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Abstract

In this work, we analyze a simplified, dynamical, closed-loop, neuromechanical simulation of insect joint control. We are
specifically interested in two elements: (1) how slow muscle fibers may serve as temporal integrators of sensory feedback and
(2) the role of common inhibitory (CI) motor neurons in resetting this integration when the commanded position changes,
particularly during steady-state walking. Despite the simplicity of the model, we show that slow muscle fibers increase the
accuracy of limb positioning, even for motions much shorter than the relaxation time of the fiber; this increase in accuracy is
due to the slow dynamics of the fibers; the CI motor neuron plays a critical role in accelerating muscle relaxation when the
limb moves to a new position; as in the animal, this architecture enables the control of the stance phase speed, independent of
swing phase amplitude or duration, by changing the gain of sensory feedback to the stance phase muscles. We discuss how
this relates to other models, and how it could be applied to robotic control.

Keywords Insect neuromechanics - Dynamic scaling - Insect neuromuscular joint control - Common inhibitory motor

neurons - Robotics

1 Introduction

Across animal species, the scale of bodies spans fourteen
orders of magnitude, but the scale of cells spans only two
(Wolf 2014). Species at the small end of this spectrum, such
as arthropods, are consequently limited to neuromechanical
control strategies which make use of a far smaller number
of nerve and muscle cells. Arthropods such as insects have
nonetheless evolved the ability to perform complex sensori-
motor tasks such as walking with a robustness and agility that
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matches or arguably even exceeds that of their larger coun-
terparts. As such, the mechanisms that give rise to insects’
adaptive locomotion (Diirr et al. 2018; Bidaye et al. 2017)
and how these mechanisms could be applied to robotics
(Buschmann et al. 2015) have been the focus of many studies.

Complementary to experimental investigation of the
arthropod nervous and biomechanical systems is neurome-
chanical simulation (Ayali et al. 2015; Daun-Gruhn and
Biischges 2011; Schilling et al. 2013; Szczecinski et al. 2014;
Toth et al. 2013b; Zakotnik et al. 2006). Neuromechanical
simulations of insect locomotion are helpful because they
enable scientists to construct a framework within which to
understand experimental data, and to test hypotheses that
may be difficult to test experimentally. For practical rea-
sons, the scope of a mathematical model of an animal is
typically restricted to focus on a specific question or mech-
anism, whereas such restrictions can lead to simplifications
that facilitate analysis, the applicability of the model to real-
ity may be in question.

A feature of arthropod motor control that is often ignored
is the passive forces from the elasticity of the legs’ joint
membranes, which resist muscle contraction. Because of
the small size of arthropods, particularly of insects, their
locomotion is dominated by elastic forces, rather than gravi-
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tational and inertial forces, as for larger animals like humans
(Hooper et al. 2009; Hooper 2012). As an animal becomes
smaller, its mass decreases proportional to the length cubed
(that is, a density about equal to water, times volume). How-
ever, the stiffness of elastic materials decreases proportional
to their cross-sectional area, that is, length squared. Thus,
an animal as small as a fruit fly, which is on the order of
=~ 0.1% the scale of a human, has elastic forces that are 1000
times as large as a human’s, relative to mass. This detail is
often omitted from neuromechanical models of insect limbs
(Szczecinski et al. 2014; Toth et al. 2013b), but models that
do include such forces show that they play a large role in
filtering motor neuron activity and its effect on limb velocity
and acceleration (Zakotnik et al. 2006). For instance, even
large insects such as stick insects can maintain the same pos-
ture, no matter their orientation, without actively contracting
their muscles (Hooper et al. 2009). Relaxing the muscles in
the leg after activity will cause the limb to passively return to
some neutral position without further muscle activity (Ache
and Matheson 2013). Even when the animal’s muscles are
completely removed, the elastic forces from the exoskeleton
passively return the limbs to their resting positions (Hooper
et al. 2009). Such observations show that insects cannot rely
on momentum-based control of motion, the way an animal
as large as a human might, highlighting how different of a
regime in which insect motor systems operate.

To increase the accuracy of modeled dynamics, our
group’s recent neuromechanical model of a walking cock-
roach included passive viscoelastic forces in the leg joints
(Rubeo et al. 2017). These passive forces resisted joint
rotation away from some rest angle, ultimately impeding
locomotion. To compensate for the extra forces, the motor
systems for each muscle included an integration circuit
(Szczecinski et al. 2017b), which enabled the neural con-
trol system to move the limbs to the intended positions (i.e.,
the posterior extreme position at the end of the stance phase).
Using the integral of a feedback signal to counteract applied
forces and drive a system to its intended state is a common
approach in control theory (Khalil 2002); however, no such
integration network has been identified in the insect thoracic
ganglia. Therefore, we tried to find mechanisms which are
known to exist in the arthropod sensorimotor system that may
perform the function of an integral controller.

Our hypothesis is that this function is performed by the
muscle membranes of slow muscle fibers. Like those of
vertebrates, arthropod muscle fibers exhibit a range of con-
tractile properties. Motor units consisting of predominantly
slow muscle fibers are used for repeated tasks requiring low
metabolic cost, whereas fast motor units are reserved for situ-
ations requiring brief bursts of power (Wolf 2014). However,
arthropod slow muscle fibers may be so slow that they effec-
tively convert motor neuron (MN) bursting into tonic forces
(Morris and Hooper 1997a). This results in muscle fibers for

@ Springer

which the tension is a function of the number of MN spikes
(i.e., the integration of spikes over time), rather than the input
firing frequency, at least as stimulation begins (Hooper et al.
2007; Morris and Hooper 1997b). For an animal like the
cockroach, whose stepping period generally lasts between
100 and 500 ms (Pearson 1972; Watson and Ritzmann 1998)
but whose slow muscle fibers take up to 1000 ms to relax
(Iles and Pearson 1971), the slow muscle membrane is effec-
tively always in this regime. However, as we will show, this
mechanism alone is not sufficient to construct a functional
model of arthropod joint control.

For effective joint control, this integration must be reset
periodically, otherwise the antagonistic muscles will con-
tinue to accumulate tension, eventually causing motion to
cease (Cruse 2002; Wolf 1990). Such resetting is a common
technique in robot control, wherein the “integral” feedback
must be reset when a new posture is commanded to the
robot. Many studies have suggested that inhibitory MNs
in the arthropod thoracic ganglia play this role. Arthro-
pods possess various “specific” and “common” inhibitory
motor neurons, but insects tend to possess only “common”
inhibitory motor neurons (CIMNs) which innervate muscles
throughout the entire leg (Pearson and Iles 1973; Wolf 2014).
In locusts (Usherwood and Runion 1970; Hoyle and Burrows
1973; Burns and Usherwood 1979) and crabs (Ballantyne
and Rathmayer 1981), the CIMN that innervates the femur—
tibia extensor muscle only fires action potentials at the end
of stance phase, relaxing the muscle for the transition to
swing phase. These action potentials depend on feedback
from sensilla in the tarsus, implying that the CIMN resets
the muscles’ membrane voltages before a new posture (i.e.,
the anterior extreme position, AEP) is commanded to the leg
(Usherwood and Runion 1970). If the CIMN is prevented
from firing action potentials, tension accumulates and alter-
nating motion stops altogether (Wolf 1990). Slow muscle
fibers, plus the presence of CIMNs in slow muscle fibers
(Rathmayer and Erxleben 1983), suggest a mechanism by
which the cockroach can walk at frequencies higher than the
dynamics of slow muscle fibers alone would allow, without
recruiting faster relaxing muscle fibers (Pearson 1972; Pear-
son and Iles 1973; Watson and Ritzmann 1998): Over the
short duration of the stance phase, the slow muscle fibers
serve as an integrator of excitatory signals, driving the leg
rearward to the posterior extreme position (PEP), in spite of
large passive forces in the joints; then, at the end of stance
phase, the CIMN actively relaxes the muscles in the leg to
reset them for a rapid swing phase.

In this study, we explore the implications of controlling
relatively rapid motions with exclusively slow muscle fibers
in a closed-loop, neuromechanical model of an arthropod leg
joint. We describe our model and demonstrate how slow mus-
cle fibers may act as integrator units. We show how the CIMN
may reset such integration by accelerating the relaxation of
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Fig.1 Inhibitory and excitatory connections indicate the assumption of
a direct synaptic connection, whereas influences represent interactions
which do not. Gains highlight the conductances significant to this paper.
a The system contains a CPG circuit which oscillates between stance
(ST) and swing (SW) phases, governing the behavior of a pair of EMNs:
the extensor (E) and the flexor (F), which innervate their respective mus-
cles viaexcitatory synapses. A CIMN (CI) which innervates both muscle
membranes provides an inhibitory output pulse during stance to swing
transitions. Proprioceptive feedback modulates both the magnitude and

slow muscle fibers in a controlled manner. We show that
including a CIMN reduces the work done by the muscles to
execute the same motion. Then, we couple this neuromechan-
ical model with a simple central pattern generator (CPG) and
show that if the leg joint’s motion can affect the CPG phase,
then the speed and duty cycle of the leg can be controlled
in an animal-like, asymmetrical way by changing the gain
of one sensory feedback pathway, as observed in walking
stick insects (Gabriel and Biischges 2007). Finally, we show
that this approach is robust to parameter values by apply-
ing the same system to multiple leg joints from our group’s
previously-developed cockroach model (Rubeo et al. 2017).

2 Models and methods
2.1 System overview

This paper presents a neuromuscular model of a cockroach
femoral-tibial (FTi) joint actuated by an antagonistic pair
of slow muscle fibers, each of which is innervated by its
own excitatory motor neuron (EMN) and a common inhibitor
motorneuron (CIMN). The behavior of the motorneurons is
governed by the combination of a central pattern generator
(CPG), proprioceptive feedback, and a driving input from the
central nervous system (CNS). An overview of the system is
shown in Fig. 1, and the modeling of each element or its
equivalent abstraction is discussed in greater detail in the
following sections. The parameter values used are presented
and discussed in “Appendix A”.

timing of MN activity. Some elements of this system are modeled by
abstractions which do not directly align with a single biological analog.
The scope of each abstraction is outlined (magnitude control, timing
control). b A muscle’s membrane potential governs the activation of
its contractile element, which combined with passive muscle elements
determines a muscle’s tension. The tension of the two muscles along
with the joint’s passive elastic and viscous forces sum to impose a net
moment on the joint

The system has 7 dynamical state variables from which all
other quantities can be derived: joint angle 6; angular velocity
6; commanded joint angle 6r.r; flexor and extensor muscle
membrane potentials Uy and Uex, respectively; and flexor
and extensor muscle tensions 7y and T, respectively. A step
cycle was defined to consist of one swing phase (6 > 0)
and one stance phase (Gref < 0). The system was considered
to have attained steady-state behavior whenever the values of
all state variables as well as the cycle period matched within
tolerances at the end of consecutive step cycles.

The system simulation was implemented using forward
Euler integration with a step size of 10~2 ms, and simulations
were run until a steady-state cycle was reached. We chose to
restrict our analysis to steady-state cycles, as any transient
behaviors such as acceleration from rest would likely make
use of neuromuscular elements not present in our model. For
example, additional fast and intermediate motor units could
play arole, or the CPG could have a specialized acceleration
sequence (Iles and Pearson 1971; Toth et al. 2013a).

2.2 Joint model

The FTi joint model is shown in Fig. 2a. The tibia is modeled
as a thin rigid rod of mass m, length /, and uniform den-
sity. Because the independent dynamics of the tarsus are not
relevant to this study, it is not modeled separately from the
tibia.

The tibia is attached to the femur via a simple hinge joint
and hangs perpendicular to the femur at rest. Two muscles
named the “flexor” and “extensor” apply the tensile forces
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Fig.2 a The joint model, where the joint angle 6 is defined to be zero at
rest, and positive when the extensor contracts (counter-clockwise joint
rotation). b The muscle model, where the length of the muscle A is the
sum of A1, the length of the series elastic element, and A5, the length of
the three parallel elements (damping, elastic, and contractile)

Ty and T« to opposite sides of the joint. Both muscles act on
the tibia from constant attachment points with a lever arm of
length r, and are perpendicular to the tibia at rest.

We simplify the geometry of the model by neglecting the
vertical component of muscle stretch. This is justified by two
observations. First, during the walking cycle of a cockroach,
the excursion of the FTi joint is typically small (Watson and
Ritzmann 1997a,b), meaning that such vertical motion is
minimal. Second, studies of the FTi joint in other insects show
that this vertical displacement is negligible, even as the tibia
is rotated throughout its entire range of motion (Guschlbauer
et al. 2007). As such, the muscle tension is assumed to act
only in the horizontal direction, resulting in the following
equation for Mpe¢, the net moment on the joint:

Myet =13 (Tex — Tq) cos (0) — ke — be6.

The magnitude of muscle forces relative to leg weight at
insect scales make it possible to ignore the effects of grav-
ity; however, the elasticity and damping of the cockroach
exoskeleton, represented by the parameters k. and b, respec-
tively, produce relatively large moments, which should not
be neglected (Hooper et al. 2009; Hooper 2012). Assuming
the tibia is a thin rod rotating about a point r, from one end,
its moment of inertia is given by:

mi? l 2
J=E+m E—l"a .

The inclusion of this term yields Eq. (1), the equation of
motion for the joint:

é = % (ra (Tex — Tq) cos (0) — ke — beé) : M
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2.3 Muscle model

The flexor and extensor are each considered to be a single
slow motor unit and are modeled as Hill muscles. This model
produces biologically plausible forces 7' while remaining rel-
atively simple and computationally lightweight. The basic
model from (Shadmehr and Arbib 1992) shown in Fig. 2b
contains an active contractile element producing an activa-
tion force A, a parallel viscous dampening element with
coefficient b, and parallel and series elastic elements with
coefficients kpe and kg, respectively. The Hill muscle model
generates tension, 7', according to the following equation:

. ke . kpe A
T =—\kpeAr+bL—|1+——= )T+ —-]).
b ( pedh ( ) T Fan

A muscle’s deviation from its resting length A* is given
by AL = A — A*, where A is the length of the muscle. Fol-
lowing the geometry discussed in Sect. 2.2, the change in
length of the flexor and extensor muscles are given by Aiq =
rysin (0), and Alex = —ry sin (), respectively. Likewise,
the muscle contraction velocity is A = racos (0) 6 for the
flexor and iex = —racos (0) 6 for the extensor.

The Hill model typically accounts for the efficacy of
actin and myosin filament interaction through a force-length
scaling factor fI(AA). However, as our analysis is con-
strained to small joint angles where such a force-length
scaling has a negligible effect, we simplify the model by
setting fI (AA) = 1 and assume the muscles operate at or
near their optimal lengths (Full and Ahn 1995). This yields
the following governing equations for muscle tension:

. ke . :
Th = > (kperal sin (0) + bry cos () 0

k
—(1+£> Tﬂ+Aﬂ)
kse

ks )
%‘3 (—kpera sin (8) — bry cos (0) 6

k
- (1 + E) Tex + Aex) .
kse

2.4 Muscle contractile element

. @)
Tex =

The contractile element of each muscle generates an activa-
tion force A in response to U, its muscle membrane potential.
This relationship is given by a sigmoidal activation function
based on experimental data from (Bliimel et al. 2012a):

Tmax

A=
1+ exp (Sm (xoff — U))

+ Yoft - 3)
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Here, Sy, determines the maximum slope of the sigmoid,
and Tihax is the maximal tension the contractile element can
produce, and xof and yofr are curve fitting parameters.

In the animal, the flexor and extensor muscles are not
identical to one another. Likewise, we model the flexor and
extensor to have different values of Tiax and yofr. How-
ever, we choose to use symmetrical muscles for selected
portions of this paper where the absence of confounding
effects from asymmetry more clearly illustrate key results.
In these instances, we set identical values for Tmax and yoff
for the flexor and extensor and explicitly state that we are
using a symmetrical parameter set.

2.5 Muscle membrane

In arthropods, slow and intermediate motor units have mus-
cle membranes with slow time constants relative to the
motion these motor units produce. These muscle membranes
effectively behave as integrators of the trains of action poten-
tials delivered across their neuromuscular junctions (Hooper
et al. 2007). We found it appropriate to model the muscle
membranes as nonspiking leaky integrators, as the muscle
membranes of slow motor units do not typically produce
action potentials (Wolf 2014), and the insect thoracic gan-
glia contain many nonspiking neurons (Laurent and Burrows
1989; Biischges and Schmitz 1991). A detailed derivation of
this model along with a description of the assumptions made
can be found in appendix B.

The dynamics of the membrane potential U of a muscle
membrane with membrane capacitance Cr, and leak conduc-
tance gn, are given by:

CmU =—gmU + Zgil}pre,i (AE; = U).

1

lA/pre,,- is defined as the activation of each of the i neurons
innervating the muscle membrane. The activation represents
the behavior of a MN as a fraction of its maximum activity
and is therefore restricted such that l}pre,i € [0, 1]. Our model
assumes nonspiking inputs, and the magnitude of Upre,i acts
as a compatible proxy for a biological MN’s presynaptic fir-
ing rate (Wilson and Cowan 1972; Trappenberg 2009).

The influence of the ith neuron on the muscle membrane
is modulated by the synaptic properties of its neuromuscular
junction. The synaptic potential relative to the muscle mem-
brane’s resting potential, defined as AE; above, determines
whether the synapse is excitatory or inhibitory. The synaptic
conductance g; scales the magnitude of the synaptic current
induced by the activation of the presynaptic MN and is anal-
ogous to the gain of the synapse.

In our model, the EMNs depolarize the muscle membranes
via synapses with excitatory synaptic potentials AE,. In con-
trast, the CIMN inhibits the muscle membranes via synapses

with inhibitory synaptic potentials, i.e., AE;; = OmV. This is
motivated by the fact that CIMNs typically secrete gamma-
aminobutyric acid (GABA), which has a reversal potential
near the resting potential of most neurons (Wolf 2014). Using
an excitatory synaptic potential for EMNs and an inhibitory
synaptic potential for the CIMN leads to the following gov-
erning equation:

. 1 ~ ~
U= C_(geUe (AE. - U) — (gm + gciUci> U>- 4
m

Scaling g, = 1 uS effectively defines all synaptic
conductances relative to the conductance of the muscle mem-
brane and simplifies subsequent analyses. In the absence of
presynaptic MN activity, the time constant of the muscle
membrane is given by t, = Cp,/gm. However, when consid-
ering the influence of the CIMN, the membrane time constant
is given by 7, = Cry/ (gm + gei Uci). CIMN activity effec-
tively increases the conductance of muscle membrane, which
temporarily decreases the muscle’s time constant 7,,,. We will

examine this mechanism and its effect on motor control in
Sect. 3.2.

2.6 Magnitude control

It is generally accepted that the nervous systems of all walk-
ing animals contain neural circuits called central pattern
generators (CPGs) that contribute to rhythmic muscle out-
put, commonly behaving as relaxation oscillators in insects
(Béssler 1986). In this functional mode, inhibitory signals
from the CPG counteract a driving excitatory motor com-
mand provided by the CNS and disable (or significantly
dampen) the activity of EMNs in an alternating manner
(Goldammer et al. 2018). This has the effect of inhibiting
sensory feedback as well. As shown in Fig. 1, the magnitude
of each EMN’s activity is further modulated by information
about the state of the system—either through direct signals
from proprioceptive sensors, or via intermediary connections
through interneurons.

The CPG itself is a complex neural circuit with behavior
that is usually governed by some combination of mutual inhi-
bition, neuromodulation, and proprioceptive feedback from
position, force, and velocity sensors (for a review, see Bidaye
et al. 2017). Recreating a truly biomimetic CPG would
introduce significant additional model complexity as well as
potentially confounding effects. Therefore, for the scope of
this paper, we find it sufficient to combine and condense the
role of the CPG and the descending motor commands into a
few abstracted nodes, which approximate the idealized over-
all behavior of the analogous biological system and vastly
simplify the analysis.

Specifically, our joint-level CPG analog has two func-
tional objectives: (1) to determine the control direction and
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Fig.3 The input/output relationship of both EMNs during stance (a) and swing (b) phases. Our CPG and EMNs were designed to work in tandem
to mimic the functional behavior of a biological CPG and strongly inhibit the antagonist EMN, effectively “disabling” it

provide that information to the rest of the system and (2) to
strongly inhibit the antagonist EMN, effectively “disabling”
1t.

The first objective is implemented directly through O,
the single output of our CPG analog, which is simply a con-
stant amplitude signal that alternates between 6y = F=6pax.
The sign of G reflects the intended direction of motion at
a given time and is termed the control direction. The muscle
acting in the control direction at a given moment is termed
the agonist, whereas the muscle acting against the control
direction is termed the antagonist.

When 6,.¢ > 0, the control direction is toward the extensor
(swing phase), whereas when 6.t < 0, the control direction
is toward the flexor (stance phase). The sign of 6r.r, and thus
the control direction of the entire system, is toggled by sen-
sory feedback as described in the following Sect. 2.7.

The second objective is implemented through the com-
bined behavior of our CPG analog and our EMNSs, as shown
in Fig. 3. As in biological slow motor units, each muscle
membrane is innervated by an excitatory MN (EMN). In
our system, each EMN receives input from three sources:
the CPG, which provides the control direction; central drive
(labeled as “CNS” in Fig. 1a) which encodes the intended
magnitude of motion; and a joint angle proprioceptor [e.g.,
the chordotonal organ (Mamiya et al. 2018)], from which the
input is proportional to the instantaneous joint angle 6. We
recognize that biological EMNs would likely be modulated
by additional inputs, whether from other proprioceptive sen-
sors (e.g., force and velocity), or from intermediary networks
of interneurons. The inclusion of these sources of feedback
would enable our model to mimic additional aspects of the
biological system (e.g., control of the joint velocity profile).
However, exploring these interactions is beyond the scope of
this paper.

The magnitude of the EMN output is proportional to the
difference in these two input signals, which is defined as
the error e¢; = &£ (O — 0). Note that the sign of the error is
positive for the extensor and negative for the flexor to account
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for directionality. To fit the definition of activation from Sect.
2.5 (ie., Ue € [0, 1]), the output of each EMN is scaled
linearly from zero output signal l}e =0atl = Orer,0ore = 0.
The maximum output signal U, = 1, which corresponds to
the maximum firing rate of the biological EMN, is generated
when 0 = —0Opef.

As discussed in Sect. 2.5, the EMN neuromuscular junc-
tion has a fixed, excitatory synaptic potential AE.. Each
EMN can only increase the membrane potential—and conse-
quently the activation—of its respective muscle. Therefore,
negative outputs are set to zero, and EMNs behave according
to the following dynamics:

- . e
U,; =min|max|{ —, 1) ,0 ) where:
( <2|9wm| ) ) (5)

ef = — (Oref —0), and eex = (Orer — 0) .

It follows that at any given time at most one EMN is active,
as illustrated by Fig. 3. Moreover, the active EMN must be
the agonist as long as the condition |6]| < |6r| holds. As
detailed in Sect. 2.7, we define the timing control to enforce
that condition, thus achieving the second functional objective
of the CPG.

2.7 Timing control

In our system, a transition between stance and swing occurs
once eith_er 0 reaches a threshold value of g@ref, or if the
velocity 6 falls below a threshold of 0.1 rad/s. This is akin
to the CPG’s phase resetting after the leg reaches the pos-
terior extreme position (PEP) or anterior extreme position
(AEP). These transition conditions were selected as an ana-
log for tarsus touch-down, which our system does not model.
The transition condition 6 = % et €nsures that the condition
|0| < |6rer| required by Sect. 2.6 is never violated. In addition,
the instantaneous transition of the CPG state, which is trig-
gered by the much slower motion of the leg joint, gives rise
to relaxation oscillator dynamics, which have been shown to
drive walking in stick insects (Béssler 1986).
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The purely excitatory nature of EMNs combined with the
long time constants of arthropod slow muscle membranes
means that arthropod muscles cannot quickly relax. However,
arthropod limbs contain one to several common inhibitor (CI)
MNs (Pearson and Iles 1973; Wolf 2014). A single CIMN
simultaneously innervates most muscle membranes of a limb.
CIMN:s fire a short burst of several action potentials dur-
ing the transition from stance to swing phase, which has
been shown to be immediately followed by muscle relax-
ation throughout the limb (Usherwood and Runion 1970;
Wolf 2014).

Our CIMN was modeled to produce a sustained signal of
0ci = 1 for a duration of At whenever the CPG transi-
tion condition was met in stance phase, corresponding to a
stance to swing transition. The duration Az.; was selected to
be a plausible value for several action potentials (10 ms). It
can be noted that the exact value of At.; is not critical, as
the effect of the CI neuron is a function of delivered signal
energy—a product of both Az.; and g.;. In other words, any
change in Af.; could be directly compensated by a change
in gei.

As discussed in Sect. 2.4, we occasionally choose to use
symmetrical muscles to better show key results. Likewise, we
occasionally set the CI neuron to fire whenever a transition
condition is met, not just during stance to swing transitions.
In these cases, we explicitly state that the CI activity is sym-
metric.

3 Results
3.1 Steady-state error

We hypothesized that a slow muscle membrane acting as
a leaky integrator behaves analogously to a proportional-
integral (PI) controller in the slow motor units of arthropods
to achieve precise joint positions in the presence of signifi-
cant exoskeleton restoring forces. To examine this, the step
response of the system was simulated across a range of val-
ues of the membrane time constant t,,, achieved by changing
the value of membrane capacitance Cy, or membrane con-
ductance gp,.

To evaluate the step response of the system, the CPG out-
put was fixed at fref = Omax and did not change sign. The
system’s accuracy was evaluated by calculating the percent
steady-state error—a quantification of the system’s ability to
eventually reach a reference state. This was defined to be:

0
e = lim 1= ——) x 100%,
=00 eref

The percent overshoot—a measure of how far the system
surpasses a constant reference state—was used to evaluate the

29
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Fig. 4 Minimum eg for a step response across a range of muscle
membrane time constants 7, when overshoot is limited to 105%. a
Tm achieved by varying Cy, at a constant g, = 1 uS. b ty, achieved by
varying gm at a constant Cy,, = 150 nF

range of motion produced by the system. For a step response,
it was defined to be:

0
overshoot = mtax (9—) x 100%.

ref

For the cyclical stepping simulations throughout this paper,
percent overshoot was defined as above with ¢ constrained to
the interval of a steady-state cycle.

Each simulation ran for a sufficiently long time for 6 to
converge to a steady-state value before egs was calculated.
For any value of 1, it is possible to select an arbitrarily
high value of g, to achieve an arbitrarily low ess. However,
this can result in physiologically unrealistic overshoot values
(e.g., excessive movements that cause injury to the animal).
Therefore, the minimal egg value for a given 1, was found
by a binary search algorithm which only considered step
responses where the overshoot did not exceed 105%. The
choice of this limit was arbitrary, and changing this limit only
scales the resultant relationship between t, and egs shown in
Fig. 4a.

Due to ever-present charge leakage through the mus-
cle membrane, the EMN must continuously provide some
greater than zero signal in order to maintain the degree of
muscle activation required to counteract the elastic restor-
ing force of the exoskeleton. Given that the presynaptic
potential of the EMN approaches zero as 6 approaches
Oref, a slower (and consequently slower-leaking) membrane
allows the joint to settle on an equilibrium value of 6
closer to Of. However, in this system, ess can never be
zero unless physiologically implausible values of gy =
0 or C, = oo are used. Ultimately, slower muscle
membranes attain significantly smaller steady-state errors,
a property that is comparable to the behavior of a PI
controller.

3.2 Muscle membrane dynamics
Although a muscle membrane can be made to depolarize

arbitrarily quickly given a sufficiently large g., the repolar-
ization of the membrane from a given potential is limited
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Fig.5 The exponential decay dynamics of the muscle membrane poten-
tial with no excitatory inputs

to the first-order decay dynamics of membrane leakage cur-
rents:

Consequently, whereas a slower muscle membrane (g, = 1,
yellow in Fig. 4b) can achieve significantly better positional
accuracy than a faster membrane (g, = 8, red in Fig. 4b),
this accuracy comes at the cost of a far longer repolarization
time as shown in Fig. 5. The rate of repolarization limits
the rate of muscle relaxation, and consequently the rate at
which a joint is free to reverse its direction of motion. In
extreme cases, this can cause opposing muscles to become
fully activated and lock up the joints of an animal leaving it
temporarily paralyzed (Wolf 1990).

One strategy to achieve fast repolarization would be to
operate at higher values of membrane potential—for exam-
ple, a 10 mV drop occurs faster from 50 mV than from 20
mV. However, this strategy proves ineffective for reasons
explained in the next Sect. 3.3.

The CI neuron provides a better strategy for accelerating
repolarization. Input from the CI neuron acts as a temporary
switch from slow to fast muscle membrane dynamics:

_ 8&m + 8ci 00[
Cm

U= U.

When the CI neuron is active, the muscle membrane
leak rate is effectively gm + gci, see (gm = 1,8 = 7,
violet) in Fig. 5. Essentially, the activity of the CI neuron
enables arthropod muscles to selectively function as fast
membranes with short repolarization and muscle relaxation

@ Springer

times when needed while otherwise preserving the aforemen-
tioned advantages of a slower muscle membrane.

3.3 Muscle activation

A critical component of the system’s behavior is the sig-
moidal shape of the muscle activation curve, which maps
muscle membrane potential to contractile element activation.
Depending on the level of membrane potential, it can either
enhance or diminish the resulting muscle activation (i.e., the
active tension). The level of amplification:

Agitr
Uit

Es; gmoid =

is quantified as a ratio of differential membrane potential
and differential muscle activation. These are defined, respec-
tively, as:

Udiff = mean (Uagonist - U, antagonist) )
t € sscycle

and:

Adiff = mean (Aagonist - Aamagonist) .

t € sscycle

To better illustrate the significance of this activation curve,
consider the simulations shown in Fig. 6, with key values
from each in Table 1. When the level of excitatory input is
low, as in Fig. 6i (g, = 0.5), the muscle membrane poten-
tial fluctuates in a range that is not substantially amplified
by the sigmoid, resulting in a value of Ay that is insuffi-
cient to overcome the restoring forces of the exoskeleton and
drive 6 to the angular position threshold of the CPG, instead
triggering a Of sign change by reaching the low velocity
threshold. This is compounded by the fact that the antago-
nist muscle relaxes slowly due to the slow repolarization rate
of the muscle membrane from low initial values, and by the
slow activation of the agonist muscle directly caused by a
low g..

Set ii (g, = 2) represents the largest Ugirr value that the
system can achieve without a CIMN. At this level of exci-
tatory input, Ugisr is maximally amplified by the activation
curve. As shown in Table 1, a smaller Ugj¢r than in the low
g. case is mapped to a much larger Agisr. The range of mem-
brane potential is still too low for membrane dynamics to
facilitate faster antagonist relaxation; however, this fact is
mitigated by the amplification of the sigmoid.

Athigher levels of excitatory input, such as the case shown
in set iii (g, = 8), the muscle membrane quickly depolar-
izes, quickly activating the agonist muscle and driving the
joint to 6 = 0. At this point, however, further motion in the
joint is hindered by the co-activation of the antagonist mus-
cle. Although at this range of membrane potential the muscle
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Fig. 6 Plots of steady-state cycle joint position (a), membrane poten-
tial (b), and muscle activation (¢) from simulations of selected values
of g, with symmetric muscles and no CI activity are shown normal-
ized in time. Note that the plots in (b) and (c¢) show different ranges

at equivalent scale. The plots in (d) show the range of muscle mem-
brane potentials and subsequent contractile element activations from
the respective cycle against the muscle activation sigmoid from Eq. (3)
(denoted A*)

Table 1 Key metrics from the

simulations shown in Fig. 6 Set 8e Udgigr (mV) Augifr (mN) Esigmoid (MN/mV) Fs1ep (Hz)
i 0.5 1.6647 26.7705 16.0810 2.5119
ii 2.0 1.5346 48.3913 31.5332 11.376
iii 8.0 7.6284 33.3485 4.3716 4.7326

membrane repolarizes relatively quickly, resulting in a much
higher Ugifr than the other two cases, this behavior occurs
in the least sensitive portion of the muscle activation curve.
Consequently, the membrane potential must change signif-
icantly more before it causes a sufficient relaxation of the
antagonist muscle to complete the step.

3.4 Effect of Cl on muscle activation

Because the membrane dynamics limit the membrane repo-
larization rate, the muscles in these simulations never fully
relax, comparable to what has been observed in animals
whose CIMNS are prevented from firing (Wolf 1990). Thus,
the motion of the joint is driven primarily by the timing and
degree of differential muscle activation. The performance of
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A 0.2 with reduced muscle co-activation, enables it to operate much
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Fig.7 Plots of steady-state cycle joint position (a), membrane potential
(b), and muscle activation (c¢) from simulations of selected parameter
sets with symmetric muscles are shown normalized in time. Note that the
plots in (b) and (c¢) show different ranges at equivalent scale. The plots
in (d) show the range of muscle membrane potentials and subsequent
contractile element activations from the respective cycle against the
muscle activation sigmoid from Eq. (3) (denoted A*)

the system simulated without CI activity (violet in Fig. 7,
8e =71, g¢i = 0) is hampered by the same problems as the
system (g, = 8) described in Sect. 3.3 (Table 2).

The addition of CI activity to the system (g, = 7, g¢.; = 0,
red) produces drastic changes to its behavior. The high value
of g, still allows the agonist muscle to quickly activate, albeit
the rate of activation is slowed by the CI input. However,
because of the CI activity, the antagonist muscle can relax
much faster than before. This system operates on a far more

Energy expenditure is a useful metric for evaluating the per-
formance of a designed system under varying parameters. In
fact, it is also a consequential quantity for insects, especially
in the context of evolution. Nevertheless, precise quantifi-
cation of energy expenditure is highly dependent on the
physical realization of the system. For example, quantifying
the metabolic cost of a muscle-driven joint would require
a completely different model than quantifying the electrical
power consumption of a joint driven by servomotors.

Mechanical work provides an idealized definition of
energy expenditure that is not dependent on the physical real-
ization of the model. However, calculating the work done by
the joint itself over the course of a step cycle yields a triv-
ial result because our model assumes the joint is unloaded.
Instead, we extend the definition of mechanical work to
include the notion of achieving our system’s intent (as defined
by the control direction from Sect. 2.6) in the context of inter-
nal resistive forces.

We quantify the energy cost of our system with what we
term the control effort: The work done by the active con-
tractile elements in the muscles against internal resistive
forces (i.e., the force generated by the antagonist contrac-
tile element, and the passive elasticity and damping of the
exoskeleton and both muscles) to achieve the commanded
range of motion over one step cycle.

Consequently, we define the instantaneous power of the
system to be the instantaneous power of the agonist muscle—
the muscle acting in the control direction at that moment:

. 7:wex Adex + Tf:x)'\ex if Ot > 0
P =1 TaArqg + Targ if Orer < O
0 otherwise.

Integrating the instantaneous power over a full steady-
state cycle yields the control effort:

E= / P.
cycle

A binary search algorithm determined the lowest control
effort required to achieve a given step frequency by varying

Table 2 Key metrics from the

simulations shown in Fig. 7 Set &e Udgigr (mV) Augitr (mN) Eigmoid (MN/mV) Fs1ep (Hz)
i 0.0 6.7714 34.3181 5.0681 5.0352
ii 6.0 2.2927 65.8049 28.7014 30.3951
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Fig. 8 Control effort required to achieve a given step frequency at
various values of g.;. For reference, approximately 10 Hz is a typical
step frequency for cockroaches (Pearson and Iles 1973; Bender et al.
2010)

ge,f1 and g .x, considering only simulations that resulted
in an overshoot between 95 and 105%. The results shown
in Fig. 8 demonstrate not only that greater values of g.;
reduce the energy expenditure across all step frequencies,
but also that they increase the maximum frequency at which
the joint can move. These effects likely stem from the reduced
co-activation of the antagonist muscle, which is one of the
primary sources of resistance for the agonist.

3.6 Reduced control parameters

Arthropods can control step frequency by changing the
gain of feedback pathways only in stance phase muscles
(Gabriel and Biischges 2007). We wished to test if this simple
model could recreate that result. To test this, we simulated
the system for a broad sweep of g, r; and g .. values. We
sought parameter combinations for which increasing g,
would:

— Increase the speed of stance phase motion (i.e., flexion);

— Not significantly affect the speed of swing phase motion
(i.e., extension); and

— Not significantly affect the range of motion of the joint.

Figure 9 shows the results. Increasing the flexor gain
&e, r1 shortened the stance phase duration and consequently
increased the step frequency, with a negligible effect on the
swing phase duration and the overshoot of the joint rota-
tion. In contrast, increasing the extensor gain g, .. increased
overshoot with a negligible effect on stance phase duration
or step frequency. This result suggests that key properties of
an arthropod walking cycle can be independently changed

through a reduced parameter set in the form of g s; and
8e,ex-

Figure 10 shows that the CIMN further isolates the effects
of each parameter g, r; and g, .. When g.; = 0, the value of
both g, f; and g, . must be modified to keep the overshoot
between 95% and 105% (the region between the teal lines).
Simultaneously, the stepping frequency does not change
monotonically in this region, leading to further complication
in controlling the limb’s motion. When g.; = 6, however,
the range of motion hardly changes as g, 7; is increased and
8e,ex 18 constant (e.g., 4). Increasing g, ; alone also clearly
changes the stepping frequency. In fact, changing g, ., can
hardly modify the stepping frequency at all. These results
show that the CIMN may be critical for simplifying the con-
trol of periodic motion seen in walking.

3.7 Robustness across model parameter values

We sought to test if the results from Sect. 3.6 would apply
to a different set of model parameters. All of the analyses
up to this point used the parameters from the hind leg of our
group’s previous cockroach model (Rubeo et al. 2017). To
test the robustness of this approach, we repeated our analysis
using vastly different parameter sets taken from the front
and middle legs. Figure 11 shows that each leg’s param-
eter set displayed the same overall pattern, centered and
scaled around a different range of ge s and ge x values.
This suggests that arthropods can adapt an identical neural
architecture across vastly different limbs simply by tuning
the gain of a few motor neurons.

4 Discussion

In previous work, our group assembled a dynamical model
of cockroach walking (Szczecinski et al. 2014; Rubeo et al.
2017). Cockroaches walk with stepping frequencies up to
10 Hz or higher (Bender et al. 2010). They generate long,
rapid leg strides despite having many muscle fibers that take
between 100 and 1000 ms to relax (Iles and Pearson 1971).
In addition, they do not use their fast MNs, except when
running at their highest speeds (Pearson 1972; Watson and
Ritzmann 1998). When our group initially constructed the
cockroach model with slow MNs alone, it could hardly move.
Therefore, the muscle fiber dynamics in our group’s previ-
ous studies were made to be very fast (time constant of 5
ms, ~15 ms to relax). However, in this case, proportional
afferent feedback from joint proprioceptors could not move
the joints to the intended positions, requiring the addition of
a neural integrator to accumulate error over time, and ensure
the muscles pulled the limb to the intended position in each
step (Khalil 2002; Szczecinski et al. 2017b). This solution
enabled the model to run at cockroach-like speeds, but our
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Fig. 9 Simulations run with asymmetric muscles and asymmetric CI activity at g,; = 6. The dotted teal lines overlaid on each map denote the
range of overshoot (95-105%). The solid teal lines represent a 2D-slice through the data, a plot of which is shown by each map

group could not directly justify the inclusion of a neural inte-
grator circuit stimulating the muscles. In addition, changing
the walking speed was effectively impossible, requiring the
rate of integration to be reconfigured at every walking speed.

The present study addresses the shortcomings of our
group’s previous work by introducing a neuromuscular
model of joint control that is simultaneously more biolog-
ically accurate and more flexible in its function. We hypoth-
esized that we could produce an accurate neuromuscular
controller by modeling slow muscle fibers as muscles whose
membrane have long (i.e., 150 ms) time constants, rather than
short time constants with neural integrator circuits. The slow
dynamics of the muscles function as integrators (Hooper et al.
2007; Morris and Hooper 1997b), effectively accumulating
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input to drive the limb to the intended position. However, as
we showed, such integration causes the muscle force to sat-
urate after repeated stimulation, a phenomenon that can be
observed in insects when their slow muscle fibers are stim-
ulated at high frequencies (Bissler and Stein 1996; Morris
and Hooper 1997a) and can be resolved by activating the
CI directly (Béssler and Stein 1996). Therefore, we added
a CI MN to our model, which actively relaxes the muscles
in the leg at the end of each step. This resolves the satu-
ration problem, resulting in accurate limb positioning and
no force buildup in the leg muscles from step cycle to step
cycle. The model presented in this work further reinforces the
importance of including passive forces and inhibitory motor
neurons in neuromechanical models.
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Agreement with biological data Despite the simplicity of
this model, it captures several key biological results regard-
ing insect joint control and will inform the development of
more sophisticated models in the future. Our model verifies
that insects can indeed control motion with muscle fibers

whose time constants are much longer than the motion in
question (Iles and Pearson 1971; Pearson 1972). Critical
to this capability, however, is the common inhibitory (CI)
motor neuron, which drives slow muscle fibers’ potentials
toward rest, actively relaxing muscles (Iles and Pearson 1971;
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Rathmayer and Erxleben 1983; Usherwood and Runion
1970; Wolf 1990, 2014), particularly while the animal walks
(Wolf 1990). This structure enables the slow muscle fibers’
membranes to act like integrators, accumulating incoming
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excitatory spikes from the slow motor neurons (Morris and
Hooper 1997b). The slow motor neurons receive information
from proprioceptors (Gabriel and Biischges 2007), which
means that the muscle membrane voltage, and thus the con-
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tractile force of the muscle, is related to the integral of the
leg state over time. Such a structure is an implementation of
a feedback integral controller, which is known to increase
the accuracy of control systems (Khalil 2002). In addition,
modulating the gain of sensory feedback, and thus this rate
of integration, controls the speed of stick insect stepping on a
treadmill (Gabriel and Biischges 2007). Simplifications and
assumptions are unavoidable in the design of models which
approximate physiological systems, and consequently, a vari-
ety of distinct approaches can be used to effectively model a
given system. Likewise, our approach is by no means defini-
tive, but we believe that the presented model provides a
simplified, yet valid abstraction of what is known about insect
joint control. It is unknown how well this approach may apply
to highly-specialized joints, such as those used for jumping
in some insects (Burrows and Morris 2001). However, we
believe this model to be a valuable starting point for future
studies, and will be extended to capture more aspects of insect
neurophysiology.

Future extensions to the model We plan to expand this
model to assemble a more complete, entirely neuromorphic
closed-loop joint controller. In this study, we made several
simplifications to aid in tractability. For instance, we only
included one sensory afferent in our study, but previous
studies have outlined how multiple proprioceptive pathways
converge on the motor neurons (Sauer et al. 1996). Includ-
ing such detailed feedback pathways will enable us to study
how modulating each sensory type separately may impact
the control of periodic motion.

Despite the abundance of nonspiking neurons in the insect
thoracic ganglia, some of these sensory pathways are medi-
ated via spiking interneurons (Sauer et al. 1996). In addition,
motor neurons themselves generally fire action potentials.
However, none of the units in the present study fired action
potentials. Therefore, we will need to expand our model to
include spiking neuron and synapse models. We have devel-
oped methods to tune spiking models using our functional
subnetwork approach to network tuning (Szczecinski et al.
2017b). We believe that spiking neurons will produce more
varied dynamic responses than nonspiking neurons, which
may have additional relevant computation abilities (e.g., sen-
sory adaptation via spiking threshold accommodation).

We also plan to expand this model to include fast muscle
fibers and motor neurons, which are necessary for insects
to move their limbs at the highest speeds during running
(Iles and Pearson 1971; Pearson 1972; Schmitz 1986; Wat-
son and Ritzmann 1998) or jumping (Burrows and Morris
2001). In cockroaches, fast MNs fire out of phase with the
slow MNs when the animal runs (Watson and Ritzmann
1998). However, in the locust, fictive locomotion patterns
from deafferented thoracic ganglia cause the fast MNs to
exhibit subthreshold depolarizations in phase with the slow

MNSs’ action potentials (Ryckebusch and Laurent 1993). This
suggests that both the fast and slow MNs receive central drive
from the same source, but that fast MNs have higher appar-
ent spiking thresholds, preventing them from firing action
potentials when the animal walks slowly. This also suggests
that sensory feedback may innervate fast and slow MNs
differently, producing the observed phase difference in cock-
roaches. Incorporating spiking MNs and fast and slow fibers
into our model will let us investigate possible networks that
can reproduce these data.

One final simplification in the present model is our reduc-
tion of the central pattern generator (CPG) to a square-wave
generator whose phase could be reset by intra-joint feed-
back. CPGs are important to form a complete motor program.
When an animal is running fast, it apparently depends on cen-
tral patterns for proper coordination. However, when insects
walk more slowly, sensory feedback can very strongly affect
a CPG’s phase [(Akay et al. 2001, 2004, 2007; Hess and
Biischges 1999), for a review see (Bidaye et al. 2017)]. This
is likely the case because when a CPG’s central drive is low,
its phase is more easily adjusted by sensory inputs (Shaw
et al. 2015; Szczecinski et al. 2017a). This effect is even evi-
dent in fast running insects like cockroaches when they walk
at lower speeds, during which their coordination patterns are
less coordinated, suggesting less reliance on central patterns
and more reliance on sensory feedback (Bender et al. 2011).
Therefore, in this study, the CPG is formulated simply as a
switch whose state is flipped by sensory feedback.

The behavior of CPGs and how to model it is a rich field,
but outside the scope of this work (for a review, see (Bidaye
etal. 2017)). However, our group has extensive experience in
designing and tuning biologically based CPG architectures,
and their responses to sensory entrainment (Deng et al. 2019;
Szczecinski and Quinn 2017a; Szczecinski et al. 2017a). We
believe that we can map the behavior shown in this paper
onto a more detailed neural architecture that more accurately
reflects the structure of the nervous system.

Application to robotics Insects are capable walkers. As such,
they have served as the models for many walking robots (for
reviews, see (Buschmann et al. 2015; Ritzmann et al. 2000).
However, the scaling of robots and the insects they mimic
often differ, leading to a mismatch in the control strategy
(Hooper 2012). This mismatch could be overcome by build-
ing a robot with viscoelastic forces scaled to produce the
same passive mechanical dynamics, even with its much larger
inertia, such as our group’s robot DrosophiBot (Goldsmith
et al. 2019). Such a robot could then apply the control strat-
egy presented here, with simulated muscle fibers whose time
constants are long for timescale of the robot. This would rep-
resent a more thorough test of this system than described in
this paper, requiring that this strategy be generalized to all
of the joints in all of the legs. In our group’s previous work,
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Table 3 Parameter sets used throughout the paper. Unless specified
otherwise, the hind leg parameter set was used

Hind leg Middle leg Front leg
m (mg) 20.1 11.5 1.54
I (mm) 11 8.5 5
ke (mNmm) 360848 262222 434372
be (oNmms) 962 0.434 0.209
Tnavex (N 0.541 1.761 2218
Toar.i (N 0411 1.146 1.048
Yoffex  (mN) —25678  —83.514 —105.200
Yof.i (mN) —19471  —54.347 —49.695

we performed a similar generalization, demonstrating how
all of the leg joints in the body might undergo “reflex rever-
sals” when the animal walks in paths of varying curvature
(Szczecinski and Quinn 2017b). We believe we could fol-
low a similar process with this control structure, wherein we
take a structure informed by biology, apply it to all of the leg
joints in a robot, and then tune the structure differently for
each joint, depending on the role it plays in locomotion or
posture. Such an approach seems likely to work, given the
success we had applying the control structure in this paper
to vastly different leg segments.
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Appendix A: Parameter values

Variable parameters Within the parameter sets shown in
Table 3, the values for m and [ reflect those from the legs of a
cockroach as collected for a previous study. The values of ke
and b, as well as Tryax were taken from our group’s previous
model (Rubeo et al. 2017). Values for yofr were calculated as
described below.

Joint model As the attachment points can vary greatly
between the individual muscles of a joint, and because those
values are difficult to accurately quantify, we used the same
value of r, = 1 mm from our group’s previous model for all
muscles (Rubeo et al. 2017).

Muscle model The coefficients of the muscle model, b =
0.1 85 ke = 11.24 ™8 and kye = 45 ™Y were taken from
our previous model (Rubeo et al. 2017) and match the values
for kpe and ke reported in (Bliimel et al. 2012b).

Muscle contractile element The maximum slope of the mus-
cle activation sigmoid S, = 0.3 and the curve fitting
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parameter xoff = 10 mV were selected to match our curve
to the data presented in (Bliimel et al. 2012a). The value of
the second curve fitting parameter y.s was calculated for a
given value of Thax to ensure that the contractile element
produced zero force when the muscle membrane was at its
resting potential U = 0 mV.

Muscle membrane L-glutamate is the excitatory neurotrans-
mitter at the neuromuscular junctions of most arthropods
(Shinozaki 1988), consequently our excitatory synapses were
implemented with AE, = 40 mV, based on measurements of
the excitatory post-synaptic potential induced by the appli-
cation of L-glutamate to insect muscle membranes presented
in (Jan and Jan 1976a,b). A physiologically plausible value
of gm = 1 uS was selected to allow us to define all synap-
tic conductances relative to the conductance of the muscle
membrane, as discussed in Sect. 2.5. A value of Cp, = 150
nF was selected to achieve a membrane time constant 7, =
Cm/gm = 150 ms that is similar to the value for arthropod
slow muscles reported in literature (relaxation time ~ 450
ms) (Iles and Pearson 1971).

CPG The commanded amplitude 26,,x = 0.5 rad was
selected to match the realistic range of motion of a cock-
roach FTi joint (Watson and Ritzmann 1997a,b).

Appendix B: Derivation of muscle membrane
model

The Hodgkin—Huxley model defines the dynamics of a neural
or (in our case) muscle membrane potential V with respect to
a membrane capacitance Cp,, and trans-membrane leakage,
synaptic, and applied currents:

CnV = lieak + ]syn + ]upp-

As there is no external current injected into the muscle
membrane, we set I, = 0. The leakage of ions through the
membrane is governed by Ohm’s Law, where g, is the mem-
brane’s constant leak conductance (i.e., inverse of resistance)
and E, is the resting potential of the membrane:

Lieak = gm (E, = V).

The sum of ion flow across each neuromuscular junction
defines the synaptic current:

]syn = Z Gi(E;i —=V),
i

where E; is the synaptic potential for the i th synapse, and G,
the instantaneous conductance of the ith synapse, is defined
as a function of the maximum synaptic conductance g; and
Vpre,i» the instantaneous potential of the presynaptic neuron:
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0 Vpre,i < Ejp
Vorei—Ei

Gi=8 "\ &5, Eio=Vprei=En
1 Vpre,i > Ep;

Here, Ej; and Ej, are the upper and lower thresholds of
the synapse, respectively. When we require that E;, = E,,
and define R = Ej; — Ej, to be the operating range of the
presynaptic neuron, the instantaneous conductance of the ith
synapse can be written as:

0 Vpre,i < E,
Gi=gi-{ it p <V, <(R-E)-
1 Vpre,i > (R—-E;)

This expression reduces to:

)= g Ve =

if we restrict the presynaptic voltage Vpc.; € [Eio, Epi] or
alternatively V. ; € [Er, R — E].

To further simplify analysis, we define a new variable
U = V — E,, which quantifies the voltage of the neural or
muscle membrane relative to its resting potential. Note that
because V does not appear outside of this derivation, we refer
to U throughout the paper simply as the muscle membrane
potential. In a similar manner, we define the presynaptic volt-
age relative to the resting potential Upye; = Vpre,i — Er. In
terms of this variable, the instantaneous conductance of the
ith synapse becomes:

Upre,i

Gi =g T s
where U ;. ; is restricted such that Up,.; € [0, R].

Furthermore, it is convenient to select R = 1, effectively
representing the behavior of all presynaptic neurons as a
fraction of their maximum activity. We call U pre € [0, 1]
the activation of the ith presynaptic neuron. When we also
define the synaptic potential relative to the resting potential
AE; = E; — E, the sum of synaptic currents simplifies to
the form:

Isyn = Zgiﬁpre (AE; —U),

1

and using the same variables, the leak current simplifies to:

lieak = _gmU-

Given that U = V, combining the modified current terms
together into the original equation yields:

CmU =—gmU + Zgil}pre,i (AE; = U).

1

For more details regarding these manipulations of the neu-
ral and synaptic models, see (Szczecinski et al. 2017b).
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