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Abstract
The flow of information between different regions of the cortex is fundamental for brain function. Researchers use causality
detection techniques, such as Granger causality, to infer connectivity among brain areas from time series. Generalized partial
directed coherence (GPDC) is a frequency domain linearmethod based on vector autoregressivemodel, which has been applied
in electroencephalography, local field potential, and blood oxygenation level-dependent signals. Despite its widespread usage,
previous attempts to validate GPDC use oversimplified simulated data, which do not reflect the nonlinearities and network
couplings present in biological signals. In this work, we evaluated the GPDC performance when applied to simulated LFP
signals, i.e., generated from networks of spiking neuronal models. We created three models, each containing five interacting
networks, and evaluated whether the GPDC method could accurately detect network couplings. When using a stronger
coupling, we showed that GPDC correctly detects all existing connections from simulated LFP signals in the three models,
without false positives. Varying the coupling strength between networks, by changing the number of connections or synaptic
strengths, and adding noise in the times series, altered the receiver operating characteristic (ROC) curve, ranging from perfect
to chance level retrieval. We also showed that GPDC values correlated with coupling strength, indicating that GPDC values
can provide useful information regarding coupling strength. These results reinforce that GPDC can be used to detect causality
relationships over neural signals.

Keywords Connectivity · Causality · Neuronal networks · Partial directed coherence

1 Introduction

Communication between cortical neuronal networks is fun-
damental for cognitive (Campo et al. 2015) and sensori-
motor (Brovelli et al. 2004; Seidler et al. 2015) functions.
A current challenge in neuroscience is how to define the
pathways of neuronal communication based on synaptic
connections and information flow between areas. The possi-
bility of recording the local field potentials (LFPs) and the
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activity of hundreds of individual neurons enables the use
of statistical methods to infer these communication patterns.
Brain connectivity can be described as: (i) structural, refer-
ring to anatomical connections between pairs of neurons or
brain regions; (ii) functional, denoting the characterization of
temporal correlations between electrical signals from brain
regions (Goñi et al. 2014); and (iii) effective, correspond-
ing to the inference of information flow direction or causal
relationships between recorded brain signals (Rubinov and
Sporns 2010; Bullmore and Sporns 2009; Friston 2011).

Granger causality (GC) (Granger 1969) analysis is a
well-established method for effective connectivity infer-
ence that has been extensively applied in neuroscience
(Bernasconi and König 1999; Zhang et al. 2012). A time
series X is considered to Granger-cause a time series Y if
past information from X helps to predict the future of Y
better than when using past information only from Y (Bar-
nett and Seth 2014). The original GC is a time domain
method of effective connectivity and does not provide fre-
quency information about the interactions between brain
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regions. Some frequency domain counterparts of GC are
spectralGC (Geweke 1982), directed transfer function (DTF)
(Kaminski and Blinowska 1991), and partial directed coher-
ence (PDC) (Baccalá and Sameshima 2001). DTF and
spectral GC detect both direct and indirect causal rela-
tionships between time series. PDC has the advantage of
detecting only direct connections (Baccalá and Sameshima
2001), but its values depend on the signal amplitude. Gen-
eralized partial directed coherence (GPDC) (Baccalá et al.
2007) solves this problem by changing the normalization
factor from PDC. GPDC has been applied to evaluate infor-
mation flow from EEG signals (Omidvarnia et al. 2014; Hu
et al. 2017), to identify the directional coupling in LFPs from
macaqueV4 area (Hoerzer et al. 2010) and to verify the effec-
tive connectivity from fMRI signals (Sato et al. 2009; Ning
et al. 2018).

Several studies evaluated connectivity methods using
electrophysiological data (Omidvarnia et al. 2014; Cadotte
et al. 2010; Youssofzadeh et al. 2016; Gao et al. 2015;
Sato et al. 2009) and autoregressive models (Baccalá and
Sameshima 2001; Faes and Nollo 2010; Seth 2010; Papana
et al. 2013; Sommariva et al. 2017). On the one hand, gauging
the method using electrophysiological data poses a chal-
lenge since the actual structural connectivity between areas is
unknown. On the other hand, autoregressive models assume
data to be linear and stationary, conditions that may be vio-
lated when dealing with brain signals.

In fact, very little is known about the performance of
the GPDC when it is applied to infer effective connectivity
between brain signals. For example, how does the number of
false positives depend on the coupling strengths or the num-
ber of physical connections? This question is central for the
viability of these methods of real brain data analysis.

A possible solution would be using simulations of spik-
ing neuronal networks based on the cortical architecture.
They can provide simulated LFP-like signals, permitting
the evaluation of these methods when they are applied
to signals with characteristics of electrophysiological data.
Moreover, since we can control the network behavior and
connectivity pattern, we can relate the causal connections
inferred by the methods with connectivity characteristics,
such as the presence of physical connections and connection
strengths.

In this work, we evaluate the use of GPDC to infer effec-
tive connections between networks in models of spiking
neuronal networks from synthetic LFP signals, using sev-
eral connectivity configurations. We also analyze the rate of
true and false positives for different coupling strengths and
different levels of noise in the LFP signals. Finally, we eval-
uate the relationship between GPDC values and coupling
strength.

2 Methods

2.1 Neuronal model

We created the neuronal network model using Izhikevich
neurons (Izhikevich 2003), where a neuron i is represented
by equations:

v̇i = 0.04v2i + 5vi + 140 − ui +
∑

k ∈ presyn

Ii,k(t), (1)

u̇i = a(bvi − ui ), (2)

Ii,k(t) = gi,k(t)(Ek − vi ), (3)

with the spiking condition that resets v(t) → c and
u(t) → u(t) + d when v(t) reaches 30mV. We mod-
eled excitatory cells as regular spiking (RS) and inhibitory
cells as fast spiking (FS). For each neuron i , we used
the parameters (a, b, c, d) = (0.018, 0.18,− 65.2, 7.8) +
(0.004, 0.4, 0.4, 0.4) · ri for RS cells and (a, b, c, d) =
(0.08, 0.18,− 65.2, 1.8) + (0.04, 0.4, 0.4, 0.4) · ri for FS
cells, where ri is randomly drawn from a uniform distribution
from 0 to 1 (Izhikevich 2003; Tomov et al. 2014). Ii,k is the
input current from each presynaptic neuron k, Ek the rever-
sal potential (0mV for excitatory and −80mV for inhibitory
connections), and gi,k the synaptic conductance, given by:

gi,k = gmax

Gpeak
G(t) (4)

where,

G̈i + αĠi + βGi = gk
∑

j

xi j (t), (5)

and

α = τ1 + τ2

τ1τ2
, β = 1

τ1τ2
. (6)

G(t) is the synaptic conductance waveform, Gpeak the
maximum value of G(t), gmax = 1µS the maximum synap-
tic conductance value, and τ1 and τ2 are the decay and rise
time constants, respectively. When τ1 = τ2, G(t) takes the
form of an alpha function, otherwise it has the dual expo-
nential form (Koch and Segev 1988). xi j (t) represents the
arriving spikes at neuron i from each neuron j and behaves
like a delta function δ(t − tq), where tq is the arrival time of
spike q (Sterratt et al. 2011). The dimensionless conductance
increment gk is the synaptic weight and depends on the type
of the presynaptic neuron k (excitatory or inhibitory) and is
divided by the integration time step for normalization. These
equations represent channels as dynamical systemswhich are
perturbed by synaptic inputs, permitting the efficient compu-
tation of the synaptic conductances (Koch and Segev 1988).
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Table 1 Synaptic conductance increments and time constants (Eqs. 5
and 6)

Synapses gE gI τ1 (ms) τ2 (ms)

AMPArec 0.015 0.03 5 5

AMPAext 1.2 1.1 5 5

GABA 0.06 0.07 6 1

The subscripts E and I indicate excitatory and inhibitory postsynaptic
neurons, respectively

The advantage of this method is that the influence of each
spike arriving at the synapseon thepostsynaptic neuronneeds
to be considered only at its arrival time. Table 1 shows the
synaptic weights and time constants for each synaptic type.
We integrated the equations using Euler method and a time
step of 0.05ms and used Matlab to implement and simulate
the model.

Our simulations comprise five networks, each represent-
ing local circuitry from different regions of the cortex, with
excitatory and inhibitory cells. These local networks are
connected among themselves by the so called long-range
connections.

In the local network, we simulated connections from exci-
tatory to excitatory neurons, from excitatory to inhibitory
neurons, from inhibitory to excitatory neurons and from
inhibitory to inhibitory neurons. Each neuron, excitatory or
inhibitory, receives an independent random external input,
modeled as a 10Hz independent Poisson spike generator.
This input simulates random fluctuations of the membrane
potential due to excitatory synapses arriving at each neuron
from connections that were not specifically simulated.

Synapses among neurons within the same network have
random propagation delays extracted from a uniform distri-
bution in the range DE→E = [1 − 10ms] and DE→I =
[1 − −5ms], and inhibitory connections have fixed delays
DI→E = DI→I = 1ms, where E and I represent excitatory
and inhibitory neurons, respectively, and the arrow indicates
the direction of the connection. Long-range connections have
delays of 15 ms (Izhikevich 2006).

The complete network model consisted of five local net-
works with 800 excitatory and 200 inhibitory neurons each.
Neurons within local networks were randomly connected,
with a fixed indegree for each type of the connection (Akam
and Kullmann 2010). Table 2 shows the number of connec-
tions from presynaptic neurons from the same network for
each of the five networks. We choose a different number
of connections for each network to create different network
behaviors.

Connections between networks were modeled by long-
range connections, which were always excitatory (San-
cristóbal et al. 2014) and could target both excitatory and
inhibitory neurons. Unless otherwise noted, each neuron

Table 2 Number of presynaptic neurons for each postsynaptic neuron
in the networks created

Network QE→E QE→I QI→E QI→I

1 40 40 20 10

2 50 30 20 10

3 40 30 20 10

4 60 40 20 10

5 80 75 30 20

The subscript represents the type of the connection

received 10 connections with synaptic weight 0.015 from
random neurons from each source network.

2.2 LFP signal

Local field potentials (LFP) are often used to record local cor-
tical activity and are obtained after low-pass filtering extra-
cellular electrical potential signals captured by implanted
electrodes (Lindén et al. 2011). Pyramidal neurons contribute
predominantly to LFP signals due to the relative open-field
geometrical arrangement of their long apical dendrites, with
excitatory and inhibitory currents substantially spaced along
these dendrites (Mazzoni et al. 2011; Cavallari et al. 2014;
Buzsáki et al. 2012). There are several ways to simulate
LFP signals in networks of phenomenological neuronalmod-
els (Mazzoni et al. 2015). We approximated the LFP signals
as the resultant from current dipoles originated from synaptic
currents flowing into/from pyramidal neurons. We used the
sum of absolute values of AMPA and GABA currents act-
ing on excitatory neurons (Sancristóbal et al. 2014; Mazzoni
et al. 2008):

LFP = Re

NE

(
NE∑

i

∣∣Ii,AMPA(t)
∣∣ +

NE∑

i

∣∣Ii,GABA(t)
∣∣
)

, (7)

where NE is the number of excitatory neurons in the net-
work and Re denotes the resistance of an electrode used for
recording extracellular activity, defined as 1 MΩ . The terms∣∣Ii,AMPA(t)

∣∣ and
∣∣Ii,GABA(t)

∣∣ are the total AMPA excita-
tory and GABA inhibitory currents, respectively. The sample
average of the signal generated was subtracted from the orig-
inal signal generating a zero-mean time series. The resultant
signal was low-pass filtered at 200Hz to mitigate aliasing
effects caused by the downsampling used to lower the sam-
ple rate from 20kHz to 200Hz. Finally, we applied a linear
detrending to the signal (Matias et al. 2014).

To compute the power spectral density (PSD), we used the
multitaper method (Thomson 1982), implemented by Mat-
lab function pmtm. In this method, the PSD is the average
of K = 7 modified power spectra obtained through orthog-
onal Slepian taper functions as the window. We considered
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samples of LFPwith 1000 data points, representing 5 seconds
of activity in the neuronal network.

2.3 Partial directed coherence

Partial directed coherence (PDC), introduced by Baccalá and
Sameshima (Baccalá and Sameshima 2001), is a multivari-
ate frequency domain measure of the directed relationship
between pairs of time series. PDC is not scaling invariant
and changes in time series amplitude can lead to substantial
changes in PDC values (Baccalá and Sameshima 2001). To
overcome this deficiency, the generalized PDC (GPDC) was
introduced (Baccalá et al. 2007).

Let x(n) = [x1(n) · · · xN (n)]T be a set of simultaneously
acquired time series. The vector autoregressive (VAR)model
for x(n) is defined as:

x(n) =
p∑

k=1

Akx(n − k) + w(n) (8)

where p is the VAR model order. Ak are coefficient matri-
ces, where element a(k)

i j describes the influence of x j (n − k)
on xi (n). w(n) is a zero-mean innovation process composed
of white uncorrelated noises with covariance matrix �. The
choice of p is set according to Akaike’s information criterion
(AIC) (Akaike 1974), given by

AIC(p) = n log(det(Σ)) + 2pN 2, (9)

where n is the number of data points and N is the number of
time series (Kamiński and Liang 2005). The GPDC from the
time series x j to the time series xi at frequencyλ is defined as,

π i j (λ) �
1
σi
Ai j (λ)

√∑N
k=1

1
σ 2
k
Ak j (λ)A

∗
k j (λ)

, (10)

where

Ai j (λ) =
{
1 − ∑p

k=1 Ai j,ke−2πλki, if i = j

−∑p
k=1 Ai j,ke−2πλki, if i �= j,

(11)

where−2πλki is a complex number and σ 2
i refers to the vari-

ance of the innovation process wi (n) (Baccalá et al. 2007).
The VARmodel was estimated by the method of ordinary

least squares (OLS) (Hamilton 1994). AIC indicated that the
best model order p that was less than or equal to 10.

2.4 Statistical significance

All simulations used five networks, generating five LFP sig-
nals. We executed 10 trials for each simulated network.

We computed the effective connectivity between neuronal
networks using the average GPDC over trials, for all fre-
quencies.

Toobtain a threshold for statistical significance of the aver-
age GPDC, we used a nonparametric bootstrap algorithm.
With the VAR models for the LFP signals for each network,
we resampled the residuals. To test the influence from net-
work j to network i , wemade the coefficients Ai, j,k from the
VAR models equal to zero, for all values of k, while keeping
the other coefficients unchanged. With the resampled resid-
uals and the coefficients, we simulated a bootstrapped time
series under null hypothesis of no causality fromnetwork j to
network i . To generate a bootstrap sample, we repeated this
process for each trial and computed their average GPDC.
We generated 10000 bootstrap samples for each evaluated
connection (Sato et al. 2009).

The critical value of the GPDC was defined as the (1−α)

quantile of the bootstrap samples, where we used α = 0.05
as the significance level adjusted by Bonferroni correction
(Maris and Oostenveld 2007). In Figs. 2c, 3c, and 4c, the
correction was made for 100 frequencies. In Figs. 5 and 6,
we corrected for 25 frequencies. We considered the GPDC
values as statistically significant when their average values
minus the standard error of the mean was higher than the
threshold of statistical significance.

2.5 Signal-to-noise ratio (SNR)

We evaluated the performance of GPDC to detect the con-
nectivity when different levels of noise were applied to the
synthetic LFP signals. We used the Matlab function awgn to
add white Gaussian noise to the LFP signals according to a
desired signal-to-noise ratio (SNR) (Shakil et al. 2016). The
SNR in decibels is given by,

SNR = 10 log10

(
PSN
PN

)
(12)

where PSN denotes the power of the signal with noise and
PN denotes the power of the white Gaussian noise (Lowet
et al. 2016). The power of the signals is defined as,

P =
n∑

i

|Si |2
n

(13)

Si is each i data-point of the signal and n is the length of the
signal.

2.6 ROC curve

We generated a ROC curve (Ito et al. 2011a; Garofalo et al.
2009) by plotting the true positives rate (TPR) versus the
false positive rate (FPR) to different values of the significance
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level α. TPR represents the rate of correct detection, while
FPR represents the rate of false alarms. These two rates are
given by:

TPR = TP

TP + FN
, (14)

FPR = FP

FP + TN
. (15)

A connection identified by GPDC can be a true positive
(TP) if it represents a synaptic connection among the neu-
ronal networks, or a false positive (FP) if the connection does
not exist. Similarly, connections not detected by the GPDC
can be true negative (TN), when the connection in the simula-
tion does not exist, and false negative (FN) if the connection
actually exists. We considered that GPDC inferred a connec-
tionwhen themean ofGPDC subtracted by the standard error
of the mean is higher of the bootstrap threshold for some fre-
quencies.We performed 100 simulated experiments each one
composed of five trials. The significance levels ranged from
0 to 1 in steps of 0.01, adjusted by Bonferroni correction.

3 Results

We considered three models, each composed of five local
neuronal networks, with different connectivity
patterns between them (Figs 2a, 3a, 4a). Long-range con-
nections between networks were excitatory and could target
either inhibitory (open circles) or excitatory neurons (filled
circles) and their overall effect on the postsynaptic network
was inhibitory and excitatory, respectively. Hence, for sim-
plicity, we just used the short-hand terms “excitatory” and
“inhibitory” to characterize the networks and their projec-
tions.

The intrinsic dynamics of each local neuronal network
without long-range connections exhibit relatively uncorre-
lated spikes and some transient periods of oscillations in the
LFP signals (Fig. 1).

3.1 Inference of effective connectivity

The first model (Fig. 2a) simulates a scenario that includes
two simple connections, one excitatory from network 1 to
network 2 and another inhibitory, from 1 to 3. It also includes
a reciprocal connection pattern, with network 4 inhibiting
network 5 and network 5 exciting network 4. Finally, network
4 is also inhibited by network 1, permitting the evaluation
of the interactions between the two connections arriving at
network 4.

The isolated neuronal networks possess different power
spectral densities (PSD), except for networks 3 and 4,
which have approximately the same spectrum of frequen-

BA

Fig. 1 Raster plot and LFP signals for 1 s of simulation. a Raster plot
for the five standalone networks used. Neurons 1 to 800 are excitatory
and 801–1000 inhibitory. b LFP signals after demeaning, detrending,
and low-pass filtering and downsampling to 200Hz

cies (Fig. 2b). Enabling long-range connections between
networks result in small changes in PSD, more notably for
excitatory interactions, such as the increase at 20Hz in net-
work 2, which is the peak power from network 1, and the
increase at 35Hz of network 4, probably caused by network
5. The effects of inhibitory interactions on firing rates are
also present (Table 3), but are less evident than for the exci-
tatory ones. The interactions among networks caused limited
changes in their behavior, which is the ideal scenario for test-
ing the effectiveness of causality methods.

TheGPDCmethod identified all interactions between net-
works. The first column in Fig. 2c ( j = 1) shows that the
method recognized connections from network 1 to networks
2, 3, 4 (solid lines). Other connections from network 4 to 5
and from network 5 to 4 were also correctly identified. The
GPDC value for all other connections was below the sig-
nificance curve (dashed line), resulting in no false positives.
More importantly, it accurately did not detect the indirect
connection 1 → 4 → 5, marking the connection from net-
work 1 to 5 as non-existing. The spectral coherence (gray
lines) also identified all interactions, but their bidirectional
nature provides no information on the direction of the inter-
action. Also, indirect connections could not be discriminated
from direct ones using spectral coherence.

The second model (Fig. 3a) contains excitatory connec-
tions from networks 2 to 3, 5 to 4, and 5 to 1, and inhibitory
connections from networks 1 to 2, 3 to 4, and 4 to 5. This
model has two loops: a long one, encompassing all networks,
and a smaller one, involving only networks 4 and 5. Simi-
larly to the first model, the PSD of the networks shows small
changes when coupled (Fig. 3b) and changes in the average
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A

C

B

Fig. 2 Model 1. a Directed graph representing the connectivity model
between neuronal networks. Each node represents a network identified
according to Table 2. Edges describe excitatory long-range connections
targeting inhibitory (open circle) and excitatory (closed circle) neurons.
bAverage power spectral density (PSD) between trials with long-range
connections disabled (uncoupled) and enabled (coupled). Shaded gray
areas represents the standard error of the mean (SEM). The numbers
inside the plots indicate the corresponding neuronal networks. c Aver-
age GPDC (black solid lines) and average coherence between trials
(gray solid lines) for all the connections between networks, where j
presents the source of connection and i the target. Shaded areas repre-
sent the SEM of the GPDC and dotted lines the threshold of statistical
significance

firing rate (Table 3) are in accordance with the connection
type. Using GPDC, we could infer all the connections of the
model, with no false positives, including the bidirectional
connections between 4 and 5 (Fig. 3c). Spectral coherence

Table 3 Average firing rate over trials

Model Network E (Hz) I (Hz)

Uncoupled 1 2.27 ± 0.02 11.44 ± 0.10

2 3.46 ± 0.07 13.01 ± 0.13

3 2.85 ± 0.07 10.74 ± 0.14

4 3.14 ± 0.08 15.48 ± 0.25

5 1.89 ± 0.03 12.38 ± 0.11

1 1 2.27 ± 0.04 11.51 ± 0.13

2 4.11 ± 0.09 15.15 ± 0.19

3 2.58 ± 0.08 10.97 ± 0.09

4 3.18 ± 0.08 16.93 ± 0.25

5 1.67 ± 0.05 12.23 ± 0.15

2 1 2.50 ± 0.03 12.65 ± 0.22

2 3.10 ± 0.13 12.98 ± 0.27

3 3.47 ± 0.07 13.03 ± 0.18

4 2.98 ± 0.03 16.68 ± 0.10

5 1.70 ± 0.02 12.22 ± 0.11

3 1 2.28 ± 0.03 11.53 ± 0.15

2 3.14 ± 0.11 13.05 ± 0.30

3 2.94 ± 0.06 12.63 ± 0.12

4 3.07 ± 0.05 16.71 ± 0.16

5 1.70 ± 0.02 12.24 ± 0.12

Model corresponds to the model evaluated and “uncoupled” refers to
isolated networks. The specific Network is marked in the second col-
umn. E (Hz) and I (Hz) represents the average firing rate over 10 trials,
for excitatory neurons and inhibitory neurons, respectively. The trials
analyzed are the same trials used to compute the average GPDC

between interacting networks also detect the connections,
showing a peak in the frequency near the maximum GPDC
value, but without information on connection direction.

Finally, the third model (Fig. 4a) contains two pathways
from network 1 to 3, one direct, and another indirect, pass-
ing through network 2. Connections from network 1 to 2, 2
to 3, 3 to 4, and 4 to 5 are inhibitory, and connections from
1 to 3 and 4 to 5 are excitatory. Differently from the previ-
ously analyzed models, there are two consecutive inhibitory
interactions, from network 1 to 2 and 2 to 3. The PSDs again
showed only small variations after enabling the long-range
connections (Fig. 4b) and the average firing rate also changed
according to connection type. The GPDC method identified
correctly all connections established in the model and did
not find false positives (Fig. 4c). Although the GPDC values
are smaller, they are above the significance threshold for a
range of frequency values. As the previous models, the spec-
tral coherence presents a peak in the same frequency of the
peak of GPDC.
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A B

C

Fig. 3 Same as Fig. 2, applied to model 2

3.2 Effects of coupling strength

We investigated the effects of coupling strength, charac-
terized by synaptic weights and number of long-range
connections, on GPDC, using network model 3 (Fig. 4a).

We compared the true positive rate (TPR) and false pos-
itive rate (FPR) for different synaptic strengths, number of
connections, and levels of noise applied to the LFP signal.
The area under the ROC curve (AUC) is larger for higher
synaptic weights (Fig. 5a) and number of long-range connec-
tions (Fig. 5b).With 10 long-range synapses per target neuron
and a synaptic weight of 0.015, the AUC is almost 1, which
means that causal relationships were always detected with
no false positive. With smaller weights, the detection is less

A B

C

Fig. 4 Same as Fig. 2, applied to model 3

reliable, with lower TPR and higher FPR values, until reduc-
ing toward chance detection (Fig. 5a). Similarly, when using
fewer afferent connections per neuron, the AUC is reduced
almost to chance level (Fig. 5b). Consequently, GPDC can
reliably detect causal relationships with stronger network
couplings, but it is less reliable as the coupling strength
decreases.

The detection rate of GPDC also changed when different
levels of white Gaussian noise are applied to the LFP signals
(Fig. 6). Increasing noise level caused a decrease in the con-
nection detection rate. However, even in the case where the
SNR is negative, i.e., the power of the noise is higher than
the power of the LFP with noise, the detection rate was still
above chance level.
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B

A

Fig. 5 ROC curves from model 3. a Thick curves represent different
synapticweights, considering 10 long-range synapses per target neuron.
b Thick curves represent different numbers of long-range synapses per
neuron, with synaptic weights of 1, 5 × 10−2. Each point represents a
difference significance threshold. The dotted diagonal thin line in both
plots represents the chance level. We considered 100 GPDC values,
where each is the average over 5 trials. TPR: true positive rate. FPR:
false positive rate

We also investigated the relationship between GPDC val-
ues and coupling strength. We found a linear relationship
between the maximum GPDC values and the number of
long-range synapses that arrived to each neuron in the target
network (Fig. 7a), with coefficients of determination (R2)
between 0.64 and 0.77. We found a similar relationship
betweenGPDC values and long-range synaptic weights (Fig.
7b), with R2 between 0.58 and 0.75. In both cases, coupled
networks resulted in p values below 10−3. For uncoupled
networks, R2 was always below 0.02. These results indicate
that the GPDC value could be used to estimate network cou-
pling strength.

Fig. 6 ROC curves from model 3. Thick curves represent different
SNR values in decibels. We considered 10 long-range synapses per tar-
get neuron with synaptic weights of 1, 5 × 10−2. Each point represents
a difference significance threshold. The dotted diagonal thin line rep-
resents the chance level. We considered 100 GPDC values, where each
is the average over 5 trials of the GPDC values. TPR: true positive rate.
FPR: false positive rate

4 Discussion

In this study, we evaluated the GPDC as a technique to infer
effective connections between neuronal networks, using sim-
ulated LFP signals from three models containing coupled
networks of Izhikevich spiking neurons (Izhikevich 2003).
The objective was to verify if GPDC could correctly infer
connections from signals that are not linear autoregressive
time series and have characteristics similar to electrophysio-
logical signals.

We used network models that try to capture general prop-
erties of the cortex, such as the distribution of excitatory and
inhibitory neurons, but without matching them to any spe-
cific cortical area, with the use of random connections. We
considered several scenarios with both inhibitory and excita-
tory interactions between networks, including one source for
several targets, multiples sources for a single target, recurrent
interactions, indirect interactions, among others. Our results
showed that in every model evaluated, the average GPDC
was statistically significant onlywhen therewas a connection
between the networks. Moreover, the PSD of the networks
and average firing rates showed small differences when the
networks were coupled and uncoupled, suggesting that the
coupling among networks caused small changes in network
behavior, but that was large enough to be detected by the
GPDC.

Different from PDC, GPDC is scale invariant, meaning
that it yields values that are independent of the dynamic
range of the time series analyzed (Baccalá et al. 2007).
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B

A

Fig. 7 a GPDC versus the number of long-range synapses per neu-
ron (2,4,6,8, and 10) and b GPDC versus long-range synapse weights
(5,8,10,12, and 15 (× 10−3)). Each point is the average over 5 trials
of the maximum GPDC values. We used 100 GPDC values for each
coupling strength and pair of networks from model 3

But some disadvantages of PDC remain in GPDC. These two
methods are normalized with respect to the number of target
networks (Baccalá and Sameshima 2001) so adding more
target networks influenced by the same source decreases
the magnitude of both PDC and GPDC (Schelter et al.
2009). This seems to limit the use of the GPDC values

to infer the coupling strength. Some methods were pro-
posed to overcome these limitations such as a renormalized
PDC (Schelter et al. 2009) and isolated effective coherence
(iCoh) (Pascual-Marqui et al. 2014). Renormalized PDC
introduced a normalization using the variance of the influ-
ences between the signals (Pascual-Marqui et al. 2014). The
iCoh method estimates the partial coherence under a multi-
variate autoregressivemodel, and directional paths of interest
are keptwhile irrelevant connection is set to zero. Somemeth-
ods proposed before the GPDC, such as directed transfer
function (DTF) (Kaminski andBlinowska 1991) and directed
coherence (DC) (Saito and Harashima 1981), are normalized
with respect to a number of series influencing the target vari-
ables.

These methods are all based on the assumption of lin-
earity and stationarity. Although they are shown to work
with autoregressive time series (Baccalá et al. 2007; Bac-
calá and Sameshima 2001; Takahashi et al. 2008) and simple
nonlinear time series (Wang et al. 2014; Massaroppe and
Baccalá 2015; Papana et al. 2013), it is not clear that when
applied to neurophysiological signals (Hoerzer et al. 2010;
Sato et al. 2009; Shim et al. 2013; Rodrigues and Baccalá
2016), they provided meaningful results. The evaluation of
these models using LFP signals generated from simulated
spiking networks fills the gap between the hypothesis of the
methods and the nonlinearity and nonstationarity of biolog-
ical LFP signals. The main advantage of simulations is that
we have access to all parameters in the model, which allows
us to adequately evaluate the GPDC connectivity predictions
against the actual network connections.

We considered that the LFP is the sum of input currents in
excitatory neurons (Mazzoni et al. 2008, 2015). This assump-
tion is based on the predominant spatial contribution from
apical dendrites of pyramidal neurons to the extracellular
open-field approximation (Einevoll et al. 2013). However,
in physiological experiments, recorded LFP signals are the
result of several biophysical mechanisms, such as ionic pro-
cesses, calcium spikes and neuron-glia interactions (Buzsáki
et al. 2012). Surrounding regions may also contribute to LFP
signals and, in some cases, even dominate the LFP generated
by a local population, such as when surrounding populations
receive correlated synaptic inputs (Lindén et al. 2011).

Connectivity between single neurons was already ana-
lyzed using Granger causality in simulated neuronal net-
works to evaluate structural connections (Wu et al. 2011b),
synaptic weights (Shao et al. 2015), synaptic plasticity
(Cadotte et al. 2008), and point process models (Kim et al.
2011). Measures based on information theory were applied
to infer connections between pairs of neurons in simulated
cortical networks (Garofalo et al. 2009; Ito et al. 2011b).
Sameshima and Baccalá (1999) applied PDC on neural spik-
ing data frommodels and rats, after performing a convolution
of the spike impulse trainswith a givenkernel.Ourwork com-
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plements these simulation studies on single cell connectivity
by providing an analysis over population LFP signals.

Theuse of spikingneural networks permits a direct linkage
between neuron states and oscillations in the simulated LFP
signal. Oscillations seem to influence the flow of information
between structurally connected networks (Akam and Kull-
mann 2014, 2010; Bastos et al. 2015), and we consider that
it is fundamental to consider these dynamics when evaluat-
ing connectivitymethods. Some simulation studies evaluated
methods of connectivity applied to simulated electrophysi-
ological data considering mass models of neurons (Lopes
et al. 1974; David and Friston 2003; David et al. 2004;
Rodrigues and Baccalá 2016). In neural mass models, the
dynamic variables represent the average activity of a popu-
lation of neurons, but in these models, it is not possible to
generate states of the cortical networks like synchronization
and irregular or regular spike activity of the neurons.

Performance of GPDC was evaluated using ROC curves.
We verified that the effectiveness of the method depends on
the number of synapses and synaptic weights. Weakly con-
nected networks are difficult to detect using GPDC. This
limitation of the method is relevant, given that in biological
scenarios some cognitive functions are supported by weak
long-range connections (Santarnecchi et al. 2014), which
may not be detected by GPDC. Moreover, in neurophysio-
logical experiments, researchers normally define an arbitrary
threshold assuming that lowerGPDCvaluesmay refer to spu-
rious connections (Rubinov and Sporns 2010). But in some
scenarios, such as in Fig. 4, small GPDC values may repre-
sent coupled networks which are well above the significance
threshold. Our results indicate that GPDC is reliable to detect
stronger interactions between coupled networks, but may fail
to detect weaker connections.

Neurophysiological data are amixture of signal of interest
with an extrinsic noise unrelated to the investigated process
(Lowet et al. 2016; Bastos and Schoffelen 2016). We ver-
ified that decreasing the SNR degraded the detection rate
of GPDC. This result shows a limitation in the connectivity
estimation that is common in several connectivity methods
(Wu et al. 2011a; Wang et al. 2014) – the presence of noise
generally decreases the accuracy of connection inference.

We also found a linear relationship between the coupling
strength and GPDC values, with coefficients of determina-
tion between 0.58 and 0.77 for the network interactions from
model 3. This shows that most of the variation of GPDC
values can be explained from the coupling strength, which
shows that the GPDC value can be a rough approximation to
coupling strength. But as noted before, the GPDC values are
influenced by other factors, such as the number of outbound
connections. For instance, GPDC values for low coupling
strengths are similar to that of uncoupled networks, which
explains why GPDC performs poorly in this case.

We conclude that GPDC seems to be reliable in the pres-
ence of stronger connections and its magnitude can be used
as a rough estimation of connection strength, at least for our
simulated models. But with weaker connections or noisier
signals, theROCcurvesmove toward chance level andGPDC
connectivity measures should be interpreted with caution.
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