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Abstract
A spike-phase neural code has been proposed as a mechanism to encode stimuli based on the precise timing of spikes relative
to the phase of membrane potential oscillations. This form of coding has been reported in both in vivo and in vitro experiments
across several regions of the brain, yet there are concerns that such precise timing may be compromised by an effect referred
to as variance accumulation, wherein spike timing variance increases over the phase of an oscillation. Here, we provide a
straightforward explanation of this effect based on the theoretical spike time variance. The proposed theory is consistent with
recordings of mitral neurons. It shows that spike time variance can increase in a nonlinear fashion with spike number, in a way
that is dependent upon the frequency and amplitude of the oscillation. Further, non-monotonic accumulation of variance can
arise from different combinations of oscillation parameters. Nonlinear accumulation sometimes leads to lower variance than
that of a mean rate-matched homogeneous Poisson process, particularly for spikes that occur in later phases of oscillation.
However, such an advantage is limited to a narrow range of oscillation amplitudes and frequencies. These results suggest
fundamental constraints on spike-phase coding, and reveal how certain spikes in a sequence may exhibit increased firing time
precision relative to their neighbors.
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1 Introduction

A hallmark of neuronal activity in many regions of the brain
is the presence of membrane potential oscillations, charac-
terized by the periodic firing of individual neurons (Engel
et al. 2001; Wang 2010; Buzsaki and Wang 2012). These
oscillations may contribute to neural coding by reducing the
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variance in neural responses, forcing spikes to occur at pre-
cise phases (Harris et al. 2002; Mehta et al. 2002; O’Keefe
and Burgess 2005; Schaefer et al. 2006; Hafting et al. 2008;
Latham and Lengyel 2008; Kayser et al. 2009; Turesson et al.
2012). Further, oscillations may activate stimulus-specific
cell assemblies, thus promoting the selective response of indi-
vidual neurons to distinct inputs (Laurent and Davidowitz
1994; Laurent 2002; Brody and Hopfield 2003; Buzsaki and
Draguhn 2004; Fries et al. 2007; Montemurro et al. 2008;
Tiesinga et al. 2008).

A widely reported hypothesis maintains that the selective
activation of cell assemblies byneural oscillations is achieved
through a neural code based on the timing of individual spikes
relative to the phase of oscillations, herein referred to as
spike-phase coding (Kayser et al. 2009). Accordingly, oscil-
lations may label individual spikes with a particular phase.
A classic example of such spike-phase coding is the well-
studied hippocampal phase precession, where the phase of
individual action potentials relates to the animal’s location
along a single spatial dimension (Harris 2005; Lisman 2005)
(Fig. 1).
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Fig. 1 Phase precession in hippocampus depends upon precise spike
timing relative to the phase of a theta oscillation. Spike times of a single
neuron (red vertical lines) relate to the spatial location of the animal
along one spatial dimension (color figure online)

Spike-phase coding is not limited to the hippocampus,
and has been reported in several regions including the pri-
mary visual cortex (Montemurro et al. 2008), the auditory
cortex (Kayser et al. 2009), the antennal lobe (Laurent 2002),
and the olfactory bulb (OB) (Cang and Isaacson 2003; Mar-
grie and Schaefer 2003; Schaefer et al. 2006; Shusterman
et al. 2011). Reported benefits of spike-phase coding in these
various regions include an increased channel capacity when
compared to a rate code (Kayser et al. 2009).

In the rodent OB, stimulus-relevant information may be
retrieved from the timing of spikes relative to a theta-band
sniff cycle (Schaefer et al. 2006). This effect can be inves-
tigated in vitro by somatically injecting oscillatory currents
and delivering stimuli at various phases of oscillations. One
consequence of spike-phase coding is that pattern discrim-
ination is limited to a specific phase of the oscillation,
immediately preceding the peak amplitude of each cycle.
This is due to a rapid accumulation of spike time variance
over the course of an oscillation, and imposes strict con-
straints on spike-phase coding (Schaefer et al. 2006). More
generally, any coding mechanism based on the phase of
an autonomous narrowband rhythm will be limited by the
amount of jitter, unless there is a mechanism to stabilize the
rhythm (Dumont et al. 2016).

While several models have examined the contribution
of oscillations to pattern discrimination, signal propagation,
long-distance communication, and multisensory integration
(Singer 1999; Brody and Hopfield 2003; Fries et al. 2007;
Masuda and Doiron 2007; Wang et al. 2010), a formal
analysis of spike time variance accumulation is currently
lacking. Here, we investigate this issue using a formal anal-
ysis of inhomogeneous Poisson spikes. We chose to focus
on Poisson spike statistics, as they offer a close match to the
experimental work under consideration here, where Poisson

train stimuli were used to generate excitatory post-synaptic
potentials (EPSPs).

Our analysis provides important constraints on stimulus
encoding based on the timing of action potentials rela-
tive to the phase of an oscillation. Specifically, oscillations
reduce spike time variance as a function of spike number
in qualitatively different ways, depending on the precise
combination of baseline rate, stimulation frequency, and
stimulation amplitude. Interestingly, in some cases, the accu-
mulation of spike time variance is non-monotonic with spike
number.

2 Results

2.1 Accumulation of spike time variance

To examine the effect of subthreshold oscillations on spike
time variance in the OB, we analyzed previously published
experimental data where individual neurons were somati-
cally injected with a 4 Hz sine-wave current over repeated
trials (Schaefer et al. 2006) (Fig. 2a). Here, spike time
variance was measured using “spike jitter”, defined as the
variance of each consecutive spike time relative to a fixed
reference point (the onset of the sinusoidal stimulation at
time t = 0), divided by the variance of spike times obtained
in the no-oscillation condition. In these data, the variance of
spike times is initially low, and increaseswhen adding further
consecutive spikes along the oscillation (Fig. 2b).

To characterize the effect of oscillations on spike timing
variance, we fitted the OB data using either a first- or second-
order polynomial. This analysis allows us to examine the
overall shape of the spike jitter function (Fig. 2b), rather
than focus on differences between consecutive spikes, which
may not reach statistical significance. To analyze the spike
jitter function, we employed an adjusted goodness of fit that
accounted for the degree of the polynomial function (Cohen
et al. 2013). This statistic includes a penalty for the number
of terms in the model and is appropriate for comparing how
different models fit the same data. The adjusted correlation
is defined as

r2adjusted = 1 − SSres
SStotal

n − 1

n − d − 1
,

where n is the number of observations in the data d is the
degree of the fitted polynomial (e.g., set to 1 for a linear fit
and 2 for a quadratic fit), SSres is the sum of squared residuals
from the regression, and SStotal is the sum of squared differ-
ences from the mean of the dependent variable. This analysis
showed that the data were better fit with a second-order
(quadratic) polynomial (r2adjusted = 0.99) than a first-order

(linear) polynomial (r2adjusted = 0.64). As with traditional
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a b

Fig. 2 Spike time variance in the olfactory bulb. a Illustration of vari-
ance accumulation generated during a membrane potential oscillation.
Colors (blue, red, green) indicate consecutive action potentials for a
single neuron over trials. b OB neurons display a nonlinear accumu-
lation of jitter across consecutive spike times with a 4 Hz frequency.

Black circles denote mean jitter in OB cells obtained from Schaefer
et al. (2006). The dashed red line indicates the best fit using a first-order
polynomial. The dashed black line is the best fit using a second-order
polynomial. Vertical lines: SEM. Mean timing of first spike has 288◦
onset relative to the zero phase of the oscillation (color figure online)

correlations, these values of adjusted correlation are inter-
preted as a percentage of variance explained. However, to
put these values in the same units as the data, we transform
them to standard deviations (SD), where

SD = 1 −
√
1 − r2adjusted.

This yields SD = 0.4 for the linear fit and SD = 0.9 for the
quadratic fit. These values correspond to the percentage of
SD explained by the fit (i.e. 40% for the linear fit and 90%
for the quadratic fit).

Hence, for these data, a non-monotonic function accu-
rately characterized the relation between consecutive action
potentials and spike variance throughout an oscillatory cycle.
To formally investigate the relation between spike time vari-
ance and oscillations, we turned to inhomogeneous Poisson
statistics, as described in the next subsection.

2.2 Accumulation of spike time variance in an
inhomogeneous Poissonmodel

We characterized the effect of oscillations on spike time
variance by first considering a simplified scenario where
spike times are generated according to a Poisson process.
We allowed this process to be inhomogeneous, with time-
dependent intensity λ(t). We denote the arrival time of spike
n as Sn . To find the variance of Sn , we begin by defining�(t)
as the expected number of spikes between (0, t):

�(t) =
∫ t

0
λ(s) ds. (1)

The mean firing rate is then

r = lim
t→∞

�(t)

t
. (2)

The probability density function of Sn can be found by the
product of the probability of having n − 1 spikes up to time
t and of having a spike in the interval t, t + h (see e.g. Ross
2007, p. 327):

fSn (t) = λ(t)e−�(t) [�(t)]n−1

(n − 1)! . (3)

From fSn (t) it is straightforward to compute the mean and
variance of Sn :

E[Sn] =
∫ ∞

0
t fSn (t) dt (4)

var(Sn) =
∫ ∞

0
t2 fSn (t) dt − E[Sn]2. (5)

In the case of the homogeneous Poisson process, these
integrals lead to the well-known expressions E[Sn] = n/λ

and var(Sn) = n/λ2.
Our interest lies in the case of sinusoidal rate modulation,

i.e.λ(t) = A sin(ωt+φ)+k, whereφ is the phase and k is the
offset. More specifically, to prevent the rate from becoming
negative, we consider the half-wave-rectified version of this
rate,whereλ(t) = A sin(2π f t) for 0 ≤ t ≤ 1/(2 f ) and zero
otherwise. Themean spike count after half a periodT /2of the
oscillation is given by �(T /2) = A/(π f ), and the average
rate over the same duration is r = 2A/π . With this choice
of intensity function, we can evaluate fSn (t). However, this
integral must be evaluated numerically. This was done in
MATLAB using the trapezoidal integration rule.
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Fig. 3 Theoretical framework for examining spike time variance. a
Probability density function of spike times as a function of spike num-
ber for an inhomogeneous Poisson process. The half-wave intensity
function was set to λ = 90 sin(2π(4)t) Hz, but with negative values set
to zero. bExample of spike raster (top) and λ(t) (bottom) obtained from
100 repeated trials of the process in (a). c Spike time variance obtained
with the same intensity function as in (a) for the frequencies 2, 4, 8,
and 12 Hz. Solid line and filled circles: analytical solution. X-markers:
numerical simulation. d Spike time variance n/λ2 for a homogeneous
Poisson process with the samemean rate as the inhomogeneous process
in (a), i.e. 2A/π = 57.3 Hz

We then compare these theoretical results with direct
numerical simulations of the inhomogeneous Poisson pro-
cess. Themean and variance must be computed with caution,
since the probability of spiking within the oscillation half
period can be less than 1, especially at larger spike num-
bers. For example, at f = 4 Hz, the probability of obtaining
a sixth spike is only 0.72 . In Fig. 3, we consider the case
where A = 90 Hz, which produces seven spikes per cycle
when the frequency f = 4 Hz. The direct simulation of the
Poisson process is performed with a time step dt = 10−5 s.
We then simulate a total of 106 half-cycles of oscillation.
The density of the different spike times Sn, n = 1, . . . , 6 is
shown in Fig. 3a. An example of a raster plot is shown in
Fig. 3b. Figure 3c plots var(Sn) for four different stimulation
frequencies. Values obtained from the simulations were in
close agreement with the analytical results.

Depending on the frequency of oscillation, variance over
consecutive spikes did not always follow a monotonically
increasing function (Fig. 3c). Therefore, experimental results
showing a non-monotonic increase in variance may be lim-
ited to the vicinity of the 4 Hz modulation frequency for
which results were reported in (Schaefer et al. 2006). For
a direct comparison of experimental results with analytical
results presented here, we first normalized the variance of the
oscillation and no-oscillation scenarios (with matched aver-
age spikes) by the variance of their respective last (sixth)
spike (Fig. 4a). We then divided the normalized oscillatory

variance by the normalized variance obtained with a constant
intensity λ (Fig. 4b). This procedure matches the spike jit-
ter metric that was employed in experiments (Schaefer et al.
2006). Theλ value of the no-oscillation conditionwas chosen
to match the average firing rate of the oscillation condition.
As with the experimental data, the analytically derived spike
jitter yields a non-monotonic, U-shaped function. However,
this result was specific to a frequency of 4 Hz, and was not
obtained with a lower (2 Hz) or higher (8 Hz) frequency
of oscillation. Therefore, experimental results showing a U-
shaped spike jitter over consecutive spikes may be limited to
a narrow range of oscillation frequencies.

A nonlinear accumulation of variance was not observed
with a fixed intensity function (Fig. 3d). In this case, variance
accumulated in a linear fashion. This result is in line with
experimental results in the OB (Schaefer et al. 2006). The
straightforward explanation for this result is that variance
follows n/λ2, and thus increases linearly with consecutive
spike times n = 1, 2, 3 when λ remains constant. In this
case, it would be possible to compensate for an increase in
variance caused by the n-th spike by gradually scaling the
firing rate according to n, thus preventing the increase in
spike variance altogether.

While a full theoretical analysis of the benefit of oscil-
lations is beyond the scope of this work, an intuitive
explanation for howoscillations reduce spike time variance is
as follows. The model with oscillations produces on average
the same number of spikes per unit of time as themodel with-
out oscillations. In the former, however, spikes occur within a
more delimited range of time due to the strong dependence of
spike probability on amplitude. Hence, spike time variance is
reduced overall. This simple explanation, however, does not
account for exceptions at very low amplitudes, which do not
readily stand out from the expression for spike time variance
(Eq. 5).

To further evaluate the potential advantage of oscillations
in reducing spike variance compared to a no-oscillation sce-
nario, we computed the analytical spike variance across a
range of frequencies. A low oscillation frequency (1 Hz) led
to mixed results. The first two spike times exhibited higher
variance than the no-oscillation scenario. However, the sub-
sequent four spike times showed lower variance (Fig. 5a). At
higher oscillation frequencies (4 Hz and above), spike time
variance was systematically lower than without oscillations.
Thus, spike time variance was dependent upon the frequency
of oscillations and timing of action potentials.

Finally, we examined the impact of oscillation amplitude
on spike time variance. We kept the oscillation frequency
constant (4 Hz) and either lowered or raised the amplitude
of oscillations compared to default (90 Hz). The oscilla-
tory cases were then compared to the no-oscillation cases
with matched mean firing rate. A lower amplitude (50 Hz)
resulted in an advantage of oscillation over no-oscillation, in
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a b

Fig. 4 Spike jitter stemming from the theoretical framework. a Ana-
lytical spike time variance normalized by the last (6th) spike generated
during an oscillation cycle of 2, 4, or 8 Hz. The no-oscillation condition
has a mean firing rate that matches the oscillation condition. b Spike
jitter obtained by normalizing the variance in the oscillatory case by the
variance in the no-oscillation condition (i.e. by taking the ratio of the
two curves in (a)). A = 90 Hz

that the oscillation condition led to lower spike time variance
(Fig. 5b). Conversely, increasing the amplitude (200 Hz) led
to a disadvantage of oscillations for the first spike time. Thus,
altering the amplitude of oscillations had a marked effect on
the resulting impact on spike time variance. Together with
the results in Fig. 5a, one can see that the benefit of oscil-
lations in terms of variance reduction is dependent upon the
precise parameters of the model and spike number.

To examine the relationship between model parameters
(amplitude and frequency) and spike time variance, we com-
puted the difference between var(Sn) (Eq. 5) obtained with
versuswithout an oscillation (Fig. 6) using Poisson processes
for the non-oscillation case that were rate-matched for every
parameter choice. Positive values indicate that oscillations
resulted in higher variance than the no-oscillation condition.
The results show that as the spike number increases from
n = 1, 4, the area of parameter spacewhere oscillations show
higher variance (positive values, +) gradually shrinks. Hence,
as the spike number increases, a broader range of parameters

4 Hz1 Hz

8 Hz 12 Hz

amplitude:A=50 Hz

no oscillation
oscillation

amplitude:A=200 Hz

a

b

Fig. 5 Advantage of oscillatory activity on spike variance accumula-
tion. a Comparison of spike time variance versus spike number across
different oscillation frequencies. A = 90 Hz across all panels. b Spike
time variance with a 4 Hz oscillation for two different values of ampli-
tude (A)

Fig. 6 Difference between the spike time variance with and without
oscillation. Each plot shows values of �var(Sn), defined as the spike
time variance (var(Sn)) with oscillation minus that without oscillation
for a given spike number (n) (units of s2). Black outline delineates
regions of positive (+) and negative (−) values

results in an advantage of oscillations. Put differently, spikes
produced earlier during an oscillation are more susceptible
to generating a higher variance than without oscillations.
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3 Discussion

In this work, we investigated the factors that influence
spike time variance during neural oscillations. We employed
an analytical framework based on inhomogeneous Poisson
spikes to explain how spike time variance ismodulated by the
phase of membrane potential oscillations. This framework
accounted for both monotonic and non-monotonic increases
in spike variance observed in OB recordings. Going further,
we showed that the U-shaped relation between spike count
and variance was obtained only with a 4 Hz oscillation and
not with the lower or higher frequencies we tested, there-
fore setting clear limits to the generalizability of previous
experimental findings. Finally, compared to a homogeneous
Poisson process of matched mean rate, a sinusoidally mod-
ulated Poisson process offered an advantage in terms of
reduced spike time variance for higher frequencies (above
1 Hz) and lower amplitudes (below 200 Hz), thus impos-
ing constraints to stimulus encoding based on the timing of
spikes relative to the phase of oscillations. Specifically, in a
neural code based on the timing of action potentials along an
oscillation, the first several spikes from the onset of oscilla-
tion may display a variance that is greater than expected in a
homogeneous Poisson process (Fig. 5).

More broadly speaking, the gradual increase in variance
over the phase of an oscillation carries important functional
consequences for information processing, and may serve to
explain why stimulus discrimination is restricted to spikes
that occur in a well-defined phase (Schaefer et al. 2006;
Kayser et al. 2009; Turesson et al. 2012).

Our study found that, over a broad range of model param-
eters, oscillations allowed simulated neurons to reduce their
spike count variance. This result may be advantageous for
different forms of neural coding that rely on low spike vari-
ance, including (but not limited to) spike-phase coding as
well as temporal coding (Thorpe et al. 1996; Panzeri et al.
2001).

Some of the limitations of a spike-phase code may be
overcome with more complex oscillatory functions, includ-
ing phase-coupled oscillations observed in the cortex and
hippocampus (Jensen and Colgin 2007). However, this pos-
sibility remains to be explored computationally and by
extending the analytical framework provided here.

Given that both our theoretical work and related experi-
ments point to important challenges with stimulus encoding
using a spike-phase approach, it is worth considering some
alternatives. Most prominently, a code based on mean firing
rates is a likely candidate. Indeed, stimulus discrimination is
possible even when applying a broad temporal filter to single
spikes andwhen considering a time course of excitatory post-
synaptic potentials of up to 1000 ms (Schaefer et al. 2006).
Such a code is easily read out by a simple linear decoder, a
feature that poses a unique challenge to spike-phase coding.

Our work provides a starting point from which several
further questions may be addressed. First, our study did not
examine the impact of membrane potential oscillations in the
context of a neuron that is susceptible to synaptic plasticity.
One role of synaptic plasticitymay be to shift spikes along the
phase of an oscillation such that they become more reliable,
as may be the case with phase precession (Harris 2005).

Second, our work focused on coding with single neurons
and did not examine how population codes may help resolve
some of the limitations of spike-phase coding discussed here.
This is a complex issue, as efficient population coding in the
hippocampus and sensory regions is an area of intense study
(Friedrich and Stopfer 2001; Cury and Uchida 2010; Miura
et al. 2012). It is possible that, at least in neural circuits with
low levels of shared noise, some of the spike time variance
across individual neurons may cancel out through population
averaging.

Finally, all analytical results reported here assume that
spike time variance does not continue to accumulate in the
trough of oscillations. This is a reasonable assumption that is
corroborated by both in vitro and in vivo recordings (Schaefer
et al. 2006). However, future work is needed to carefully
examine how membrane hyperpolarization resets spike time
variance from one oscillatory cycle to the next.

In conclusion, the ubiquity of neural oscillations in the
central nervous system has fueled an ongoing search for
their functional role in sensory processing and motor control
(Engel et al. 2001; Buzsaki and Draguhn 2004; Fries et al.
2007; Wang 2010). While this search has led to hypotheses
on neural codes that combine spiking and phase informa-
tion, one must tread carefully in assessing the benefits and
limitations of such coding strategies.
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