β + κ

γ
±

√(
β + κ

γ

)2

+ 4α

⎞

⎠,

2 We chose the quintic coefficient to be −1 because here we want to
examine the stabilization of amplitude dynamics without altering phase
dynamics. In fully expanded models (13) and (24), the quintic coeffi-
cient di = β2i + iδ2i has both amplitude (radial) and phase (azimuthal)
components.

A∗ = κ

γ
r∗2, ψ∗ = 0.

Thus, unlike the original model (3), the stabilized model (8)
does not have a singularity (Fig. 4). For α > 0 (the super-
critical regime of a Hopf bifurcation), one positive real r∗
always exists, and a linear stability analysis indicates that it
is a stable node (see Fig. 5 where Ω = 0). For α = 0 (the
critical point), one positive r∗ exists if κ

γ
> −β (none oth-

erwise, see Fig. 6). For α < 0 (the subcritical regime), two
positive solutions exist if κ

γ
≥ −β +2

√−α, which are a sta-
ble node and a saddle point (Fig. 7). (The stability analysis
shown in Figs. 5, 6 and 7 will be discussed more fully in the
next section.)

Alternatively, we can add a cubic damping term in the
learning rule to stabilize the system for all ranges of learning
parameters,
{
żi = zi

(
α + iω − |zi |2

) + ci j z j

ċi j = ci j
(
λ − |ci j |2

) + κzi z̄ j
, (9)

where we notate the linear coefficient in the learning rule as
λ ∈ R instead of−γ to emphasize that now it can be positive
or zero with the stabilizing cubic term added to the equation.
Thus, the addition of a cubic term not only stabilizes the
system (Fig. 4) but also introduces new parameter regimes
to the learning rule. In this paper, we limit our analysis to
the learning rule with only a linear damping term −γ ci j and
study the first stabilized model (8) further below. An analysis
of nonlinear learning regimes will be given elsewhere.3

2.4 Effects of frequency detuning

Weextend the stabilized single-frequencymodel (8) by intro-
ducing frequency detuning (i.e., ω1 �= ω2),
{
żi = zi

(
α + iωi + β|zi |2 − |zi |4

) + ci j z j
ċi j = −γ ci j + κzi z̄ j

(10)

where i, j = 1, 2. As before, we convert the system to the
polar coordinates using zi = ri eiφi , ci j = Ai j eiθi j , define
ψi j = θi j − φi + φ j , and get
⎧
⎪⎪⎨

⎪⎪⎩

ṙi = αri +βr3i − r5i +Ai jr j cosψi j

Ȧi j = −γ Ai j+κrir j cosψi j

ψ̇i j = −Ωi j −
(

κri r j
Ai j

+ Ai j r j
ri

)
sinψi j + A ji ri

r j
sinψ j i

,

(11)

whereΩi j = ωi −ω j is frequency detuning, and i, j = 1, 2.
Stability analysis. As with the original model (5), the sym-
metric plane r1 = r2, A12 = A21,ψ12 = −ψ21 is an invariant

3 See Large et al. (2016), Kim (2017), Tichko and Large (2019) for
nonlinear learning rules with fully expanded intrinsic terms.
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Table 1 Steady states of the
original single-frequency model
(3)

γ > κ γ = κ γ < κ

α < 0 0a 0 0, (saddle)b, ∞c

α = 0 0 Infinite solutions (0), ∞
α > 0 (0), node (0), ∞ (0), ∞
a Zero solution.
b Unstable solutions are in parentheses.
c Divergence to infinity

manifold. Here we focus on the dynamics on the symmetric
plane (numerical simulations suggest that no stable asym-
metric solution exists). Substituting ri = r , Ai j = A and
ψ12 = −ψ21 = ψ , we get

⎧
⎪⎨

⎪⎩

ṙ = αr + βr3 − r5 + Ar cosψ

Ȧ = −γ A + κr2 cosψ

ψ̇ = −Ω −
(

κr2
A + 2A

)
sinψ

, (12)

where Ω = ω1 − ω2. Combining steady-state equations and
using sin2 ψ∗ + cos2 ψ∗ = 1, we obtain a sixth-order equa-
tion for r∗ (not shown due to its length), which we solve by
numerical root finding. We determine the linear stability of
each obtained nonzero solution (r∗, A∗, ψ∗) by evaluating
the Jacobian matrix at the solution.

Figures 5a, 6a, and 7a show the stability type of stable
nonzero symmetric solutions in the parameter space (Ω, κ)

for three different regimes of oscillator parameters: the super-
critical (α > 0), the critical (α = 0), and the subcritical
regime (α < 0) of a Hopf bifurcation [see Kim and Large
(2015, 2019) for the distinct characteristics of each regime].
Panels b and c of the figures show the steady-state values
of both stable and unstable solutions for select values of κ .
In all three regimes, both oscillator amplitude r∗ and con-
nection amplitude A∗ are maximum at Ω = 0, indicating
that neural networks with plastic connections resonate when
there is no frequency detuning, as do networks with fixed
coupling (Kim and Large 2015). In the supercritical regime
(Fig. 5a, c), at least one stable nonzero solution exists for the
entire range of Ω and κ , and two stable solutions exist for
intermediate |Ω| and large κ . As discussed in the previous
section (2.3), the region of (Ω, κ) with at least one stable
nonzero solution, often called an Arnold tongue, is lifted off
κ = 0 for the critical and subcritical regimes (α ≤ 0), with
the tongue tip at κ0 = γ (−β+2

√−α) (Figs. 6a and 7a). This
is because autonomous (uncoupled) oscillators with α ≤ 0
have a sole attractor at zero, and a high learning rate κ is
needed to get them to develop nonzero connections. When
nonzero solution(s) exists, zero is stable only if the solution
with the smallest amplitude is a saddle point which acts as a
separatrix (e.g., the saddle points in Figs. 6c and 7b, but not
Fig. 5c). When no nonzero solution exists (the white regions
in Figs. 6a, 7a), zero is always stable.

Rotating connectionphase.Equation (11) indicates thatwhen
ω1 �= ω2 (i.e., Ω12 = −Ω21 �= 0), both steady-state
system phases ψ∗

12 and ψ∗
21 cannot be zero. Since θ̇i j =

− κri r j
Ai j

sinψi j , nonzero ψ∗
i j means that connection phase θi j

is not constant over time but advances at a constant rate when
the system is in a steady state. Since ψ̇i j = θ̇i j − φ̇i + φ̇ j = 0
in a steady state, the frequency of oscillating connection θ̇i j
is equal to the difference of the oscillators’ instantaneous
frequencies φ̇i − φ̇ j . In other words, oscillating connections
compensate the instantaneous frequency difference of the
oscillators (see Fig. 8 for a simulation with frequency detun-
ing).4

Panels b and c of Figs. 5, 6 and 7 show that the steady-state
oscillation frequency of plastic connection θ̇∗

i j fall between 0
and Ωi j (the latter is indicated by a diagonal dashed line in
the figures; note θ̇∗

12 = −θ̇∗
21 for symmetric solutions). For

small frequency detuning |Ω|, plastic connections have large
amplitudes A∗ and slow (near zero) oscillating frequencies
θ̇∗
i j . In this case, the instantaneous frequencies of the oscilla-
tors are brought close to each other because the compensation
by plastic connections is small. For large frequency detun-
ing, connection frequencies are close to Ωi j if steady-state
solutions exist (see Fig. 5b, c) which means that oscillating
connections compensate most of the frequency detuning so
that the oscillators’ instantaneous frequencies are near their
natural frequencies. In this case, the connections have small
steady-state amplitudes because plastic connections can be
considered as oscillators tuned to the frequency of zero.5

They assume small amplitudes when forced to oscillate at a
nonzero frequency.

4 Note that the oscillation frequency of plastic connection θ̇i j =
− κri r j

Ai j
sinψi j is proportional to κ . When learning is slow (with small

γ and κ), plastic connections oscillate at slow frequencies and behave
like fixed coupling on a short timescale. See footnote 2 for a related
discussion on the timescale of learning.
5 See Eq. (9), for example, where the intrinsic part of the learning equa-
tion takes a similar form as the oscillator equation, except the former
does not have any imaginary terms like iω, which can be interpreted
as the natural frequency being zero. Thus, plastic connections resonate
when the oscillators maintain a fixed phase difference (or phase-locked)
because that is when the input term κzi z̄ j is stationary.
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Fig. 5 Nonzero symmetric steady-state solutions of the stabilized
single-frequency model with frequency detuning (10) in the supercrit-
ical Hopf regime (α = 0.1, β = −1, γ = 1). a The stability type
of stable solutions in the (Ω, κ) parameter space. b Stability type and
steady-state values for κ = 1.5 and c for κ = 2.5. The horizontal dashed
lines in the plots of r∗ indicate the spontaneous amplitude of the oscil-
lators (i.e., the steady-state amplitude of an uncoupled oscillator). The
diagonal dashed lines in the plots of θ̇∗

12 indicate frequency detuning Ω
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Fig. 6 Nonzero symmetric steady-state solutions of the stabilized
single-frequency model (10) at the critical point of a Hopf bifurca-
tion (α = 0, β = −1, γ = 1). a The stability type of stable solutions.
b Stability type and steady-state values for κ = 1.3 and c for κ = 2.5.
A nonzero solution exists for Ω = 0 if κ > κ0 = −βγ . See the text
for details
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Fig. 8 Numerical simulation of the stabilized model with frequency
detuning (10). In a steady state, the frequency of oscillating connections
matches the difference of the oscillators’ instantaneous frequencies.
Parameters used: α = 0.1, β = −1, ω1 = 2π (or 1 Hz), ω2 = 0.8×2π
(0.8 Hz), γ = 1 and κ = 1

3 Hebbian learning inmultifrequency
networks

Now we turn our attention to multifrequency learning. To
study Hebbian learning in multifrequency neural networks,
we first analyze a canonicalmodel for two coupled oscillators
with distinct frequencies. We use the same analytic methods
used above for single-frequency models. As shown below,
many findings for single-frequency learning hold for multi-
frequency learning since the former is a particular instance
of the latter.

3.1 Two distinct frequencies

When two oscillators have distinct natural frequencies that
approximate an integer ratio k:m, where k, m ∈ N, the
dynamics of coupled oscillators can be described by
⎧
⎪⎨

⎪⎩

ż1 =z1
(
a1 + b1|z1|2 + εd1|z1|4

1−ε|z1|2
)

+ε
k+m−2

2 c12zk2 z̄
m−1
1

ż2 =z2
(
a2+b2|z2|2 + εd2|z2|4

1−ε|z2|2
)

+ ε
k+m−2

2 c21zm1 z̄
k−1
2

,

(13)

where ai = αi + iωi , bi = β1i + iδ1i , di = β2i + iδ2i , α,
ω, β, δ ∈ R, and ε > 0 is a small number representing the
strength of synaptic connections in the original weakly con-
nected system (Large et al. 2010;Kim andLarge 2019).6 This
is a generalization of themodels derived inHoppensteadt and
Izhikevich (1997) for specific ratios (2:1 and 3:1) to a general
integer ratio k:m or a resonant relation of mω1 = kω2.

The coupling terms zk2 z̄
m−1
1 and zm1 z̄

k−1
2 are the lowest-

order resonant monomials formω1 = kω2, which satisfy the
resonant conditions between the eigenvalues,

iω1 = kiω2 − (m − 1)iω1,

iω2 = miω1 − (k − 1)iω2.

The coupling terms are of order O(
√

ε
k+m−2

), indicating
the model for distinct frequencies is weakly connected com-
pared to the single-frequency model for which k = m = 1
(Hoppensteadt and Izhikevich 1997). Intrinsic terms are fully
expanded in the form of a geometric series (with the coeffi-
cient di ), instead of being truncated, to stabilize the system
for arbitrarily large k and m (β2i < 0 for stability). For the

6 Note that (13) has ε in the intrinsic higher-order terms (with the coeffi-
cient di ) as well as in the coupling terms (with ci j ). The original weakly
connected system is considered ε-perturbation of the uncoupled system,
fromwhich the canonicalmodel is derived using averaging theory (Hop-
pensteadt and Izhikevich 1996a). Here, to capture resonance between
distinct frequencies, the canonical model is expanded to include higher-
order perturbation terms (see Hoppensteadt and Izhikevich 1997, p.
172). Hence, both the higher-order intrinsic terms and the coupling
terms are expressed as powers of ε.
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convergence of the geometric series, oscillator amplitudes
are restricted to |zi | < 1√

ε
(Large et al. 2010).

We generalize the original single-frequency learning rule
(2) to a general resonant relation of mω1 = kω2 with

{
ċ12 = −γ c12 + ε

k+m−2
2 κ12zm1 z̄

k
2

ċ21 = −γ c21 + ε
k+m−2

2 κ21zk2 z̄
m
1

, (14)

which becomes (2) when k = m = 1. The coupling
terms zm1 z̄

k
2 and zk2 z̄

m
1 become stationary (to which plastic

connections resonate, see footnote 5) when z1 and z2 are
mode-locked in the frequency ratio k:m (i.e., when their rel-
ative phase mφ1 − kφ2 is constant over time).

For the simplicity of analysis, we assume that the oscilla-
tors have identical parameters except their natural frequen-
cies (e.g., αi = α) and that intrinsic frequencies do not
depend on amplitudes (i.e., δ1i = δ2i = 0). Also, for the
interest of space, we limit our analysis to the parameter
regimes around a Hopf bifurcation by restricting β1i < 0.

By rescaling zi → zi√
ε
, β1 → β1

ε
, β2 → β2

ε
, and κ → κ

ε

(thus, now |zi | < 1, see Fig. 4), we get

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż1 = z1
(
α + iω1 + β1|z1|2 + β2|z1|4

1−|z1|2
)

+ c12zk2 z̄
m−1
1

ż2 = z2
(
α + iω2 + β1|z2|2 + β2|z2|4

1−|z2|2
)

+ c21zm1 z̄
k−1
2

ċ12 = −γ c12 + κzm1 z̄
k
2

ċ21 = −γ c21 + κzk2 z̄
m
1

.

(15)

Again,we transform the system to the polar coordinates using
zi = ri eiφi and ci j = Ai j eiθi j , define ψi j = θi j − mi jφi +
ki jφ j where (k12,m12) = (k,m) and (k21,m21) = (m, k),
and get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙi = αri + β1r3i + β2r5i
1−r2i

+ Ai jr
ki j
j r

mi j−1
i cosψi j

Ȧi j = −γ Ai j + κr
mi j
i r

ki j
j cosψi j

ψ̇i j = −Ωi j −
(

κr
mi j
i r

ki j
j

Ai j
+ mi j Ai j r

mi j−2
i r

ki j
j

)
sinψi j

+ki j A ji r
mi j
i r

ki j−2
j sinψ j i

,

(16)

whereΩi j = mi jωi−ki jω j (orΩ12 = −Ω21 = mω1−kω2).
Since the dynamics of the model are determined by system
phases ψi j , as is the case for the single-frequency models
discussed above, connection phases θi j converge to neutrally
stable steady-state values when Ωi j = 0 (while satisfying
θ∗
12 = −θ∗

21 = mφ1 − kφ2), and they rotate when Ωi j �= 0
(see Sects. 2.1, 2.4).

Symmetric solutions. The dynamics on the symmetric plane
ri = r , Ai j = A and ψ12 = −ψ21 = ψ are governed by

⎧
⎪⎪⎨

⎪⎪⎩

ṙ = αr + β1r3 + β2r5

1−r2
+ Ark+m−1 cosψ

Ȧ = −γ A + κrk+m cosψ

ψ̇ = −Ω −
(

κrk+m

A + (k + m)Ark+m−2
)
sinψ

, (17)

where Ω = mω1 − kω2. Again, we calculate nonzero sym-
metric steady-state solutions (r∗, A∗, ψ∗) by numerically
solving a polynomial equation in r∗ (of the order determined
by k + m) we obtain by combining steady-state equations
ṙ = 0, Ȧ = 0 and ψ̇ = 0. The linear stability of the solu-
tions is determined by evaluating the Jacobian matrix.

Steady-state solutions and their stability for multifre-
quency learning (k : m ratio) show similarities to single-
frequency learning (1:1 ratio), but there are notable differ-
ences. Let us take the 2:1 model (i.e., Eq. 15 with k = 2,
m = 1) as an example and compare it with what we found
above for the 1:1 single-frequency model. In the supercriti-
cal Hopf regime (α > 0), the 2:1 model with a large α has
a set of steady-state solutions that are topologically equiv-
alent to the 1:1 model shown in Fig. 5. However, for small
positive values of α, the 2:1 model shows a different set of
behaviors, with two stable solutions at Ω = 0 for interme-
diate values of κ (Fig. 9). In the critical and subcritical Hopf
regimes (α = 0 and α < 0, respectively), the 2:1 model has
the same set of solutions as the 1:1 model in the subcritical
Hopf regime (Fig. 7): a pair of nonzero solutions (a stable
node and a saddle point) exist for small |Ω| for κ greater than
a critical value κ0. Multifrequency models with k + m > 2
share the same set of steady-state solutions as the 2:1 model
examined here.
Relative strength of k:m learning. Although multifrequency
models with k + m > 2 show qualitatively identical behav-
iors, the strength of resonance varies with k and m. To
compare the strength of k:m learning, we perform a further
analysis at Ω = 0. Using ψ∗ = 0 at Ω = 0 and combining
steady-state equations ṙ = 0 and Ȧ = 0 from (17), we get

α + β1r
∗2 + β2r∗4

1 − r∗2 = − κ

γ
r∗2(k+m−1).

Thus, defining X = r∗2, the steady-state solutions at Ω = 0
are the intersections of functions y1 and y2, defined as

⎧
⎨

⎩
y1 = α + β1X + β2X2

1−X

y2 = − κ
γ
Xk+m−1

. (18)

Note that y1 depends only on oscillator parameters α, β1 and
β2, while y2 depends on learning parameters γ and κ and the
order of nonlinear resonance k + m.
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Fig. 9 Nonzero symmetric steady-state solutions of the two-frequency
(2:1) model (15) in the supercritical Hopf regime with small positive
α = 0.05 (β1 = β2 = −1, γ = 1). a The stability type of stable solu-

tions in the (Ω, κ) parameter space. b Stability type and steady-state
values for κ = 2, c κ = 5, and d for κ = 8

Figure 10a demonstrates that in the supercritical Hopf
regime (α > 0), y1 and y2 have an intersection at a higher
X = r∗2 when k+m is smaller (see Fig. 10b for a comparison
over a range of κ). This shows that low-order multifrequency
learning (i.e., learning of a simple frequency ratio with small
k and m) exhibits stronger resonance than high-order learn-
ing (a complex ratio with large k and m), which is consistent
with the previous finding for a periodically forced GrFNN
model (Kim and Large 2019). For the critical and subcritical
Hopf regimes (α ≤ 0), we compare κ0, the smallest κ with
nonzero stable solution (see Sect. 2.4), which we obtain by
solving y1 = y2 and y′

1 = y′
2 simultaneously because y1 and

y2 touch at a single point when κ = κ0. Figure 10c shows that
κ0 is higher for greater k+m, indicating that a higher learning
rate is required for high-order multifrequency learning.

3.2 Frequency scaling for logarithmic frequency
networks

Next, we consider the bandwidth of the coupled oscillators,
whichwedefine as follows:LetΓ be the amount of frequency
detuning |Ω| for which r∗ is a half of the max value r∗

0 at

Ω = 0. Then, for fixedω1, the range ofω2 for which r∗ ≥ r∗
0
2

is

mω1

k
− Γ

k
≤ ω2 ≤ mω1

k
+ Γ

k
, (19)

since |Ω| = |mω1 − kω2| ≤ Γ . Thus, the full bandwidth 2Γ
k

is constant across frequencies, as long as other parameters
remain the same.
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Fig. 10 Comparison of two-frequency learning in the ratio k:m. a The
intersection of functions y1 and y2 in (18). Parameters: α = 1, β1 =
β2 = −1, γ = 1, κ = 5. b Symmetric steady-state oscillator amplitude
r∗ as a function of κ . The parameters are identical to those used in
Panel a. The dashed line indicates the spontaneous amplitude. c κ0, the
minimum κ required for nonzero solutions, as a function of α ≤ 0
(β1 = β2 = −1, γ = 1)

However, we previously showed that scaling oscillator
parameters by natural frequency makes the bandwidth grow
linearly with natural frequency, a behavior called “constant
Q” which is often desirable when natural frequencies are
equally spaced on a logarithmic scale as found in the tono-
topic organization in the auditory system (Humphries et al.
2010):
⎧
⎪⎨

⎪⎩

1
f1
ż1 = z1

(
α + 2π i + β1|z1|2 + β2|z1|4

1−|z1|2
)

+ c12zk2 z̄
m−1
1

1
f2
ż2 = z2

(
α + 2π i + β1|z2|2 + β2|z2|4

1−|z2|2
)

+ c21zm1 z̄
k−1
2

(20)

where 2π fi = ωi (Large et al. 2010; Kim and Large 2015,
2019).

We introduce a frequency-scaled version of the learning
rule,

⎧
⎨

⎩

1
fc
ċ12 = −γ c12 + κzm1 z̄

k
2

1
fc
ċ21 = −γ c21 + κzk2 z̄

m
1

, (21)

where

fc = k f2 + m f1
k + m

(22)

is the internal division of f1 and f2 in the ratio k:m. Bring-
ing (20) and (21) to the polar coordinates, we show that the
frequency-scaled equation for symmetric system phase ψ ,

1

fc
ψ̇ = −Ω

fc
−

(
κrk+m

A
+ (k + m)Ark+m−2

)
sinψ,

is identical to the unscaled equation (17) except the scal-
ing factor 1

fc
multiplied to the left-hand side and to Ω . This

means that when the unscaled bandwidth is |Ω| = Γ , the

bandwidth of the frequency-scaled model is
∣∣∣Ω
fc

∣∣∣ = Γ . Thus,

with frequency scaling, r∗ ≥ r∗
0
2 when

1 − 2Γ

2π(k + m) + Γ
≤ kω2

mω1
≤ 1 + 2Γ

2π(k + m) − Γ
.

(23)

The bandwidth is now expressed as a ratio of natural fre-
quencies, and thus it grows with natural frequencies and is
constant on a logarithmic scale (Fig. 11a).

3.3 Gradient frequency neural networks

In order to capture the interaction between arbitrary fre-
quencies, the canonical model for GrFNNs with plastic
connections (Large et al. 2010; Large 2010, 2011),

⎧
⎪⎪⎨

⎪⎪⎩

żi = zi
(
ai + bi |zi |2 + di |zi |4

1−|zi |2
)

+
n∑

j �=i

ci j
z j

1−z j
1

1−z̄i

ċi j = −γi j ci j + κi j
zi

1−zi
z̄ j

1−z̄ j
, i �= j

,

(24)

where ai = αi + iωi , bi = β1i + iδ1i , and di = β2i +
iδ2i , includes the monomials for all possible two-frequency
resonant relationships (i.e., all possible k:m),

z j
1 − z j

1

1 − z̄i
=

∞∑

k=1

zkj

∞∑

m=1

z̄m−1
i ,

zi
1 − zi

z̄ j
1 − z̄ j

=
∞∑

m=1

zmi

∞∑

k=1

z̄kj
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(cf. Eq. 15). Depending on the oscillators’ instantaneous
(actual) frequencies (which could be different from natural
frequencies), a subset of the monomials become resonant
and affect the long-term dynamics of the model, while the
effects of other, nonresonant monomials are canceled out
over time (Arnold 1988; Guckenheimer and Holmes 1983).
(See Large et al. 2010; Kim and Large 2019, for discussions
on the GrFNN model).

For logarithmically spaced natural frequencies, we scale
the oscillator equation by natural frequency as shown above
(Sect. 3.2). Since the resonant relations between oscillators
are not specified in the GrFNN model, we use an approxi-
mated scaling factor for the learning rule,

fi j = 2 fi f j
fi + f j

≈ ki j f j + mi j fi
ki j + mi j

, (25)

assuming fi : f j ≈ ki j : mi j (cf. Eq. 22). Hence, the
frequency-scaled GrFNN model is given by

⎧
⎪⎪⎨

⎪⎪⎩

1
fi
żi = zi

(
a′
i + bi |zi |2 + di |zi |4

1−|zi |2
)

+
n∑

j �=i

ci j
z j

1−z j
1

1−z̄i

1
fi j
ċi j = −γi j ci j + κi j

zi
1−zi

z̄ j
1−z̄ j

, i �= j

,

(26)

where a′
i = αi + 2π i.

Figure 11a shows time-averaged connection amplitudes
from numerical simulations of the frequency-scaled GrFNN
model in the supercritical Hopf regime (see the figure cap-
tion for parameters). The diagonals of the connection matrix
(ci j ) with high amplitudes indicate resonances at simple
frequency ratios, such as 1:1 and 2:1 as marked in the fig-
ure (n.b. self-connections at the main diagonal cii are not
included in the model, see Eq. 26). As predicted from the
analysis given above (Sect. 3.1), the peak amplitude of a res-
onance decreases with the order of resonance k+m, with the
strongest resonance at the ratio 1:1, followed by 2:1, 3:1, etc.
The bandwidth of a resonance also decreases with increas-
ing k+m, but the width of each resonance is constant across
logarithmically spaced frequencies due to frequency scal-
ing (Sect. 3.2). Without frequency scaling, the bandwidth
of a resonance decreases with logarithmic frequency (i.e.
the widths of bright-colored diagonals would get narrower
toward the upper right corner of the figure) because unscaled
bandwidths are constant in linear frequency.

Figure 11b compares the connection amplitudes for a
single source oscillator (1 Hz) with the analysis of the
two-frequency model (20, 21). The thick line in Fig. 11b
corresponds to the color-coded connection amplitudes at the
lower edge of Fig. 11a. Near each major resonance in the
GrFNN simulations (the thick line), the steady-state connec-
tion amplitude A∗ of the two-frequency, k:m model (the thin
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Fig. 11 Numerical simulations of the frequency-scaled GrFNN model
(26). a Time-averaged connection amplitudes from 10 simulations with
different random initial conditions. b Average connection amplitudes
for a source oscillator (1 Hz) obtained from the GrFNN simulations
shown in Panel a (thick line) compared with the analysis of the two-
frequency model (20, 21) for simple integer ratios (thin lines). The
natural frequencies fi of 601 oscillators are equally spaced on a loga-
rithmic scale, ranging from 1 Hz to 4 Hz. Parameters: αi = 2, β1i =
β2i = −1, δ1i = δ2i = 0, γi j = 0.5, κi j = 8.33×10−5 = 0.05/(n−1),
n = 601. See text for details

lines, plotted for k+m up to 9) fits well with the simulations.
The small peaks in the simulations (at 4:3, 5:3 and 7:2) are
significantly higher than the analysis due to the influence of
stronger resonances nearby. The good fit between the sim-
ulations and the analysis demonstrates that the lowest-order
resonant monomial for the ratio k:m dominates the dynamics
of the GrFNN model near that frequency ratio even though
the model includes an infinite series of monomials for other
frequency ratios.

Notice the dip in connection amplitude near the peak of
the 2:1 resonance (Fig. 11b). The local variability near res-
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onance peaks arises because the GrFNN model includes not
only the lowest-order resonantmonomial for the ratio k:m but
also higher-order resonant monomials for the ratio pk : pm,
p ∈ N. Thus, an infinite number of resonant monomials con-
tribute to the local dynamics near k:m, and depending on their
phase relationships, their combined effects can make the res-
onance in the GrFNNmodel significantly stronger or weaker
than that of the two-frequency model which includes only
the lowest-order resonant monomial. We leave the detailed
analysis of this effect to future studies.

4 Discussion

In this paper, we studied Hebbian plasticity in oscillatory
neural networkswhich can learn phase relationships between
component oscillators with complex-valued coupling coeffi-
cients. We performed a dynamical systems analysis of three
coupled oscillator models: the original single-frequency
model of Hoppensteadt and Izhikevich (1996a, b, 1997), a
single-frequency model with frequency detuning and a sta-
bilizing high-order term, and a two-frequency model for
a general frequency ratio k:m. We found that the models
have different sets of steady-state solutions in three parame-
ter regimes around an Andronov–Hopf bifurcation. We also
found that plastic connections converge to neutrally stable
phases in the absence of external forcing and frequency
detuning and that they oscillate in the presence of frequency
detuning and compensate the difference in oscillators’ instan-
taneous frequencies. An analysis of the two-frequencymodel
showed that learning is stronger for simple frequency ratios
(small integers k and m) and that the minimum learning rate
required to achieve learning is smaller for simple ratios.
Finally, we compared the analysis of the two-frequency
model with numerical simulations of a GrFNN model and
showed that the dynamics of the GrFNN model near a
frequency ratio k:m is locally dominated by the resonant
monomials for that ratio.

The present work is, to our knowledge, the first to analyze
multifrequency Hebbian plasticity in oscillator networks.
The GrFNN model includes higher-order coupling terms to
capture nonlinear resonance and multifrequency learning,
whereas previous models of adaptive networks include only
coupling terms for 1:1 synchronization (see previous works
featuring Stuart–Landau oscillators for a direct compari-
son, e.g., Aoyagi 1995; Maslennikov and Nekorkin 2018).
The learning rules for complex-valued connection coeffi-
cients studied here are different from the learning rules
for real-valued weights in the previous studies in that the
former enable adaptive networks to learn and remember rel-
ative phases between oscillators in connection phases, while
the latter only strengthen or weaken the connections. The
dynamic behaviors of connection phase reported in this study,

such as neutral stability in the absence of external forcing,
and rotation in the presence of frequency detuning, are unique
to the complex-valued learning rules. We also presented a
detailed analysis of the original single-frequency model of
Hoppensteadt and Izhikevich (1996a, b, 1997) because no
such analysis has been given before and because single-
frequency learning is a special case of k:m learning which
shares essential dynamics with two-frequency learning. This
work also adds a new set of results to our previous studies
of the GrFNN model which analyzed phase locking (1:1)
and mode locking (k:m) to periodic external signal via fixed
coupling (Kim and Large 2015, 2019).

In this work, we limited the analysis of multifrequency
Hebbian learning to simple, tractable cases. We mostly ana-
lyzed two coupled oscillators as a simplest case of oscillator
networks. To carry the analysis further, we focused on the
cases where oscillators have identical parameters except nat-
ural frequencies. Although these are non-realistic cases for
the neural networks in the brain, they allow us to inves-
tigate the complex dynamics of multifrequency learning
using analytic methods. Our future work will address dis-
persion among non-frequency parameters in larger networks
(N � 2), which would result in more complex dynamics
than the simple, degenerate cases analyzed here. Our mod-
eling efforts, however, have not been restricted to oscillators
with identical parameters. In one study (Lerud et al. 2019),
we modeled the cochlear dynamics in macaque monkeys by
fitting the parameters of individual oscillators in a two-layer
GrFNN model to the tuning-curve data from the auditory
nerves. Finally, for the interest of space, we did not present
the analysis for all parameter regimes available to theGrFNN
model (see Kim and Large 2015, for all regimes) and limited
our analysis to linear learning rules. An analysis of the oscil-
lator regimes near a double limit cycle bifurcation as well as
nonlinear learning rules will be given elsewhere.

Since the GrFNN model is a generic mathematical model
that is not bound to any particular timesales it can serve
as a model of both short-term and long-term plasticity by
controlling the magnitude of learning parameters γ and κ

which determines the rate of learning. The GrFNN model
has been employed to predict and explain the nature and
constraints of developmental changes in rhythm perception
(Tichko and Large 2019) and enculturation in musical tonal-
ity (Large et al. 2016) which typically span years or decades.
On the other hand, GrFNN models with short-term plastic-
ity have been studied as a neural mechanism for auditory
scene analysis (Bregman 1990) in which individual fre-
quencies originating from the same acoustic source form
a coherent pattern of synchronized oscillations, segregated
from frequencies from other sources (Large 2011). The pat-
tern formation in nonlinear multifrequency plastic networks
provides a novel method for processing and learning audio
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signals such as speech andmusic, an alternative to traditional
linear signal processing techniques (Kim 2017).

Hebbian plasticity in multifrequency systems studied in
this paper also provides a systems-level explanation for the
learning of coordinated movements. In an ongoing study,
we successfully modeled human data for the acquisition and
retention of polyrhythmic bimanual movements (Park et al.
2013). The model, which consists of two coupled oscilla-
tors with adaptive natural frequencies, includes two resonant
monomials with plastic coupling coefficients of their own.
One monomial is for the frequency ratio to be learned (e.g.,
a 3:1 ratio between hand movements), and the other is for
the default, 1:1 mode of bimanual coordination. Simula-
tions of the model replicated various aspects of learning and
retention in the human data, including wide individual dif-
ferences in the acquired relative phase between hands, which
were explained by the neutral stability of plastic connection
phases. We are also investigating the learning of particular
relative phases in bimanual coordinationwith canonicalmod-
els (Zanone and Kelso 1992). Such modeling efforts will
benefit from the analysis given in this paper, which provides
a useful reference for understanding the dynamics of learn-
ing in oscillatory systems as well as for choosing adequate
parameters for given modeling goals.
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