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Abstract
We consider the effects of correlations between the in- and out-degrees of individual neurons on the dynamics of a network of
neurons. By using theta neurons, we can derive a set of coupled differential equations for the expected dynamics of neurons
with the same in-degree. A Gaussian copula is used to introduce correlations between a neuron’s in- and out-degree, and
numerical bifurcation analysis is used determine the effects of these correlations on the network’s dynamics. For excitatory
coupling, we find that inducing positive correlations has a similar effect to increasing the coupling strength between neurons,
while for inhibitory coupling it has the opposite effect. We also determine the propensity of various two- and three-neuron
motifs to occur as correlations are varied and give a plausible explanation for the observed changes in dynamics.

Keywords Degree correlations · Copula · Theta neuron · Ott/Antonsen

1 Introduction

Determining the effects of a network’s structure on its dynam-
ics is an issue of great interest, particularly in the case of
a network of neurons [15,20,26,27]. Since neurons form
directed synaptic connections, a neuron has both an in-
degree—the number of neurons connected to it, and an
out-degree—the number of neurons it connects to. In this
paper, we present a framework for investigating the effects
of correlations, both positive and negative, between these
two quantities. To isolate the effects of these correlations,
we assume no other structure in the networks, i.e. random
connectivity based on the neurons’ degrees.

A number of other authors have considered this issue, and
we now summarise relevant aspects of their results. LaMar
and Smith [13] considered directed networks of identical
pulse-coupled phase oscillators and mostly concentrated on
the probability that the network would fully synchronise,
and the time taken to do so. Vasquez et al. [30] considered
binary neurons whose states were updated at discrete times,
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and found that negative degree correlations stabilised a low
firing rate state, for excitatory coupling. A later paper [15]
considered more realistic spiking neurons, had a mix of exci-
tatory and inhibitory neurons, and concentrated more on the
network’s response to transient stimuli, as well as analysis
of network properties such as mean shortest path. Several
authors have considered networks for which the in- and out-
degrees of a neuron are equal, thereby inducing positive
correlations between them [9,27].

Vegué and Roxin [32] considered large networks of both
excitatory and inhibitory leaky integrate-and-fire neurons
and used a mean-field formalism to determine steady-state
distributions of firing rates within neural populations. They
considered the effects of within-neuron degree correlations
for the excitatory-to-excitatory connections, and sometimes
varied the probability of inhibitory-to-excitatory connections
in order to create a “balanced state”. Nykamp et al. [20] also
considered large networks of both excitatory and inhibitory
neurons and used a Wilson–Cowan-type firing rate model
to investigate the effects of within-neuron degree correla-
tions. They showed that once correlations were included,
the dynamics are effectively four-dimensional, in contrast
to the two-dimensional dynamics expected from a standard
rate-based excitatory/inhibitory network. They also related
the degree distributions to cortical motifs. Experimental evi-
dence for within-neuron degree correlations is given in [31].
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The structure of the paper is as follows. In Sect. 2, we
present the model network and summarise the analysis of [1]
showing that under certain assumptions, the network can be
described by a coupled set of ordinary differential equations,
one for the dynamics associated with each distinct in-degree.
In Sect. 3, we discuss how to generate correlated in- and
out-degrees using a Gaussian copula. Our model involves
sums over all distinct in-degrees, and in Sect. 4 we present a
computationally efficient method for evaluating these sums,
in analogy with Gaussian quadrature. Our main results are
in Sect. 5, and we show in Sect. 6 that they also occur in
networks of more realistic Morris–Lecar spiking neurons.
We discuss motifs in Sect. 7 and conclude in Sect. 8.

2 Model

We consider the same model of pulse-coupled theta neurons
as in [1]. The governing equations are

dθi
dt

= 1 − cos θi + (1 + cos θi )(ηi + Ii ) (1)

for i = 1, 2 . . . N , where the phase angle θi characterises
the state of neuron i , which fires an action potential as θi
increases through π ,

Ii = K

〈k〉
N∑

j=1

Ai j Pn(θ j ), (2)

K is the strength of connections within the network, Ai j = 1
if there is a connection from neuron j to neuron i and
Ai j = 0 otherwise, 〈k〉 is the average degree,∑i, j Ai j/N ,
and Pn(θ) = an(1 − cos θ)n where an is chosen such that∫ 2π
0 Pn(θ)dθ = 1. The function Pn(θ j ) models the pulse
of current emitted by neuron j when it fires and can be
made arbitrarily “spike-like” and localised around θ j = π by
increasing n. The parameter ηi is the input current to neuron
i in the absence of coupling, and the ηi are independently
and randomly chosen from a Lorentzian distribution:

g(η) = �/π

(η − η0)2 + �2 (3)

Chandra et al. [1] considered the limit of large N and
assumed that the network can be characterised by two func-
tions. Firstly, a degree distribution P(k), normalised so that∑

k P(k) = N , where k = (kin, kout) and kin and kout
are the in- and out-degrees, respectively, of a neuron with
degree k. Secondly, an assortativity function a(k′ → k)

giving the probability of a connection from a neuron with
degree k′ to one with degree k, given that such neurons exist.
Whereas [1] investigated the effects of varying a(k′ → k),

here we consider the default value for this function [i.e. its
value expected by chance, see (11)] and investigate the effects
of varying correlations between kin and kout as specified by
the degree distribution P(k). We emphasise that we are only
considering within-neuron degree correlations and are not
considering degree assortativity, which refers to the proba-
bility of neurons with specified degrees being connected to
one another [1,25].

In the limit N → ∞, the network can be described by a
probability distribution f (θ, η|k, t),where f (θ, η|k, t)dθ dη
is the probability that a neuron with degree k has phase angle
in [θ, θ + dθ ] and value of η in [η, η + dη] at time t . This
distribution satisfies the continuity equation

∂ f

∂t
+ ∂

∂θ
(v f ) = 0 (4)

where v is the continuumversion of the right-hand side of (1):

v(θ,k, η, t) = 1 − cos θ + (1 + cos θ)
[
η + K

〈k〉
∑

k′
P(k′)a(k′ → k)

×
∫ ∞

−∞

∫ 2π

0
f (θ ′, η′|k′, t)Pn(θ ′)dθ ′ dη′

]

(5)

System (4)–(5) is amenable to the use of the Ott/Antonsen
ansatz [22,23], and using standard techniques [3,10,12,14]
one can show that the long-time dynamics of the system is
described by

∂b(k, t)

∂t
= −i(b(k, t) − 1)2

2
+ (b(k, t) + 1)2

2

[
− �

+iη0 + i K

〈k〉
∑

k′
P(k′)a(k′ → k)G(k′, t)

]
(6)

where (having chosen n = 2)

G(k′, t)

= 1 − 2(b(k′, t) + b̄(k′, t))
3

+ b(k′, t)2 + b̄(k′, t)2

6
.

(7)

The quantity

b(k, t) =
∫ ∞

−∞

∫ 2π

0
f (θ, η|k, t)eiθdθ dη (8)

can be regarded as a complex-valued “order parameter” for
neurons with degree k at time t . The function G(k′, t) can
be regarded as the output current from neurons with degree
k′, and its form results from rewriting the pulse function
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Pn(θ) in terms of b(k′, t). [For general n, G(k′, t) is the
sum of a degree-n polynomial in b(k′, t) and one in b̄(k′, t)
(the conjugate of b(k′, t)) [10,14]. One can take the limit
n → ∞ and obtain G(k′, t) = (1 − |b(k′, t)|2)/(1 +
b(k′, t)+ b̄(k′, t)+|b(k′, t)|2).] Note that the parameters of
Lorentzian (3) appear in (6) as a result of evaluating the inte-
gral over η′ in (5). Equation (6) only describes the long-time
asymptotic behaviour of network (1), on the “Ott/Antonsen
manifold”, and thus may not fully describe transients from
arbitrary initial conditions, nor the effects of stimuli which
move the network off this manifold.

One can also marginalise f (θ, η|k, t) over η to obtain the
distribution of θ for each k and t :

pθ (θ |k, t)

= 1 − |b(k, t)|2
2π{1 − 2|b(k, t)| cos [θ − arg(b(k, t))] + |b(k, t)|2}

(9)

a unimodal function with maximum at θ = arg(b(k, t)).
The firing rate of neurons with degree k is equal to the flux
through θ = π , i.e.

f (k, t) = 2pθ (π |k, t)

= 1 − |b(k, t)|2
π{1 + 2|b(k, t)| cos [arg(b(k, t))] + |b(k, t)|2}

= 1

π
Re

(
1 − b̄(k, t)

1 + b̄(k, t)

)
(10)

where we have used the fact that dθ/dt = 2 when θ = π .
Suppose our network has neutral assortativity, i.e. neurons

are randomly connected with the probability of connection
being determined by just their relevant degrees. Then [1,25]

a(k′ → k) = k′
outkin
N 〈k〉 (11)

and [writing P(k′
in, k

′
out, ρ̂) instead of P(k′) from now on,

where ρ̂ is a parameter used to calibrate the desired correla-
tion between k′

in and k′
out, defined below in (17)]

∑

k′
in

∑

k′
out

P(k′
in, k

′
out, ρ̂)a(k′ → k)G(k′

in, k
′
out, t)

= kin
N 〈k〉

∑

k′
in

∑

k′
out

P(k′
in, k

′
out, ρ̂)k′

outG(k′
in, k

′
out, t) (12)

This quantity is proportional to the input to a neuron with
degree (kin, kout) from other neurons within the network, but
it is clearly independent of kout, so the state of a neuron with
degree (kin, kout) must also be independent of kout, and thus
G must be independent of k′

out. So the expression in (12) can
be written

kin
N 〈k〉

∑

k′
in

Q(k′
in, ρ̂)G(k′

in, t) (13)

where

Q(k′
in, ρ̂) ≡

∑

k′
out

P(k′
in, k

′
out, ρ̂)k′

out (14)

The function Q can be thought of as a k′
in-dependent mean

of k′
out which is also dependent on the correlations between

k′
in and k′

out.
Our model equations are thus

∂b(kin, t)

∂t
= −i(b(kin, t) − 1)2

2
+ (b(kin, t) + 1)2

2

×
⎡

⎢⎣−� + iη0 + i Kkin
N 〈k〉2

∑

k′
in

Q(k′
in, ρ̂)G(k′

in, t)

⎤

⎥⎦

(15)

where kin takes on integer values between the minimum and
maximum in-degrees. The correlation between in- and out-
degrees of a neuron is controlled by ρ̂, as explained below,
and this appears as a parameter in (14).

It is interesting to compare (14)–(15) with the heuristic
rate equation in [20]. These authors characterised a neu-
ron by its “ f –I curve”—a nonlinear function transforming
input current into a firing rate. They concluded that the input
current to a neuron is proportional to two quantities: (i) its
in-degree, and (ii) the sum over in- and out-degrees of presy-
naptic neurons of the product of the joint degree distribution,
the out-degree of the presynaptic neuron, and the “output” of
presynaptic neurons. We also find this form of equation.

We note that the transformation V = tan (θ/2) maps a
theta neuron to a quadratic integrate-and-fire (QIF) neuron
with threshold and resets of±∞, and that for the special case
n = ∞ one could derive an equivalent pair of real equations
rather than the single Eq. (15) where the two real variables
are the mean voltage and firing rate of the QIF neurons with
a specific in-degree [17].

3 Generating correlated in- and out-degrees

We now turn to the problem of deriving P(k′
in, k

′
out, ρ̂) and

thus Q(k′
in, ρ̂). For simplicity, we choose the distributions of

both the in- and out-degrees to be the same, namely power
law distributions with exponent − 3, truncated below and
above at degrees a and b, respectively. (Evidence for power
law distributions in the human brain is given in [4], for exam-
ple.) So the probability distribution function of either in- or
out-degree k is
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p(k) =
{(

2a2b2

b2−a2

)
k−3 a ≤ k ≤ b

0 otherwise
(16)

where the normalisation factor results from approximat-
ing the sum from a to b by an integral. (The approx-
imation improves as a and b are both increased.) We
want to introduce correlations between the in- and out-
degrees of a neuron while retaining these marginal dis-
tributions. We do this using a Gaussian copula [18]. The
correlated bivariate normal distribution with zero mean
is

f (x, y, ρ̂) = 1

2π
√|Σ |e

−(xT Σ−1x)/2

= 1

2π
√
1 − ρ̂2

e−(x2−2ρ̂xy+y2)/[2(1−ρ̂2)] (17)

where

x ≡
(
x
y

)
Σ =

(
1 ρ̂

ρ̂ 1

)
(18)

and ρ̂ ∈ (−1, 1) is the correlation between x and y.
The variables x and y have no physical meaning, and
we use the copula just as a way of deriving an ana-
lytic expression for P(k′

in, k
′
out, ρ̂) for which the corre-

lations between k′
in and k′

out can be varied systemati-
cally.

The marginal distributions for x and y are the same:

p̃(x) = 1√
2π

e−x2/2 (19)

as are their cumulative distribution functions:

C(x) = [1 + erf(x/
√
2)]/2 (20)

We define the cumulative distribution function of f :

F(X ,Y , ρ̂) =
∫ Y

−∞

∫ X

−∞
f (x, y, ρ̂)dx dy (21)

and also have the cumulative distribution function for a
degree k:

Ck(k) =
∫ k

a

(
2a2b2

b2 − a2

)
s−3ds = b2(k2 − a2)

k2(b2 − a2)
(22)

where we have treated k as a continuous variable and again
approximated a sum by an integral.

We thus have the joint cumulative distribution function for
kin and kout

Ĉ(kin, kout, ρ̂) = F(C−1(Ck(kin)),C
−1(Ck(kout)), ρ̂)

=
∫ C−1(Ck (kout))

−∞

∫ C−1(Ck (kin))

−∞
f (x, y, ρ̂)dx dy

(23)

The joint degree distribution for kin and kout is then

P(kin, kout, ρ̂) = ∂2

∂kin∂kout
Ĉ(kin, kout, ρ̂)

= {C−1[Ck(kin)]}′{C−1[Ck(kout)]}′
× f {C−1[Ck(kin)],C−1[Ck(kout]), ρ̂}

(24)

where the primes indicate differentiation with respect to the
relevant k. Now

C−1(x) = √
2 erf−1(2x − 1) (25)

so

C−1[Ck(k)] = √
2 erf−1

(
2b2(k2 − a2)

k2(b2 − a2)
− 1

)
(26)

and

{C−1[Ck(k)]}′

=
√

π

2
exp

⎡

⎣
{
erf−1

(
2b2(k2 − a2)

k2(b2 − a2)
− 1

)}2⎤

⎦ 4a2b2

(b2 − a2)k3

(27)

Substituting these into (24) and simplifying, we find

P(kin, kout, ρ̂)

= 4a4b4√
1 − ρ̂2(b2 − a2)2k3ink

3
out

× exp

{
ρ̂C−1[Ck(kin)]C−1[Ck(kout)

1 − ρ̂2

}

× exp

⎡

⎣
−ρ̂2

(
{C−1[Ck(kin)]}2 + {C−1[Ck(kout)]

}2)

2(1 − ρ̂2)

⎤

⎦

(28)

= p(kin)p(kout)√
1 − ρ̂2

exp

{
ρ̂C−1[Ck(kin)]C−1[Ck(kout)]

1 − ρ̂2

}

× exp

⎡

⎣
−ρ̂2

(
{C−1[Ck(kin)]}2 + {C−1[Ck(kout)]

}2)

2(1 − ρ̂2)

⎤

⎦

(29)
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Fig. 1 Log of P(kin, kout, ρ̂) is shown for three different values of ρ̂

(red: larger P , blue: smaller P). a = 100, b = 400 (colour figure
online)
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Fig. 2 Correlation coefficient between in- and out-degrees, ρ, as a func-
tion of the correlation coefficient in the Gaussian copula, ρ̂. Parameters:
a = 100, b = 400

Note that for ρ̂ = 0, this simplifies to p(kin)p(kout), as
expected. Examples of P(kin, kout, ρ̂) for different ρ̂ are
shown in Fig. 1. Both Zhao et al. [33] and LaMar and
Smith [13] used Gaussian copulas to create networks with
correlated in- and out-degrees as done here, but did not derive
an expression of form (29).

We need to relate ρ̂, a parameter in (29), to ρ, the Pear-
son’s correlation coefficient between in- and out-degrees of
a neuron (note: not between two connected neurons). We
have

ρ = Σ̃P(kin, kout, ρ̂)(kin − 〈k〉)(kout − 〈k〉)√
Σ̃P(kin, kout, ρ̂)(kin − 〈k〉)2

√
Σ̃P(kin, kout, ρ̂)(kout − 〈k〉)2

(30)

where Σ̃ indicates a sum over all kin and kout. ρ as a function
of ρ̂ is shown in Fig. 2. We see that the relationship is mono-
tonic, and while it is possible to obtain values of ρ close to 1,
the lower limit is approximately − 0.6. By varying ρ̂ in (15),
we can thus investigate the effects of varying the correlation
coefficient between in- and out-degrees of a neuron (ρ) on the
dynamics of a network. Note that for the distributions used
here, treating k as a continuous variable, 〈k〉 = 2ab/(b+a).

Keeping in mind the normalisation
∑

k P(k) = N , we
write Q(k′

in, ρ̂) as
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Fig. 3 The function Q(kin, ρ̂) [Eq. (31)] for different ρ̂. The right panel
is a zoom of the left panel. Parameters: a = 100, b = 400, N = 2000

Q(k′
in, ρ̂) = N

b∑

k′
out=a

P(k′
in, k

′
out, ρ̂)k′

out (31)

Note that the factor of N here cancelswith that in the last term
in (15), giving equations which do not explicitly depend on
N . Examples of Q(k′

in, ρ̂) for different ρ̂ are shown in Fig. 3.
We see that increasing ρ̂ gives more weight to high in-degree
nodes and less to low in-degree nodes and vice versa.

4 Reducedmodel

We now turn to the issue of evaluating the sums over degrees
in both (31) and (15). Although such sums are typically over
only several hundred terms, it is possible to accurately eval-
uate them using many fewer terms, in analogy with Gaussian
quadrature [5].

Defining an inner product as the sum

( f , g) =
b∑

k=a

f (k)g(k) (32)

we assume that there is a corresponding set of orthogonal
polynomials {qn(k)}0≤n associated with this product. These
polynomials satisfy the three-term recurrence relationship

qn+1(k) = (k − αn)qn(k) − βnqn−1(k) (33)

where

αn ≡ (kqn, qn)

(qn, qn)
; 0 ≤ n (34)

βn ≡ (qn, qn)

(qn−1, qn−1)
; 1 ≤ n (35)

q0(k) = 1 and q−1(k) = 0. Then for a given positive integer
n, assuming that f is 2n times continuously differentiable,
we have the Gaussian summation formula
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b∑

k=a

f (k) =
n∑

i=1

wi f (xi ) + Rn (36)

with error

Rn = f (2n)(ξ)

(2n)! (qn, qn) (37)

where xi are the n roots of qn , ξ ∈ [a, b], and the weights wi

are discussed below. Note that the roots of qn(k) are typically
not integers, but this does not matter if the function f (k) can
be evaluated for arbitrary k.

In practice, to find the roots of qn we use the Golub–
Welsch algorithm. Form the tridiagonal matrix

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0
√

β1 0 . . . . . . . . .√
β1 α1

√
β2 0 . . . . . .

0
√

β2 α2
√

β3 0 . . .

0 . . . . . . . . . . . . 0

. . . . . . 0
√

βn−2 αn−2
√

βn−1

. . . . . . . . . 0
√

βn−1 αn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(38)

The eigenvalues of J are the {xi } and if all eigenvectors, vi ,

are scaled to have norm 1, then wi = (b− a)
(
v

(1)
i

)2
, where

v
(1)
i is the first component of vi .
We will use the approximation

b∑

k=a

f (k) ≈
n∑

i=1

wi f (xi ) (39)

where n � b − a + 1, the number of terms in the original
sum. Given the resemblance of the sum on the left in (39)
to the integral of f (k) between k = a and k = b, it is
not surprising that the roots of pn , when translated from
the interval [a, b] to [− 1, 1], are close to the roots of the
nth-order Legendre polynomial, as would be used in Gaus-
sian quadrature. (The same is true for the corresponding
weights.)

We thus choose n and write

Q(k′
in, ρ̂) = N

n∑

j=1

w j P(k′
in, k j , ρ̂)k j (40)

where k j are the roots and w j are the weights, respectively,
associatedwithqn(k). In order to use the same approximation
for the sum in (15), we consider only values of kin equal to
the k j . As mentioned, these are typically not integers. We
refer to them as “virtual degrees”. Thus, our model equations
are

∂b(k j , t)

∂t
= −i(b(k j , t) − 1)2

2
+ (b(k j , t) + 1)2

2

×
[

− � + iη0 + i Kk j
N 〈k〉2

n∑

j=1

w j Q(k j , ρ̂)G(k j , t)

⎤

⎦

(41)

for j = 1, . . . n. We are interested in fixed points of these
equations, and how these fixed points and their stabilities
change as parameters such as η0 and ρ̂ are varied. We use
pseudo-arclength continuation [7,11] to investigate this.

In order to calculate the mean frequency of the network,
we use the result that the frequency for neurons with in-
degree k is [17]

f (k) = 1

π
Re

(
1 − b̄(k)

1 + b̄(k)

)
, (42)

where overline indicates complex conjugate, and then aver-
age over the network to obtain the mean frequency

f =
∑

kin

∑
kout P(kin, kout, ρ̂) f (kin)∑

kin

∑
kout P(kin, kout, ρ̂)

=
∑n

i=1
∑n

j=1 wiw j P(ki , k j , ρ̂) f (ki )∑n
i=1
∑n

j=1 wiw j P(ki , k j , ρ̂)
(43)

(The normalisation is needed because even though the inte-
gral of the joint degree distribution over [kin, kout]2 equals 1,
the sum over the corresponding discrete grid does not.)

Typical convergence of a calculation of f with increasing
n is shown in Fig. 4 for several sets of parameter values.
We see rapid convergence and choose n = 15 for future
calculations. (Calculations of the form shown in Figs. 5 and 7
were repeated using the full degree sequence froma to b, with
essentially identical results.)
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10-3 (b)

Fig. 4 Mean frequency, f , as a function of n, the number of virtual
degrees used. a ρ̂ = − 0.2, K = 1, η0 = 0.5. b ρ̂ = 0.3, K =
− 0.1, η0 = − 0.5. Other parameters: a = 100, b = 400,� =
0.05, N = 2000
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Fig. 5 Mean frequency, f , versus η0 for (left to right) ρ = 0.5, 0
and − 0.5. Solid: stable, dashed: unstable. Parameters: a = 100, b =
400, K = 1.5,� = 0.05
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Fig. 6 Continuation of the saddle-node bifurcations shown in Fig. 5.
The network is bistable in the region between the curves. Parameters as
in Fig. 5

5 Results

5.1 Excitatory coupling

We first consider the case of excitatory coupling, i.e. K > 0.
We expect a region of bistability for negative η0, as seen in
Fig. 5. We see that decreasing ρ moves the curve to the right
and vice versa. (ρ̂ was chosen to give these particular values
of ρ.) Following the saddle-node bifurcations as ρ is varied,
we obtain Fig. 6.

Given the influence of ρ̂ (and thus ρ) on Q (see Fig. 3),
this result is easy to understand. Neurons with high in-degree
fire faster than those with low in-degree, and for positive ρ,
high in-degree neurons contribute more to the sum in (41)
than for negative ρ. Thus, the total amount of “output” from
neurons is higher for positive ρ and lower for negative ρ.
Put another way, with positive ρ, neurons with high firing
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Fig. 7 Mean frequency, f , versus η0 for ρ = − 0.5, 0 and 0.5; same
colour code as in Fig. 5. All branches are stable. Parameters: a =
100, b = 400, K = − 1,� = 0.05

rate (due to high in-degree) are more likely to have a high
out-degree, thus excitingmore neurons thanwould otherwise
be the case. Increasing ρ has the same qualitative effect as
increasing the coupling strength K , as observed by [20].

5.2 Inhibitory coupling

Next, we consider inhibitory coupling, with K = − 1. Aver-
age network frequency versus η0 is shown in Fig. 7 for
three different values of ρ. We see that increasing ρ slightly
increases the frequency and vice versa. We can also under-
stand this behaviour in a qualitative sense. For inhibitory
coupling, neurons with high in-degree are not likely to be
firing, so can be ignored. When ρ < 0, neurons with low
in-degree will have high out-degree, and thus the amount of
inhibitory “output” in the network is increased. For positive
ρ, neurons with low in-degree will have low out-degree, and
thus they will inhibit fewer neurons than in the case of neg-
ative ρ, leading to a higher average firing rate.

We performed calculations corresponding to the results
shown in Figs. 5 and 7 for networks of theta neurons and
found qualitatively, and to a large extent quantitatively, the
same behaviour as in those figures (results not shown).

6 More realistic network

To verify the behaviour seen above in a network of theta
neurons, we investigated a more realistic network of spiking
neurons, in this case Morris–Lecar neurons. For the case of
excitatory coupling, the network equations are [29]

C
dVi
dt

= gL(VL − Vi ) + gCam∞(Vi )(VCa − Vi ) (44)
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+ gK ni (VK − Vi )

+ I0 + Ii + (Vex − Vi )
ε

N

N∑

j=1

Ai j s j

dni
dt

= λ0(w∞(Vi ) − ni )

τn(Vi )
(45)

τ
dsi
dt

= m∞(Vi ) − si (46)

where

m∞(V ) = 0.5(1 + tanh [(V − V1)/V2]) (47)

w∞(V ) = 0.5(1 + tanh [(V − V3)/V4]) (48)

τn(V ) = 1

cosh [(V − V3)/(2V4)] (49)

Parameters are V1 = − 1.2, V2 = 18, V3 = 12, V4 =
17.4, λ0 = 1/15ms−1, gL = 2, gK = 8, gCa = 4, VL =
− 60, VCa = 120, VK = − 80,C = 20µF/cm2, τ =
100, Vex = 120, ε = 5mS/cm2. Voltages are in mV, con-
ductances are in mS/cm2, time is measured in milliseconds,
and currents in µA/cm2. In the absence of coupling and het-
erogeneity, a neuron undergoes a SNIC bifurcation as I0 is
increased through ∼ 40. We have used synaptic coupling
of the form in [6], but on a timescale τ rather than instan-
taneous as in that paper. The Ii are randomly chosen from
a Lorentzian distribution with mean zero and half-width at
half-maximum 0.05.

The network is created as follows, using the Gaussian
copula of Sect. 3. For each i ∈ {1, . . . N }, let x1 and x2 be
independently chosen from a unit normal distribution. Then
x1 and y1 = ρ̂x1+

√
1 − ρ̂2x2 both haveunit normal distribu-

tions and covariance ρ̂, i.e. are realisations of x and y in (17).
We then set kiin = C−1

k (C(x1)) and kiout = C−1
k (C(y1)).

These degrees each have distribution p(k) but have correla-
tion coefficient ρ, where ρ is determined by the value of ρ̂, as
shown in Fig. 2. We then create the connection from neuron
j to neuron i (i.e. set Ai j = 1) with probability

kiink
j
out

N 〈k〉 (50)

where 〈k〉 is the mean of the degrees, and Ai j = 0 otherwise
(the Chung–Lu model [2]). Typical results for the network
generation are shown in Fig. 8, and the measured correla-
tions are given in the figure. The distributions of the resulting
degrees no longer match the distributions of the kiin and k

i
out,

but are close. We could have used the configuration model
to avoid this problem [19], but here we are only interested in
qualitative results. Quasi-statically sweeping through I0 for
networks with three different values of ρ, we obtain Fig. 9, in
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Fig. 8 Degrees for a network whose generation is described in Sect. 6
for ρ̂ = 0.9 (left) and ρ̂ = − 0.9 (right). Parameters: N = 2000, a =
100, b = 400
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Fig. 9 Mean frequency versus I0 for a network of Morris–Lecar neu-
rons. N = 2000. Blue crosses: ρ = − 0.57; black diamonds: ρ = 0; red
circles: ρ = 0.85. I0 is quasi-statically increased and then decreased in
all cases (colour figure online)

qualitative agreementwith Fig. 5. In Fig. 5, there is a region of
bistability for each value of ρ, and the region moves to lower
average drive as ρ is increased. Since we cannot detect unsta-
ble states through simulation of (44)–(46), this bistability is
manifested as jumps from low-frequency to high-frequency
branches as I0 is varied, as seen in Fig. 9.

For inhibitory coupling, we replace m∞(Vi ) in (46) by
w∞(Vi ), replace Vex − Vi in (44) by VK − Vi , and choose
ε = 10mS/cm2. Sweeping through I0 for three different
values of ρ, we obtain Fig. 10, in qualitative agreement with
Fig. 7.

7 Motifs

A number of authors have found that “motifs” (small sets
of neurons connected in a specific way) do not occur in
cortical networks in the proportions one would expect by
chance [24,28]. Some theoretical results relating the pres-
ence or absence of certain motifs to network dynamics
have been obtained [8,21,33]. For networks whose gener-
ation is described in Sect. 6, we counted the number of
order-2 and order-3 motifs (involving two or three neurons,
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Fig. 10 Mean frequency versus I0 for networks of Morris–Lecar neu-
rons with inhibitory coupling. N = 2000

Fig. 11 Relative counts of order-2 motifs. We generate three networks
at a time with ρ̂ ∈ [− 0.9, 0, 0.9] to compute motif frequencies and
repeat this process 100 times. Error bars indicate the standard deviation.
Parameters are chosen as in Fig. 8

respectively), for negative, zero and positive values of ρ.
We compute the frequencies (amount) of order-2 motifs by
counting the amount of 0’s, 1’s and 2’s in the upper triangu-
lar part of (A + AT ), where A is the adjacency matrix and
T means transposed. They refer to unconnected, unidirec-
tional connected and reciprocal connected pairs of neurons,
respectively. For all 13 connected order-3motifs, we used the
software “acc-motif” [16]. The remaining three unconnected
motifs have been counted by our own algorithm, i.e. looping
through all neurons, we create for each a list of disconnected
neurons and count among those order-2 motifs. The results
are shown in Figs. 11 and 12, where counts are shown relative
to the numbers found for ρ = 0.

In all motifs with at least one reciprocal connection
between two neurons, we see that the number of motifs goes
up with positive ρ and down with negative ρ. This can be
understood in an intuitive way: suppose 0 < ρ and consider
a neuron with a high out-degree. It is likely to connect to a
neuron with a high in-degree. But this second neuron will
also have a high out-degree and is therefore more likely to

Fig. 12 Relative counts of order-3 motifs

connect to the first neuron, which also has a high in-degree,
forming a reciprocal connection. Similarly, suppose ρ < 0
and consider a neuron with high out-degree. It is likely to
connect to a neuron with high in-degree but low out-degree.
Thus, it is unlikely that this second neuron will connect back
to the first, which has a low in-degree.

8 Conclusion

We have investigated the effects of correlating the in- and
out-degrees of spiking neurons in a structured network. We
considered a large network of theta neurons, allowing us
to exploit the analytical results previously derived by [1],
which give dynamics for complex-valued order parameters,
indexed by neurons with the same degrees. The states of
interest are steady states of these dynamics, and by using
a Gaussian copula we were able to analytically incorpo-
rate a parameter which controls the correlations between in-
and out-degrees. Numerical continuation was then used to
determine the effects of varying parameters, particularly the
degree correlation. In order to reduce the computational cost,
we introduced the concept of “virtual degrees” allowing us
to efficiently approximate sums with many terms by sums
with fewer terms.

For an excitatory network,we found that increasing degree
correlations had a similar effect as increasing the overall
strength of coupling between neurons, consistent with the
findings of [20,32]. Our results are also consistent with those
of [30], who found that negative correlations stabilised the
low firing rate state, as shown in Fig. 5. For inhibitory cou-
pling, we found that increasing degree correlations slightly
increased the mean firing rate of the network. Both of
these effects were reproduced in a more realistic network
of Morris–Lecar spiking neurons.

We also measured the relative frequency of occurrence
of order-2 and order-3 motifs as within-degree correlations
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were varied and found that in all motifs with at least one
reciprocal connection between two neurons, the number of
motifs is positively correlated with ρ. Several authors have
linked motif statistics to synchrony within a network [8,33];
however, a link between motif statistics and firing rate, as
observed here, seems yet to be developed.

We chose aLorentzian distribution of theηi in (1), asmany
others have done [22], in order to analytically evaluate an
integral andderive (6).However,we repeated the calculations
shown in Figs. 5, 7, 9 and 10 using a Gaussian distribution of
the ηi and found the same qualitative behaviour (not shown).
Regarding the parameter n governing the sharpness of the
function Pn(θ), we repeated the calculations shown in Figs. 5
and 7 for n = 5,∞ and obtained qualitatively the same
results (not shown). We used a Gaussian copula to correlate
in- and out-degrees due to its analytical form, but numerically
investigated the scenarios shown in Figs. 5 and 7 for t copulas
and Archimedean Clayton, Frank and Gumbel copulas and
found the same qualitative behaviour (also not shown).

For simplicity, we used the same truncated power law dis-
tribution for both in- and out-degrees. However, the use of a
Gaussian copula for inducing correlations between degrees
does not require them to be the same, so one could use the
framework presented here to investigate the effects of varying
degree distributions [26], correlated or not.

We also only considered either excitatory or inhibitory
networks, but it would be straightforward to generalise the
techniques used here to the case of both types of neuron, with
within-neuron degree correlations for either or both popu-
lations, though at the expense of increasing the number of
parameters to investigate.
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