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Abstract Extracting the input signal of a neuron by analyz-
ing its spike output is an important step toward understanding
how external information is coded into discrete events of
action potentials and how this information is exchanged
between different neurons in the nervous system. Most of
the existing methods analyze this decoding problem in a
stochastic framework and use probabilistic metrics such as
maximum-likelihood method to determine the parameters of
the input signal assuming a leaky and integrate-and-fire (LIF)
model. In this article, the input signal of the LIFmodel is con-
sidered as a combination of orthogonal basis functions. The
coefficients of the basis functions are found by minimizing
the norm of the observed spikes and those generated by the
estimated signal. This approach gives rise to the determinis-
tic reconstruction of the input signal and results in a simple
matrix identity through which the coefficients of the basis
functions and therefore the neuronal stimulus can be iden-
tified. The inherent noise of the neuron is considered as an
additional factor in the membrane potential and is treated
as the disturbance in the reconstruction algorithm. The per-
formance of the proposed scheme is evaluated by numerical
simulations, and it is shown that input signals with different
characteristics can be well recovered by this algorithm.
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1 Introduction

Understanding the relationship between external stimuli of
a spiking neuron and the generated action potentials of its
output is critical in explaining the underlying mechanism of
the neural information processing. While such information
processing and transmission in our nervous system is carried
out by trains of spikes, our senses receive analog inputs from
sensory cells which generate graded potentials in response
to a continuous stimulus. Mapping this continuous stimu-
lus into a series of spikes by the neuron is considered as an
encoding mechanism. In the encoding mechanism, one tries
to find the best model structure for a neuron and determine
its internal parameters to obtain the same output as a real
neuron, given the same input. Equally important is the deter-
mination of the continuous stimulus of the neuron just by
observing its spike train, namely finding the decoding mech-
anism. In the decoding mechanism, one needs to assume an
encoding model and then finds its internal parameters and
its input signal as those that are most likely to generate the
observed spike train. Our aim in this article is to propose an
effective method to reconstruct the continuous input signal
of a spiking neuron by decoding the observed spike train at
its output.

Understanding the neuronal encoding mechanism and
finding an appropriate model for a spiking neuron has been
one of the major concerns of neuroscientists. There are
two general types of spiking neuronal models: compartmen-
tal models and phenomenological-based models (Gerstner
and Kistler 2002; Burkitt 2006). Compartmental models are
based on the popular Hodgkin–Huxley (H–H) model which
describes the membrane potential of the neuron in terms
of the electrophysiological principles of its different ionic
channels. Such models have a great level of accuracy in pre-
dicting the behavior of a spiking neuron, but they are overly
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complex for the interpretation of the results or simulating
a large network of neurons. In contrast, phenomenological-
based models disregard the underlying electrophysiological
details of the action potential generation mechanism of the
neuron and focus on reproducing the general behavior of
a spiking neuronal mechanism. Such models are generally
simple and are often used for analyzing the behavior of neu-
ronal systems. There are also some combined compartmental
and integrate-and-firemodel (Benedetto and Sacerdote 2013;
Bressloff 1995), but there are a few compared to the above
two main groups.

The standard integrate-and-fire (IF)model is themost pop-
ular phenomenological-based model (Gerstner and Kistler
2002; Burkitt 2006). In the IF neuronal model, the state of the
neuron is characterized by itsmembrane potential. Themem-
brane potential receives excitatory or inhibitory contributions
by synaptic inputs that arrive from other neurons. These
inputs, that are each weighted by their respective synaptic
strength, are often modeled as an injected current (Gerstner
andKistler 2002; Burkitt 2006). An action potential (spike) is
generated when the membrane potential reaches a threshold.

The IFmodel indeed constitutes a reasonable compromise
between mathematical complexity and neurophysiological
relevance. More sophisticated forms of the IF model have
also been developed to exhibit other observations of a real
neuronwhich the standard IFmodel cannot (Izhikevich 2003;
Mihalas and Niebur 2009; Brette and Gerstner 2005; Breen
et al. 2003; Jolivet et al. 2004; Naud and Gerstner 2012).
However, the main drawback of using these modified ver-
sions of the standard IF model is the level of sophistication
added to include the observed neural phenomena. Most of
these models fall into the category of nonlinear systems of
differential equations which make their analytical investi-
gations difficult. That is why the simple IF model is still
widely used by many researchers to analyze various aspects
of neuronal modeling and is also used here for analyzing the
decoding mechanism.

Two general approaches have been taken for analyzing
the encoding and decoding mechanisms of the IF model and
its different variants: deterministic approach and stochastic
approach. In the deterministic approach, the synaptic inputs
and the parameters of the neuron are assumed determinis-
tic functions or constants (Bruckstein et al. 1988; Jolivet
et al. 2006; Sanderson 1980; Rudolph and Destexhe 2006;
Shlizerman and Holmes 2012). The presynaptic input cur-
rent modulates the spike train at the output of the neuron.
Therefore, the input can be reconstructed by knowing the
modulation process (neuronal model) and finding an appro-
priate inverse algorithm. In the stochastic approach, however,
synaptic inputs to the neuron and its internal parameters
are considered as random variables (Bruckstein et al. 1988;
Buonocore et al. 2010; Gestri 1971; Inoue et al. 1995; Panin-
ski et al. 2004; Sacerdote and Giraudo 2013). Then the

decoding mechanism is formulated in a probabilistic frame-
work and the input signal andmodel parameters are estimated
by optimizing a stochastic metric.

Generally, the problems of estimating input from the out-
put spikes of a neuron is ill posed (Kim and Shinomoto
2012). Traditional approaches were more frequently focused
on interspike interval (ISI) distribution and analyzing its his-
togram. However, recent methods rely more on the modeling
of the encoding mechanism of the neuron and finding an
appropriate inverse algorithm. Besides estimating the stim-
ulus, in some cases finding the internal parameters of the
model is also pursued based on such models. Most often,
only the ISI data are assumed to be available. In some other
scenarios, some other information such as the subthreshold
voltage trace is also given.

By considering the diffusion process in the leaky integrate-
and-fire (LIF) model, namely the stochastic Ornstein–
Uhlenbeck (OU) neuronal model, the authors in Inoue et al.
(1995) used the first- and second-order moments of the ISI
to estimate the mean input per unit time and the positive
square root of the variance per unit time of the presynaptic
current to the neuron. These authors also concluded that for a
satisfactory estimation, the output spike train must exhibit a
high-frequency firing activity. Their work was further devel-
oped by Kim and Shinomoto (2012) who assumed a small
amplitude random input current and proposed a stochas-
tic estimation algorithm to determine the same parameters.
These authors constructed a nonlinear formula by inverting
the forward neuronal transformation of input signals to the
occurrence times of the output spikes. The forward transfor-
mation was modeled as a set of radial basis functions and
polynomial functions with coefficients determined using the
first-passage time of the OU model.

By having the ISI information and measuring the mem-
brane depolarization voltage between spikes, authors in
Lansky et al. (2006, 2010) estimated the input signal parame-
ters of the OU model. They used two different methods for
their estimation: the regression method and the maximum-
likelihood (ML)method. Although it has been shown that the
maximum-likelihood method is guaranteed to find the global
optimum solution (Paninski et al. 2004), these authors found
that the regression method gives more consistent results than
the maximum-likelihood method.

The ML method was also employed by Mullowney and
Iyengar (2008) to estimate the input parameters of the OU
model based on the numerical inversion of the Laplace trans-
form of the first-passage time probability density function
and by Dong et al. (2011) for the generalized leaky integrate-
and-fire model proposed in Mihalas and Niebur (2009). A
similar approach can also be found in Ditlevsen (2007).

It has been shown that if one ignores the fact that the data
are produced under the constraint of not crossing a boundary,
the resulting ML estimator will be biased (Bibbona et al.
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2008, 2010; Giraudo et al. 2011). It is often neglected that
the neural membrane data come from a time interval between
a resetting and the occurrence of a spike. This implies that
a spike has not yet happened on the time interval since the
previous resetting, and all the data recorded by that timemust
be subthreshold. This imposes an additional condition which
changes the probabilistic features fromanunconditionedone.
Serious errors may arise by ignoring this fact. This problem
has been treated by some authors by taking into account the
presence of the boundary (Bibbona et al. 2010; Giraudo et al.
2011).

By incorporating the noise in the LIF model, each spike
exhibits a noisy measurement of the underlying membrane
potential, and by using the Bayesian formalism, this relation-
ship can be inverted in order to infer the posterior distribution
over stimuli. Using this idea, the authors in Gerwinn et al.
(2009, 2011) obtained the posterior distribution over stim-
uli as a function of the observed spike trains. By optimizing
this distribution, they could reconstruct the time-varying con-
tinuous stimuli modeled by a finite set of basis functions
with Gaussian distributed coefficients. In a similar manner,
three techniques were proposed in Pillow et al. (2001) for
spike decoding based on the maximum a posteriori (MAP)
estimate, the mutual information between the stimulus, and
the response change-point detection based on marginal like-
lihood. Unfortunately, such stochastic algorithms are quite
involved and their underlying assumptions are hard to be
verified.

Instead of taking a stochastic approach, in this paper, we
formulate the decodingproblem in adeterministic framework
and consider the objective as the minimization of the norm of
the actual ISIs and those generated by the reconstructed input
signal. By expanding the input signal into a set of orthogonal
basis functions, we show that this minimization is converted
to a linear regression problem and find a simple matrix iden-
tity to reconstruct the input signal. The system noise is still
considered as a random term in the membrane potential, and
the input stimulus can also be a realization of a stochastic
process and be estimated by our algorithm over the period
of observation. The proposed algorithm can also be consid-
ered as an extension of our previous work (Seydnejad and
Kitney 2001) which had been offered in a different context
to LIF neuronal models and analyzing its results in noisy
conditions.

The organization of the paper is as follows. In the next
section, the encoding mechanism of the LIF model and
its governing equations are described. Our proposed algo-
rithm for input signal reconstruction is explained in Sect. 3.
The properties of the proposed method are highlighted in
Sect. 4. The performance of the new algorithm in recon-
structing different stimulus is evaluated by presenting four
examples in Sect. 5. Finally, concluding remarks are drawn in
Sect. 6.

2 The leaky integrate-and-fire model

The governing equation of a standard LIF model of a spiking
neuron is expressed by the following first-order linear dif-
ferential equation (Gerstner and Kistler 2002; Burkitt 2006),

τ
du(t)

dt
= −u(t) + Ri(t) (1)

in which u(t) represents the potential, R denotes the leakage
resistance, τ = RC is the time constant, and C is the capac-
itance of the membrane of the neuron. The input current i(t)
represents the sum of the synaptic currents generated by fir-
ings of the neuron presynaptic cells. A spike is generated
when u(t) reaches the threshold voltage UTHR. Generation
of a spike resets u(t) to the resting membrane potentialURES

whereupon another action potential generation cycle starts.
The neuron is called leaky since in the absence of synaptic
input, the membrane potential decays with the time constant
τ to its resting potential.

Based on this description, the block diagram of a LIF
neuron can be plotted as it is shown in Fig. 1a. The differen-
tial equation (1) is demonstrated by its Laplace transform
1/(s + 1/τ) with the input (presynaptic) current ic(t) =
i(t)/C . The comparator block generates a spike (action
potential) whenever u(t) = UTHR and simultaneously resets
the membrane voltage to URES.

Figure 1b displays the membrane potential u(t) and the
spike train s(t) for a neuron with typical values R =
20M �,C = 1 nF, when ic(t) is assumed to be a con-
stant current Icc = 1.6 nA. In such a scenario, a set of
action potentials with constant interspike intervals �Tk =
Tk − Tk−1 = �T is produced (suprathreshold regimen)
where Tk = 1, 2, . . . , K denotes the occurrence time of
the kth spike. Decreasing Icc will increase�Tk until reach-
ing a point where the injected current dissipates through the
time constant τ with no action potential generation anymore
(subthreshold regimen). With a time-varying ic(t), we would
observe a time-varying �Tk . Our goal is to find ic(t) by hav-
ing the values of interspike intervals Tk . Our assumption
here is that ic(t) is the sum of a nonzero Icc and a zero-
mean time-varying current ivc(t). Assuming a time-varying
signal superimposed on a constant mean value as a stimu-
lus current has also been assumed in many stochastic- based
models (Mullowney and Iyengar 2008; Picchini et al. 2008;
Lansky et al. 2006; Iolov et al. 2014). Thismeans that the neu-
ron cannot be quiescent (suprathreshold regimen); it exhibits
a firing with an average rate determined by Icc. Any vari-
ation in �Tk is therefore attributed to ivc(t). It is further
assumed that |ivc(t)| < Icc,∀t . This renders that the net
presynaptic current is always positive. An excitatory presy-
naptic activity causes a positive change in ivc(t), whereas an
inhibitory presynaptic activity causes a negative change in
ivc(t). Although the overall stimulus ic(t) can become nega-
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Fig. 1 a Block diagram of a leaky integrate-and-fire (LIF) model. b Membrane potential and the generated spikes of the LIF model for a constant
input current and typical parameters

tive (i.e., ivc(t) < −Icc) for some limited periods of time and
ourmethod can handle such scenarios, we use the assumption
|ivc(t)| < Icc,∀t to ensure that the neuron keeps gener-
ating action potentials in the period of observation. When
ivc(t) = 0, our model exhibits a tonic activity as a result of
positive Icc which is assumed to be large enough to create
the condition u(t) = UTHR.

3 Estimation of the LIF stimulus by basis functions

Although the governing equation of a LIF neuron expressed
as (1) is a linear differential equation, the reset following the
threshold crossing introduces a strong nonlinearity into the
model.1 This nonlinearity is nevertheless needed to convert
the continuous input signal into discrete events of spikes in
the model. Due to the presence of this nonlinearity, one can-
not use the linear system theory to determine the input signal
just by having the output and the system transfer function.
Consequently, we need to find out how the occurrence times
of spikes can be related to the input current ic(t).Without loss
of generality, we henceforth assume a zero restingmembrane
potentialURES = 0 for simplicity (Paninski et al. 2004). This
means that the membrane potential (including the threshold)
is simply shifted upward with no effect on spike timings.
Integrating from both sides of (1) gives (assuming a spike
has occurred at t = 0),

u(t) + 1

τ

∫ t

0
u(ξ)dξ =

∫ t

0
ic(ξ)dξ (2)

1 The LIF model is a nonlinear model from the viewpoint of its input
output relationship (superposition and scaling properties); however,
because its differential equation is linear (versus many other spiking
neuron models which have nonlinear differential equations), it is called
a linear (dynamic)model bymany neuroscientists (linearity of the state-
variable dynamics) (Izhikevich 2003).

For each interspike interval, (2) can be written as,

[0, T1] → u(T1) + 1

τ

∫ T1

0
u(t)dt =

∫ T1

0
ic(t)dt

[T1, T2] → u(T2) + 1

τ

∫ T2

T1
u(t)dt =

∫ T2

T1
ic(t)dt (3)

· · · · · · · · ·
[
TK−1, TK

] → u(TK ) + 1

τ

∫ TK

TK−1

u(t)dt =
∫ TK

TK−1

ic(t)dt

where u(Tk) = UTHR, k = 1, 2, . . . , K for the kth inter-
val. Let us now assume that ic(t) can be expanded into the
set of orthogonal basis functions ϕ′

l(t), l = 0, . . . , L where
ϕ′
l(t) = dϕl(t)/d(t) and ϕl(t)’s are continuous functions

which have continuous derivatives over [T0, TK ]. We further
assume that ϕ′

l(t)s constitute a closed finite-dimensional sub-
space of the Hilbert space (Luenberger 97) comprising all
square integrable functions on the interval [T0, TK ] where
ic(t) is one of its members. Then ic(t) can be approximated
by the linear combination of ϕ′

l(t) as,

ic(t) =
L∑

l=0

αlϕ
′
l(t) (4)

in which αi ’s are constant parameters which should be iden-
tified. Now the goal of finding ic(t) will be converted to
determining coefficients αl . With ic(t) expressed as (4), u(t)
will be the response of the first-order differential equation of
(1) to two inputs, a constant input and a time-varying excita-
tion. Consequently, u(t) over one interspike interval can be
written as,

u(t) = f e−t/τ +
L∑

l=0

glϕ
′
l(t), ∀t ∈ (Tk−1, Tk) (5)
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where f and gl are unknownconstantswhich should be deter-
mined. Using (5) and recalling u(Tk) = UTHR, we can write
(3) as,

∫ T1

0

{
L∑

l=0

αlϕ
′
l(t) − 1

τ
f e−t/τ − 1

τ

L∑
l=0

glϕ
′
l(t)

}
dt = UTHR

(6)

If γl is defined as,

γl = αl − gl/τ (7)

then (6) becomes,

L∑
l=0

γl {ϕl(T1) − ϕl(0)} + f
{
e−T1/τ − 1

}
= UTHR (8)

Since we assume the constant term Icc in ic(t), the best selec-
tion for ϕ0(t) is ϕ0(t) = t . This converts (8) to (9),

L∑
i=1

γl {ϕl(T1) − ϕl(0)} + γ0T1 + f
{
e−T1/τ − 1

}
= UTHR

(9)

Rearranging the terms in (9) yields,

L∑
l=1

γl {ϕl(T1) − ϕl(0)} = UTHR + f {1 − e−T1/τ } − γ0T1

(10)

Similarly for the intervals [T1, T2], we obtain,
L∑

l=1

γl {ϕl(T2) − ϕl(T1)} = UTHR

+ f
{
e−T1/τ − e−T2/τ

}
+ γ0[T1 − T2] (11)

In the samemanner for any interspike interval [Tk−1, Tk], we
can write,

L∑
i=1

γl {ϕl(Tk) − ϕl(Tk−1)} = UTHR

+ f
{
e−Tk−1/τ − e−Tk/τ

}
+ γ0[Tk−1 − Tk] (12)

Now let us define,

βk,k−1 = UTHR + f
{
e−Tk−1/τ − e−Tk/τ

}
+ γ0[Tk−1 − Tk]

(13)

Then (12) becomes,

L∑
l=1

γl {ϕl(Tk) − ϕl(Tk−1)} = βk,k−1 (14)

If βk,k−1s were known, we could construct a set of linear
system of equations from (14) for k = 1, . . . K , solve it for
γl , and then obtain αl from (7) by having the membrane time
constant τ . However, we still need to know gl in (7). On
the other hand, f and γ0 should be known for βk,k−1. To
determine f and gl , we take note of the fact that the general
solution (5) should satisfy (1) and its initial conditions over
any interval [Tk−1, Tk]. Thus, by substituting (5) in (1), we
obtain,

−1

τ
f e−t/τ +

L∑
l=0

glϕ
′′
l (t) + 1

τ
f e−t/τ

+1

τ

L∑
i=0

glϕ
′
l(t) =

L∑
i=0

αlϕ
′
l(t) (15)

To find f and gl from (15), ϕ′
l(t) and ϕ′′

l (t) should be given.
We have already set ϕ0(t) = t due to the presence of
the constant current Icc. For ϕl(t), l = 1, . . . , L , we can
have different selections of basis functions such as sinu-
soidal, Legendre, Laguerre, depending on which set could
best describe ivc(t) in a finite-dimensional subspace.Without
loss of generality, we assume here a set of complex sinusoidal
basis functions (with L even) as,

ϕl(t) = e jωl t , l = 1, . . . , L , ωl = 2π fl (16)

Using (16) in (15) and equating both sides, we obtain,

{−glω2
l + jglωl

τ
= jαlωl , l = 1, . . . , L

g0
τ

= α0 l = 0
(17)

Therefore,

{
gl = αl/τ− jαlωl

ω2
l +1/τ 2

, l = 1, . . . , L

g0 = α0τ
(18)

Equation (18) gives the value of gl in terms of αl . Using the
second equation of (18) in (13) and noting (7) yields,

βk,k−1 = UTHR + f
{
e−Tk−1/τ − e−Tk/τ

}
(19)

For finding f , the initial condition u(Tk−1) = 0 over the
interval [Tk−1, Tk] is used in (5) to obtain,

u(Tk−1) = f e−Tk−1/τ +
L∑

l=1

jωl gle
jωl Tk−1 + g0 = 0 (20)
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Therefore,

f = −eTk−1/τ

(
j

L∑
l=1

ωl gle
jωl Tk−1 + g0

)
(21)

Now by having f and gl , we canwrite (14) in amore tangible
form by defining φl(Tk,k−1) = ϕl(Tk) − ϕl(Tk−1). Thus,

L∑
l=1

γlφl(Tk,k−1) = βk,k−1 (22)

For k = 1, . . . , K , Eq. (22) produces the following matrix
identity.

⎡
⎢⎢⎣

φ1(T1,0) φ2(T1,0) . . . φL(T1,0)
φ1(T2,1) φ2(T2,1) . . . φL(T2,1)

. . . . . . . . . . . .

φ1(TK ,K−1) φ2(TK ,K−1) . . . φL(TK ,K−1)

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

γ 1

γ 2

γ L

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

β1,0

β2,1
...

βK ,K−1

⎤
⎥⎥⎥⎦ (23)

Now we manipulate (23) to express it directly in terms of αl .
By defining

cl = τ (1 − jωlτ) /
(
ω2
l τ

2 + 1
)

(24)

we will have from (18),

gl = clαl (25)

which can consequently convert (23) to (26).

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1−c1/τ) φ1(T1,0) (1−c2/τ) φ2(T1,0) . . . (1−cL/τ) φL (T1,0)

(1−c1/τ) φ1(T2,1) (1−c2/τ) φ2(T2,1) . . . (1−cL/τ) φL (T2,1)

. . . . . . . . . . . .

(1−c1/τ) φ1(TK ,K−1) (1−c2/τ) φ2(TK ,K−1) . . . (1−cL/τ) φL (TK ,K−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

α1

α2

αL

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

β1,0

β2,1

.

.

.

βK ,K−1

⎤
⎥⎥⎥⎥⎥⎦

(26)

Substituting f in (19) by its equivalent value from (21) gives
(27) over the interspike interval [Tk−1, Tk],

βk,k−1 = UTHR − eTk−1/τ

(
g0 + j

L∑
l=1

clαlωl e
jωl Tk−1

)

×
(
e−Tk−1/τ − e−Tk/τ

)
(27)

To further simplify (27) define,

dk,l = j
(
e−(Tk−Tk−1)/τ − 1

)
clωl e

jωl Tk−1 (28)

hk = UTHR + g0
(
e−(Tk−Tk−1)/τ − 1

)
(29)

Now (27) becomes,

βk,k−1 = hk +
L∑

l=1

dk,lαl (30)

Using (30) in (26) gives the following matrix identity,

⎡
⎢⎢⎣

(1−c1/τ) φ1(T1,0)−d1,1 (1−c2/τ) φ2(T1,0)−d1,2 . . . (1−cL/τ) φL(T1,0)−d1,L
(1−c1/τ) φ1(T2,1)−d2,1 (1−c2/τ) φ2(T2,1)−d2,2 . . . (1−cL/τ) φL(T2,1)−d2,L

. . . . . . . . . . . .

(1−c1/τ) φ1(TK ,K−1)−dK ,1 (1−c2/τ) φ2(TK ,K−1)−dK ,2 . . . (1−cL/τ) φL(TK ,K−1)−dK ,L

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

α1

α2
...

αL

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

h1
h2
...

hK

⎤
⎥⎥⎥⎦

(31)

If

� =

⎡
⎢⎢⎣

(1 − c1/τ) φ1(T1,0) − d1,1 (1 − c2/τ) φ2(T1,0) − d1,2 . . . (1 − cL/τ) φL(T1,0) − d1,L
(1 − c1/τ) φ1(T2,1) − d2,1 (1 − c2/τ) φ2(T2,1) − d2,2 . . . (1 − cL/τ) φL(T2,1) − d2,L

. . . . . . . . . . . .

(1 − c1/τ) φ1(TK ,K−1) − dK ,1 (1 − c2/τ) φ2(TK ,K−1) − dK ,2 . . . (1 − cL/τ) φL(TK ,K−1) − dK ,L

⎤
⎥⎥⎦ (32)

α = [
α1 . . . αL

]T
(33)

h = [
h1 . . . hK

]T
(34)
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are defined then (31) can be written as,

�α = h (35)

The unknown coefficients αl can now be found by the least
squares (LS) solution of (36) as,

α =
(
�T�

)−1
�T h (36)

To solve (35), we still need to know g0 (or equivalently α0).
By assuming ivc(t) = 0, we obtain from (5) and (21) that,

u(t) = f e−t/τ + g0 (37)

f = −g0e
Tk−1/τ (38)

Substituting (38) in (37) gives,

u(t) = g0
(
1 − e(Tk−1−t)/τ

)
(39)

Over any interval
[
Tk−1Tk

]
, a spike is generated when

u(Tk) = UTHR, therefore,

u(Tk) = UTHR = g0
(
1 − e(Tk−1−Tk )/τ

)
(40)

Replacing g0 = α0τ from (18) in (40) and solving for α0

gives,

α0 = UTHR

τ
(
1 − e(Tk−1−Tk )/τ

) = UTHR

τ
(
1 − e−�Tk/τ

) (41)

Since the parameters UTHR and τ of the model are given,
from (41) g0 and consequently hk can be determined. Now
(31) can be solved for unknown coefficients αl .

In the above algorithm, the values of the membrane time
constant τ and threshold voltage UTHR are assumed given
as it is assumed in many articles (Kim and Shinomoto 2012;
Ditlevsen 2007). These parameters can be measured by elec-
trophysiological methods or deduced from the properties of
other similar neurons. Furthermore, although ivc(t) is not
zero in practice in order to obtain α0 from (41) over one inter-
spike interval, we can assume that it has a zero-mean value
over a sufficiently long interval (Kim and Shinomoto 2012;
Lansky et al. 2006;Mullowney and Iyengar 2008; Seydnejad
and Kitney 2001). Therefore, we can replace �Tk in (41) by
the average of several interspike intervals.

4 Implementation remarks

The principle of the above algorithm lies on theminimization
of the second norm of the distance between the occurrence
times of the spikes which are generated by the reconstructed
input current and the actual spikes. The coefficients of the

basis functions constructing the input signal are adjusted such
that their generated spikes fall as close as possible on the
actual spikes. This minimization manifests itself as the LS
solution of Eq. (35). This is similar to the methods which
assume stochastic modeling of the LIF neuron. The opti-
mum signal determination in a stochastic framework uses,
for example, the Fisher informationmeasure and considering
the distribution of the interspike intervals and the variability
of interspike intervals to find the neuron stimulus (Lansky
et al. 2007; Brunel and Nadal 1998). Our approach uses the
same notion but in a deterministic framework.

The decoding problem of a LIF model can be viewed as
reconstructing its continuous time input signal by observ-
ing the discrete events which are generated as a result of the
LIF nonlinear transformation on this input signal. Viewed in
this perspective, this reconstruction indeed means recovery
of a continuous time signal from its non-uninform samples.
It has been shown in Lazar (2004) and Lazar and Pnev-
matikakis (2008) that the bandlimited stimuli encoded with
an integrate-and-fire neuron can be perfectly recovered from
the spike train at its output provided that the difference
between any two consecutive values of the time sequence
is bounded by the inverse of the Nyquist rate. This is also
in agreement with the analysis of other researchers (Bayly
1968; French and Holden 1971). Consequently, we postu-
late here that the variations in the presynaptic current to the
LIF model is limited to such a rate. This in turn dictates
the range of the frequencies in the selected basis functions
in (16). The maximum selected frequency fhigh in the basis
functions must therefore be set to half of the inverse of the
mean interspike interval of the given spike train. The lowest-
frequency component flow can be set to (almost) zero or an
appropriate value if a priori information about the frequency
distribution of the stimulus is known.

Once flow and fhigh are determined, the frequency resolu-
tion � f = fl+1 − fl can be selected. Smaller � f means
better approximation in reconstructing the input current.
However, a very small value for � f imposes high compu-
tational load and may cause numerical instability in finding
the solution of the LS equation (36). Besides, smaller � f
means more number of basis functions; hence, the algorithm
demands larger length of the output spikes for input signal
reconstruction. Therefore, finding the best solution will be
the result of a trade-off between the recorded length of data
and the required accuracy.

Even though we use a deterministic approach in the sig-
nal modeling, the effect of neuronal (system) noise can still
be considered in our algorithm by adding a random signal
to the membrane potential (Lansky et al. 2006). Although
this is the common approach to include the system noise,
this noise has also been incorporated into the model as a
random perturbation in the threshold level by some authors
(Dong et al. 2011; Gerwinn et al. 2009). However, it has
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been shown that small variations in the threshold voltage can
be equivalently modeled by similar variations in the mem-
brane potential (Seydnejad 2008). Therefore, we consider
the effect of noise in our model by random perturbation to
the membrane voltage. The stimulus can also be the realiza-
tion of a random process and can be well reconstructed by
the algorithm. In such scenarios, the proposed algorithm still
provides the best fit to this signal in the subspace spanned by
the selected basis functions. Both these cases are considered
in our simulations in the following section.

In our proposed method, the input current is actually
approximated by a set of basis functions. A question which
naturally arises here is the amount of error which we
encounter in such an approximation. The following Lemma
elaborates on the closeness of the reconstructed signal with
the actual stimulus.

Lemma 1 Let îvc(t)denote the reconstructed stimulus obtai-
ned by Eq (4) where the basis functions are determined by
Eq. (16) with the parameters given by Eq. (36), then one of
the following is true.

(i) îvc(t) = ivc(t) if ivc(t) = ∑L
l=1 ωlαl e jωl t , l =

1, . . . , L , ωl = 2π fl
(ii) îvc(t) = ivc(t) if ivc(t) is limited to the frequency band

[ flow, fhigh], ( flow �= 0) and � f → 0, L → ∞, K →
∞, where � f = fl − fl−1, fl = ωl/2π .

(iii) For an arbitrary stimulus, the error signal becomes zero

over each interspike interval,
∫ tK
0

(
îvc(t)−ivc(t)

)
dt=

0, k = 1, . . . , K.

Proof (i) This is the trivial part of theLemma.Conceptually,
this part means that the actual stimulus is fully recov-
erable if it is originally a combination of trigonometric
functions and the same basis functions are employed for
its estimation. The proof is, therefore, very straightfor-
ward by noting that uniqueness of the solution of the LS
solution of (35).

(ii) To prove this part, we first express ivc(t) as its (inverse)
Fourier transform,

ivc(t) =
∫ +∞

−∞
Ivc( f )e

j2π f t d f (42)

where Ivc( f ) denotes the Fourier transform of ivc(t).
Eq. (42) can be written as:

ivc(t) = lim
� f →0

+∞∑
r=−∞

Ivc(r� f )e j2πr� f t� f (43)

Recalling the bandlimited property of ivc(t) and invok-
ing an appropriate change of variable yield,

ivc(t)

= lim
� f →0

+Phigh∑
p=−Phigh

Ivc( flow + p� f )e j2π( flow+p� f )t� f

(44)

inwhich Phigh is determined such that flow+Phigh� f =
fhigh. Therefore, full recovery of the input signal is pos-
sible if � f → 0 and the number of basis functions
approaches infinity L → ∞. For this infinite number
of basis functions, we should of course assume that an
infinite amount of information is available meaning that
K → ∞.

(iii) The actual stimulus which is encountered in practice
often does not belong to the basis function space. Thus,
we cannot fully reconstruct the stimulus with no error.
However, based on (3) for the actual stimulus we can
write,

∫ TK

0
ic(t)dt =

K∑
k=1

u(TK ) + 1

τ

∫ TK

o
u(t)dt, k = 1, . . . , K

(45)

Nevertheless, the reconstructed stimulus îc(t) =∑L
l=0 αlϕ

′
l(t)is determined such that it satisfiesEq. (46).

∫ TK

0
îc(t)dt =

K∑
k=1

u(TK ) + 1

τ

∫ TK

o
u(t)dt, k = 1, . . . , K

(46)

Subtracting (46) from (45) gives,

∫ TK

0

(
ic(t) − îc(t)

)
dt = 0, k = 1, . . . , K (47)

If we define eic(t) = ic(t) − îc(t)as the error signal
between the actual signal and the reconstructed signal,
then (47) yields,

∫ TK

0
eic(t)dt = 0, k = 1, . . . , K (48)

In other words,

∫ T1

0
eic(t)dt = 0

∫ T2

T1
eic(t)dt = 0 (49)

. . .. . .. . .. . .. . ...∫ TK

TK−1

eic(t)dt = 0
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The above set of equations demonstrates the behavior
of the error signal over the each interval. Importantly,
it shows that the error signal between the estimated
stimulus and the actual stimulus becomes zero over
each interval. In other words, the positive and negative
excursions of the error signal over each interval have
compensating effects. This means that the error signal
does not grow as we move further along the recorded
spikes. However, no constraint is imposed to limit the
level of this positive and negative excursions. If we do
not select the type of basis functions or the number of
basis functions wisely, the negative and positive devia-
tions of the reconstructed signal from the actual signal
may be very large over any given interval. Neverthe-
less, by appropriate selection of the basis functions, for
example based on some a priori knowledge, one would
expect to see a close fit between the reconstructed input
signal and the actual one even for an arbitrary stimu-
lus. Although, increasing the number of basis functions
would generally reduce the amount of error, it increases
the computational load of the algorithm and may cause
numerical instability. A good compromise between the
amount of error and the computational load can often be
obtained empirically by comparing the simulated spikes
(based on the reconstructed stimulus) with the actual
spikes for the given experiment.

It should be noted that the only way to gather informa-
tion about the characteristics of the input stimulus in our
model (as well as many other stochastic models) is through
occurrence times of the spikes. If the stimulus is very weak
(subthreshold) and not able to generate a spike, there is no
way to find the stimulus. Therefore, we have to assume that
the combined stimulus (constant current + its superimposed
time-varying current) is strong enough (suprathreshold) to
produce a spike. Otherwise, there is no way to find the stimu-
lus because no spike is generated and no information is made
available.

There has been growing interest in the role that noise may
play in enhancing the computational capability of neurons
(Cecchi et al. 2000; Shimokawa et al. 1999). For example,
neuronal noise may enhance the detectability of weak sig-
nals that would otherwise not reach threshold (stochastic
resonance) (Stacey and Durand 2001; Rudolph and Des-
texhe 2001). However, in our deterministic approach noise
is just treated as another component of a time-varying signal
superimposed on the constant current. When this combina-
tion becomes strong enough to generate a spike, we are able
to determine the time-varying part (of course, there is no
way to separate the noise from the actual subthreshold time-
varying stimulus). We have also included the effect of noise
in our simulation.

5 Simulation results

To see how the input current can be reconstructed from the
interspike intervals, we consider four different examples in
this section. For simplicity in the analysis of the results, we
used normalized values Icc = 1,UTHR = 1,URES = 0 for all
simulations (Paninski et al. 2004). This means that with no
time-varying stimulus (ivc = 0), we obtain a tonic activity
with an interspike interval of 1Hz for an IF model (τ = ∞).
To have a high resolution in generating spikes and finding
their locations, all signals were sampled at a frequency of
100Hz.

A randomsignalwas also added to themembrane potential
to include the effect of system noise. To create this ran-
dom noise, a zero-mean white Gaussian signal was passed
through a sixth-order Butterworth low-pass filter with cutoff
frequency of 0.4Hz. The amplitude of the noise was adjusted
to have 10 dB SNR with respect to the presynaptic current.

For estimating the quiescent current Icc, the mean of the
interspike intervals was obtained by averaging over the dura-
tion of the stimulation. A membrane time constant τ = 2
was assumed for all simulations.

Example 1 For this example, a pure sinusoidal input signal
at the frequency of 0.3Hz and amplitude 0.3 (ivc(t) = 0.3
cos(2π0.3t)) was added to Icc. This is the simplest input
which could be used as a stimulus to the neuron. Neverthe-
less, a sinusoidal modulating signal is usually assumed in the
analysis of relay neurons which are found in various brain
nuclei including the thalamus (Agarwal and Sarma 2012;
Smith et al. 2000).

A range of flow = 0.1Hz and fhigh = 0.4Hz with fre-
quency steps � f = 0.05Hz was used for the basis functions
in (16). This means a total number of 14 basis functions to
estimate ivc(t). Figure 2a shows the original and the recon-
structed ivc(t) superimposed on Icc without any noise in the
membrane potential, and Fig. 2b shows the same signals in
the presence of system noise. Without any noise, both sig-
nals completely overlap, and in the presence of noise, the
estimated signal follows the original signal quite well. Since
one of the basis functions matches the input signal, recon-
structing the input signal would not be difficult in such a
scenario.

Example 2 In this example, two sinusoidal signals one at
the lower range and another in the higher range of the fre-
quency band were used as the stimulating current as ivc(t) =
0.2 cos(2π0.1t)+0.2 cos(2π0.35t+π/4). For estimating the
input signal, two sets of basis functions were used for com-
parison. The first set used flow = 0.1Hz and fhigh = 0.4Hz
with frequency steps � flow = 0.01Hz and the second set
used flow = 0.1Hz and fhigh = 0.4Hz with frequency steps
� f = 0.02Hz. While one of the basis functions in the first
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Fig. 2 Estimated and original signals for Example 1: a without noise in the membrane potential and b with added noise in the membrane potential
(Original = blue, Estimated = red)
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Fig. 3 Estimated and original signals for Example 2: a with fine frequency steps and b with coarse frequency steps (Original = blue, Estimated
= red)

set matches the stimulating current at 0.35Hz, the second
set does not have any basis function corresponding to the
injected current at this frequency.

Figure 3a shows that the first set can perfectly recover
the input current (no noise was assumed for this example).
Although the second set does not have any basis function at
0.35Hz, Fig. 3b shows that the algorithm tries to find a linear
combination of the existing basis functions to reconstruct the
input current in order to produce the same spikes. Even the
second set can reproduce the input signal quite well.

Example 3 In the previous two examples, we assumed sinu-
soidal signals as the input current for the LIF model. These
signals are of course compatible with the selected type of
the basis functions. The question which may arise here is
whether the proposed algorithm can recover a non-sinusoidal
input current with sinusoidal basis functions. To answer this
question, in this example a pulse-shaped input followed by
a triangular-shaped input is selected as the stimulus as it is

shown in Fig. 4a. These types of signals are also used in
neuronal excitation and can examine the performance of our
algorithm for non-sinusoidal signals. Additionally, a pulse
input may cause a burst of spikes at the LIF output and
could well represent the behavior of a typical cortical neuron
(Izhikevich 2003).

The original signal along with the estimated signal which
was reconstructed with flow = 0.01Hz and fhigh = 0.15Hz
with frequency steps � f = 0.01Hz without any noise in
the membrane potential is shown in Fig. 4a. Although the
input signal is not a combination of sinusoidal signals, the
proposed algorithm tries to find its best approximation with
the combination of the selected basis functions. The sudden
change in the pulse input is obviously harder to be modeled
than the smoother triangular current.As itwould be expected,
there is more error in reconstructing the pulse input current
than the triangular current, but the estimated input reproduces
the actual input quite well.
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Fig. 4 Estimated and original signals for Example 3: a without noise in the membrane potential b with added noise in the membrane potential
(Original = blue, Estimated = red)
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Fig. 5 Estimated and original signals for Example 4: a without noise in the membrane potential and b with added noise in the membrane potential
(Original = blue, Estimated = red)

Figure 4b illustrates the reconstructed signal in the pres-
ence of system noise. Even with the addition of the noise, the
algorithm can still well recover the original input current.

Example 4 The input current of a real neuron may actu-
ally come from hundreds or thousands of its presynaptic
neurons which fire random action potentials. For example,
neurons deep in the cortex generate highly variable spike
trains because they receive a large number of unsynchro-
nized synaptic inputs from many other neurons. Therefore,
the input current of the neuron could itself be a random sig-
nal. In this example, we assume that the time-varying input
current ivc(t) is a Gaussian signal and try to find its variations
over the period of observation. To produce a random input
current, a zero-mean white Gaussian signal (independent of
the noise of the membrane potential) was passed through a
sixth-order Butterworth low-pass filter with cutoff frequency

of 0.3Hz; then its amplitude was adjusted to have an average
power of 0.5 (half of the power of the quiescent current).

Figure 5a shows the original signal along with the esti-
mated signal which was reconstructed with flow = 0.01Hz
and fhigh = 0.3Hz with frequency steps � f = 0.01Hz
assuming that there is no noise in the membrane potential.
Although the input signal is the realization of a random
signal, the algorithm tries to find its best match with the
combination of the basis functions. Of course, for a different
period of observation the variations in the random input will
have a different shape, yet it will be approximated by the
same basis functions but with different coefficients.

The estimated signal when noise is added to the mem-
brane potential is displayed in Fig. 5b. Although occasional
erroneous peaks can be observed in the estimated signal in
the presence of the membrane noise, it still closely resembles
the original signal.

123



14 Biol Cybern (2016) 110:3–15

It isworthwhilementioning that the addition of the noise to
the membrane potential directly affects reaching its crossing
point with the threshold level and consequently the loca-
tion of the generated spikes. There is no way to distinguish
between the effect of the actual stimulus and the noise since
they are added linearly at the membrane potential. Of course,
if the power of the noise exceeds that of the stimulus what
would be estimated by any algorithm is the noise not the
stimulus.

6 Conclusion

Similar to the encoding mechanism, finding the decoding
mechanism of a spiking neuron can be considered in a deter-
ministic framework. This consideration creates a rigorous yet
simple approach for finding the input stimulus of the neuron
by observing the occurrence times of the spikes at its output.
By decomposing the input signal of the LIF model into a set
of basis functions, the decoding mechanism is converted to
solving a linear regression problem. This approach does not
impose any limitation on the characteristics of the input sig-
nal; even random signals can be identified. Our simulation
results show the satisfactory performance of the proposed
algorithm in estimating signals with different characteristics.
Together with its simple implementation, the new algorithm
offers challenging properties for the decoding problem in
neural information processing.

In the proposed algorithm, we assume that the locations of
all spikes over the period of observation are made available
to the algorithm at the beginning. However, we can convert
the LS formulation of (35) to a recursive form and implement
an adaptive reconstruction method through which the input
current can be progressively determined by recording a new
spike. Such formulation can provide uswith an effective real-
time tool which is most suitable for reconstructing random
nonstationary input signals.
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