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Abstract
The ability to rapidly assimilate new information is essential for survival in a dynamic environment. This requires experiences
to be encoded alongside the contextual schemas in which they occur. Tse et al. (Science 316(5821):76–82, 2007) showed
that new information matching a preexisting schema is learned rapidly. To better understand the neurobiological mechanisms
for creating and maintaining schemas, we constructed a biologically plausible neural network to learn context in a spatial
memory task. Our model suggests that this occurs through two processing streams of indexing and representation, in which
the medial prefrontal cortex and hippocampus work together to index cortical activity. Additionally, our study shows how
neuromodulation contributes to rapid encoding within consistent schemas. The level of abstraction of our model further
provides a basis for creating context-dependentmemorieswhile preventing catastrophic forgetting in artificial neural networks.

Keywords Memory consolidation · Schemas · Catastrophic forgetting · Spatial navigation

1 Introduction

Despite the large amount of information in a dynamic
world, humans develop a structured understanding of the
environment, learning to recognize scenarios and apply the
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appropriate behaviors. A longstanding goal in neuroscience
is to understand how the brain learns these structures. The
stability–plasticity dilemma asks how the brain is plastic
enough to acquirememories quickly and yet stable enough to
recall memories over a lifetime (Abraham and Robins 2005;
Mermillod et al. 2013). A related question is how the brain
avoids catastrophic forgetting, which is when a neural net-
work forgets previously learned skills after being trained on
new skills (French 1999; Kirkpatrick et al. 2017; Soltoggio
et al. 2017). We believe that the brain avoids catastrophic
forgetting and balances stability and plasticity by storing
information in schemas, or memory items bound together
by common contexts.

Our work builds on existing theories of memory and
learning, including complementary learning systems (CLS),
which states that memories are acquired through rapid asso-
ciations in the hippocampus and then gradually stored in
long-term connections within the neocortex (Kumaran et al.
2016; McClelland et al. 1995). This aligns with hippocam-
pal indexing theory (Teyler andDiScenna 1986),which states
that memories in the form of neocortical activation patterns
are stored as indices in the HPC, which are later used to
aid recall. Tse et al. (2007) later showed that new memories
are acquired much more quickly when consistent with a pre-
existing schema. In their experiment, rats learned a schema
of spatially arranged food wells, each containing a different
food. Once familiar with the schema, two new food wells
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were introduced. The rats rapidly encoded this new informa-
tion into the neocortex within a day. Lesion studies showed a
dependency on the HPC for this short time span of learn-
ing. Further studies by Tse et al. (2011) show activation
of plasticity-related genes in the medial prefrontal cortex
(mPFC) and related regions, suggesting their involvement
in rapid encoding.

Studies of connectivity between the mPFC and HPC have
yielded theories of how these areas process schemas. van
Kesteren et al. (2012) introduced the SLIMM framework
(schema-linked interactions between medial prefrontal and
medial temporal regions), which states that when a stimulus
is familiar to a schema, the mPFC inhibits the HPC. How-
ever, if the stimulus is novel, the HPC activates to encode
the information. In this way, the two brain areas enhance
memory acquisition via different pathways. As for how the
mPFC and HPC communicate, Eichenbaum (2017) hypothe-
sized that theta phase synchronization between themPFCand
MTL is controlled by the thalamic nucleus reuniens (Re) to
change the directional flow of information when encoding or
retrieving. As theta oscillations control many aspects of tim-
ing and control in theHPC, theymayplay an important role in
schema learning. Furthermore, Eichenbaum (2017) notes the
different roles of the ventral hippocampus (vHPC) in provid-
ing contextual cues and the dorsal hippocampus (dHPC) in
retrieving specific memories. Since the specificity of encod-
ing increases along the dorsal–ventral axis of the HPC (Jung
et al. 1994), the HPC may be representing memories at mul-
tiple levels of specificity, from general context to specific
episode.

In addition to the HPC–mPFC pathways, supporting areas
modulate the speed of encoding. The neuromodulatory sys-
tem is important for detecting salience and making quick
adaptations (Krichmar 2008). The basal forebrain (BF) mod-
ulates attention and cortical information processing (Baxter
and Chiba 1999), and the locus coeruleus (LC) modu-
lates network activity in response to environmental changes
(Aston-Jones and Cohen 2005). The LC also drives single-
trial learning of new information via inputs to the HPC
(Wagatsuma et al. 2018). Moreover, activity from the LC
selectively increases oscillations in the HPC in the theta and
gamma range according to novelty (Berridge andFoote 1991;
Walling et al. 2011), suggesting that it may be involved in
single-trial learning.

This type of processing is likely necessary for the fast
learning that occurswhen novel stimuli are introducedwithin
a familiar schema. Based on this background, we created a
neural network architecture with the simulated brain regions
and pathways comparable to those described above. The net-
work portrays the involved neurobiological mechanisms at
a level of abstraction that transfers easily to addressing the
problem of avoid catastrophic forgetting in artificial neural
networks.

2 Methods and tasks

2.1 Summary of Tse et al. (2007)

In Tse et al. (2007), rats were trained for 20 days on a schema
consisting of paired associations between food well location
and food flavor. After training, the rats were well familiar-
ized with the schema, as measured by dig time in the correct
well corresponding to a cued food. This is referred to as the
preexisting schema. On the 21st day, two food wells were
removed and replaced with two new food wells with new
foods, close to the locations of the original wells. These are
referred to as the new paired associationswithin a preexisting
schema. The rats learned the locations of the two new food
wells rapidly, suggesting that the presence of thewells within
a familiar schema increased the rate of learning. After this,
the HPC was lesioned in one group of rats, and the two new
food wells were replaced with yet another two food wells.
Without the HPC, the rats were unable to learn this second
set of new food wells. However, they were still able to retain
the original schema aswell as the first set of novel foodwells.
In the next task, the same set of rats was trained on a second
schema, which is referred to as a novel schema, with entirely
new food well placements and food flavors. The group with
the HPC lesion was unable to learn the second schema, but
still retained the original information. The control group was
able to learn the second schema while maintaining the first,
despite the similarity of tasks. We use these experiments as
a baseline test of whether our model is able to capture the
same behaviors of schema-consistent learning. A summary
of these tasks is described in Fig. 1.

In both Tse et al. (2007) and tests of ourmodel, a schema is
a spatial arrangement of food wells. The presence of novelty
within a familiar schema occurs when some of the food well
and flavor paired associations are replaced with food wells
in new locations with new flavors. Some of the terminology
in our experiments differs from the original rat experiments.
The 24-h periods of training in Tse et al. are referred to as
“trials” in our experiment. While each 24-h period in Tse et
al. only presents each paired association once officially, the
trials in our experiment select paired associations at random
for several hundred epochs in one trial, representing inter-
leaved replays of episodic memories. There is no distinction
between waking and sleeping activity in our model, instead
modeling replays as general replay during quiet periods.

2.2 Contrastive Hebbian learning

To model representations of tasks, a multilayer network can
store information of increasing levels of abstraction from
input to output layers. Backpropagation is commonly used to
train such networks and has hadmany successful applications
in artificial neural networks (LeCun et al. 2015; Rumelhart
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Fig. 1 Timeline of experiments. Each grid represents a square arena,
with circles representing locations of food wells and numbers repre-
senting different flavors of food. a Experiment 1 timeline. Schema A is
trained for 20 days, which are called trials in our model. Stars represent
days in which a probe test (PT) was performed. Two new paired asso-

ciations (PAs) are introduced on day 21, represented by black and gray
circles. Surgical lesioning occurs on day 22, and yet another two PAs
are introduced on day 23, also represented by black and gray circles.
Probe tests are performed throughout. bExperiment 2 timeline. Schema
B is trained for 16 days; then Schema A is retrained for 7 days

et al. 1986). However,many view backpropagation as biolog-
ically implausible, as there is no widely accepted mechanism
in the brain to account for sending error signals backwards
along one-way synapses. An alternative account for develop-
ing representations in the brain may be contrastive Hebbian
learning (CHL) (Movellan 1991), which uses a local Heb-
bian learning rule and does not require explicit calculations
of an error gradient.

Given a multilayered network with layers 0 through L,
neuron activations of the kth layer are denoted as vector xk
and weight matrices from the k-1 to kth layer are denoted
as Wk . Each weight matrix Wk has a feedback matrix of
γWT

k such that every weight has a feedback weight of the
same value but scaled by γ . The learning process consists
of cycling between three modes of the network. The first
mode is known as the free phase of the network, in which the
input layer x0 is fixed and the following equation is applied
to update neurons in layer k from k = 1 to L at time t :

xk(t) = fk(Wkxk−1(t − 1) + γWk+1xk+1(t − 1)), (1)

where f is any monotonically increasing transfer func-
tion. This equation is applied for Ts time steps, which
is when network activity converges to a fixed point. The
resulting settled activity for xk is noted as x̌k , which is
the final neural activity for the free phase. The network
then transitions to the clamped mode, in which the input
layer is fixed as before and the output layer is fixed to
the desired target value, as in supervised learning. Again
neuron activities are updated using Eq.1 for Ts time steps
which allows the network activity to converge. The set-
tled activity for xk is noted as x̂k , which is the final
neural activity for the clamped phase. The third mode com-
bines an anti-Hebbian update rule for neurons in the free
phase and Hebbian update rule for neurons in the clamped
phase:

ΔWk = ηCHL(x̂k x̂
T
k−1 − x̌k x̌

T
k−1), k = 1, . . . , L. (2)

Although the local learning rule is more biologically plau-
sible than backpropagation, the use of symmetric weights is
viewed as less plausible. To address this, versions of CHL
that do not use symmetric weights have been implemented.
For instance, Detorakis et al. (2018) provide feedback sig-
nals via random feedback weights during the clamped
mode, avoiding any use of bidirectional symmetric weights.
However, we use the original version of CHL for simplic-
ity.

3 Neural model

Our model consists of two main information streams, the
indexing stream and the representation stream, in a network
that is trained on context-dependent tasks such as the one
found in Tse et al. (2007). Figure 2 shows an overview of the
network.

3.1 Indexing stream

The indexing stream begins with a context pattern, which can
be any encoding of context using patterns of neuron activity.
In our case, we used a 2D grid with inputs of 1 if a food
well existed in that grid location or 0 otherwise. This input
projects to the mPFC for the schema to be learned from sen-
sory input. The dynamic mPFC neuron activity is calculated
by the following synaptic input equation at time t :

xk(t) = fk(Wkxk−1(t − 1)), (3)

where layer k is the mPFC layer, layer k-1 is the context
pattern, and fk is the rectified linear unit (ReLU) transfer
function:
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Fig. 2 Overview of network. The light blue box contains the indexing
stream, including the ventral hippocampus (vHPC) and dorsal hip-
pocampus (dHPC). The light orange box contains the representation
stream, including the cue,medial prefrontal cortex (mPFC),multimodal
layer (AC), and action layer. Bidirectional weights between layers in
the representational stream are learned via contrastive Hebbian learning
(CHL).Weights from the indexing stream are trained using the standard
Hebbian learning rule. Dotted lines indicate influences of the neuro-
modulatory area, which contains submodules of novelty and familiarity.
Weights extend to these modules from the mPFC and dHPC. Neuro-
modulator activity impacts how often the vHPC and dHPC are clamped
and unclamped while learning the task via contrastive Hebbian learning
(CHL)

f (x) = max(x, 0). (4)

A hard winner-take-all selection is then applied, in which all
activations are set to zero except for the one with maximum
value.Weights from the context pattern to the mPFC are then
trained by the standard Hebbian learning rule:

ΔWk = ηpatternxkx
T
k−1, (5)

where xk is the mPFC layer, ηpattern is the learning rate,
and xk−1 is the context pattern layer. The weights are nor-
malized such that the norm of weight vectors going to each
postsynaptic neuron i is 1:

wi = wi

||w|| , (6)

where w is the vector of weights going to one postsynaptic
neuron and wi is an individual weight in w. The indexing
stream continues on to the dHPC and vHPC. The vHPC
learns an index of mPFC activity using the same synaptic
input function and learning rule described in Eqs. 3–6. The
dHPC learns indices in the same way as the vHPC, except
that it uses a learning rate of ηindexing and has weights from
the vHPC, cue, and action selection layer. The term ηindexing
is a separate learning rate used for weights that index activity
from the representation stream.Rather than indexing context,

the dHPC indexes triplets of context, cue, and action. This
agrees with how context is encoded in the vHPC and spe-
cific experiences are encoded in the dHPC in Eichenbaum
(2017). It also aligns with the fact that selectivity of encod-
ing increases from the ventral to dorsal end of the HPC (Jung
et al. 1994).

3.2 Representation stream

The representation stream is amultilayerednetworkwith sen-
sory cue input areas and the mPFC that encodes the current
schema or context. The middle layer of the representation
stream acts as the association cortex (AC) and makes multi-
modal associations of its inputs and conjoins context and cue
information (AC). The output layer selects an action response
to the sensory cue, which is a spatial grid with activation of
1 at the locations of food cues and 0 otherwise. To train
the correct actions, the multilayered network uses CHL as
described in the background section, with a transfer function
as in Eq.4. The alternation of clamped and free phases is con-
trolled by the indexing stream. The dHPC alternates between
clamping and unclamping the action layer, providing input
to the action layer during the clamped stage of contrastive
Hebbian learning. During clamping, the winning neuron in
the vHPC gates neurons in the AC. This is done via a static
weight matrix of strong inhibitory weights from the vHPC to
AC layer, with sparse random excitatory weights that allow
only some neurons in the AC to be active. All weights in this
matrix are first initialized by a strong negative value of winh ,
and then a random selection of the weights in this matrix is
set to 0. The number of weights selected to be 0 is deter-
mined by P, which is a number in the range of 0 and 1 that
defines the proportion of randomly selected weights. This is
meant to mimic hippocampal indexing. While there is lit-
tle evidence that the HPC projects widespread inhibition to
the representation areas of the brain, the mix of inhibition
and zeroed weights allows specified patterns of neurons to
be active with their usual activity levels, which is meant to
mimic an attentional sharpening effect in the model.

Taken as a whole, the representation stream models how
the neocortex learns representations (Hawkins et al. 2017),
with the indexing streamdriving the learning process and pre-
venting catastrophic forgetting by allocating different sets of
AC neurons for each task. By using CHL for the representa-
tion stream, we form an equivalence with backpropagation
methods that allows us to expand our model to help improve
traditional neural networks in the future.

3.3 Novelty and schema familiarity

In the SLIMM framework, the encoding strength combines
schema familiarity and cue novelty.Novelty is defined as how
infrequently a stimulus has been experienced before,whereas
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schema familiarity is how frequently a schemahas been expe-
rienced. Furthermore, the SLIMM framework proposes that
resonance occurs in the presence of schema familiarity. How-
ever, SLIMM also suggests that the mPFC inhibits the HPC,
whereas we suggest that a combination of schema familiarity
and novelty from the mPFC and dHPC, respectively, affects
learning by controlling oscillatory activity in the HPC.

In our model, a neuromodulatory area detects novelty in
the presence of a familiar schema and modulates the strength
of learning that occurs within the representation stream. To
detect novelty, each neuron in the dHPC projects to a nov-
elty submodule with wnovelty as the starting weight. wnovelty

represents the baseline level of surprise when a new stimulus
is presented. Whenever the activity of the dHPC is updated,
the activity of the novelty submodule is the rectifiedweighted
sum of inputs from dHPC after applying winner-take-all, as
in Eqs. 3 and 4. The weights from the dHPC to the novelty
submodule are then updated with an anti-Hebbian learning
rule:

ΔW = −ηindexingxnoveltyx
T
dHPC, (7)

where W is the matrix of weights from the dHPC to nov-
elty submodule, ηindexing is the learning rate, xnovelty is the
activity of the novelty submodule, and xdHPC is the activ-
ity of neurons in the dHPC. Therefore, the weight between
an active dHPC neuron and novelty submodule will expe-
rience long-term depression and decrease the novelty score
of a stimulus after each epoch of training. Since the dHPC
uses winner-take-all, each weight from dHPC represents an
individual novelty score for each possible triplet. The activity
of the familiarity module, xfamiliarity, is similarly calculated
through the weighted sum of inputs from the mPFC after
winner-take-all, as in Eq.3. However, rather than a rectified
linear unit, we use a shifted sigmoidal transfer function:

f (x) = 1

1 + e−s(x−xshift)
, (8)

where s is the sigmoidal gain and xshift is the amount of input
shift. The shifted sigmoidal transfer function ensures that the
familiarity module requires a baseline amount of training on
a schema to be considered familiar with it and that familiar-
ity does not continue to increase in an unbounded manner
with extended exposure. The activity of the familiarity mod-
ule is thus mostly bimodal, with a very low activity if the
schema is unfamiliar and a high activity if the schema is
familiar. The effect of the sigmoidal function will be seen in
“Results.” The weights from the mPFC start with the same
value of wfam, which is a very small value close to zero that
represents low familiarity of schemas prior to training. These
weights are updated after mPFC activity is updated, using the
Hebbian learning rule from Eq.5 with ηpattern as the learning

Fig. 3 Explanation of neuromodulation in the model. Neuromodulator
activity is the product of familiarity and novelty. Familiarity comes from
long-term potentiation (LTP) of weights from the mPFC. As a schema
is exposed to the network multiple times from each epoch of training
in a trial, the mPFC neuron encoding that schema potentiates its own
weight to increase the familiarity. Novelty works in a similar way with
the dHPC, except that weights start as high values and undergo long-
term depression (LTD) with repeated exposure

rate. ηpattern is small to model the long-term consolidation
of schemas. The neuromodulator activity is then set to the
simple product of activity from the familiarity and novelty
modules:

neuromodulator = xnovelty ∗ xfamiliarity. (9)

See Fig. 3 for a visual explanation of how this value is calcu-
lated. This value determines the number of times the vHPC
and dHPCwill clamp and unclamp the representation layer in
a single trial and thus determine the number of extra epochs in
a trial that are added to a default number of epochs, ede f ault :

epochs = edefault + neuromodulator ∗ eboost. (10)

The model therefore suggests that the rapid encoding that
occurred in Tse et al. was due to increased replay of impor-
tant information during quiet waking periods. Rewarding
experiences are known to be prioritized in hippocampal
replay (Mattar and Daw 2018; Pfeiffer and Foster 2013).
We reflect this by using neuromodulator levels to determine
the number of training epochs. In this case, it is not just
the rewarding experiences that get replayed more, but also
experiences that are novel and familiar. This also follows
the idea from the SLIMM framework, suggesting that res-
onance occurs in the presence of schema familiarity. In the
SLIMM framework, resonance is defined as the neural co-
activity of two or more brain regions. The resonance in our
model does not occur within the mPFC, but instead occurs
with the HPC via the repeated clamping and unclamping
of layers in the representation stream. As in the case of
the rat experiments, the replay of novel experiences within
familiar schemas leads to faster acquisition of reward. Since
hippocampal replay involves the firing of cell sequences
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Fig. 4 The four phases of a trial of training. a In the indexing phase,
the indexing stream forms indices of activity. Additionally, the activi-
ties of the novelty and familiarity modules of the neuromodulator are
calculated, setting the ultimate activity of the neuromodulator to the
product of these values. b The free phase of CHL. c The clamped phase

of CHL. After this phase, the CHL update rule is applied. d The test
phase of a network formeasuring performance during training and unre-
warded probe tests. No learning occurs in this phase, and weight values
are static. This is the same as the CHL free phase, except that mPFC
activity is also calculated

in the hippocampus, we expect indexing to occur at this
time. While it is less plausible that the cue and context pat-
terns would continue to receive input as depicted in the
model, these areas may also be reactivated during sleep
and quiet waking replays by connections via the hippocam-
pus.

When training on a task, the network runs trials of train-
ing that consist of four phases as shown in Fig. 4. Each
trial consists of many epochs of training, the number of
which is determined by Eq.10. This mimics the high res-
onance caused by schema familiarity, as postulated in the
SLIMM framework. Each epoch consists of an indexing
phase, a CHL free phase, and a CHL clamped phase. Dur-
ing indexing, the mPFC, vHPC, and dHPC form indices
using the unsupervisedHebbian rule andwinner-take-all rule
described previously. During the free phase (Fig. 4b), the

representation stream runs freely. During the clamped phase
(Fig. 4c), the representation stream is clamped to input from
the dHPC using Eq. 3. After free and clamped phases, the
CHL learning rule is applied. Also during clamping, the AC
receives input from the vHPC also using Eq.3, which effec-
tively inhibits most of the AC neurons except for the few
that have a weight of 0 from the winning vHPC neuron.
The clamping function of random inputs to the represen-
tation stream reflects the specific role of HPC as a sparse
indexer of neocortical activity. As opposed to modeling
the clamping of the AC using another part of the network
such as the mPFC, the HPC requires an alternation between
clamped and unclamped states, whereas the mPFC activ-
ity stays constantly clamped during CHL training. At the
beginning of a trial, the number of training epochs is unde-
termined, but tentatively set at esettle epochs (Fig. 4a).During
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numTrials = 20 numEpochs = 20;
nmMax = 0;
i = 0;
trial = 0;
while trial <numTrials do

while i <numEpochs do
Pick random PA from schema;
Indexing Phase (Eqns 3,4,8,9);
if neuromodulator >nmrMax then

nmrMax = neuromodulator;
end
Indexing Weight Update (When training, Eqns 5,6,7);
CHL Free (Eqn 3);
CHL Clamped (Eqn 3);
CHL Weight Update (When training, Eqn 2);
if i==esettle then

numEpochs = ede f ault + eboost*nmMax (Eqn 10);
end
i++;

end
trial++;

end
Algorithm 1: Schema Training

this time, activity levels of the neuromodulator are tracked,
and the maximum neuromodulator activity found within this
period is used to determine the ultimate number of train-
ing epochs within the trial. After each trial, the performance
of the network is measured during the test phase (Fig. 4d)
by presenting a cue to the network and allowing the net-
work to settle on an action. For a pseudocode description
of the schema training process, refer to Algorithm 1. The
network parameters used in our network are listed in Table
1.

Table 1 Parameters used in experiment

Population sizes Learning parameters

Ncue 18 Ts 5

NmPFC 10 ηindexing .1

Nmultimodal 40 ηpattern .0001

Ncontext 25 ηCHL .001

NvHPC 5 g .001

NdHPC 40 eboost 1000

edefault 600

esettle 20

wmin 0.3

wmax 0.8

winh -10

wfam .0001

wnovelty 1

s 200

xshift .03

P 0.3

3.4 Experimental design

We validated our model by simulating the experiments in
Tse et al. (2007). We simulated a population of 20 rats. For
each individual, weights from vHPC to AC were sparsely
connected with a probability P and set to winh . Weights to
the novelty and familiarity module were all set to wnovelty

and w f amiliari t y , respectively. Remaining network weights
were initialized along a uniform distribution on the range
wmin and wmax , fully connected. The arena was discretized
into a 5x5 grid, corresponding to location in the arena for
the context pattern and action layers. Each trial consisted
of multiple epochs to account for replays during sleep and
quiet waking periods. In Tse et al. (2007), performance was
measured during training by counting the errors in a trial,
and non-rewarded probe tests (PT) were performed intermit-
tently by recording the amount of time spent searching the
correct well when given a food cue. In our model, our test of
performance was to present each flavor in a schema during
the test phase. Upon presenting the cue, the network ran in
free phase until the activity converged. In the action selection
layer, the activity of the neuron corresponding to the correct
location of the food was divided by the sum of all of the
neurons corresponding to the wells in the arena. This value
corresponds to the amount of time a rat would spend digging
in a well given a food cue.We used this value to simulate per-
formance during both training and unrewarded probe tests.
In the Tse et al. (2007) experiment, the unrewarded probe
test was conducted with a food cue and no food reward in the
correct well, thus limiting learning for those trials. Although
our experiment does not model reward representation in the
brain, we approximate unrewarded probe tests by not updat-
ing weights after cueing and running the network.

A timeline of the two replicated experiments is shown
in Fig. 1. The first experiment was to train the network on
Schema A layout for 20 trials with paired associations (PAs)
between food cue and location (Fig. 1a; PTs 1–3). On the
21st trial, two of the PAs were replaced by two new ones
(Fig. 1a). The original schema with two new PAs was trained
for one trial, and then a probe test was performed by cuing
one of the new foods and examining the output of the well
locations of the new cued PA, new non-cued PA, and other
wells (Fig. 1a; PT 4). After that, the network was split into
a control network and an HPC-lesioned group. The HPC-
lesioned group was copied with weights from the original
network and had all connections to and from the vHPC and
dHPC removed. Another probe test was performed to see
whether both groups could still recall the original schema as
well as the schema with two new PAs (Fig. 1a; PT 5). Next,
the two new PAs were replaced with yet another two new
PAs and trained on both groups for one trial. Another probe
test was performed after this (Fig. 1a; PT 6). The second
experimentwas performedon the resulting networks from the
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first experiment (Fig. 1b). For 16 trials, both conditions were
trained on an entirely new schema, Schema B, and a probe
test was conducted (Fig. 1b; PT 7). After this, the groups
returned to train and test on the original schema for 7 days,
with yet another probe test at the end (Fig. 1b; PT8).

3.5 Code availability

The code used to produce our results can be accessed at
https://github.com/fitany/SchemaNetworkBICY/.

4 Results

In our experiment, we modeled the selection of locations
associated with food wells. To perform the location selec-
tions, we presented an odor cue to the network (see Cue area
in Fig. 2), and chose a location by selecting the action neuron
with the highest activation level (see action area in Fig. 2).
Since the trajectories were not models, we did not need to
designate starting locations for the simulated rats.

To measure the model’s performance, we compared the
samples of “dig time” for cued and non-cued wells. A cued
well was defined as the well containing the food cued at the
beginning of the trial. In tests where two new wells were
introduced, the non-cued well was defined as the new well
that did not contain the cued food. This was to examine
whether the model simply preferred novel food wells, as
opposed to the correct food well. Original wells were defined
as the wells that existed in the original schema, before the
new PAs were introduced. To test the differences between
HPC-lesioned and control groups, we compared the cued
samples of both groups. While our numerical results varied
from the rat experiments, all major trends and key findings
of our model were consistent with Tse et. al.

Statistical significance was determined through the
Wilcoxon rank sum test with Bonferroni’s correction. For
performance results involving cuedversus non-cueddig time,
we compared cued and non-cued samples. Unless otherwise
noted, all findings are significant at p«.001.

4.1 Experiment 1

The goal of the first experiment was to show that new infor-
mation matching a schema can be quickly learned and that
the HPC is necessary for this learning. Figure 5a shows that
themodelwas able to gradually learn SchemaAover 20 trials
of training. Figure 5b confirms this with probe tests, which
show the proportion of neuron activity corresponding to the
correct food location given a cue. Figure 5c shows the probe
test results after training for one day on Schema A with two
new PAs added. During the test phase, the longer dig time in
the correct well shows that the new PAs were learned in just

one trial, with much more dig time in the cued wells than
non-cued wells. This matches the finding in Tse et al. that
finding that new information consistent with a preexisting
schema is learned rapidly. The Tse et al. experiment showed
approximately a 200% increase in dig time of the cued wells
versus non-cued wells, which is equivalent to the results of
our model.

Next, the role of theHPCwas examined. In Fig. 5d, e, upon
splitting into two conditions of HPC-lesioned and control,
both groups were still able to recall the original schema, as
well as the two new PAs. This suggests that the new informa-
tionhadbeen consolidatedwithin a short period andno longer
required theHPC for retrieval. Thiswas due to the neuromod-
ulator detecting when new information was present within a
familiar schema and increasing the rate of learning accord-
ingly. When training yet another two PAs on both conditions
in Fig. 5f, the HPC-lesioned group was unable to learn at all,
while the control group was still able to learn. This suggests
that the HPC was responsible for driving the index-based
clamping and unclamping of the output layer, as CHLmech-
anism was unable to update the weights properly. The same
finding of HPC-dependent learning was observed in the orig-
inal rat experiments. However, the original rat experiments
showed dig times of cued, non-cued, and original wells at
chance level, whereas our model shows dig times of far less
than chance, still largely preferring the original food wells.

Figure 6 shows the weights of the network after training
on the first experiment. Our results for the first experiment
were able to capture most of the effects seen in Tse et al.
(2007). We were able to show that information is acquired
rapidlywhen consistent with a prior schema and that theHPC
is necessary for acquisition.

4.2 Experiment 2

The purpose of the second experiment was to test whether
multiple schemas could be learned by the same network and
whether theHPCwasnecessary for this. Figure 7Ashows that
the control group was able to learn Schema B. However, the
HPC-lesioned group was unable to learn, staying at chance
levels the entire time. This is shown again in the probe tests
in Fig. 7b. When the HPC-lesioned model returned to retrain
on Schema A in Fig. 7c, it had good performance the entire
time and retained the information learned prior to surgery, but
did not improve performance beyond what it had learned in
Experiment 1. The control group displayed aminute decrease
in performance of Schema A at the beginning, but quickly
regained prior performance. The decrease was due to small
overlaps in the gating patterns from vHPC. This is confirmed
again in the probe tests in Fig. 7d.

Figure 8 shows the weights of the network in the control
condition after training on the second experiment. The results
show that our network is able to learn multiple schemas in
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Fig. 5 Results of replicating the first experiment of Tse et al. Ourmodel
equates dig time in a food well from the original Tse et al. experiment
with the proportion of activity in the action neuron corresponding to the
location of the correct food well after cueing the network with a food
flavor. a The dig time performance over 20 trials, showing a gradual
increase. b Probe tests of trials 2, 9, 4, and 16, showing the proportion
of activity of the correct well given a food cue compared to activity of
the incorrect wells. In the case of our simulations, these values are the
same as in a, but at specific trials to best correspond with the original
rat experiments. c Probe test after training the new PAs for 1 day, in

which one of the new pairs is cued and the activities of the correct well,
well of the other new pair, and original Schema A wells are compared.
The new PAs were learned within one trial, as the dig time for the cued
pair was significantly higher than the rest. d Probe tests of Schema A
after splitting into HPC-lesioned and control groups. Both conditions
retained knowledge of the schema. e Probe tests of the new PAs after
splitting into HPC-lesioned and control groups. Both groups recalled
the new PAs equally. f Probe tests of Schema A after training another
two new PAs. The HPC group could not learn

succession, without forgetting prior schemas. We were thus
able to match the effect seen in Tse et al. (2007). A small
difference is that our network retained information about
Schema A much better than their experiments for both of
their HPC-lesioned and control groups. While the rat exper-
iments had dig times of 50 percent for the correct well in
HPC-lesioned and control conditions, our model maintained
performance of closer to the original 90% from before train-
ing on the new schema.

4.3 Neural activity

To gain a better understanding of the network activity, we
plotted the neuron traces of the mPFC, vHPC, and dHPC
before winner-take-all was applied. Figure 9 shows the neu-
ron activities for the first two experiments, with Schema A
and new PAs for Experiment 1 and Schema B with a retrain-
ing of Schema A for Experiment 2. Each colored line in the
figure represents the activity of a single neuron in a single
simulated rat. The black vertical lines separate epochs into

trials. The neuron traces show that themPFC chooses a single
neuron to represent Schema A and continues to strengthen
its weights as it is trained. When new PAs are introduced, the
same neuron is still active, but decreases in activity. When
Schema B is introduced at the beginning of Experiment 1,
a different neuron becomes active, and when Schema A is
reintroduced immediately after training Schema B, the origi-
nal winning neuron returns. By viewing the spacing between
black vertical lines, we see that the large spacing for trials
with new PAs indicates that more epochs of training occur
during those times. This is due to the novelty and famil-
iarity detection from the neuromodulator. vHPC activity in
Fig. 9B shows the same effect, except that the weights of all
of the neurons together increase and decrease, as they are
all affected by the rising and falling activity levels of mPFC.
dHPC works similarly, as shown in Fig. 9, although different
winners are chosen at every epoch. For the dHPC, we display
neural traces for the first 100 epochs in the first trial epochs,
due to the frequent switching of winners.
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Fig. 6 Weight matrices of the network of one simulated rat after sim-
ulating all of the first experiment. Rows represent postsynaptic layers
and columns represent presynaptic layers. Weights from the context
pattern to mPFC show the development of a distinct schema pattern
encoded with stronger weights where the wells are located. Weights
from the mPFC to the AC show the effect of the gating, in which the
mPFC neuron representing Schema A is associated with a set of neu-
rons in the AC. Weights from the AC to action layer show that the

actions are dependent on activity from select AC neurons, suggesting
that theACneurons are learning specific features useful for action selec-
tion. Weights going from the vHPC, cue, and action to the dHPC are
displayed in one matrix to show clear encodings of context, cue, and
action triplets with one neuron from each of the three areas. Weights
from mPFC to vHPC show that there is not necessarily a one-to-one
mapping from a winning mPFC neuron to a vHPC neuron, but that the
schema information is transferred in a distributed manner

To show the effects of schema familiarity and novelty
on neuromodulator activity, Fig. 10 displays the activities of
the familiarity module, novelty module, and neuromodulator
over the first 21 trials of Experiment 1. Due to the Hebbian
learning of connections from the mPFC to the familiarity
module, familiarity increases over time. Since it uses a sig-
moidal transfer function, the increase is step-like, increasing
from 0 to 1 swiftly. Novelty starts high when Schema A is
introduced, and quickly drops to 0 due to the anti-Hebbian
learning rule. When two new PAs are introduced at trial 21,
novelty returns to a high state. Taking the product of novelty
and familiarity, the activity of the neuromodulator increases
only when familiarity and novelty are high. Since the activ-
ity of the neuromodulator is proportional to the number of
training epochs in a trial, this leads to the desired behavior
of increased learning when new PAs are introduced to an
existing schema.

We also tracked the activity of the neuromodulator for
all experiments. Figure 11A shows the number of training
epochs in each trial of the first and second experiments. As

a reminder, each epoch within a trial consists of an indexing
phase, a free phase, and a clamped phase. The first 21 trials
of the first experiment are on the left of the black vertical
line, and the remaining trials to the right of the vertical line
are for the second experiment. Each individual colored line
represents the neuromodulator activity of a single run, with
20 runs total. When new PAs were introduced on trial 21
of the first experiment, the familiarity of Schema A multi-
plied by the novelty of the new stimuli caused a sharp spike
in neuromodulator activity, increasing the number of epochs
for those trials. The neuromodulator activity for the second
experiment remained low, as there were no new PAs intro-
duced. Figure 11B shows the index of the winning mPFC
neuron in each trial, with a different colored line for each
individual run. Every time the schema changes, the index of
the winning neuron changes accordingly.
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Fig. 7 Results of replicating the second experiment of Tse et al. a The
performance over 16 trials of training Schema B. The control group was
able to learn the new schema, while the HPC group was not. b Probe
test after training Schema B, confirming part A. c Performance over

seven trials of retraining on Schema A. Both groups retained Schema
A, though the control group recovered from a very minimal forgetting
of the schema initially. d Probe test after retraining on Schema A, con-
firming part C

4.4 Effects of neuromodulation

To study how the neuromodulator influences learning, we
removed connections to and from the novelty and familiarity
modules in the network. Rather than boosting the number
of epochs using neuromodulator activity, we used a constant
number of epochs for each trial. We repeated the first part of
Experiment 1 with the same number of epochs for every trial,
trying different values for the constant number of epochs. As
before, the network was trained on Schema A for 20 trials
and training a new PA was introduced on the 21st trial. As
shown in Fig. 12, training with more epochs per trial leads
to faster learning and better performance on the new PA. It
is therefore not required to have a neuromodulator for rapid
learning of new information. However, the number of total
epochs over all trials can be greatly reduced if the model
is able to detect novelty within the schema and adjust the
learning accordingly. The smaller number of epochs reduces
the overall learning time of the experiment. Compared to
the conditions with a flat number of epochs per trial, we
found that our original network with the neuromodulator had
better performance on the new PAs than the other successful

conditions, despite having fewer total epochs. Itwas therefore
able to conserve network training time overall.

4.5 Effects of HPC sparsity on catastrophic
forgetting

Wehypothesized that catastrophic forgetting couldbe avoided
due to the sparsity of weights between the vHPC and AC.
Therefore, we investigated the effects of varying the sparsity,
from a value of P=0, which would be effectively lesioning
all connections, to P=1, a dense all-to-all connectivity. We
trained the network on Schemas A, B, and C in succession
for ten trials each and recorded performance on each schema
throughout all 30 trials. Results are presented in Fig. 13.
For low values of P, there are insufficient neurons to learn
any representations. For high values of P, each schema is
learned with high performance, but quickly forgotten when
a new schema is introduced. Furthermore, as more schemas
are learned, the recall performance of all previous schemas
drops. This shows that the capacity of schemas able to be
stored may also be dependent on sparsity level. Intermediate
sparsity levels strike a balance, learning schemas to a satis-
factory performance without catastrophic forgetting.
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Fig. 8 Weightmatrices of the control network after simulating all of the
second experiment. Rows represent postsynaptic layers and columns
represent presynaptic layers. Weights from the context pattern to the
mPFC now show two distinct schemas, with stronger patterns than seen

in the first experiment. Weights from mPFC to the AC show two sets
of gating patterns. Weights to the dHPC now show twice the amount
of triplets as before, reflecting that triplets from two schemas are being
encoded

4.6 Effects of mPFC size on network capacity of
schemas

The mPFC recognizes schemas, providing contextual infor-
mation to the vHPC in the indexing stream and AC in the
representation. We thus examine the effects of varying the
number of neurons in themPFCwhen training three schemas
in succession as before. Results from Fig. 14 show that if the
number of mPFC neurons exceeds the number of schemas
being encoded, the model performs as in previous experi-
ments. However, if there are an insufficient number of mPFC
neurons, we get the surprising result that catastrophic forget-
ting decreases. When there is only one neuron in the mPFC,
there is no catastrophic forgetting at all. This is due to the
fact that the three schemas have no overlap with each other,
such that storing all of the information in a single schema
would not destroy any information. We then repeated this
experiment with three schemas having significant overlaps.
In this case, all three schemas shared the same set of flavors,
and the second and third schemas each had one overlapping
foodwell locationwith the first schema. Figure 15 shows that
this causes catastrophic forgetting of the first schema due to
the overlaps. Taken together, this suggests that increasing

the number of mPFC neurons decreases the amount of catas-
trophic forgetting that occurs.

5 Discussion

Accounting for the results of Tse et al. (2007), we showed
that our biologically plausible neural network was able to
learn schemas over time and quickly assimilate new infor-
mation if it was consistent with a prior schema. Furthermore,
the components of our network were consistent with the
functionality of brain areas in the Tse et al. experiments,
with HPC dependence for schema learning and updating,
and mPFC dependence for recognizing context and modu-
lating learning accordingly. The learning was done through
an indexing stream in which the mPFC and HPC projected
context-dependent patterns onto the representation stream,
and the rapid encoding was done by enhancing replay activ-
ity of novel and familiar information. The network was also
able to learn multiple schemas without catastrophic forget-
ting, by maintaining separate sets of AC neurons for tasks
within different schemas.
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Fig. 9 Neural activity for the network of a single simulated rat while
performing the first and second experiments combined. Each colored
line represents the activity of one neuron. Each vertical black line rep-
resents the separation of epochs into trials. Activity is measured before
winner-take-all is applied. a The mPFC activities for the first and sec-
ond experiments are shown in sequence, with the training of Schema
A and two instances of new PAs for the first experiment and the train-
ing of Schema B and return of Schema A for the second experiment.
When training on Schema A, one mPFC neuron is consistently chosen
as winner, as its weight values increase over time. When new PAs are
introduced, the winner remains the same, but decreases in activity. At
the start of Experiment 2, Schema B is introduced and a new mPFC

neuron wins. The number of epochs greatly increases due to the nov-
elty. When Schema A is retrained, the neuron previously associated
with schema A becomes active again. b The neurons in vHPC follow
the same general trend as the mPFC neurons. However, all neurons
increase and decrease together, as they all take input from the winning
mPFC neuron. c Activity of the dHPC neurons for the first 100 epochs
of the first trial is shown. As the density of switching of dHPC winners
occurs at every epoch rather than at every trial, it is necessary to display
the activity at the epoch level. At each epoch, a different dHPC neuron
is selected to have its weights increase, as a different triplet is present
each time. The activities of winning neurons gradually increase for 40
epochs, remaining stable afterward

5.1 Hippocampal indexing

The network highlighted diverse roles of indexing by the
HPC. Eichenbaum (2017) proposed that specific memories
are represented in the dHPC whereas contextual informa-
tion is represented in the vHPC. Combined with indexing
theory, our model showed that indexing separates represen-
tations of objects, spatial layouts and tasks by the contexts in
which they belong. This modularity makes it less likely that
learning new information in new contexts would overwrite
previously learned information in old contexts. The indexing
of the dorsal HPC is necessary for driving the processes that
transfer information to long-term storage.

The indexing behavior is comparable to a recent approach
to avoiding catastrophic forgetting by Nakano and Hattori
(2017), in which the intermediate layers of a deep neural
network are gated by patterns that differ by context. A paper
by Masse et al. (2018) has the similar idea of using CHL
as a plausible deep representation of information, and apply-
ing “pseudopatterns” alongside their regular training patterns
for better separation. Our experiments explain in more depth
how these patterns are formed and employed throughout dif-

ferent stages of the learning process. The central location of
the hippocampus makes it a likely candidate for effecting
context-dependent gating within the network. Its connec-
tions to the mPFC allow the formation of context-dependent
indices, and its wide connectivity to the whole neocortex
gives it the ability to gate information at many levels of rep-
resentation.

5.2 Neuromodulation and novelty detection

The gating of patterns by the HPC is not employed evenly
at all times, but depends heavily on external factors such
as novelty, uncertainty, and reward. Therefore, our model
predicts that gating of context information is controlled by
neuromodulatory areas. This could explain how the brain
controls phases of learning in such a flexible manner. Our
model suggests that schema familiarity could be detected
by the mPFC and novelty could be detected by the HPC.
We propose that neuromodulation monitors these signals
and amplifies learning and encoding of new (i.e., novel or
unfamiliar) information while sparing old information. Our
simulated neuromodulator may have biological correlates in
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Fig. 10 Combining familiarity and novelty for neuromodulation.
Familiarity, novelty, and neuromodulator are updated after each epoch
of training, with their final levels at the end of each trial shown in this
graph. a Familiarity increases as the network is trained on a schema.
Due to the sigmoidal transfer function, familiarity activity is step-like,
going from unfamiliar to familiar over some training. b Novelty starts

at a high value whenever there are new PAs, which occurs on the first
trial when the schema is introduced, and on the 21st trial when two PAs
are replaced. cAt each trial, the product of familiarity and novelty leads
to an increase in activity when schema familiarity is high and novelty
is high

Fig. 11 Neuromodulator activity and winning schemas. Each colored
line represents the activity of the neuromodulator from an individual
simulated rat out of 20. a Neuromodulator activity expressed by the
number of epochs trained per trial. The vertical black line separates
experiments 1 and 2. On trial 21, the number of epochs rises sharply
due to the combination of familiar schema and novel stimulus. b Index
of winning mPFC neuron in each trial of experiments 1 and 2. The y-
axis represents the indices of the neurons in mPFC. By tracing a single
colored line, the winning mPFC neuron can be tracked throughout the

entirety of the two experiments. Since only one neuron is active in the
winner-take-all selection, the indices also correspond to the encoding
of the current context pattern as a single schema. The winning neuron
was determined as the neuron with the highest activity in the mPFC.
The index switches clearly each time the context pattern switches. In
experiment 2, when returning to the original schema to check for reten-
tion at trial 38, the winning schema returns to the original index from
experiment 1
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Fig. 12 a Performances of each condition. The blue line represents the
original network and the remaining lines use a flat number of epochs
as indicated in the legend. All conditions are able to learn the schema,
but with different learning rates. b Probe tests of each condition after
introducing a new PA. The average number of epochs for each trial is
displayed in parentheses. The performance of the probe test increases

as more epochs are trained per trial. However, the original network
can get a performance equivalent to the other conditions, but with only
13,875 epochs of training as opposed to 16,800 for the condition with
800 epochs per trial and 33,600 for the condition with 1600 epochs per
trial

Fig. 13 Recall performance when training three schemas are learned
in succession for ten trials each, with different vHPC sparsity values of
P. Each colored line represents the performance of one schema. Perfor-
mance for each schema starts at 0 and remains low until the schema is

actually trained on the network. When P=0, no learning occurs. When
P=1, each schema is learned but forgotten when a new schema is intro-
duced. Intermediate levels of sparsity make a trade-off between these
two extremes

the locus coeruleus, as the LC reacts to sudden changes in
schemas and causes changes in theta oscillations within the
HPC. However, the combination of novelty and familiar-
ity is also reminiscent of the basal forebrain functionality

suggested by Yu and Dayan (2005), in that the level of uncer-
tainty is framed within a specific context. Other areas such
as the dopaminergic ventral tegmental area (VTA) may be
involved in neuromodulatory gating aswell, as it has inbound
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Fig. 14 Performancewhen training three distinct schemas in succession
for 10 trials each, with different sizes of mPFC. When mPFC size =
1, no catastrophic forgetting occurs, as seen by how performance of
each schema remains high even as other schemas are introduced. When
there are sufficientmPFC neurons to represent the schemas, the network
behaves as in previous experiments

Fig. 15 Performance when training three schemas in succession for ten
trials each, with different sizes of mPFC. The second and third schemas
use the same flavors as the first schema, and each has one overlapping
food well location with the first schema. Now with overlap, having an
mPFC size of 1 is inadequate for learning the overlapping schemas

and outbound connections with the hippocampus that con-
trol the speed of learning according to reward and novelty
(Otmakhova et al. 2013). It is important to note that the speed
of learning in our model is defined not by the number of
epochs used for training, but by the number of epochs that
occur within a day of learning. This is meant to approximate
how hippocampal replays may increase for salient informa-
tion.

5.3 Interactions between themedial prefrontal
cortex and hippocampus

There are differing opinions on how interaction between the
mPFC and HPC is involved in context-dependent tasks. The
SLIMMmodel suggests a competitive relationship,with acti-
vation of the mPFC inhibiting the HPC when a stimulus
is congruent with a prior schema. On the other hand, Pre-
ston and Eichenbaum (2013) suggest a more cooperative
interaction, with the mPFC drawing specific memories from
the vHPC, and in turn influencing the dHPC via entorhinal
inputs. As themPFC is also known tomediate attention shift-
ing in context-dependent tasks (Birrell and Brown 2000), it
is likely that shifts in schemas cause the mPFC to change
the activity of the HPC. In our experiment, the presence of
new PAs within an existing schema should require both the
mPFC and HPC to express the familiarity of the schema and
novelty of the new PAs. In our model, the main roles of the
mPFC are to provide contextual input to the representation
stream and apply top down control of the HPC to change
which specific neurons are active in the HPC to effectively
separate tasks by schema. To further align with mPFC func-
tions, future work should consider a distributed encoding in
the mPFC, which could better represent overlapping infor-
mation between schemas. It is also important to note that
no direct anatomical connections exist from the mPFC and
HPC and instead are routed through the thalamus. Future
models including the thalamus could further test the theory
proposed by Eichenbaum (2017) that the thalamus controls
information flow between the mPFC and HPC.

5.4 Relevance to complex spatial navigation

Our model builds spatial maps of the environment that incor-
porate contextual information. As place cells are highly sen-
sitive to context (Smith andMizumori 2006), we demonstrate
how associations of context and place change navigational
behavior. Furthermore, experimental literature shows that the
spatial selectivity of place cells decreases along the dorsal-
ventral axis of the HPC (Jung et al. 1994). By extending the
role of the dorsal–ventral axis as a hierarchical indexing area,
we see how navigational decisions are affected by different
schemas.

In addition, the use of the neuromodulatory area to
increase the training of novel information matches obser-
vations that neuromodulation shapes and prioritizes replay
events during consolidation (Atherton et al. 2015; Hasselmo
1999). This consolidation is important for decisionmaking in
complex spatial navigation tasks and is reflected in themodel
results. By combining the familiarity of context and nov-
elty of index neurons in the hippocampus, the model quickly
learns the locations associated with the cues for better navi-
gation.
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5.5 Applications for future studies

By uniting the theories of hippocampal indexing and inter-
actions between the mPFC and HPC, we generate new and
testable hypotheses that can be validated experimentally. By
deactivating the LC or BF, we can test the effects of neu-
romodulation on the time it takes to learn the Tse et al.
(2007) task, and discover which specific areas are applying
the neuromodulation. We also expect that severing connec-
tions from the mPFC to the HPC would cause catastrophic
forgetting of the tasks, as intermediate representations would
not be properly gated. It may also be possible to lesion
the HPC and project artificial gating patterns on the neo-
cortical areas storing intermediate representations to see if
this prevents catastrophic forgetting. In fMRI and behavioral
experiments, activity in the HPC and vmPFC is observed
to correlate with different stages of schema-consistent and
schema-inconsistent encoding (van Kesteren et al. 2010).
Following this idea, we may be able to study whether hip-
pocampal activity along the dorsal–ventral axis supports the
idea of hierarchical indexing based on hierarchical schemas.
fMRI experiments may also yield insights on what brain
areas may be implementing the context pattern, cue, AC,
and action. The context pattern could be another region of
the prefrontal cortex, upstream of the mPFC. The cue rep-
resents a main input and could correspond to the thalamus.
The AC could be separated into more specific areas in the
parietal lobe. The action could be an area controlling move-
ment, such as the striatum or premotor cortex. Yet another
possible benefit of behavioral and fMRI studies could be
to learn how human brain prevents catastrophic forgetting.
For instance, human subjects could be trained on multiple
overlapping tasks to observe whether training each within a
separate schema leads to better separation of tasks.

5.6 Applications to artificial intelligence and
machine learning

In addition to the neurobiological implications of our model,
our work could have practical applications to a range of tasks
in artificial intelligence, machine learning, and robotics. We
have recently applied our model architecture to a robotic
task. Rather than learning the locations of food, a robot runs
the model to learn the general layout of objects in a house-
hold. Different schemas, which are associated with different
rooms, are formed by groups of objects typically found in a
room. This is used to aid in human robot interaction by facil-
itating efficient context-dependent behavior. For example, if
a person wants a banana, the robot knows that bananas are
typically found in the kitchen, rather than in an office. Unlike
our current model, which does not plan paths to objects, our
robot demonstration shows how schemas lead to efficient tra-
jectories when retrieving items.

In the future,wehope to test ourmodel on a variety of other
datasets, such as word corpuses for the formation of seman-
tic schemas in natural language processing. The increased
complexity of the environment may require the addition of
more multimodal association layers in the network, which
would test the scalability of context-based gating.Rather than
having just a vHPC and dHPC, themodel would includemul-
tiple HPC layers along the dorsal–ventral axis, one for each
of the layers in the representation stream. The use of more
layers presents the possibility of starting from raw visual
input as opposed to labeled objects, for an entirely end-to-
end approach to context-based task learning.
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