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Abstract
Temporally, precise correlations between simultaneously recorded neurons have been interpreted as signatures of cell assem-
blies, i.e., groups of neurons that form processing units. Evidence for this hypothesis was found on the level of pairwise
correlations in simultaneous recordings of few neurons. Increasing the number of simultaneously recorded neurons increases
the chances to detect cell assembly activity due to the larger sample size. Recent technological advances have enabled the
recording of 100 or more neurons in parallel. However, these massively parallel spike train data require novel statistical tools
to be analyzed for correlations, because they raise considerable combinatorial and multiple testing issues. Recently, various
of such methods have started to develop. First approaches were based on population or pairwise measures of synchronization,
and later led to methods for the detection of various types of higher-order synchronization and of spatio-temporal patterns.
The latest techniques combine data mining with analysis of statistical significance. Here, we give a comparative overview of
these methods, of their assumptions and of the types of correlations they can detect.
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1 Introduction

The high interconnectivity of cortical neuronal cells (see e.g.,
Braitenberg and Schüz 1991) supports the hypothesis that
cortical processing is organized in cell assemblies (Hebb
1949; Gerstein et al. 1989), i.e., groups of neurons that act as
processing units. Various studies analyzed how cell assem-
blies may emerge due to different synaptic plasticity rules
(e.g., Anderson et al. 1995; Tetzlaff et al. 2015). Active cell
assemblies are hypothesized to express temporally coordi-
nated neuronal spiking activity among the member neurons.
Different time scales of this coordination have been inves-
tigated in numerous theoretical (e.g., Tetzlaff et al. 2007,
2012; Kumar et al. 2010; Diesmann et al. 1999) and exper-
imental studies, across different brain areas (Bair and Koch
1996; Bair et al. 2001; Butts et al. 2007; Price and Born 2010;
Murray et al. 2014). Millisecond precision is the fastest of
these scales and has been associated with specific mecha-
nisms of neuronal processing. For instance, synchronously
incoming spikes to a neuron are known to be more effective
in generating an output spike as compared to spikes arriving
asynchronously. Building on this fact, neural networkmodels
able to process information by exploiting spike synchroniza-
tion have been proposed (see e.g., Tetzlaff et al. 2015). In
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the synfire chain model (Abeles 1982, 1991), for example,
groups of suitably connected neurons produce, in response
to stimulation, synchronous spike volleys that reliably prop-
agate through the cortical network, also in the presence of
noise (Diesmann et al. 1999). Activation of a synfire chain
may express itself in millisecond-precise spatio-temporal
spike patterns (STPs). Their existence in experimental data
and their tuning to different behavioral conditions were first
shown in Prut et al. (1998). More recent studies extended
models to synfire braids or polychronous groups that also
build on the fact that neurons mostly reliably emit a spike
to synchronous input, however without the requirement that
sending neurons are synchronously firing as well (Leen
and Shea-Brown 2012; Izhikevich 2006; Bienenstock 1995).
Thus, these models predict rather spatio-temporal patterns
than spike synchronization.

Numerous studies where two or few neurons were
recorded simultaneously found evidence of the repeated
occurrence of precisely timed pairs of synchronous spikes
in behaviorally relevant contexts across a variety of brain
regions (Vaadia et al. 1995; Riehle et al. 1997; Prut and Fetz
1999; Seki and Eggermont 2003; Kohn and Smith 2005;
Butts et al. 2007; Pipa and Munk 2011; Shimazaki et al.
2012; Harvey et al. 2013; De Gruijl et al. 2014; Eggermont
2015; Kilavik et al. 2009). In light of the small number of
neurons observed in parallel, these studies were blind to
possibly existing correlations among larger groups of neu-
rons. Modern electrophysiology enables the simultaneous
observation of the spiking activity in the range of 100 or
more neurons (Buzsaki 2004; Schwarz et al. 2014). In such
massively parallel spike train (MPST) data, the chances to
sample from larger groups of neurons engaged in coordi-
nated activity are higher (Nicolelis 2001; Riehle et al. 2013;
Hoffman and McNaughton 2002). Even so, though, extract-
ing this information from data of such a size is not trivial.
The exponential growth of the number of possible patterns
that need to be investigated makes classical direct statistical
testing (see e.g., Kass et al. 2014) of each pattern a non-
viable approach. Indeed, prohibitive computational resources
would be needed to even just count the occurrences of each
pattern. Furthermore, the number of statistical tests to be
performed would yield excessively many false positives (or
false negatives after standard statistical corrections). For all
these reasons, the presence and the computational role of
millisecond-precise spike correlations, as well as the num-
ber of neurons being possibly involved in a cell assembly,
are still unclear (Roudi et al. 2009; Ohiorhenuan et al. 2010;
Elsayed and Cunningham 2017).

In the 1960s, Gerstein started to develop and apply corre-
lation analysis methods for (few) parallel spike trains. These
include the cross-correlation analysis to quantify pairwise
correlations (Perkel et al. 1967), the joint peristimulus time
histogram for time dependent correlations (JPSTH; Aertsen

et al. 1989), the ”snowflake” method for the detection of
triplet spatio-temporal patterns (Perkel et al. 1975; Czanner
et al. 2005), and an STP detector (Abeles and Gerstein 1988)
which was later extended to enable the analysis of a larger
number of parallel spike trains (Gerstein and Aertsen 1985;
Lindsey et al. 1997; Strangman 1997). The review by Brown
et al. (2004) summarized the state of the art of analysis meth-
ods and noted the necessity to develop new methods for the
analysis of MPST data. Since then, several new methodolo-
gies have been introduced to this end. Most algorithms have
been designed to enable the identification and categoriza-
tion of firing rate or spike count correlations on a larger time
resolution (e.g., Ganmor et al. 2015; Kelly and Kass 2012;
Cunningham and Byron 2014). These would be worth a sep-
arate review.

Newmethods were also developed for the analysis of finer
temporal correlations.Among the latter, a number ofmethods
restrict their attention to stimulus-driven responses thereby
significantly reducing the number of patterns to be evaluated
and the consequent computational and statistical complexity
of the problem. For a review of these methods, see Levakova
et al. (2015). When a stimulus cannot be clearly identified
or isolated from the surrounding environment, or when the
stimulus itself is an ongoing internal process rather than an
external event, or when recording the stimulus occurrence
time is impossible, these methods cannot be applied. For
these reasons, more general analysis methods able to deal
with the full computational and statistical problems stated
above have been recently developed.

This review focuses on such analysis tools, omittingmeth-
ods that are either not suitable for MPST data, or that reduce
their attention to externally driven patterns. We identify in
particular two classes of methods for the analysis of tem-
porally precise spike correlations. The first class consists of
methods that analyze what we call population correlation,
i.e., correlation that manifests at the level of the (full) popu-
lation of neurons being examined, and does not (necessarily)
involve specific cell assemblies. The second class consists
of methods designed to identify specific cell assemblies that
produce specific types of STPs. In total, we discuss and com-
pare nine methods (four of the first class, five of the second
class).

The outline of the paper is as follows. Section 2 intro-
duces different types of correlations in parallel spike trains.
Section 3 describes the methods for correlation analysis con-
sidered here, clarifying their assumptions and for which type
of correlation they were designed to detect. Section 4 com-
pares the considered methods in terms of their sensitivity to
the different correlation models and discusses their ability to
reconstruct (entirely or partially) those correlation structures.
A perspective on new research avenues that these methods
open is given in Sect. 5.
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2 Models for parallel correlated spike trains

Temporal coding has been associated with different (but not
necessarily incompatible) forms of spike correlation at fine
temporal scale, i.e., with ms precision. These can range from
synchronization of always different cell groups, to spike
sequences from specific neurons in a specific temporal order,
to sequences of synchronous activity. Each method consid-
ered in this paper was designed to determine the presence
of one such correlation structure in MPST data. Hence,
it is first necessary to introduce the respective correlation
models and to highlight their similarities and differences.
This section presents five different types of fine tempo-
rally correlated spiking activities that have been associated
to mechanisms of temporal coding in the literature, either
in theoretical or in experimental studies. Additionally to
the heuristic description provided in this section, in the
Supplementary Material 6.1, we define formally a Point
Process framework that can be used to model and gener-
ate artificial data for the different correlation structures here
introduced.

2.1 Population synchronization

Population synchronization refers to spiking activity where
some of (or all) the neurons observed emit synchronous
spikes, repeatedly over time. The neurons involved are not
hypothesized to be always the same, although they may. For
this reason, methods designed to detect the presence of syn-
chronization at the population level do not need to look for
and to assess the statistical significance of a multitude of
different spike patterns.

This fact per se does not exclude the presence of spe-
cific cell assemblies in the data being recorded. A neural
network model that contains cell assemblies and may or may
not produce repeated spike patterns, depending on the model
parameters, is the synfire chain. A synfire chain is a net-
work with a high convergent and divergent connectivity from
one layer of neurons to the next (Abeles 1991). The network
exhibits synchronous spiking activity that, triggered by stim-
ulation of the first layer, propagates through the next layers.
The propagation is robust to noise (Diesmann et al. 1999).
However, the latter study also showed that the composition
of the active neurons may vary at each run, depending on the
connectivity and its strength. If so, recordings from neurons
in the same layer would contain different, although possibly
overlapping, synchronous spike patterns (see Fig. 1c). Froma
statistical perspective, a probabilistic model of parallel spike
trains able to generate different but overlapping synchronous
spike patterns and often used for method validation to gener-
ate ground truth data, is themultiple interactionmodel (Kuhn
et al. 2002, 2003).

2.2 Pairwise synchronization

In the 1960s researchers first started to look into correlations
between spike trains with the idea that correlated neurons
reflect functional correlation. Gerstein and Clark (1964) and
Perkel et al. (1967) developed the cross-correlation analy-
sis to detect correlations between two parallel spike trains
beyond trivial effects like stimulus dependent rate increase.
Many other studies then followed, a large collection of which
is found in the book by Eggermont (1990).

In pairwise synchronization, pairs of neurons synchronize
their spikes independent of each other. Thus, higher-order
correlations are absent. Patterns of size 3 or larger are still
possible, however, only as the result of chance simultaneous
spike emissions from individual neurons or neuronpairs. This
type of spiking activity is shown in Fig. 1a.

In studies concerned with the analysis of spike correla-
tions, there was and there still is a focus on pairwise analysis
in the field (Riehle et al. 1997; Kilavik et al. 2009; Vaadia
et al. 1995; Zandvakili and Kohn 2015). The reason is not
that the theory would predict pairwise correlations only (see,
e.g., Abeles 1982), but rather the simplicity of such analyses
over that of higher-order correlations.Nevertheless, the study
of purely pairwise correlations may reveal, in MPST data,
interesting dependence structures that hint to larger inter-
acting groups of neurons, cross-area interactions or spatial
interactions. Some of the methods reviewed in this paper
analyze pairwise correlations for statistical significance, and
then group them into larger groups of interacting neurons.

2.3 Synchronous spike patterns

A neuron receiving synchronous synaptic inputs is more
likely to emit a spike than asynchronously arriving inputs, as
predicted by theory (Abeles 1982; König et al. 1996; Fries
2005; Schultze-Kraft et al. 2013) and shown in experiments
(Ashida et al. 2016). This observation led to hypothesize
that neurons synchronize their activities beyond pairs. To
investigate this hypothesis in real data by statistical testing,
as well as to generate synthetic data for method valida-
tion, probabilistic models of parallel spike trains including
higher-than-pairwise synchronization were formulated. Two
examples are the single interaction model by Kuhn et al.
(2002), and the maximum entropy model by Schneidman
et al. (2003). A realization of the single interaction process
where a synchronous spike pattern has multiple occurrences
is shown in Fig. 1b.

2.4 Spatio-temporal patterns

Spike synchrony can be generalized by adding a temporal
dimension to the correlation: the neurons involved in the
coordinated activity do not necessarily spike synchronously,

123



60 Biological Cybernetics (2018) 112:57–80
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Fig. 1 Raster plots of different correlation types. Each panel shows
the spiking activity of parallel spike trains (one neuron per row)
over time (horizontal axis). Each dot represents a spike; the red
dots in particular represent spike belonging to a spike pattern. Dif-
ferent panels refer to different forms of temporal spike correla-
tion. a Pairwise correlation model. The population contains 6 pairs
of synchronized neurons (the latter indexed from bottom to top):
(1, 2), (1, 3), (2, 4), (8, 9), (8, 14), (13, 14). b Synchronous spike
patterns. Neurons 4, 5, 6, 7 are repeatedly involved in the pattern. c

Differently from the spike patterns in panel a, the neurons involved in
each synchronous event are randomly selected and change from one
event to the next.d Spatio-temporal patterns. The red spikes correspond
to occurrences of an STP. The neurons involved in the patterns are
4, 5, 6, 7, as in panel a, but their spikes occur now in a fixed temporal
succession with fixed delays. e Sequences of synchronous spike events.
Two occurrences of the same SSE are shown. Here, all observed neu-
rons are involved, and groups of 4-4-4-3 synchronously firing neurons
fire in short succession

but in specific temporal sequences with fixed (up to a given
precision) delays between consecutive spikes (see Fig. 1d).
This type of activity is generally referred to as a spatio-
temporal pattern (STP; Prut et al. 1998).

STPsmay be the results of variability of conduction delays
observed in cortical network (see e.g., Swadlow 1994) and
may arise in different network models. For instance, a syn-
fire chain produced STPs where neurons in the same layer
of the chain fire synchronously, while neurons belonging to
different layers fire at fixed delays. If one would record only
one neuron per layer, the STP would reduce to asynchronous
spikes with fixed delays. Another model that generates STPs
is the synfire braid (Bienenstock 1995), also called poly-
chrony model (Izhikevich 2006). It is a generalization of the
synfire chain, in which spikes produced in one layer arrive
at the next layer at different times due to different propaga-

tion delays. Various methods have been developed to extract
STPs from a small number of parallel spike trains (Dayhoff
and Gerstein 1983; Prut et al. 1998; Abeles and Gerstein
1988), and these methods retrieved statistically significant
STPs in experimental data (see, e.g., Prut et al. 1998).

2.5 Sequences of synchronous spike events

A specific type of temporal correlation that features spike
synchronization and temporal propagation is represented by
sequences of synchronous events (SSEs). These consist of
multiple synchronous events, each involving a specific group
of neurons, occurring at a fixed temporal delay one after
another. Parallel recordings frommultiple layers of an active
synfire chain would for instance exhibit such spike patterns
(Schrader et al. 2008; Gerstein et al. 2012). The sets of neu-
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rons involved in different synchronous events may or may
not overlap. A realization of one specific SSE occurring two
times is shown in Fig. 1e.

3 Higher-order correlation analysis methods

In this section, we summarize existing statistical methods
for the detection of higher-order correlations in MPST data.
We give a short description of these methods, highlighting
their features and limitations, in particular with regard to
how they deal with different properties of uncorrelated back-
ground activity in the data. For details, we refer to the original
publications (Table 1).

Generally, two classes of methods can be distinguished,
which investigate different aspects of spike correlation. The
first class aims to identify the correlation order (number of
neurons involved) rather than the identity of the neurons
involved. Thus, each correlated event may involve a random
subset of neurons or may be composed of a specific, always
identical group. We refer to the correlation type underlying
this analysis class as population synchronization. The other
class of analysis methods assumes a correlation model in
which the correlated neurons form stereotypical synchronous
spike events or temporal sequences of spikes. We refer to
these events as spike patterns. The aim of these methods is to
retrieve the neuronal composition and the occurrence times
of the spike patterns.

3.1 Methods to detect population synchronization

One of the challenges in the statistical assessment of syn-
chronous spike events in MPST data is posed by the expo-
nential growth of the number of possible patterns with the
number of neurons being considered. However, this prob-
lem can be simplified if the research interest lies solely
on assessing the presence and the order of excess (i.e.,
above-chance) synchronization, without resolving the spe-
cific neuron identities involved. Also, the data may contain
patterns of synchronous spikes that change their neuronal
composition each time, so that the correlation is distributed
possibly across the full population being observed. We refer
to synchrony which does not (or which is not assumed to)
involve specific subgroups of neurons in the observed popu-
lation as population synchronization.

Most methods for population synchronization analysis
reduce the spike data to the number of active neurons (i.e.,
spikes) observed at any time bin. A spike train is fully
described by its spike times and, given a time discretiza-
tion in small temporal bins, we can define the population
histogram as the count of spikes that occurred in the same
time bin. The maximum possible count of the histogram
is thus the number N of neurons. The first three methods

presented here are based on statistics derived from the pop-
ulation histogram. They were developed in succession, each
to overcome the limitations of the previous one. The first
method, the Complexity Distribution (CD) analysis (Grün
et al. 2008), proposes a simple statistical approach purely
based on the distribution of the entries of the population
histogram. It compares such an empirically derived distri-
bution to that expected from neurons firing independently to
determine the presence of excess synchronization. The sec-
ond method, the CUmulant-Based Inference of Correlation
(CuBIC, Staude et al. 2010a), derives the null distribution
analytically under more specific assumptions about the data,
and infers theminimum correlation order existent in the data.
The third method, the Population Unitary Event (PUE, Ros-
tami 2017) analysis, works under the same assumptions as
CuBIC, but uses a different test statistic which enhances the
statistical power of the test, thereby requiring samples of
smaller size for a correct identification of excess synchrony
and thus also enabling a time-resolved analysis.

The fourthmethod, called here the correlation information
index (CII), is an approach originally suggested by Schnei-
dman et al. (2006) as a way to condense the information
delivered bymaximumentropymodels built on parallel spike
train data to a single scalar. The method accounts for the
neuronal identity of each spike in the observed synchronous
patterns and builds a full probabilistic model of those. This
model is used to obtain a single scalar, the CII, that quantifies
the amount of surplus of information contained in the data
which is delivered by correlations of a given order.

3.1.1 Complexity distribution (CD)

The value taken by each entry in the population histogram
is called the bin complexity. Each synchronous spike event
increases the empirical complexity in the bin of it’s occur-
rence as compared to the scenario of independent spiking.
Therefore, it also increases the value of the empirical com-
plexity distribution at that complexity value. Grün et al.
(2008) developed a method that tests for spike train inde-
pendence based on the difference between the empirical
complexity distribution and the null distribution. Excess syn-
chrony causes the difference between the two distributions
to have a positive bump at larger complexities. Due to the
conservation of the total probability mass, a negative bump
appears at lower complexities. Depending on the assump-
tions about the spiking behavior of each neuron, the null
distribution may be available analytically (e.g., by assuming
that the spike trains are stationary Poisson processes) or may
be approximated by Monte Carlo surrogate techniques (see
Grün 2009; Louis et al. 2010a, c), and will in general depend
on the statistics of each spike train as well as on the chosen
bin size.
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Table 1 Table of analysis methods, their assumptions, and related references

Method Target correlations Null model Alternative model References

Population synchronization

CD Population
synchronization

Independent spike trains Population synchronization Grün et al. (2008) and Louis
et al. (2010a)

CUBIC Population
synchronization

Population synchronization
of order ξ

Population synchronization
of order ξ + 1

Staude et al. (2010a) and
Staude et al. (2010b)

PUE Population
synchronization

Population synchronization
of order ξ

Population synchronization
of order ξ + 1

Rostami (2017)

CII Population
synchronization

Maximum entropy model of
order ξ

Maximum entropy model of
order ξ + 1

Schneidman et al. (2003)
and Schneidman et al.
(2006)

Spike patterns

MEM Synchronous spike
patterns

Maximum entropy model of
order ξ

Synchronous spike patterns Schneidman et al. (2003),
Schneidman et al. (2006),
Shimazaki et al. (2012)
and Kelly and Kass (2012)

GIC Synchronous spike
patterns

Independent Pairwise synchrony Berger et al. (2010)

SPADE Synchronous and
spatio-temporal
spike patterns

Independent Synchronous pattern,
Spatio-temporal patterns

Borgelt (2012), Torre et al.
(2013) and Quaglio et al.
(2017)

CAD Synchronous and
spatio-temporal
spike patterns

Poisson independent Synchronous pattern,
Spatio-temporal patterns

Russo and Durstewitz
(2017)

ASSET Sequences of
synchronous
events

Poisson independent SSEs Schrader et al. (2008),
Gerstein et al. (2012) and
Torre et al. (2016a)

The table summarizes the methods that we discuss here and their assumed data models (column 2 from left, all introduced in Sect. 2). Columns
3 and 4 describe the assumed null and the alternative hypothesis, respectively. Column 5 lists the publications in which each method has been
introduced or further developed

An example of artificial test data is illustrated in Fig. 2,
modified from Grün et al. (2008). Panel A, top, shows data
from a stochastic simulation of 100 parallel spike trains,
80 of which are independent Poisson. The first 20 neurons
exhibit, in addition to independent spiking activity, also syn-
chronous firing events. The synchronous events are hardly
visible by eye in the raster plots if the neuron ids on the
vertical axis are sorted randomly (Panel A, middle), but can
be retrieved in the population histogram (Panel A, bottom;
bin size: 1ms), although with a loss of information about
the involved neurons. Panel B shows the empirical com-
plexity distribution (top), the null distribution computed by
randomizing the spike times of each neuron (middle), and the
difference between the two distributions (bottom). The lat-
ter contains a visible bump centered at complexity ξ = 22.
Importantly, the bump is right-skewed and is centered to the
right of the true synchronization order ξ = 20. The reason for
the offset in the peak is that the inserted synchronous events
of fixed size ξ overlap with background activity from the
other neurons, resulting in a higher total complexity. The bin
width w determines the statistics of the random component
of the total count.

Under the assumption that all spike trains are Poisson pro-
cesses with identical firing rates, the null distribution can be
computed analytically based on combinations of Binomial
distributions (Grün et al. 2008; Fig. 2b, solid). Otherwise, it
can be computed by surrogates, e.g., by spike time random-
ization (Fig. 2b, dots). Confidence intervals are computed
analogously, and allow to accept or reject the null hypoth-
esis of independence (Louis et al. 2010a). Varying the bin
size enables to determine the temporal jitter inherent to the
synchronous events (for details, see Louis et al. 2010c).

3.1.2 CUmulant-Based Inference of Correlation (CuBIC)

The complexity distribution method discussed above visual-
izes correlations among parallel spike trains. The CUmulant-
Based Inference of Correlation (CuBIC; Staude et al. 2010a)
advances this technique by relaxing the hypothesis of inde-
pendence and testing for the presence of correlations of pro-
gressively higher order, given those of lower order observed
in the data.

CuBICcomprises the following steps. Starting from ξ = 1
(spike train independence), it assesses whether peaks in
the complexity distribution of the data could be explained
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A B

Fig. 2 Complexity distribution based correlation identification. a Top
Parallel spike trains comprising a synchronous spike events among the
first 20 neurons, firing in synchrony with a rate of λc = 5 1/s, plus
80 independent neurons. Middle randomization of the neuron ids (ver-
tical axis) of the top panel. Bottom population histogram of the data

(bin width: w = 1ms). b Top Complexity distribution of the data
in a. Middle null distribution obtained analytically (solid line) or by
surrogates through spike time randomization in time (dots). Bottom dif-
ference between the observed and the null complexity distributions.
(Reproduced with permission from Grün et al. 2008)

entirely by assuming correlations of order at most ξ . If that
is not the case, the method accepts the alternative hypothe-
sis that correlations of order ξ + 1 or higher must exist. It
then tests for correlations of order ξ + 1 against those of
order ξ +2 or higher, and so on. The procedure stops as soon
as a value ξ̂ is accepted. ξ̂ is interpreted as the minimum
order of population synchronization that has to be assumed
to explain the observed amount of synchronous events in the
data. The sequence (p1, . . . , pξ̂

)of test p values is guaranteed
to increase, because synchronous events of higher complex-
ities correspond to higher expected correlations, and thus
eventually exceeds the selected significance threshold α, ter-
minating the procedure (see last row of panel C in Fig. 3).

The test p value is obtained analytically in the limit of
a large number L of i.i.d. observations (time bins), and by
assuming that all spike trains are Poisson processes. In par-
ticular, the case ξ = 1 corresponds to the assumption that
the spike trains are independent. The case ξ > 1 corre-
sponds to the assumption that up to ξ neurons synchronize
their spikes with positive probability. The probability of syn-
chronous events of a given size is modeled by the so-called
amplitude distribution (see panel b in Fig. 3). The analyti-
cal formulation makes CuBIC computationally inexpensive,
but requires L to be large enough (according to Staude et al.
2010a, L ≥ 105 bins) to get reliable results. The analysis is
therefore limited to applications of relatively long and sta-

tionary data. The length of the data required does not enable
the method to reveal changes of the correlation order over
time. While the original publication developed the method
for stationary data, generalizations hadbeen later on provided
for populations of spike trains with specific firing rate dis-
tributions, such as Gamma or uniform distributions (Staude
et al. 2010b) or non-stationary processes (Reimer et al. 2012).

3.1.3 Population unitary event (PUE)

As mentioned in the previous section, CuBIC is limited in
its application to long stretches of stationary data. However,
experimental results regarding pairwise correlation analy-
sis using the unitary events analysis method (Riehle et al.
1997; Kilavik et al. 2009) revealed that excess synchroniza-
tion may appear dynamically and related to behavior. Thus,
time-resolved analysis methods for detecting higher-order
correlation are required. The population unitary event (PUE)
analysis method is designed to enable that. The test statis-
tic of PUE is the number of synchronous spike events of a
given size c observed in the data, which is extracted from
the population histogram. For bins containing spike counts
Z , we consider the total number of possible constellations

of c from Z , thus (
Zk

c
) per bin k. Thus, in a total of L bins,

we derive the number of synchronous spike events of size
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Fig. 3 CuBIC analysis. a, b Illustration of the generation of correlated
parallel spike trains using a marked point process. This process is the
null model used to test ξ = 6. Spikes are assumed to be copied from a
hidden process z(t), (a, top) consisting of spike times ti drawn from a
Poisson process and associated labels a j drawn from the amplitude dis-
tribution f A (b, top). Each spike ti in the hidden process is copied into
a j spike trains, randomly selected each time from the full population
x1, . . . , xN . The population histogram Z (a, bottom) is computed by

segmenting the time axis into consecutive bins of a few ms. The com-
plexity distribution fZ (b, bottompanel) is derived from Z .cApplication
of CuBIC to simulated correlated data. The figure shows, from top to
bottom: the amplitude distribution used to generate the correlated data,
the raster plot of the generated data, the derived population histogram,
the empirical complexity distribution (blue) and its logarithmic trans-
form (green), the test p values for different orders of correlation tested
by CuBIC. (Reproduced with permission from Staude et al. 2010a)

c according to nc = ∑L
k=1

(
Zk

c

)

= ∑L
k=1

Zk !
c!(Zk−c)! . For

example, as shown in Fig. 4a, n2, n3 and n4 are the total
number of distinct pairwise, triple-wise and quadruple-wise
synchronous spike events present in the data.

The PUE analysis exploits the following framework for
testing the significance of the empirical test statistic observed
in the empirical data. The null hypothesis of the PUEmethod
is defined by a presumed order of synchrony among the spike
trains, i.e., the null order ξ0, andassumes that the order of syn-
chrony among the given spike trains is at most the null order
ξ0. The null distribution and the associated test p value are
computed numerically by a Monte Carlo simulation by real-
izing a marked Poisson process (see Ehm et al. 2007; Staude
et al. 2010a), and see the Supplementary Material in Sec. 6
used tomodel amultidimensional correlated Poisson process
(as also assumed and introduced in CuBIC, Sect. 3.1.2). The
parameters for the null model are adapted by the firing rate
and the pairwise correlation parameters extracted from the
data (see details in Rostami 2017; Staude et al. 2010a).

The analysis can be performed in a time-resolved fash-
ion by sliding a window through the data in steps of a few
time bins, and by analyzing each time window separately.
As shown in Fig. 4b, the surprise measure, defined as a loga-
rithmic transformation of the p value (Palm 1981), becomes
significant when the analysis window overlaps with the syn-
chronization period. This enables a time-resolved analysis
which is able to discover changes in the correlation order
over time.

When multiple experimental trials are available, the PUE
method may pool data from different trials to achieve

increased statistical power, under the assumption of cross-
trial stationarity. Figure 4c shows an example where the
order of synchrony is inferred by PUE using all 15 trials.
By computing the surprise as a function of the null order ξ0,
the estimate ξ̂ of true order of synchrony in the data can be
obtained as the lowest value of the null order ξ0 for which the
surprise measure is not significant. PUE has higher statisti-
cal power (and therefore needs less evidence) than CuBIC to
detect existing correlations in data.

3.1.4 Correlation information index (CII)

Maximum entropy models (MEMs) have been introduced
to evaluate the occurrence probability of each synchronous
spike pattern (seen as a binary sequenceof on/off states) given
the observed firing rates, pairwise correlations, and possibly
higher-order moments of a population of observed neurons.
Once a maximum entropy distribution accounting for all and
only the observed correlations up to a given order ξ is inferred
from data (see Sect. 3.2.1 for more details), the amount of
information delivered by such correlations can be quantified
as follows.

The larger is the order ξ of the moments one accounts for
to construct the maximum entropy distribution, the smaller
is the total entropyHξ of the maximum entropy distribution
(that is, its uncertainty). At one extreme (ξ = 1, only average
firing rates being considered), one gets the uniform distribu-
tion, where the probability of a state is proportional to the
product of the firing rates of the “on” neurons. At the other
extreme (ξ = N , where N is the number of neurons) one gets
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Fig. 4 Population unitary event analysis. a Top: raster plot of 6 neu-
rons firing over time. Bottom: illustrative example of the test statistic
nc, showing for given values of c (c = 2 blue, c = 3 red, c = 4
green) and for each bin of the population histogram containing Zk ≥ 2

spikes, the number

(
Zk
c

)

of patterns of size c that can be extracted

from the Zk spikes. b Time-resolved PUE analysis applied to simu-
lated data. The simulated data consist of N = 150 parallel spike trains
with duration T = 2000ms, generated as a realization of a correlated
Poisson process of order ξ = 6 in the time window [800ms, 1200ms]
(indicated in gray), and of order ξ = 2 elsewhere. The firing rate of
each individual spike train is set to 10Hz and the pairwise correla-
tion coefficient to 0.005. The data are analyzed with PUE varying the
hyperparameter c from 1 to 6. From top to bottom: Time course of
synchrony order ξ , raster plot of the data, population histogram (1ms

bin size), cross-neuron average of empirical pairwise correlation coef-
ficients calculated over a 300ms sliding window, average firing rate
estimated over the same sliding window, and surprise measure of the
PUE statistic using different values of the parameter c. The surprise
is calculated for each time window with null order ξ0 = 2. Different
colors correspond to different values of c. The gray dashed line indi-
cates the 5% significance level. c Estimation of the synchronization
order ξ in the central analysis window (highlighted in gray in panel B),
for a null order ξ0 increasing from 1 to 8. The data are obtained by
concatenating 15 model realizations generated as explained in B, and
mimicking identically distributed experimental trials. The blue dashed
line indicates the 5% significance level and the vertical red line shows
the true synchronization order ξ = 6. (Reproduced with permission
from Rostami 2017)

the empirical distribution. The entropy Hξ of the maximum
entropy distribution constrained on all moments up to order ξ
decreases, for ξ increasing from ξ = 1 to ξ = N , fromH1 to
HN . The differenceH1 −Hξ quantifies the reduction of the
entropy (i.e., of the uncertainty about all possible states) due
to the knowledge of all correlations of order 2 to ξ , that is, the
amount of information conveyed by those correlations. The
differenceH1−HN quantifies the total information delivered
by correlations of any order. Thus, the ratio

Rξ = H1 − Hξ

H1 − HN

characterizes the portion of the total correlation information
delivered by correlations of order 2 to ξ . This measure is
called the correlation information index (CII). R2 was sug-
gested by Schneidman et al. (2003) to assess whether or not
triple- or higher-order correlations play a role in information
processing in the nervous system. Schneidman et al. (2006),
Shlens et al. (2006) and Tang et al. (2008), among others,
applied this measure to data from the retina and from var-
ious cortical areas, reporting values ranging from 0.85 to
over 0.95. Based on these high values, they concluded that
higher-order correlations were negligible in the examined
data. It should be noted, nevertheless, that even for extremely
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high values of R2 (R2 > 0.99), highly statistically significant
spike patterns of 3 ormore neuronsmay be present in the data
(Torre 2016). In addition, Roudi et al. (2009) showed in a the-
oretical study that conclusions obtained fromMEMs built on
data from few neurons cannot be extrapolated to larger sam-
ples of parallel spike data. Nevertheless, this approach may
be helpful to quantify the amount of information present in
parallel spike train data which is delivered by correlations of
a certain order.

3.2 Methods for spike pattern detection

The second group of methods covered in this review is
designed to detect groups of neurons involved inmillisecond-
precise spiking patterns. These methods achieve this goal by
detecting spike patterns that repeat sufficiently many times
to be classified as non-chance patterns. Non-chance patterns
are considered a signature of assembly activation (Abeles
1991), and have been associated with behavior in several
experimental studies (e.g., Prut et al. 1998). The large num-
ber of possible patterns in large scale recordings often poses
non-trivial computational and statistical problems. To get a
flavor of this problem, consider a population of N neurons
recorded in parallel. These neurons may organize their activ-
ity in up to 2N different patterns of synchronous spikes,which
is close to 1030 for N = 100, as regularly available in mod-

ern extracellular recordings. This number increases by orders
of magnitude if arbitrary STPs, and not only synchronous
events, are considered. Without any previous knowledge
about the neurons possibly involved in the correlation, a blind
search for patterns occurring more than expected under some
null hypothesis has to be performed, accounting for all these
possibilities. The computational burden may be excessive
(even allocation of the occurrence counts of all possible pat-
terns to memory may be impossible). Besides, testing all
patterns individually for statistical significance would yield
insurmountable multiple testing issues. Finally, the amount
of data needed to collect adequate statistical evidence would
be immense, and most likely unavailable. The methods con-
sidered here have been developed to address these issues.
We specifically restrict our attention to methods that can
be applied to large scale recordings, and whose ability to
discover existing patterns has been demonstrated on simu-
lated data. Also, we disregard those methods that search only
for patterns temporally locked to some stimulation. A recent
review of the latter can be found in Levakova et al. (2015).

3.2.1 Maximum entropy models (MEM)

As mentioned already in Sect. 3.1.4, MEMs provide the pos-
sibility to assess the likelihood of specific spike patterns
based not only on the average neuronal firing rates, but also
on the observed second and higher-order correlations. As

Fig. 5 Maximum entropy models. a A segment of the simultaneous
responses of 40 ganglion cells in the salamander retina to a natural
movie clip (top panel). Discretization of parallel spike trains into binary
patterns is shown below (green). The binary vectors describe the joint
activity patterns of the cells at a given time point. For clarity, 10 out
of 40 cells are shown (bottom panel). b Using the same group of 10

cells from panel a, the rate of occurrence of each firing pattern pre-
dicted from a maximum entropy model P2 that takes into account all
pairwise correlations is plotted against the pattern rate measured in the
recorded data (red dots). For comparison, the independent model P1 is
also plotted in gray. The black line indicates equality. (Reproduced with
permission from Schneidman et al. 2006)
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Fig. 6 Cliques of pairwise correlated spike data. a Raster display of 84
simultaneously recorded multi-unit (MUA) spike trains, i.e., spikes of
the same train were not sorted into single neurons. Some of the elec-
trodes did not record any data, thus the corresponding line is empty. b
Arrangement of the 100 electrode recording array (Utah array). Empty
circlesmark electrodes that were not connected, electrodesmarkedwith
a cross did not work. The rest (red dots) indicate working electrodes,
from which the data in panel A were recorded from. The non-diagonal
next electrode distance was L = 400μm. c Example CCH of two
multi-unit spike trains. Black: cross-correlation of the recorded data,
bin width: 1 ms, red line: smoothed CCH (rectangular kernel of 10 ms
width). The green line shows the bin-wise average CCHs of the surro-
gate data (100 repetitions) generated by spike dithering with ±35ms,
and smoothed as the original CCH. It represents the expected CCH

under the null hypothesis. The blue line indicates + 2 std of the bin-
wise entries of the surrogate CCHs. A pair of MUAs is considered
significantly correlated if the smoothed original CCH (red) exceeded at
or around τ = 0 this significance level. d Clusters of cliques of signifi-
cantly correlated pairs ofMUAs. A significantly correlatedMUApair is
represented by two nodes (eachMUA id is shown in the respective rect-
angle). Groups of 3 or more all-to-all correlated MUAs are clustered
into cliques. Cliques sharing at least one node are further combined
into a group of intracorrelated cliques (GIC). The resulting four clus-
ters are marked in different colors (red, green, cyan and blue). MUAs
not fulfilling these criteria are marked by gray squares, connected by
dashed lines to the other MUA they are correlated with. (Reproduced
with permission from Berger et al. 2007)

shown in Fig. 5, a MEM of order ξ converts spike trains to
binary sequences by binning, computes the average zero-lag
correlations up to order ξ (the vector of average firing rates,
the matrix of second order correlation coefficients, the ten-
sor of third order correlations, and so on), and then provides
an analytical estimate of the p value of any spike pattern
under these constraints (and under the additional assumption
that the spike trains are Poisson). A joint distribution of N
binary states (on/off neurons) is fully specified if and only
if all multivariate moments up to order N are given. MEMs
specify only the correlations up to an order ξ < N , and then
determine the maximum entropy (the least assertive) distri-
bution among all the distributions compatible with the given
constraints (see, Jaynes 1957).

By constraining the distribution to correlations up to a
given order, the presence of “genuine” higher-order corre-
lations (that is, of correlations that are not expected based
solely on the observed lower order correlations) can be ascer-
tained. The analytical treatment provides an efficient way to
analyze data from relatively large parallel recordings. This
methodology has been used in a number of studies to search
for statistically significant synchronous spike patterns, con-
straining on the observed average neuronal firing rates and
average pairwise correlations (ξ = 2) (see, e.g., Schneidman
et al. 2006; Tkacik et al. 2006; Tang et al. 2008). Shimazaki
et al. (2012) extended the method to account for time vary-
ing interactions. Kass et al. (2011) andKelly andKass (2012)
incorporated in the null hypothesis history effects that make
the spike trains deviate from the Poisson assumption.
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Despite these efforts, a number of short-comings limits the
applicability of MEMs to MPST data. First, the maximum
entropy distribution of a large number of neurons is com-
putationally demanding to evaluate due to the large number
of parameters to be determined. This is the more so if non-
stationarities are taken into account, which is necessary in
most applications to avoid biased statistics. Second, evaluat-
ing the p value of each pattern individually leads in MPST
data to multiple testing issues, resulting in excessive false
positives (or false negatives after standard statistical correc-
tions like, e.g., the Bonferroni correction). Third, Rostami
et al. (2017) studied in detail the aptness ofMEMs in applica-
tion to MPST data and showed that MEMs predict a bimodal
distribution for the population-averaged activity, when it is
applied to typical experimental recordings of 150 or more
neurons. Thus the MEM distribution is not uniquely pre-
dicted, but switches between different states of activities for
long data sets. For these reasons, the MEM model does not
easily scale to data of large populations of neurons, but can
be accounted for by an extendedmodel (Rostami et al. 2017).
Nevertheless, MEMs provide valuable tool to analyze gen-
uine higher-order synchronous events.

3.2.2 Neuronal cliques and groups of intracorrelated
cliques (GIC)

Afirst approach to analyzeMPSTdata for the presence of cell
assemblies of possibly large size involved in correlated activ-
ity is the Groups of Intracorrelated Cliques (GIC) analysis,
developed by Berger et al. (2007). The method first deter-
mines pairs of correlated neurons using the cross-correlation
histogram (CCH;Perkel et al. 1967), then groups overlapping
pairs into larger groups which possibly indicate higher-order
interactions.

The CCH between a reference and a target neuron is a
histogram whose entries count, for any positive or nega-
tive temporal delay �t , the number of spikes that the target
neuron emits with delay �t from any one spike of the refer-
ence neuron. If the target neuron tends to fire with delay �t
before the reference (�t negative) or after it (�t positive),
a peak in the CCH arises, centered at �t . Other effects not
related to correlated activity, such as firing rate variability
and high regularity of the individual spike trains, may also
cause peaks or oscillations in the CCH. Unbiased predictors
of the CCH under the null hypothesis of spike train inde-
pendence that account for these factors have been developed
based on data surrogates (Louis et al. 2010c). For instance,
a predictor accounting for both rate changes and spike reg-
ularity can be computed using a Monte Carlo approach as
the average CCH obtained from surrogates of the original
data generated by spike dithering. Confidence intervals can
be obtained analogously.

Possible interactions among more than two spike trains
are then obtained combining the information provided by
the CCHs between all pairs. The proposed method works in
three steps. Statistically significant pairwise correlations are
determined on the basis of suitable predictors (for synchrony:
at time lag �t = 0, or slightly larger to account for jitter).
Second, cliques of all-to-all correlated pairs are collected,
and all cliques above a preselected minimum size (e.g., all
cliques of 3 or more neurons) are retained. Third, cliques
sharing at least one neuron are merged into a single GIC.

Berger et al. (2007) applied this procedure to MPST data
collected from cat V1 during visual stimulationwith full field
flash stimuli, and found four spatially clustered, distinctGICs
comprising 3 to 21 neurons (Fig. 6d, each GIC shown in a
different color). These GICs also formed clusters in cortical
space and were speculated to reflect activity from underlying
connectivity forming orientation columns as was shown by
optical imaging (e.g., Hübener et al. 1997).

The method relies on the computation of the CCHs
between all pairs of investigated neuronal activities and the
evaluation of their statistical significance. The first amounts

to

(
N
2

)

pairs for N neurons, a number that grows quadrat-

ically with N . Testing each CCH for significance using a
Monte Carlo approach further requires the computation of
up to hundreds of surrogate CCHs. The computational bur-
den may become unaffordable without resorting on compute
clusters. For this reason, Berger et al. (2010) worked out a
pre-processing approach that excludes from the analysis indi-
vidual neurons contributing weakly to synchronous events.
The pre-processing step was used effectively on the same
data and verified the original analysis, however at consider-
ably reduced computational cost.

GICs formed by three or more neurons may be evidence
for, but not necessarily imply, the presence of higher-than-
pairwise correlation. The method does not test for genuine
higher-order correlations (i.e., correlations that remain statis-
tically significant when conditioning on correlations of lower
order). The corresponding model of spiking activity is the
pairwise correlated point process described in Sect. 2.2. On
the other hand, higher-order correlations in the data may be,
but not necessarily are, found as GICs.

3.2.3 Cell assembly detection (CAD)

Russo and Durstewitz (2017) recently introduced a different
method to tackle the multiple testing problem arising in the
search of repeated spike patterns in MPST data. The authors
suggested an agglomerative algorithm (which we refer to
here as cell assembly detection, or CAD) that is composed
of two recursive steps: (a) a statistical test for pairwise cor-
relations, and (b) a clustering procedure that agglomerates
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Fig. 7 CAD pairwise test: sketch of the statistical pairwise test of the
CADmethod. The count nAB,l of spikes with a lag l is tested if it is sig-
nificantly larger than the count at a reference lag. Here, the reference lag
is chosen equal to − l, which correspond to the count nAB,−l = nBA,l .

Under the null hypothesis of independent Poisson processes, the observ-
able nABBA,l := nAB,l − nBA,l has average equal to 0 also in case of
firing rate non-stationary firing rate. (Reproduced with permission from
Russo and Durstewitz 2017)

pairwise interactions into patterns of larger size. A very sim-
ilar idea was introduced by Gerstein et al. (1978).

In step (a), spike trains are segmented in small time bins
of width w. Then, for each pair (A, B) of spike trains, the
algorithm counts the number nAB,l̄ of times that one spike
of spike train A is followed by a spike of spike train B after
l̄ bins. The lag l̄ is chosen to maximize the observed joint
spike count nAB,l̄ . Under the null hypothesis that the spike
trains are realizations of independent Poisson processes, the
method then derives the null distribution of the statistic

nABBA,l̄ = nAB,l̄ − nAB,−l∗ ,

where l∗ is an arbitrary reference lag for which nAB,l̄ ≥
nAB,l∗ . Considering nABBA,l̄ instead of nAB,l̄ is necessary
to compensate for bias due to firing rate non-stationarity
(see Fig. 7). If nABBA,l̄ deviates significantly from 0, then
the spike train pair AB is considered to be part of the same
spike pattern. The advantage of this approach is that it avoids
high computational cost by deriving all p values analytically.
However, this strategy heavily relies on the assumption of
Poissonianity which may not be a feature of the data and
thus may lead to false positives (e.g., see Pipa et al. 2013).

Also,

(
N
2

)

statistical tests are performed at this step in the

presence of N spike trains, leading to a moderate multiple
testing issue.

In step (b), larger spike patterns are obtained by recur-
sively testing patterns previously formed with any other
neuron, i.e., triplets are formed by testing each single signifi-
cant pair AB with any other unitC using the same framework
introduced for pairs. In order to make use of the null distri-
bution derived for pairwise testing, all spikes of A with lag
l̄ AB are considered to form a new artificial unit (AB, l̄ AB),
representing then the pattern occurrences. The test is then
performed on the pair ((AB, l̄ AB)C, l̄(AB)C ). By proceeding
iteratively with this agglomerative procedure, the algorithm
extends frompairs to patterns of any size. Thus, this approach
does not explicitly test for higher-order correlations, which

leads to a lower statistical power thanmethods testingdirectly
for higher-order correlations (see Sect. 5).

CAD can detect not only STPs, but also correlations of
spike counts (e.g., firing rate modulation). To do so, the
method allows the user to increase the bin size w, such that
more than one spike is contained in a bin. For example in case
that neuron A shows repeated increase in the firing rate, fol-
lowed by an increase in neuron B after l bins (e.g., correlated
non-stationary firing rates) appearing as spike count corre-
lations in nABBA,l̄ . In particular, it is possible in the case of
multiple spikes in the same bin to decompose each process in
a sumof binary processes and to successively assess their sig-
nificance using the same framework previously introduced.
For additional details, we refer to the original publication.
Thus, CAD is not limited to detect fine temporal spike pat-
tern, but is also capable to detect correlations on a larger time
scale.

3.2.4 Spike patterns detection and evaluation (SPADE)

Spike synchrony (see Sect. 2.3) or spatio-temporal spike pat-
terns (Sect. 2.4) in MPST data can be effectively detected by
the spike pattern detection and evaluation (SPADE) analysis
method (see Torre et al. 2013; Quaglio et al. 2017, respec-
tively). SPADE comprises three steps: (a) a data mining
procedure to efficiently extract repeating synchronous spike
patterns that are suitable candidates to be significant patterns,
(b) statistical testing to assess the significance of the mined
pattern candidates, and (c) assessment the conditional signif-
icance of each pattern retained after step (b), given any other
found pattern overlapping with it; the last step is needed to
reject patterns that are due to chance overlap of real patterns
with background activity.

Step (a) is accomplished by Frequent Itemset Mining
(FIM, Zaki and Ogihara 1998 or equivalently Formal Con-
cept Analysis Ganter and Wille 1999; Pisková and Horváth
2013). Time is discretized into consecutive bins of duration
w, and the sets of neurons emitting a spike in each bin are
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Fig. 8 SPADE analysis. a Sketch of the discretization of the parallel
spike data into binned spike trains. The set of neuron ids (“items”) spik-
ing in each bin form a “transaction”. The subsets extracted from each
transaction, or “item sets”, represent all observed synchronous spike
patterns present in the data. The FIM data mining step organizes the
item sets in a search tree and eventually returns all closed frequent item
sets (right panel, circled in red), discarding the infrequent (black) and
non closed (blue) ones. b Significance evaluation. Illustration of assess-
ment of closed frequent patterns for statistical significance of simulated
data consisting of a synchronous pattern of size z = 10 occurring c = 6
times and embedded in a population with 90 additional independent
spike trains). From left to right: pattern spectrum of the number of pat-

terns for each signature (z, c) found in data; p value spectrum of each
signature under the null hypothesis computed over statistically indepen-
dent surrogates of the original data; significant (red) and non significant
(gray) signatures in the original data (significance threshold: α = 0.01,
corrected formultiple tests by false discovery rate correction). c Patterns
found as statistically significant after PSF (lower lists in b) are tested
for reciprocal conditional significance. Conditionally significant pat-
terns are retained (here, the true pattern 1, 2, . . . 10 occurring 6 times),
the others are discarded as chance overlap of the significant ones with
the background activity. (Reproduced with permission from Torre et al.
2013)
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collected (see Fig. 8a). The activity of a synchronous cell
assembly immersed in a larger population of recorded neu-
rons (e.g., neurons 1, 3 and 4) typically appears as a set of
spikes falling in the same time bin, together with additional
spikes emitted by other neurons and falling in the same bin
by chance.Revealing active synchronous cell assemblies thus
requires to assess the statistical significance of all subsets of
all transactions. However, for N neurons, the latter may be
as many as 2N different patterns, yielding severe computa-
tional and statistical issues. Of interest among these patterns
are those which are frequent, i.e., occur at least a minimum
number of times (in our case, 2 times), and which are closed,
i.e., do not always occur as a subset of the same super-pattern.
All patterns which are not frequent or not closed may be dis-
carded under the rationale that they are either too sporadic,
or trivially explained by larger patterns in the data. Figure 8a
shows infrequent (black), frequent but not closed (blue) and
frequent and closed (red) patterns extracted from the trans-
actions in panel A. The latter are typically a small fraction
of the total patterns. Therefore, testing them only for signif-
icance drastically reduces the computational burden and the
multiple testing problem, without causing any information
loss. FIM provides a class of efficient algorithms to collect
closed frequent patterns in data of large size.

Similar approaches based on different, more heuristical
data mining frameworks had been developed in previous
work. See in particular Abeles and Gerstein (1988) and
Gansel and Singer (2012) for two different algorithms to
pre-filter patterns based on their neuronal composition. For
an application of the former toMEG data, see Tal and Abeles
(2016). These methods, however, do not guarantee that the
filtered patterns are all closed (that is, all non-trivial) patterns
in the data, thereby possibly leading to a loss of information.
Also, neither of the twomethodologies is accompanied by an
approach to test for the statistical significance of the filtered
patterns designed for MPST data.

Step (b) of SPADE, called pattern spectrumfiltering (PSF;
see Fig. 8b), assesses the statistical significance of each
closed frequent pattern (typically thousands ormore inMPST
data) on the basis of the pattern size z (i.e., the number of neu-
rons forming the pattern) and of the occurrence count c (i.e.,
the number of times the pattern occurs), irrespective of the
specific neuronal composition of the pattern. The pair (z, c)
is called the pattern signature. Because the number of dif-
ferent pattern signatures is orders of magnitude smaller than
the total number of different patterns, this pooling strategy
avoids themultiple testing issue that would arise from testing
each closed frequent pattern individually. PSF computes thep
value of each observed signature based on surrogate data that
preserve the marginal properties of the original spike trains
such as the inter-spike intervals and the firing rate profiles
(see Pipa et al. 2008; Louis et al. 2010c).

The presence of a real synchronous spike pattern in data
tends to increase the occurrence count, and therefore the sig-
nificance, of other patterns that result form a chance overlap
of the pattern’s spikes with background activity. Step (c) of
SPADE, called pattern set reduction (PSR) (see Fig. 8c),
detects and removes these false positives by assessing the
conditional significance of all patterns found after step (b)
given any other overlapping one.

Yegenoglu et al. (2016) andQuaglio et al. (2017) extended
SPADE to detect arbitrary STPs (defined in Sect. 2.4). STPs
spanning a maximum number of K bins (for synchrony:
K = 1) can be similarly defined as subsets of transactions
constructed as follows. A window of K bins is slid through
the data over time in steps of 1 bin (Fig. 9a). Each window
position corresponds to a transaction whose elements (items)
are pairs (i, j), one pair per spike in the window, i represents
the id of the neuron that emitted the spike, while j repre-
sents the relative location of the spike inside the window
( j = 1, . . . , K ) (Fig. 9b, c). Data formatted in transactions
this way can be screened for closed frequent STPs by FIM
(equivalently, FCA) algorithms. The evaluation of the statis-
tical significance of closed frequent STPs requires the same
steps as for synchronous patterns, namely PSF and PSR.
Other approaches that filter patterns based on their stabil-
ity (loosely speaking, the tendency of a pattern to reoccur
identically) rather than on statistical significance were also
investigated inYegenoglu et al. (2016), but had a higher com-
putational cost or yielded a lower performance.

3.2.5 Analysis of sequences of synchronous events (ASSET)

Sequences of synchronous spike events (SSEs) constitute
one type of coordinated spiking where synchrony propa-
gates from one group of neurons to the next in a temporally
precise manner. The synfire chain was proposed as one
potential model for such kind of network processing. Torre
et al. (2016a) introduced the Analysis of Sequences of Syn-
chronous EvenTs (ASSET) to reveal this type of correlated
activity in MPST data. The method builds on the work of
Schrader et al. (2008), extending it by introducing statistical
tests and thereby allowing for a fully automated analysis.

First, time is segmented into consecutive bins of length
w (see Fig. 10a, left). Second, any two time bins are com-
pared for the number of neurons that spike in these two bins,
i.e., the intersection of the two sets. The results of all these
comparisons form the intersection matrix I such that the
comparison of bin i and j is entered in the matrix element
Ii, j . Synchronous events composed of the same (or many
overlapping) neurons lead to a larger value of Ii,, j compared
to independent data, i.e., chance overlap.

AnSSEcomposed of (largely) the sameneurons occurring
two times in the data yields one diagonal structure of large
entries in the intersection matrix I . Thus, a diagonal struc-
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A

C

B

Fig. 9 Detection of spatio-temporal spike patterns. a Construction of a
transaction data base. Spike trains are binned, and a window of length
K bins is slid in time in steps of 1 bin. For window positions which start
with a spike, the spikes falling into the window are collected. These are
transformed in time such that the spikes per neuron are concatenated to

a vector such that a list of pairs (i, j) of spike id i and relative spike
time j , j = 1, . . . , K are formed. b Transformed spiking activities
from two window positions concatenated to parallel binary sequences
enabling to search STPs by detection of synchronous entries as shown
in c. (Reproduced with permission from Quaglio et al. 2017)

ture in the intersection matrix indicates the occurrence of a
repeated SSE. ASSET detects and isolates diagonal struc-
tures in the intersection matrix by a statistical procedure.
The method first transforms the intersection matrix I into a
probability matrix P (Fig. 10b, left) defined such that Pi j
represents the probability for Ii j to be at most the observed
value, under the null hypothesis of spike train independence.
Pi j is obtained analytically or by Monte Carlo simulation.
Values of Ii j larger than expected correspond to values of Pi j
closer to 1. P is further transformed into a joint probability
matrix J whose entries Ji j represent the joint probability of
overlaps all the intersections Ihk , where the bins h, k form
a neighborhood of (i, j) (Fig. 10b, second from left). Diag-
onal structures in I due to a repeated SSEs lead to highly
significant values both in P and in J . Individual, isolated
repeated synchronous events yield a statistically significant
entry in P but not in J . In light of these considerations, a
masked matrix M is constructed, whose entries take binary
values: Mi j = 1 if both Pi j and Ji j are statistically signifi-
cant, Mi j = 0 otherwise (Fig. 10b, third from right). Finally,
close-by one-valued entries in the masked matrix are clus-
tered together in the cluster matrix C of diagonal structures.
This step allows to identify the diagonal structures as indi-
vidual entities, and to discard spurious isolated entries in M
(Fig. 10b, right).

ASSET is robust to firing rate variability over time and
across neurons, aswell as to the presence of spike correlations
different from SSEs (see Torre et al. 2016a). Furthermore,
simulations of large balanced neuronal networkswere used to

demonstrate that the method is able to successfully discover
SSEs resulting from repeated synfire chain activation.

4 Method comparison

In the previous sections, we gave an overview of nine meth-
ods for the analysis of temporally precise spike correlations in
MPSTdata.We also illustrated the differentways thesemeth-
ods deal with the combinatorial and statistical challenges that
characterize such an analysis. The various methods aim to
reveal different types of correlated spiking activity. To this
end, they rely on different statistics.

In the upcoming subsections, we give a comparative
overlook of the applicability of these methods to data char-
acterized by different correlation structures. In particular,
we discuss the sensitivity of each method to correlations of
a different type than the one it was designed to detect. A
natural question here is whether a method designed to analy-
sis a particular correlation structure may still provide partial
information about different types of correlated spiking. If so,
analyzing a data set with different methods may provide the
researcher with a richer picture of the possibly present corre-
lations, and even aid a correct interpretation of the results. In
the following, we discuss how the introduced methods react
to different correlation structures. Table 2 summarizes the
results.
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Fig. 10 ASSET analysis. a Sketch of a raster plot of parallel spike
trains of multiple neurons (vertical axis) over time (horizontal axis).
Dots in each row correspond to the spike times of one neuron. Time is
discretized into adjacent bins (marked by white and blue shaded back-
grounds) to define synchronous events. Synchronous spikes forming
an SSE repeating twice are indicated by colored dots (one color per
event). On the right: Intersection matrix I. Each matrix entry Ii, j (val-
ues encoded by gray levels) contains the degree of overlap of neurons
active in time bins bi and b j . b Significance evaluation of repeating
SSEs. Left: The cumulative probability Pi, j calculated for each entry
Ii, j analytically under the null hypothesis H0 that the spike trains are
independent and marginally Poisson. Second from left: The l largest
neighbors of Ii,, j in a rectangular area extending along the 45◦ direction

are isolated by means of a kernel and their joint cumulative probability
is assigned to the joint probability matrix J at position Ji, j . Third from
left: For a chosen significance thresholdα1 for the probability of individ-
ual entries Pi, j and a significance threshold α2 for the joint probability
of the neighbors of entries Ji, j each entry of I for which Pi, j > α1 and
Ji, j > α2 is classified as statistically significant. Significant entries of
I are retained in the binary masked matrix Mi, j , which takes value 1 at
positions (i, j) where I is statistically significant and 0 elsewhere. B,
right: 1-valued entries in M falling close-by are clustered together (or
discarded as isolated chance events) bymeans of aDBSCANalgorithm,
which thus isolates diagonal structures. (Reproduced with permission
from Torre et al. 2016a)

Table 2 Table of methods and stochastic models

Method Pairwise correlation Synchronous patterns Population synchronization STPs SSEs

Complexity distribution (�) (�) � (�)

CuBIC (�) (�) � (�)

PUE (�) (�) � (�)

Max. entropy information � �∗

Max. entropy models � �∗

Cliques � (�) (�) (�)

SPADE (�) � (�) � �
CAD (�) � (�) � �
ASSET �
The table summarizes the ability of each method to retrieve correlations represented by different models. �: the method is designed to detect that
particular model and the output matches perfectly and describes completely the correlation structure of the data. (�) : The method was designed for
a different correlationmodel, but it is still possible to get partial information about the correlation structure of the data.�∗: Themethod is in principle
applicable, but in practice affected by computational and/or multiple testing issues when used onMPST data; the results may lead to misinterpret the
correlation structure due to lack of information about it. For the remaining entries, the method does not provide sufficient information to reconstruct
the correlation structure

123



74 Biological Cybernetics (2018) 112:57–80

4.1 Population synchronization

In the case when synchronous spike events involve different
neurons at each occurrence time, no particular spike pattern
reoccurs. CuBIC and PUE find the minimum order of excess
synchronous events to be assumed in the data. The test statis-
tics are based on the complexity distribution, which does
not include information about the neuronal composition of
each synchronous event. PUE can additionally be performed
in a time-resolved fashion, and therefore may discover time
varying correlation orders. The CII approach quantifies the
amount of information about the probability distribution of
synchronous spike patterns that is delivered by correlations
of a given order or lower, out of the total information deliv-
ered by all correlations. Thus, it may also be used to detect
the maximum order of correlation in the data to account for
a given percent (e.g., 99%) of such information. In practice
though, CII is computationally intensive and typically cannot
be used forMPST data to discriminate beyond second versus
higher-order correlations.

The methods designed to detect specific groups of cor-
related neurons (MEMs, GIC, SPADE, CAD and ASSET),
instead, are generally blind or weakly sensitive to population
correlations. If the data are long enough and the population
synchronization involves by chance the same spike patterns
repeatedly, some of these methods may be able to classify
such patterns as statistically significant. This, however, will
provide only partial information about the true underlying
correlation structure.

4.2 Pairwise synchronization

The goal of the analysis of a data set containing pairwise
synchronization consists in finding all the pairs of neurons
involved in above-chance synchronous firing. In this sce-
nario, CuBIC and PUE are expected to return the minimum
order of correlation ξ̂ necessary to explain the data, i.e.,
ξ̂ = 2. This holds also true for the case of overlapping pairs
of correlated neurons. However, if the total amount of syn-
chronous spike pairs present in the data is not high enough,
these methods may report spike train independence instead.
However, since the identity of the neurons involved in syn-
chronous firing is not resolved, the specific correlated pairs
are not found. CII instead takes values very close to 1, thus
highlighting the absence of higher-order correlations. In the
presence of time varying spike train statistics, CuBIC is prone
to report higher values of ξ̂ because the method assumes sta-
tionary conditions. The PUE analysis and the CII, instead,
can account for time varying rates (the former by a time-
resolved analysis). For theCII approach, however, this comes
at a significantly increased computational cost.

Among the considered methods for detection of cell
assemblies, GIC and CAD directly evaluate the statistical

significance of each pair of synchronous firing neurons.
Testing only for pairwise interactions makes these meth-
ods particularly efficient (high statistical power, relatively
low computational burden). GIC can also cope well with
time varying firing rates, as suitable CCH predictors (surro-
gates) exist for this case (Louis et al. 2010b). However, it may
fail in properly characterizing time varying pairwise correla-
tions, since it relies on the cross-correlogram, which is a time
average measure. CAD instead detect all the occurrences of
the synchronous activation, allowing the reconstruction of
the exact temporal evolution of the pairs synchronizations.
Furthermore, the more relevant difference between GIC and
CAD is that the first groups together pairs or neurons which
are mutually correlated, while CAD, if the single occur-
rences of synchronization involves only pairs of neurons,
does not group them, but it returns patterns formed by indi-
vidual pairs. SPADE is designed to detect specific sets of
correlated neurons, including pairwise synchronization. Its
statistical power, however, is lower than that ofGIC andCAD
for pairwise synchronization. Indeed, SPADE first tests for
pattern significance on the basis of the pattern size and occur-
rence count, irrespective of the neuronal composition. Thus,
a specific pair has to exhibit a larger number of synchronous
events to be detected as significant, compared to direct sta-
tistical tests.

Finally, ASSET cannot retrieve correlated pairs of neu-
rons, because they do not produce repeated SSEs.

4.3 Synchronous spike patterns

In the presence of synchronous spike patterns of size larger
than 2, the optimal pattern detection would be a complete
description of the correlated set of neurons: the neuron
identities of the neurons in a synchronous event and their
occurrence times.

In this scenario, methods to characterize population cor-
relations (CuBIC, PUE, CII) generally tend to underestimate
the correlation order in the data. The number of synchronous
events of size ξ or larger needed for these methods to report
a minimum order ξ of population correlation is much larger
than the number of occurrences needed for a single pattern of
size ξ to become statistically significant. Unless several pat-
terns of size ξ exist, and their overall count is large enough,
population methods will report correlations of lower order.
This is particularly true for the CII index for ξ = 2, which
has been shown to take values very close to 1 (meaning
that correlations of order 3 or higher contribute negligibly
to the total information about the probability distribution of
synchronous spike patterns) alsowhenhighly significant syn-
chronous spike patterns of much larger size are present in the
data (Torre 2016).

The GIC and CAD analysis may detect some of (but typi-
cally not all) the neurons forming a synchronous spike pattern
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of size larger than 2. The occurrences of the full pattern
increase to some extent the peak in cross-correlations of the
pairs contained in it, possibly leading to statistical signifi-
cance for some of them. Only if all pairs become statistically
significant, though, the two methods are guaranteed to fur-
ther group them together and to reconstruct thereby the full
pattern. This is typically not the case for patterns of larger
size, since those typically exhibit lower occurrence counts
in experimental data (see Torre et al. 2016b). An advantage
of CAD, is the limited computational cost required to carry
out the full analysis, due to the analytical formulation of the
null distribution. Additionally, for CAD, the detected group
forms a pattern which occurs multiple times with the same
neural composition, while with GIC it is not possible to dis-
tinguish between actual spike pattern and a group of neurons
that are mutually but independently correlated pairs.

MEM and SPADE are designed specifically to reliably
detect reoccurring synchronous spike patterns, and there-
fore perform optimally in this scenario. MEM provides in
addition a generative probabilistic model of the spiking
activity, which allows for resampling. In addition, it allows
one in principle to include correlations of any order among
the neurons, as well as history effects that make the spike
trains non-Poisson. On the down side, determining themodel
parameters becomes increasingly computationally demand-
ing as more of such features are included. Also, testing for
the statistical significance of each observed pattern runs into
the multiple testing problem, effectively limiting the applica-
bility of MEM to data with at most a few dozens of neurons.
SPADE instead only indirectly conditions on existing corre-
lations as it tests for the conditional significance of a pattern
with a statistically significant signature given any other pat-
terns overlapping with it. The method is also designed to
drastically reduce the multiple testing issue. Importantly, it
is very sensitive to synchronous events of large size, which
need only few repetitions to reach the significance thresh-
old. In contrast, low-order events need to occur more times
to be identified as statistically significant (see Torre et al.
2013). A downside compared to MEM is that SPADE solely
assesses pattern significance and does not provide a proba-
bilistic model of the spiking activity.

ASSET, finally, does not detect isolated synchronous
spike patterns (i.e., patterns not forming fixed, repeating
sequences). The reason is that these events only produce iso-
lated high-valued entries in the intersection matrix, but no
diagonal structures.

4.4 Spatio-temporal patterns

STPs are the generalization of synchronous patterns to the
case when neurons fire in a fixed temporal order (yielding
a synchronous spike pattern in the special case when the
delays are 0). The general definition of STPs also includes

SSEs as a special case. Methods designed to detect popula-
tion synchronization (such as CuBIC, PUE, CII), as well as
methods limited to the detection of spike synchrony (GIC,
MEMs), are not sensitive to STPs (except, of course, for
synchronous spike patterns). Methods like SPADE and CAD
are able to identify STPs of the general type. Specifically,
SPADE allows to correctly identify and statistically test for
any repeating spike sequence with pre-assigned maximum
time lag. No additional assumptions are made on the struc-
ture of the pattern. The same holds for CAD, where also
the maximum time lag is fixed before the analysis and thus
limited to the maximum allowed delay.

Finally, ASSET is only able to identify STPs of the SSE
type, a special case which is discussed next.

4.5 Sequences of synchronous spike events

AnSSE consists ofmultiple synchronous events which occur
at specific, fixed delays after one other. The presence of a
reoccurring SSE (for instance due to the activation of an
active synfire chain, see Sect. 2.5) thus increases the over-
all amount of synchronization observed in data. If the SSE
comprises sufficiently many events or these events involve
sufficiently many spikes, population correlation methods
could therefore detect the presence of synchrony. If the size of
all synchronous events in the SSE is the same, say ξ , CuBIC
and PUE would ideally return synchronization order ξ in the
data. If instead the different synchronous events in the SSE
have different size, they should return the maximum size.
In both cases, however, both methods will typically return
a lower correlation order. Furthermore, neither of the two
methods identifies the neuronal composition of the events or
their temporal structure. CII, instead, will report an infor-
mation index R2 very close to 1 if all events in the SSE
comprise two spikes, and lower than if larger events are
present. Computing indices Rξ for ξ > 2 may help high-
lighting the existence of higher-order correlations, but it is
computationally demanding. Besides, it would not provide a
description of the complex correlation structure.

The GIC analysis could theoretically reconstruct the indi-
vidual events forming an SSE. For this to be possible, the SSE
has to occur sufficiently many times such that zero-delay
pairwise correlations among all pairs of neurons involved
in the same synchronous event become statistically signifi-
cant. The method would then further group the overlapping
pairs together, thus reconstructing each synchronous event
separately. Besides that, even in this optimal scenario the
synchronous events would be found in isolation, and further
work would be needed to group them together into an SSE.

Since SSEs are a special case of STPs, they can be fully
reconstructed with SPADE or CAD, if they occur sufficiently
many times and if the total time span of one occurrence is
shorter than the chosen analysis window. The number of

123



76 Biological Cybernetics (2018) 112:57–80

occurrences needed for significance drops exponentially fast
with the total number of involved neurons (see Torre et al.
2013). Thus, for SSEs involving sufficiently many neurons,
even just a few repetitions are sufficient for detection by
SPADE.

Finally, ASSET is specifically designed to detect SSEs
occurring at least two times in the data. Unlike SPADE and
CAD, the method accounts for their precise temporal struc-
ture (synchronous events and delays between them) to assess
their significance. Specifically, ASSET computes the p value
of the SSEs as the joint probability of having synchronous
events of the observed size in sequence. SPADE instead
computes the probability of having any STP of different
composition comprising the same number of spikes. For this
reason, the statistical power of ASSET for SSEs occurring
two times is higher than that of SPADE. This allows ASSET
to retrieve SSEs composed of fewer neurons than SPADE is
able to discover. SPADE does, on the other hand, more easily
detect SSEs occurring more than 2 times, because it col-
lects evidence from all pattern occurrences. ASSET, instead,
evaluates by default only the significance of pairs of SSE
occurrences, unless intersection tensors of higher dimension
are built (see Gerstein et al. 2012, for dimension 3), which is
possible but computationally demanding.

5 Discussion and conclusions

In this manuscript, we discussed methods which enable the
analysis of massively parallel spike trains (the spiking activ-
ity of tens to hundred(s) of neurons recorded in parallel) for
fine temporal correlations in the ms precision range. The
common aim of such analyses is to identify spiking activ-
ity indicative of the presence of active cell assemblies (Hebb
1949), defined as groups of neurons that formbuilding blocks
for information processing in the cortex.Discovering and dif-
ferentiatingvarious types of temporally precise spike patterns
in experimental spike data may be critical in understanding
debated mechanisms of computations in the brain.

While no existing analysis method is able alone to distin-
guish among the different types of spike patterns discussed
in the literature, combining the information delivered by dif-
ferent methods may provide a better strategy. Therefore, we
suggest to apply multiple methods, in a particular sequence
to approach unknown data. First, one would like to explore
if there are at all indications for correlated activity. For doing
that data can first be analyzed with computationally effi-
cient methods, such as the complexity distribution (Grün
et al. 2008) or other ’scanning’ methods (e.g., Berger et al.
2010). If the complexity distribution provides no indication
for the presence of higher-order correlations, pairwise or low-
order correlations or spatio-temporal patterns may still exist
since the method is not sensitive for them. However, when

correlations are found with the complexity distribution, or
the maximum entropy methods, the sole interpretation is
’the data contain higher-order synchrony correlation’, or in
case of the application of CuBIC ’the data contain HOC
exceeding order X’. Only SPADE, CAD or ASSET allow
to identify higher-order spike correlations including tempo-
ral delay between the spikes and they identify the neurons
involved in. If such spatio-temporal patterns are found, their
spatial occurrence on the recording array (e.g., Utah array)
may be identified (e.g., Torre et al. 2016a). With additional
knowledge on the detailed position of the array on the cortex
potentially involved local areas and the propagation direction
may be uncovered. If on the other hand recordings are per-
formed directly from different areas, e.g., as in Zandvakili
and Kohn (2015), ASSET may uncover the propagation of
sequences of synchronous activity from area to area.

Depending on the protocol of the experiment and the
behavioral design, data can be split into different trials or
segments that allow different interpretation. If, for exam-
ple, data are split and pooled according different behavioral
conditions, the analysis of the two with the same method
(e.g., SPADE) may result in the presence of different spike
patterns, which may be interpreted as ’in behavior A a differ-
ent assembly was activated than in behavior B’. Even more
informative are time-resolved analysis approaches which can
identify dynamically occurring spike patterns, as done in
Riehle et al. (1997) and Kilavik et al. (2009) using the UE
analysis. PUE, as a further development of the CuBIC anal-
ysis, enables also such a time-resolved analysis due to the
low computational requirement. Other methods that have a
higher computational load, such as SPADE or ASSET, can
be applied in a pseudo time-resolved fashion by segmenting
the full data into epochs of interest and pooling across trials.
Different significant spike patterns may occur in different
epochs or experimental condition, which may be interpreted
as ’different cell assemblies are activated in different behav-
ioral contexts’ (for an application of SPADE, see Torre et al.
2016b).

Experimental data typically exhibit various types of vari-
ability - non-stationary firing rates, rate inhomogeneity
across neurons or trials, and inter-spike intervals being more
or less irregular than a Poisson process are common obser-
vations. These features need to be included in the null
hypothesis to avoid false positive findings (Grün et al. 2002,
2003; Pipa et al. 2013). However, an analytical description
of the null hypothesis is for most of the cases mathematically
not possible, or difficult in practice (for instance, parameters
such as instantaneous firing rates cannot be well estimated
from data; for a review see Grün 2009). Surrogate data, i.e.,
modifications of the original data obtained by destroying the
aspect that is tested for, e.g., fine temporal correlations, pro-
vide a practical alternative solution (see Louis et al. 2010c;
Grün 2009; Platkiewicz et al. 2017). For most of the methods
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discussed here, surrogates are used to derive the null dis-
tribution(s) in the presence of such non-stationarities. The
downside is that this approach leads typically to a higher
computational load.

The temporal resolution (binning) chosen for the analyses
is a matter of choice, and may also be varied as a parameter
for finding the relevant time scale. Furthermore, the discussed
methods can be applied to data not consisting of parallel spike
trains, such as continuous signals, as long as they can be
reduced to point processes, and then to binary sequences by
binning. This approach is common for calcium imaging data,
which are typically reduced to events in time of the potential
underlying spikes (Grewe et al. 2010). The time resolution
is much lower than of electrophysiologically recorded spike
data. However, the result is then a matter the interpretation.
Another example are spike-like signals in MEG recordings
(Abeles 2014). These were reduced in Tal and Abeles (2018)
to point processes and can then be treated as binary processes
and analyzed by the methods discussed in this review.

We compared the methods with respect to the correla-
tion model they are designed for, and their abilities to detect
other correlation structures. A quantitative comparison of
the methods would likely provide more insights. However,
we learned from previous pairwise comparisons of some of
such methods (e.g., CAD and SPADE, Stella 2017, FIM and
the accretion algorithm, Picado-Muiño et al. 2013) there are
very few parameter configurations (e.g., temporal resolution,
number of occurrences and size of the patterns or total length
of the data) for which the performances are practically com-
parable. Moreover, the problem is not only about parameter
configurations, but it is about the mathematical formulation,
the different and not “hierarchical” definitions of correlated
activity, which make a quantitative comparison difficult. A
practical aspect for the difficulty of such comparisons is the
fact that the various approaches are typically implemented
in different software. A first step for an improvement of the
situation would be a common software platform or even a
common toolbox, as e.g., Elephant 1.

However, one may not forget that the number of neurons
recorded in parallel are still small compared to the number
of neurons contained in the tissue under observation. For
example, the number of neurons contained in a piece of cor-
tex covered by, e.g., a 100 electrode Utah array (Blackrock
Microsystems, Utah, USA) (4 × 4mm2) are about 105–
106. Thus sampling 100 or 200 neurons from the tissue is
still sparse compared to the number of neurons therein. In
addition, we still do not know how cell assemblies are spa-
tially embedded. Thus, unfortunately, it is very likely that
we still miss neurons from active assemblies. For improving
this situation, a further increase in the number of neurons in
parallel recorded should be aimed at and technically seems

1 http://neuralensemble.org/elephant/

soon possible. This provides new opportunities to study large
networks in even more details but will also require further
extensions and developments of analysis methods.
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