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Abstract In the current research, the muscle equivalent
linear damping coefficient which is introduced as the force–
velocity relation in a muscle model and the corresponding
time constant are investigated. In order to reach this goal, a
1D skeletal muscle model was used. Two characterizations
of this model using a linear force–stiffness relationship (Hill-
typemodel) and a nonlinear one have been implemented. The
OpenSim platform was used for verification of the model.
The isometric activation has been used for the simulation.
The equivalent linear damping and the time constant of each
model were extracted by using the results obtained from the
simulation. The results provide a better insight into the char-
acteristics of eachmodel. It is found that the nonlinearmodels
had a response rate closer to the reality compared to the Hill-
type models.

Keywords Muscle modeling · Hill-type models · Linear
damping · Time constant

1 Introduction

Many muscle models have been proposed in order to give
a better insight into the muscle behavior toward activations
coming from the central nervous system. The most known
model in achieving this goal is the Hill’s model (Hill 1938).
The phenomenological modeling approach based on Hill’s
model dominates in musculoskeletal systems modeling for
simplicity and low computational cost (Siebert et al. 2008).
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On the basis of Hill’s muscle model, several Hill-type
models have been emerged. These models consist mainly
of three elements: contractile element (CE), series elastic
element (SE), and parallel elastic element (PE) in diverse
configurations (Zajac 1988; van Soest and Bobbert 1993;
Günther and Ruder 2003; Siebert et al. 2008; Haeufle et al.
2012;Winters et al. 2012). The contraction dynamics ofmus-
cle has been recorded and described in numerous muscle
experiments. CE describes the force–length and the force–
velocity dependency of muscle fibers phenomenologically.
The muscle fiber velocity depends on the CE force in a
hyperbolic relationmostly known as theHill’s relation (Zajac
1988). In a real muscle, the elasticity of CE and the surround-
ing passive tissues can be represented as elastic elements.
These passive structures are usually divided into components
thought to act purely in series (SE) and purely in parallel (PE)
to the contractile element (CE) in classical Hill-type models.
Therefore, two principal Hill-typemodels have emerged: one
inwhich the parallel elastic element (PE) is arranged in paral-
lel with the CE and the SE; the other, in which the PE is only
in parallel with CE (Fig. 1). Both models have been used in
the past to represent muscle contraction (Ettema and Meijer
2000;Haenen et al. 2003; Siebert et al. 2008). One of the defi-
ciencies of these models is the lack of inclusion of mass and
inertia of the muscle. The output is a one-dimensional force,
which is applied to the models between the origin and the
insertion points, or sometimes asmoments bymeans of (con-
stant) lever arms (Haeufle et al. 2014). The models inputs are
neural muscle stimulation which acts as a force-generating
term in CE, and the resulting force modulates through PE
and SE.

The study of motor control gives a better insight into the
effects the central nervous system has on the functional,
goal-directed movement (Cheng et al. 2000). In the mid-
sixties, a unique approach for development of a theory for
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human motor control was proposed by Asatryan and Feld-
man (1965a). As a result of a number of experiments, amodel
called the A model emerged. This model was based on the
equilibrium point (EP) hypothesis that suggests the active
movements to be a result of shifts in the equilibrium state
of the motor system. In the mentioned model, the shifts are
associated with setting the threshold (A) of the stretch reflex
in its formulation (Asatryan and Feldman 1965a,b; Feld-
man 1996). Later this theory was extended and refurbished
with more details (Feldman 1974a,b, 1976, 1986). Foisy and
Feldman (2006) tested the two major theories of motor con-
trol (internal models and threshold control). The first model
behaves as position-dependent EMG control which explains
that the system counteracts the opposing forces by increas-
ing the muscle activity in proportion to the distance from
the initial posture. In contrast, the second model theory fully
excludes these opposing forces by shifting thresholds asmus-
cle activation parameter and thus resetting the equilibrium
positions to a new posture. In general, two types of func-
tional motor or muscle models provided in the literature by
Hill and Feldman could be considered as models with non-
linear springs. The Hill’s model is characterized as models
with adjustable stiffness due to excluding the reflex effect.
On the other hand, including the reflex effect would result
in adjustable starting length models that Feldman’s model
could be considered one of them (Feldman 1966; Shadmehr
and Arbib 1992). It was later investigated by Shadmehr and
Arbib (1992) that while taking into account the muscle reflex
effects, the same level of joint stiffness can be produced
by much smaller muscle forces because of the nonlinear
stiffness–force relationship.

Mörl et al. (2012) investigated the extent that Hill-type
muscle models are able to explain the electromechanical
delay (EMD). The EMD is the lag between the changes in
the simulation and the force produced in the muscle. In addi-
tion, Millard et al. (2013) compared the computational speed
and biological accuracy of three musculotendon models: two
with an elastic tendon (an equilibrium model and a damped
equilibriummodel) and onewith a rigid tendon. Stearne et al.
(2012) also used the muscles force–length–velocity rela-
tionship driven from an individually scaled musculoskeletal
OpenSim’s model in determination of the triceps surae mus-
cles to Achilles tendon force using a Hill-type model. The
nonlinear force–velocity also plays a significant role in sta-
bilizing a muscle model and results in lower energy cost.
This effect was investigated on computational model of an
anguilliform swimmer by Hamlet et al. (2015).

The purpose of this study is to simulate theHill’s and Feld-
man’smusclemodels, estimating the equivalent damping and
time constant of each, and comparing the results with those
obtained by the known models of OpenSim simulation pack.
First, Hill’s and Feldman’smodels and their properties for the
cat soleus muscle are described. Afterward, the Hill’s model

isometric contraction with linear passive properties is simu-
lated. Then the equivalent damping and the time constant of
each model is evaluated. Analysis of these results allows us
to reach a better understanding of the speed, accuracy and
stabilization of each muscle model. Due to nonlinear passive
properties of muscles, the procedure explained above is once
again implemented considering nonlinear passive properties,
and the results are compared. We also simulate Hill’s muscle
using the models in OpenSim. This gives a better insight into
their responses.

2 Methods

2.1 Adjustable stiffness model (Hill-type model)

The classical Hill-type model has usually two representa-
tions called the [CE + PE] model and [CE + SE] model as
illustrated in Fig. 1. The former consists of a contractile com-
ponent in parallel to an elastic component named as PE and
an elastic component in series with the whole model named
as SE, whereas in the latter the SE component is in series
with the CE part and the combination of these two would be
in parallel to the PE component. When modeling solely the
active properties of the muscles, there would be no signifi-
cant difference in these two models; however, the difference
would rise when the passive properties of the muscle would
come into action.

Siebert et al. (2008) investigated that which represen-
tations of Hill’s model best describe the muscle response.
Comparing the force–velocity relationship, the stiffness and
the muscle’s yield strains, they concluded that the [CE + PE]
model better captures the muscle dynamics. As a result, in
order to simulate the muscle contraction, [CE + PE] model
was chosen. The force generated in contractile element is a
function of the level of activation known as a signal com-
ing from the nervous system to simulate the muscle (FA),
the maximum active isometric force (Fmax), the force–length
(FL) and the force–velocity characteristics (Fv):

FCE = FLFvFAFmax (1)

Fig. 1 Hill-type model representations, where (left) is the [CE + SE]
model and (right) is the [CE] model, and both models consist of a series
element (SE), a contractile element (CE) and a parallel element (PE)
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The level of activation FA was chosen to be modeled as a
ramp starting from 0 at time 0 and reaching the maximum
level of activation (1) in 0.1 s (tmax) and maintaining this
value for the remaining time of the simulation (0.9 s). The
activation applied to the muscle is:

FA =
{ t

tmax
if t < tmax

1 if t ≥ tmax
(2)

The force–velocity relationship, which is illustrated in Fig. 2,
is the hyperbola proposed by Hill (1938). The hyperbola is
an evident of the damping characteristic of the muscle for
concentric contractions explaining that the faster the muscle
contracts, the less the force generated (VanLeeuwen andKier
1997).

Fv = vCEmax−vCE
vCEmax+(vCE.curv) if vCEmax < 0 (3)

where vCEmax < 0 is the maximal CE shortening velocity
and curve is a curvature parameter (Siebert et al. 2008).

In an eccentric contraction, the applied force value would
growwhen the velocity of lengthening increases. Behavior in
extension follows another curve rather than the Hill’s hyper-
bola (Katz 1939).

Fv = p − (p − 1) vCEmax+v
vCEmax−curv.kec.v

if vCEmax ≥ 0 (4)

where kec is an eccentric muscle constant, which can be com-
puted from the difference between the slopes of the force
velocity curves on both sides of the zero velocity. If the slope
in eccentric section is n times the slope in concentric section,
kec becomes (Nazari 2011):

kec = n
( 1
curv + 1

)
p − 1

− 1

curv
(5)

The p parameter, indicating the threshold of the muscle to
withstand the elongation, value is 1.8 times of the maximum
isometric force. As the muscle contraction is simulated, the
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Fig. 2 Hill-type force–velocity curve; negative velocity shows the con-
centric motion and positive velocity shows the eccentric motion

eccentric part of the force–velocity function (positive veloc-
ities) was ignored.

The CE force–length relation was assumed to be linear as
shown in Fig. 3:

Fl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if lCE ≤ l4
fc

(l3−l4)
(lCE − l4) if l4 ≤ lCE ≤ l3

( fc−1)
l3

(lCE − l3) + 1 if l3 ≤ lCE ≤ 0

1 if 0 ≤ lCE ≤ l2
(lCE−l2)
(l2−l1)

+ 1 if l2 ≤ lCE ≤ l1
0 if l1 ≤ lCE

(6)

where lCE is equal to l − lopt, fc is the force at which the
ascending limb changes slope and l1, l2, l3 and l4 are crucial
lengths that the force–length relation slope changes (Siebert
et al. 2008).

Winters et al. (2012) proposed the FSE(�lSE) relationship
as:

FSE(�lSE) =
⎧⎨
⎩

F1
(eksh−1)

.

(
e

(ksh .�lSE)

(�lSE1) − 1

)
if 0 < �lSE < �lSE1

F1 + k.(�lSE − �lSE1) if � lSE1 < �lSE1

(7)

where �lSE1 and F1 are the elongation and the force at
which the force–elongation relation changes from exponen-
tial to linear, respectively. k was calculated from �lSEC1,
F1, the dimensionless shape parameter ksh and the constraint
of equal stiffness at the place where �lSEC equals �lSEC1
(Siebert et al. 2008). In model [CE + PE], the PE influences
the intrinsic contraction dynamics. A PE force–elongation
relationship represented as FPE(�lPE) depending on k1 and
k2 was taken from (Brown et al. 1996)

FPE(�lPE) = k1.(ek2.�lPE − 1) if � lPE > 0 (8)

Fig. 3 The force–length relationship was normalized relative to Fmax
and considered as a linear model . l4 and l1 determining the width of the
force–length relationship. l3 is the length at which the ascending limb
changes slope, fc is the corresponding normalized force, and l2 is equal
to the width of the plateau
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Table 1 Single muscle
parameters of model [CE + PE]
based on the corresponding
ramp experiments (Siebert et al.
2008)

Model [CE]

Solution 1

fc[Fmax] 0.51

l1 [mm] 8

l2 [mm] 4

l3 [mm] −14

l4 [mm] −24

curve 9.5

F1 [N] 8.9

k1 [N] 0.0064

k2 [(mm)−1] 0.414

k
[

N
mm

]
8.2

Fmax[N] 20.5

ksh 2.5

vCEmax
[mm

s
] −152

lopt.exp[mm] 53

p 1.8

Two characterizations of the passive elements have been
implemented. First they are linearized at starting position
(linear model) and then the nonlinear characteristics are con-
sidered (nonlinear model). In the linear model, the slope at
the starting position is considered as linear stiffness of pas-
sive elements. For SE the stiffness becomes:

kSE =
{

F1.ksh
(eksh−1).�lSE1

if 0 < �lSE < �lSE1
k if � lSE1 ≤ �lSE

(9)

The passive properties of the muscle and the Hill’s activation
parameters are shown in Table 1.

2.2 Adjustable starting length model (Feldman’s model)

The Feldman and Hill-type muscle models have the similar
passive properties. Their difference emerges in the contractile
element function (active properties).

Feldman (1986) proposed a model considering the force
generated in contractile component as a nonlinear function
of activation level and the velocity:

FCE = f (L , v, lthreshold) (10)

In Feldman’s model, the activation level depends on the dif-
ference between the muscle length and the zero-force length
(lthereshold), which is the control parameter (Feldman 1986).
This model is considered as an adjustable starting length
mode, where muscle stiffness changes as a nonlinear func-
tion of force for different activation levels. Feldman (2011)
described that for a given activation command, muscle con-
tractile force depends on combination of the stretch–reflex
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Fig. 4 Feldman muscle invariant characteristics (IC) at a given veloc-
ity (Nazari et al. 2013)

mechanism and the force–length characteristic, which is an
exponential curve called the invariant characteristics (IC):

FCE−Feldman = Fmax

×
(
exp

[l(t − de) − lthreshold + μ(v(t − de))]+
lc

− 1

)

(11)

where Fmax is the maximum force generation capacity of a
muscle and is a function of the physical cross-sectional area
of it, lthreshold is zero-force length (threshold length), lc is the
characteristic length, v is muscle velocity andμ is a damping
coefficient. Both muscle length and velocity in this equation
are delayed values at time t − de. []+ means that the force is
equal to zero if the expression within []+ is negative.

Pilon and Feldman (2006) have also proposed a threshold
model for the torque applied to human elbow as an exponen-
tial function of the adjustable length as below:

M = a

(
exp

(
A

lc

)
− 1

)
(12)

where a acts as the maximum moment that the joint is able
to insert and A is considered as:

A = 1

1 + r
(l(t − de) − lthreshold + μv(t − de)) (13)

where de, μ and lthreshold have the similar definitions as our
representation of Feldman’s model and r is a weight coeffi-
cient with a value of 0.05. The effect of r in this research can
be simulated by replacing lc with lc(1 + r). As a result, the
two models are simillar exept for this difference.

A passive force should be added to this active force to
take into account the passivemechanical property of themus-
cle (Nazari et al. 2013). Muscle invariant characteristics (IC)
at a given velocity is shown in Fig. 4, where the gray path
shows an example of a voluntary contraction of muscle when
motor commands (starting lengths) are changing.
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3 Results

The simulation was performed under the assumption of iso-
metric contraction. In modeling the linear passive properties,
linear springs were used, and while simulating the nonlinear
model, the nonlinear passive functions replaced the linear
springs.

Themuscle damping property is defined through its force–
velocity characteristic. In order to evaluate the damping
characteristic of Hill’s model, the force–velocity function
was removed and replaced by a linear damper with the coef-
ficient of B.

The Feldman’s lthreshold was chosen to be a ramp function
starting from lth−initial that was chosen to be equal to lopt (the
optimummuscle length), reaching lth−final in 0.1 s. The value
of lth−final was chosen in such a manner to provide the same
maximum force reached by Hill’s model at the same muscle
length.

In the literature the characteristic length lc varies between
9mm (Laboissiere et al. 1996) and 25mm (Buchaillard et al.
2006) with a role that is to stabilize the model. The value of
8.93mm was chosen for lc which is close to the range men-
tioned above and obtained byAsatryan and Feldman (1965b)
from torque–angle curves for the human elbow (Laboissiere
et al. 1996).

The parameter μ is called the damping coefficient. In the
physiological literature, damping is associated with regula-
tion of muscle force as a function of velocity. In contrast,
the damping coefficient, μ, characterizes the dependence
of muscle’s threshold length on velocity. Both propriocep-
tive feedback and muscle intrinsic properties are velocity
dependent and thus contribute to the force-related damping
in a nonlinear way. The component of force-related damping
dependent on proprioceptive feedback is, to a first approxi-
mation, proportional to the product of muscle stiffness and
the coefficient μ (St-Onge et al. 1993). Thus, even though μ

is considered, for simplicity, the same for all muscles and
constant for a given movement (0.05 s), the force-related
damping may still vary as a function of stiffness both for
a single muscle and between muscles (Laboissiere et al.
1996).

Considering the fact that theHill’s force–length curve uses
the difference between current muscle length and optimal
length as its characteristic length, the Feldman’s model uses
the current muscle length. Having the current muscle length,
the following relation can be used to compute the threshold
length:

lthreshold = l − lcln

(
Fin
Fmax

+ 1

)
(14)

where Fin and l are the current force and length of the muscle
and lc and Fmax have the values defined earlier in the text.
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Fig. 5 Hill’s muscle model force–time plot considering linear passive
properties (black line) and nonlinear passive properties (gray dashed
line)

In this section we present a simulation of the model
described above. The simulation was run using ode45 solver
that has a variable time step in order to achieve the tolerance
specified. The tolerance was set to 0.001ms. The assumption
of linear passive elements was made followed by the imple-
mentation of nonlinear passive elements. As can be seen in
Fig. 5, the maximum force generated taking into account
nonlinearity is 20.47N which is greater than the force with
linear assumption 17.68N.

In addition, there exists a little offset between the force
obtained during nonlinear simulation and Fmax. This offset
could be due to the errors existing in consideration of the
mean value of several experiments. The Hill’s model with
nonlinear passive properties was also implemented in the
OpenSim software (Delp et al. 2007). OpenSim is consid-
ered as a software that provides its users with the ability to
observe and analyze the forces generated during movement
in different muscles of the body.

In order to simulate the Hill’s response in OpenSim, the
same activation as in Hill’s model (Eq. 2) is applied on a
model of an isometric muscle. Themuscle modeling used for
this purpose is based on the modeling proposed by Millard
et al. (2013).

The force applied to the muscle in the Millard’s model is:

f M = f Mo
(
α, f L(l̂ M ), f V (v̂M )

)
+ f PE(l̂ M ) (15)

where the first term ( f Mo ) is the Hill’s active force that is a
function of α (activation), fL (active force–length relation-
ship), fv (active force–velocity relationship), and the second
term ( f PE) is the passive force which is a function of the cur-
rent muscle length (l̂ M ). Changing the active force–length,
active force–velocity, the maximum isometric force, and the
optimal muscle length to be the same as the Hill’s model, the
plots shown in Fig. 6 are obtained.

As it can be seen Fig. 6, both models have reached their
desired maximum isometric force; however, there exists a
small difference between the results in the transient part. This
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Fig. 6 The Hill’s model (gray line) and the OpenSim’s model (black
line)

could be due to the different passive and active properties
considered for each modeling. As for the active force–length
relation, the OpenSim ignores the 0 to l2 part in Fig. 3 where
the normalized force has the constant value of one. The more
these two obey the same formulation, the more similar the
results would become.

Using Eq. 14 and the maximum force of 20.47N achieved
at active length of 44.3mm, the lth−final was set to 38.11mm.
Therefore, the lth starts from53mm (lopt) to 44.3mm, lth−final

during the first 0.1ms.
In the literature, different values of the reflex delay have

been reported. For example, Luschei and Goldberg (2011)
used 10ms delay formastication inmonkeys andBuchaillard
et al. (2009) used 17ms in tongue muscle modeling. Pilon
and Feldman (2006) have studied the effect of reflex delay on
the stability of the inserted torque to the elbow movements
and illustrated that their model is stable from 30 to 100ms.
For this purpose we have studied the effect of changing the
delay values on output response. It is shown in Fig. 7 that
the proposed model in this study remains stable for reflex
delays up to to 100ms and the response becomes unstable
as the reflex delay becomes higher than 100ms. As it can be
seen, the delay values less than 38ms generates oscillations
for the start of activation and the values more than 38ms
generates overshooting in force values at the beginning of
response. Hence we picked up the delay value as 38ms in
our simulations.

In order to evaluate the damping characteristic of each
model, the Feldman’s muscle model was simulated. The
resulting oscillations were not damped during the simula-
tion time, which could be an evidence of the model’s very
low damping characteristic. According to this observation,
the Hill’s force–velocity term was added to the Feldman’s
model in order to damp the oscillations. The effect of the
Feldman velocity term was also a matter of interest. As a
result, twodifferentmodels including and excluding theFeld-
man’s velocity term were considered in Fig. 8. The results
show that there is a little difference between the two pro-
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Fig. 7 The effect of reflex delay on the stability of Feldman’s muscle
model + Hill’s force–velocity term
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Fig. 8 Hill’s muscle model force–time plot (black dashed line), Feld-
man’s muscle model combined with Hill’s force–velocity term (black
line) and Feldman’s muscle model without its velocity term combined
with Hill’s force–velocity term (gray line)

posed models, compared to the difference they have with
Hill’s model. Therefore, the Feldman’s damping character-
istic is not significant compared to the Hill’s force–velocity
term. The damping coefficient (B) introduced via themodel’s
velocity term was calculated by omitting the force–velocity
terms and replacing them with a damper that provides the
exact maximum force which had been achieved while using
those terms. The muscle mass was needed in this part which
was assumed to be 3.4g (Scott et al. 1996). This is the mean
value of several experiments conducted on cat’s soleus mus-
cle. It can be seen in Fig. 9 that the damping coefficient of
Hill’s model is 0.98 N s

mm , whereas the proposed Feldman’s
combined model with Hill’s force–velocity term is 2 N s

mm as
shown inFig. 10. In addition, Fig. 11 shows the effect of omit-
ting the Feldman’s velocity term on the model mentioned
earlier resulting in damping of 1.5 N s

mm . This is an evidence
that the Feldman’s model velocity term would enhance the
damping ability of the model. On the other hand, it is possi-
ble to conclude the fact that combined Feldman’s model has
a better damping characteristic than the model proposed by
Hill.

The time constant was chosen to be the time the mus-
cle force reaches 63.2% of its final value. It can be seen in
Fig. 8 that the time constant of Feldman’s combined model
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Fig. 9 The equivalent damping characteristic of Hill’s muscle model
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Fig. 10 The equivalent damping characteristic of Feldman’s muscle
model + Hill’s force–velocity term
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Fig. 11 The equivalent damping characteristic of Feldman’s muscle
model (excluding its own velocity term) + Hill’s force–velocity term

with Hill’s force–velocity term was 0.09 s, while excluding
the Feldman’s velocity term resulted in the time constant
of 0.12 s. The time constant of the Hill’s model was 0.21 s.
This could be an evidence of the fast response of Feldman’s
model to the activation, and the effect of Feldman’s velocity
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Fig. 12 The effect of nonlinearity on damping and time constant of
Feldman’s muscle model + Hill’s force–velocity term

term in enhancing the time constant. The results are shown
in Table 2.

It is shown in Fig. 12 that the linear passive properties
produce less force than the nonlinear ones. As expected, the
damping characteristic for the linear Feldman’s muscle is
1.2 N s

mm which is less than 2 N s
mm that is achieved by the nonlin-

ear one. In addition, Fig. 12 implies that nonlinearity would
enhance the time constant by 0.03 s, helping the muscle in
reaching its desired maximum force in less time.

4 Conclusion

We have simulated Hill’s model and proposed a new mus-
cle model combining the Feldman’s stretch reflex force with
Hill’s force-velocity term during isometric contraction. The
modeling, numerical analysis and some comparison with the
OpenSim software which provides its users with a vast vari-
ety of muscle simulations were presented in this article. The
equivalent damping characteristic and the time constant for
three different models were computed. As far as nonlinear
passive properties are considered instead of linear properties,
the ability of the model to damp the oscillations and show a
closer response to the stimuli coming from the central ner-
vous system would improve. A new model using Feldman’s
formulation and taking advantage of the Hill’s velocity term
while taking into account the nonlinear passive properties
was proposed. Themodel has displayed an excellent behavior
toward isometric simulation, and has a time constant closer to
reality and ahigher damping characteristic thanothermodels.

Table 2 Time constant and equivalent damping of three nonlinear models

Models Damping coefficient
[
Ns
mm

]
Time constant [s]

Hill 0.98 0.21

Feldman without velocity term + Hill’s velocity term 1.5 0.12

Feldman + Hill’s velocity term 2 0.09
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The present study can be extended in many directions.
For example, different activation schemes such as isotonic
activation will shed light on other features of the proposed
model; modeling the Feldman’s muscle model in OpenSim
enables a better comparison on a unique platform.

References

Asatryan DG, Feldman AG (1965a) Functional tuning of the nervous
system with control of movement or maintenance of a steady
posture: I. Mechanographic analysis of the work of the joint or
execution of a postural task. Biophysics 10(5):925–934

Asatryan DG, Feldman AG (1965b) Functional tuning of the nervous
system with control of movement or maintenance of a steady
posture: I. Mechanographic analysis of the work of the joint or
execution of a postural task. Biophysics 10(5):925–934

Brown IE, Scott SH, Loeb GE (1996) Mechanics of feline soleus: Ii
design and validation of a mathematical model. J Muscle Res Cell
Motil 17(2):221–233

Buchaillard S, Perrier P, Payan Y (2006) The study of motor con-
trol seeks to determine how the central nervous system effects
functional, goal-directed movement. In: Proceedings of the 7th
international seminar on speech production, vol 17, pp 403–410

Buchaillard S, Perrier P, Payan Y (2009) A biomechanical model of
cardinal vowel production: muscle activations and the impact of
gravity on tonguepositioning. JAcoust SocAm126(4):2033–2051

Cheng EJ, Brown IE, Loeb GE (2000) Virtual muscle: a computa-
tional approach to understanding the effects of muscle properties
on motor control. J Neurosci Methods 101(2):117–130

Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guen-
delman E, Thelen DG (2007) OpenSim: open-source software to
create and analyze dynamic simulations of movement. Biomed
Eng IEEE Trans 54(11):1940–1950

Ettema GJ, Meijer K (2000) Muscle contraction history: modified hill
versus an exponential decay model. Biol Cybern 83(6):491–500

FeldmanA (1974a) Change in the length of themuscle as a consequence
of a shift in equilibrium in the muscle-load system. Biophysics
19:544–548

Feldman A (1974b) Control of the length of the muscle. Biophysics
19(2):766–771

Feldman AG (1966) Functional tuning of nervous system with control
of movement or maintenance of a steady posture. 2. Controllable
parameters of muscles. Biophys USSR 11(3):565

Feldman AG (1976) Control of postural length and force of a muscle:
advantages of the central co-activation of alpha and gamma static
motoneurons. J Biophys 19:771–776

Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ
model) for motor control. J Mot Behav 18(1):17–54

Feldman AG (1996) Functional tuning of the nervous system with
control of movement or maintenance of a steady posture. iii. con-
trollable parameters of the muscle. J Biophys 11:766–775

Feldman AG (2011) Space and time in the context of equilibrium-point
theory. Wiley Interdiscip Rev Cognit Sci 2(3):287–304

Foisy M, Feldman AG (2006) Threshold control of arm posture and
movement adaptation to load. Exp Brain Res 175(4):726–744

GüntherM,RuderH (2003) Synthesis of two-dimensional humanwalk-
ing: a test of the λ-model. Biol Cybern 89(2):89–106

Haenen WP, Rozendaal LA et al (2003) Stability of bipedal stance: the
contribution of cocontraction and spindle feedback. Biol Cybern
88(4):293–301

Haeufle D, Günther M, Bayer A, Schmitt S (2014) Hill-type muscle
model with serial damping and eccentric force-velocity relation. J
Biomech 47(6):1531–1536

Haeufle D, Günther M, Blickhan R, Schmitt S (2012) Proof of concept:
model based bionicmusclewith hyperbolic force-velocity relation.
Appl Bionics Biomech 9(3):267–274

Hamlet C, Fauci LJ, Tytell ED (2015) The effect of intrinsic muscular
nonlinearities on the energetics of locomotion in a computational
model of an anguilliform swimmer. J Theor Biol 385:119–129

Hill A (1938) The heat of shortening and the dynamic constants of
muscle. Proc R Soc Lond B Biol Sci 126(843):136–195

Katz B (1939) The relation between force and speed in muscular con-
traction. J Physiol 96(1):45–64

Laboissiere R, Ostry DJ, Feldman AG (1996) The control of multi-
muscle systems: human jaw and hyoid movements. Biol Cybern
74(4):373–384

Luschei ES, Goldberg LJ (2011) Neural mechanisms of mandibu-
lar control: mastication and voluntary biting. In: Comprehensive
Physiology. Wiley, pp 1237–1274

Millard M, Uchida T, Seth A, Delp SL (2013) Flexing computational
muscle: modeling and simulation of musculotendon dynamics. J
Biomech Eng 135(2):021005

Mörl F, Siebert T, Schmitt S, Blickhan R, Guenther M (2012) Electro-
mechanical delay in hill-type muscle models. J Mech Med Biol
12(05):1250085

Nazari MA (2011) Biomechanical face modeling: control of orofacial
gestures for speech production. PhD thesis, Université deGrenoble

Nazari MA, Perrier P, Payan Y (2013) A muscle model based on feld-
man’s lambda model: 3d finite element implementation. arXiv
preprint arXiv:1307.2809

Pilon J-F, Feldman AG (2006) Threshold control of motor actions pre-
vents destabilizing effects of proprioceptive delays. Exp Brain Res
174(2):229–239

Scott SH, Brown IE, Loeb GE (1996) Mechanics of feline soleus: I.
Effect of fascicle length and velocity on force output. J Muscle
Res Cell Motil 17(2):207–219

Shadmehr R, Arbib MA (1992) A mathematical analysis of the force-
stiffness characteristics of muscles in control of a single joint
system. Biol Cybern 66(6):463–477

Siebert T, Rode C, Herzog W, Till O, Blickhan R (2008) Nonlinearities
make a difference: comparison of two common hill-type models
with real muscle. Biol Cybern 98(2):133–143

St-Onge N, Qi H, Feldman AG (1993) The patterns of control sig-
nals underlying elbow joint movements in humans. Neurosci Lett
164(1):171–174

Stearne SM, Rubenson J, Alderson J (2012) Investigation of running
foot strike technique on achilles tendon force using ultrasound
techniques and a hill-type model. J Foot Ankle Res 5(1):1–2

Van Leeuwen J, Kier WM (1997) Functional design of tentacles in
squid: linking sarcomere ultrastructure to gross morphological
dynamics. Philos TransRSocLondBBiol Sci 352(1353):551–571

van Soest AJ, BobbertMF (1993) The contribution ofmuscle properties
in the control of explosivemovements. BiolCybern 69(3):195–204

Winters JM, Woo SL, Delp I (2012) Multiple muscle systems: biome-
chanics and movement organization. Springer, Berlin

Zajac FE (1988) Muscle and tendon: properties, models, scaling, and
application to biomechanics and motor control. Crit Rev Biomed
Eng 17(4):359–411

123

http://arxiv.org/abs/1307.2809

	Equivalent linear damping characterization in linear and nonlinear force--stiffness muscle models
	Abstract
	1 Introduction
	2 Methods
	2.1 Adjustable stiffness model (Hill-type model)
	2.2 Adjustable starting length model (Feldman's model)

	3 Results
	4 Conclusion
	References




