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Abstract Recent theories of mindreading explain the
recognition of action, intention, and belief of other agents in
terms of generative architectures that model the causal rela-
tions between observables (e.g., observed movements) and
their hidden causes (e.g., action goals and beliefs). Two kinds
of probabilistic generative schemes have been proposed in
cognitive science and robotics that link to a “theory theory”
and “simulation theory” of mindreading, respectively. The
former compares perceived actions to optimal plans derived
from rationality principles and conceptual theories of others’
minds. The latter reuses one’s own internal (inverse and for-
ward) models for action execution to perform a look-ahead
mental simulation of perceived actions. Both theories, how-
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ever, leave one question unanswered: how are the generative
models – including task structure and parameters – learned in
the first place? We start from Dennett’s “intentional stance”
proposal and characterize it within generative theories of
action and intention recognition. We propose that humans
use an intentional stance as a learning bias that sidesteps the
(hard) structure learning problem and bootstraps the acquisi-
tion of generative models for others’ actions. The intentional
stance corresponds to a candidate structure in the generative
scheme, which encodes a simplified belief-desire folk psy-
chology and a hierarchical intention-to-action organization
of behavior. This simple structure can be used as a proxy for
the “true” generative structure of others’ actions and inten-
tions and is continuously grown and refined – via state and
parameter learning – during interactions. In turn – as our
computational simulations show – this can help solve min-
dreading problems and bootstrap the acquisition of useful
causal models of both one’s own and others’ goal-directed
actions.

Keywords Intentional stance · Generative model · Online
learning · Structure learning · Mindreading

1 Introduction

In our daily activities, for instancewhenwe drive orwalk on a
crowded street, we systematically and automatically predict
what others will do next.More complex forms of social inter-
action and joint actions require understanding the intentions,
beliefs, and preferences of other people, not just predict their
next movement, and we excel in all these activities. It is often
argued that a hallmark of human cognition is the ability to
build theories of others’ minds and to use them to realize col-
laborative (or competitive) activities with shared goals and
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intentions [87]. Still, it is unclear howwe solve complex com-
putational problems arising in our everyday social scenarios
in real time, such as movement prediction, gaze following,
action understanding, intention recognition, belief recogni-
tion and tracking, planning what to do next, forming shared
representations, and planning how to achieve long-termgoals
in cooperation or competition with our conspecifics. Clearly,
this list includes problems that have different levels of com-
plexity, pose different challenges to social actors, and have
been linked to different brain mechanisms [36,38].

In the rest of this paperweoffer a computational account of
how such abilities can be bootstrapped. In Sect. 2, we offer
a unified perspective on various problems of social inter-
action using a generative approach in which social actors
build models (of different complexity) of themselves and
their co-actors and use them as an “interaction engine” [60]:
a universal resource to understand and predict the actions
of others and to plan social interactions. To support our
analysis, we discuss examples of how generative models can
support mindreading inferences in two different traditions
(teleological vs. action-based). In Sect. 3, we ask how gen-
erative models used in social interaction are learned in the
first place. We propose that the learning process is facilitated
by an intentional stance (i.e., the assumption that co-actors
are intentional agents), which can be interpreted in terms of
fixing a metastructure of the proposed generative model and
learning its components as the data are collected. In Sect. 4,
we present a hierarchical and adaptive probabilistic general
model that embeds the idea of intentional stance to facilitate
structure and parameter learning.

2 A generative approach to mindreading

In principle,we could predict and understand the goals of oth-
ers using associative mechanisms, which capture regularities
between sequences of perceived movements and underlying
goals. However, in all but the most trivial social scenarios,
the actions of others are highly uncertain, have long-term
dependencies, and depend on hidden causes that cannot be
directly observed (e.g., the actor’s intentions); all these diffi-
culties are hard to tackle using pure associative mechanisms
only [50].

The idea that mindreading problems could be addressed
using generative models and probabilistic inference has
recently been proposed by various researchers. In one per-
spective, action and intention recognition are performed
using inverse (Bayesian) inference based on a (“teleologi-
cal”) assumption: that the performing agent is implementing
(optimally) a goal-directed action plan (which the Bayesian
tries to estimate or recognize) [4,5]. In another, more
“embodied” perspective, the agent reuses the same inter-
nal models across action performance and perception; here,

essentially, it is the action performance model (say, an inter-
nal model that usually supports a precision grasping action)
that is “reused” or “inverted” to support the recognition of a
performed action (say, a precision grasping action executed
by somebody else) [30,34,57,72,74]. Although different,
both approaches are based on probabilistic generative mod-
els, so named because they can both generate and recognize
sensory data.

Generative models were first studied in perceptual pro-
cessing, where they permit recognizing objects or faces by
first learning to generate (i.e., imagine or “hallucinate”) them.
To do so, the system learns the causal relations between per-
ceptual evidence (say, seeing a cylindrical shape on a table)
and its underlying causes (say, the presence of a glass on the
table) that cannot be directly observed butmust be inferred.A
growing body of literature provides efficient computational
algorithms for performing inference in probabilistic genera-
tive models ranging from state estimation and prediction to
learning parameters either from complete or incomplete data
[9,64].

2.1 Two views of generative models for action and
intention recognition: teleological and action-based

The generative approach has been adopted inmany studies in
cognitive science and robotics to explain awide range ofmin-
dreading abilities, from at least two different perspectives:
teleological and action-based. The teleological approach
[20,43] proposes that action understanding is based on an
inferential process that determines which goals and actions
are optimal under certain environmental constraints (or bet-
ter, the agent’s domain knowledge). Baker and colleagues
propose an implementation of the teleological approach that
consists in computing an optimal plan π for achieving a goal
G and then solving an inverse planning task P(G|π) [5] (but
see also [78,79]). This approach has been extended to explain
a variety of phenomena under the umbrella of a “Bayesian
theory ofmind” [6]; for example, tomodel belief and desires,
a bottom-up inference is made given observed actions [88].

An alternative action-based approach stems from motor
cognition theories [53] and assumes that internal (inverse
and forward) models of one’s own motor system are reused
for action estimation or prediction [25,26,30,34,47,90,91].
This view also explains the widespread evidence of motor
activation during action perception and prediction and the
systematic relations (in terms of development, deficits, and
shared neuronal substrate) between our abilities to pre-
dict, understand, generate, plan, imagine, and communicate
actions [52,53,69,70,73,76].

These two approaches link to rival psychological theo-
ries (theory theory and simulation theory of mindreading,
respectively) and stress the importance of different kinds
of representations and cognitive processes (perceptual rep-
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resentations and means–ends inference vs. sensorimotor
representations and action simulation). They have comple-
mentary strengths. The former approach focuses principally
on high-level mentalistic constructs such as beliefs and
desires, eschewing most details of action performance; the
latter approach is more detailed at the action level, includ-
ing, for example, kinematic and dynamic details, but rarely
extends to high-level mentalistic constructs. The former
approach is (at least in principle) applicable to many cases
in which internal (inverse and forward) models implied in
sensorimotor control are not available to the perceiving agent
[19]. However, it suffers from the difficulties of deriving opti-
mal (or rational) solutions for both its computational burden
and the difficulty of obtaining adequatemodels of (another’s)
behavior and costs.

The latter approach overcomes this problem, first, because
optimal solutions are not computed, and second, because a
model of oneself is used as a proxy for another’s behavior
(thereby producing biases in the recognitionmodel) and does
not need to be explicitly represented. However, the adequacy
of the second approach in explaining complex forms of min-
dreading such as intention recognition has been questioned
because these problems are ill-posed: the same action can
be used to satisfy different intentions, which can be indistin-
guishable based on observation of the proximal action. This
problem can be addressed using richer generativemodels that
explicitly model the role of context for action disambigua-
tion [30,57]. This would in principle allow for recognizing
the proximal goals but also the distal intentions from overt
movements. Support for this idea comes from recent studies
revealing that the kinematics of proximal actions (say, grasp-
ing a glass) are subtly but significantly different depending
on the distal intention (say, drinking or throwing the glass)
[8]. The neural underpinnings of this model could involve
the so-called action observation network (ventral premotor
cortex, inferior parietal lobule, and superior temporal sulcus)
or a wider brain network that also includes a ventral pathway
[56,57].

There is still controversy on how empirically adequate
action-based and teleological approaches are, or whether,
instead, they are complementary [37,56]. Here we do not
enter into this dispute (but see Sect. 6 for a discussion) but
rather focus on the fact that, despite their differences, both
theories can be described at the functional level within the
same generative approach.

3 Structure learning in mindreading

We have discussed how generative architectures can in prin-
ciple support multiple mindreading abilities; for example,
the inference of which intentions, beliefs, and desires, for
example, could have produced certain observed movements.

However, the accuracy of the inference depends on the qual-
ity of the generativemodels employed. Thus, one can ask how
generative models (encoding “abstract rational theories” in
the teleological approach or “sensorimotor experience” in
the action-based approach) are learned in the first place.

Acquiring good generative architectures requires solv-
ing several problems of increasing difficulty. The simplest
case (and obviously the most frequent one) is when both
the structure and all the variables of interest are set before
learning takes place. The goal is to tune the free parameters
of the model (usually conditional probability tables entries
or parameters of probability densities) from all the available
data. Computational and robotic studies in the action-based
tradition use multiple techniques such as supervised or
reinforcement learning, active exploration, or imitation learn-
ing [13,15,23,24,80]. All these forms of learning pose
severe computational challenges and solving them efficiently
remains an open problem, although efficient solutions exist
for several existing structures [64].

On the other hand, a much more severe problem is that
of learning the structure of the model to be used, or – in
other terms – assessing the existence of causal dependen-
cies between certain variables (say, that the choice of actions
depends on intentions) [2,12,85]. Although there is a long
history of studies of causality learning in cognitive tasks
[45], it is only recently that this kind of learning process
has attracted attention in computational studies of decision
making [2], motor control [11], and reinforcement learning
[44].

In between, there is the possibility of fixing the template of
the structure to be used (e.g., a two-level hierarchy of actions
or a flat Bayesian network) and to let an algorithm discover
the number of variables used (e.g., how many actions?) and
their interconnections from data, an approach adopted in this
paper. In addition, learning (of the structure, parameters, or
both) can be batch (i.e., collect all the samples and run the
learning algorithmonce) or incremental (i.e., adapt themodel
for each new data sample), and online (done while the model
is functioning in the world) or offline. Needless to say, in
most practical applications, the structure of themodel is fixed
and the learning of its parameters is performed in batch and
offline.

As noted by [85], the learning of abstract problem features
(such as their underlying structure) is typically framed in a
bottom-up way: observable regularities are learned first, and,
based on this, increasingly more abstract features are learned
using a process of induction or generalization. However, it
could be the case that people learn both task parameters and
structure at the same time; for instance, they can learn that
action 1 (say, grasping a glass) is often followed by action 2
(say, bringing the glass to the mouth), and at the same time
that this choice of actions is oftenmotivated by an underlying
intention (say, to drink). This double problem can be concep-
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tualized (in the abstract) as the simultaneous choice of a set of
parameters among all their possible combinations and a set
of structures among all the possible ones. Note that the two
learning processes influence each other such that the choice
is between any possible set of parameters given a specific
structure (repeated for each possible choice of parameters
and structures).

This double problem exists also in mindreading contexts,
where humans must infer the causal structure underlying
another’s behavior and simultaneously (learn to) recognize
another’s actions and intentions. How do humans solve this
difficult problem? It has been proposed from a theoretical
perspective that humans tend to assume an intentional stance
toward their conspecifics [27]. In other words, we have a dis-
position to treat our conspecifics (but also some animals)
as rational agents whose behavior is guided by a belief–
desire causal structure rather than, say, to just obey the laws
of physics. It is worth noting that the intentional stance is
just a “stance” from the observer’s perspective and does not
require assuming the existence of beliefs and intentions in the
performing agent’s mind; it is sufficient that the performing
agent behaves as if it had beliefs and intentions.

The intentional stance hypothesis is popular in philos-
ophy and social neuroscience [27,40], but it has not been
linked to generative models or structure learning problems
yet. Here we argue that the intentional stance can be consid-
ered a bias for structure learning because it provides a good
– although not necessarily correct – proxy for the generative
structure that the mammal brain uses to generate action. In
what follows we discuss from a computational perspective
the advantages of using the intentional stance.

3.1 Using an intentional stance for learning a generative
model

As discussed earlier, acquiring a generative model gener-
ally involves two distinct learning approaches: we can either
fix the structure and learn model parameters from the data
using classical machine learning algorithms, or we can try to
simultaneously learn both the structure and the parameters
from the data. In the former approach, we posit the struc-
ture of the model, given our intuitive understanding of the
problem, and we infer its parameters such as to maximize a
global utility function (for instance, the classical maximum
likelihood algorithm provides a point estimate of the para-
meters that maximize the likelihood of the data for that given
model). Structure learning, on the other hand, makes few
or no assumptions regarding the structure of the model that
should be inferred from the data alongside its parameters.
Intuitively, in the absence of other information, any algo-
rithm should traverse the space of all possible models and
select the one that provides the best explanation of the data
according to a fixed metric [59]. However, in all but the most

trivial real-world scenarios, the space of models grows expo-
nentially with the data, which makes structure learning an
NP-hard problem from the computational point of view. This
is also the case in solving mindreading problems, where in
principle observed movements could be caused by any kind
of hidden structure.

In practice, however, humans (including children) are
extremely accurate in understanding and predicting another’s
behavior [43]. It has been proposed that the intentional stance
provides a solution to this problem [27]. From our computa-
tional perspective, the intentional stance provides a template
of the structure generating the observed behavior. In the
language of probabilistic generative models, this structure
specifies a series of (in)dependencies between “latent” (i.e.,
hidden) variables – such as beliefs, proximal goals, distal
intentions, and abstract actions – and “observed” ones –
such as the perceived behavior of others. In other words,
the structure specifies the causal relations between hidden
and observable variables and their evolution in time.

It is worth noting that computational modelers have
implicitly incorporated an intentional stance (at different
levels in teleological and action-based approaches) in their
architectures for mindreading. For example, the theory of
mind models proposed by [5,6] incorporate knowledge of
folk-psychology concepts and specifically the assumption
that actions depend on beliefs and desires. Models inspired
by action simulation theories [26,30,57] implicitly assume
a hierarchically organized intention-to-action structure [48,
66,67], pointing to the fact that action sequences achieve dis-
tal goals; that low-level actions depend on high-level actions;
and that, depending on the context, the same action can have
different end effects and achieve different goals.

As intuitive as they might seem, these assumptions
play a key role in the models because they translate
into (in)dependencies between variables that constrain and
greatly simplify inference and learning. These models thus
exemplify the advantages of using the intentional stance for
determining the structure of mindreading problems. Note
that, although different computational proposals incorporate
different nodes and concepts (e.g., not all models incorporate
utilities or motor primitives) and address different aspects of
mindreading, all make use of some form of prior structural
information incorporating the fact that mentalistic concepts
and intention-to-action hierarchies guide behavior.

3.2 Using an intentional stance to bootstrap the learning
of task parameters

All the aforementioned models assume a fixed structure
and task parameters and principally tackle problems of
(action, intention, or belief) inference. None of them directly
addresses the issue of how structural information conveyed
by an intentional stance supports learning task parameters
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(e.g., the number and identity of actions and intentions).
Suppose, for example, that a child observes an adult per-
forming an unknown action (e.g., assembling some furniture
using a screwdriver). By assuming an intentional stance, the
child postulates that the adult’s actions are motivated by
some intention; however, both the actions and intentions are
novel to the child. To successfully understand the adult’s
behavior, the child must acquire new action and intention
information into her generative model. From our computa-
tional perspective, this can be considered a learning of new
parts of the generative models and task parameters (e.g.,
number and identity of action and intentions, alongwith asso-
ciated parameters that describe their dynamics). We argue
that an intentional stance can also help in our example, when
observed actions and intentions are novel for the perceiving
agent. The initial structure provided by the intentional stance
makes it possible to recognize the means–ends structure of
the action, assess which parts (models and parameters) are
missing, and bootstrap the acquisition of new parts and para-
meters of the generative model.

4 An adaptive generative model for mindreading

The starting point of our model is the assumption that ratio-
nal agents’ actions are governed by (hidden) intentions. In
other words, intentions help explain the behavior of our
conspecifics as perceived by an observer. This entails a hier-
archical structure, wherein observable action features (e.g.,
angles of human joints or their derivatives) reside at the low-
est level, and actions – intended as a temporal sequence of
action features – reside at a higher level (e.g., reaching for and
grasping a glass can be seen as a sequence in low-level feature
space). What we postulate is that an intention of the agent
can be represented as a sequence of actions at this highest
level, leading to a distal goal (e.g., reaching for and grasping
a glass for drinking). Thus, we do constrain the overall struc-
ture of our model based on hints from folk psychology.What
we do not constrain is the overall number of states at each
level in the model or the connections between said states.
In other words, we let the model grow as it observes new
data: new states are added at both levels. If we had to leave
the structure totally unconstrained (as in classical structure
learning – see [85]) – in addition to estimating the states and
their interconnection, then we should also tackle the problem
of figuring out the “best” structure from the data, a problem
known to be NP-hard (see [16]).

Thus, our contribution can be seen from two different
points of view: conceptual and computational. At the con-
ceptual levelweacknowledge that “intentional stance”makes
it possible to derive an explanation from a series of events
(caused by another agent). At the computational level we
translate this insight into a tractable stochastic model. How-

ever, we would like to stress that the model does not explain
the whole spectrum of agent behavior (which would require
modeling, for example, beliefs, desires, and emotions). Here
we focus on a restricted – yet still significant – example,
namely, that of causes of actions at two different temporal
scales: proximal vs. distal intentions, postulating a hierarchi-
cal two-level structure that grows with data. Thus, any agent
behavior can be explained in terms of its proximal/distal
effects. This simplifies learning of the model as well as the
problem of inference. In a totally unconstrained model, one
should postulate the number of levels, the number of states for
each level, and their interconnections. One approach could be
that of testing all the plausible combinations via a Bayesian
model comparison mechanism (intractable for most scenar-
ios except simple ones). Here we adopt the intentional stance
heuristics in which the structure is fixed. Such a structure
might not be “optimal” in terms of Bayesian structure learn-
ing, but nevertheless it produces an acceptable fit.

In what follows we discuss in detail how this process
works in practice within an adaptive generative model,
called a growing hierarchical dynamic Bayesian network
(GHDBN), which makes it possible to infer a model’s struc-
ture and parameters from direct experience continuously and
incrementally.

4.1 GHDBN

The GHDBN is an adaptive (i.e., growing) model that adapts
its internal organization when it observes a new behavior
while retaining parts of its general structure. We use the
adaptive process of the GHDBN as a metaphor of the child’s
learning process in the previous example. Here the inten-
tional stance fixes the initial metastructure of the model in
termsof hidden andobservedvariables and theirmutual inter-
dependencies. However, the cardinality (e.g., the number of
distinct states) of each variable is not fixed in advance; rather,
the model learns the best parameterization according to its
own experience in the world and does it continually, as new
data are collected.

In what follows we provide an illustrative example of
a simplified mindreading scenario, roughly equivalent to
those usually modeled by other action-based models, in
which nodes correspond to observations, simple and com-
plex actions, and distal intentions (Fig. 1). The intentional
stance here corresponds mainly to the assumption that any
observable behavior of an entity is governed by latent vari-
ables representing that entity’s hidden proximal goals and
distal intentions.

4.2 GHDBN model

From a computational point of view, a GHDBN is an
extension of the well-known probabilistic formalism of
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Fig. 1 Growing hierarchical
dynamic Bayesian network. The
model represents hierarchical
stochastic processes in which
the number of hidden states and
their connections in unknown
and must be estimated from the
observed data as the model acts
in the world – hence the
attribute “growing”

dynamic Bayesian networks (DBNs) used to model tempo-
ral sequences of data that depend on hidden variables. DBNs
are characterized by their structure and parameters, where
the former specifies the number of variables of the networks,
their domain, and conditional dependencies, while the latter
quantify their conditional probability distributions.

More formally, aDBN is definedby a set ofN randomvari-
ables X = {X (1), X (2), . . . , X (N )} and a pair {BN p, BNt },
where BN p represents the prior distribution over X at time 1,
P(X1), and BNt is a two-slice temporal Bayesian network
that defines P(Xt|Xt−1) bymeans of a directed acyclic graph
(DAG) as follows:

P(Xt|Xt−1) =
N∏

i=1

P(Xi
t |Pa(Xi

t )), (1)

where Xi
t is the ith node at time t and Pa(Xi

t ) are the parents
of Xi

t in the graph. The parents of a node, Pa(Xi
t ), can either

be in the same time slice or in the previous time slice, i.e.,
we assume the model is first-order Markov [63].

In general, some variables of the model can be directly
observed, while others are hidden and thus can only be
inferred from the evolution of observed quantities. Let us
denote by Xt the set of hidden variables at time t and by
Zt the set of observed variables at the same time step. Any
probabilistic inference performed in DBNs, including state
estimation, prediction, learning, and model selection, entails
computing the posterior distribution over hidden states, given
the sequence of observations (a quantity also known as belief
in Bayesian inference) [63].

Ourmodel,GHDBN, is a hierarchicalDBN that postulates
a two-level stochastic process, where the higher level induces
a sequence of configurations at the lower level, which can be
directly observed via a noisy observation process. Observ-
able action features (e.g., angles of human joints or their
derivatives) reside at the lowest level, and complete actions
– intended as a temporal sequence of action features – reside
at a higher level (e.g., reaching for a glass can be seen as
a sequence in the low-level feature space). What we pos-
tulate is that an agent’s intention can be represented as a
sequence of actions at this highest level, leading to a distal
goal (e.g., reaching for and grasping a glass for drinking; see
Fig. 1).

In terms of a probabilistic structure (Fig. 1), the model can
be described by two discrete hidden variables, XH and XL,
and two auxiliary binary variables, EH and EL, representing
absorbing states at each level of abstraction.1 Finally, obser-
vations are drawn from a multivariate Gaussian distribution
represented by the variable Y .

In an action observation scenario, discrete states of the
variable XH represent abstract actions (e.g., reaching for,
grasping, bringing to mouth), and a path at this level leads
to a distal goal (such as drinking). Each abstract action is
in turn represented as a (stochastic) path in the space of
possible low-level configurations, accounting for the vari-

1 These are the binary variables used to enforce transition constraints
between the two levels in the hierarchy, namely the blocking constraint
(i.e., the high-level state cannot change before the low-level sequence
has terminated, that is, EL

t = 0 ⇒ XH
t = XH

t−1) and the termination
constraint (i.e., the high-level state cannot terminate before the low-
level sequence has terminated, that is, EL

t = 0 ⇒ EH
t = 0).
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ability in the action execution and leading to a proximal
goal.2 In other words, discrete states of the low-level variable
XL represent clusters in a problem-dependent topological
space of features, a sequence of which is a synthetic rep-
resentation of the complex action itself. Each cluster is
modeled via a classical multivariate normal distribution,
and the whole feature space can be conveniently approxi-
mated via a mixture of Gaussians used to draw observations
Y .

While in our model the overall structure is fixed (in terms
of hidden and observable placeholder variables and their
causal relations), the cardinality of each variable is not known
a priori. Note that our approach is different from most struc-
ture learning studies in machine learning where the structure
of the model itself, together with its parameters, is inferred
from the data. As discussed earlier, the general structure
learning problem is very hard but can befinessed by assuming
initial biases in the otherwise unconstrained learning process
[85]. In keeping with our conceptualization of the intentional
stance, the model is initialized by postulating a two-level
hierarchical structure with unknown states that can “grow”
as new data are observed. In this respect, our model bears
some similarity to the recent trend of Bayesian nonparamet-
ric methods [84], although the statistical machinery involved
is radically different.

In the next sections we briefly sketch our computational
approach; see [28,29] for a more detailed description of the
algorithms used and experimental results in the fields of imi-
tation learning and human–robot interaction.

5 Learning the model

Structure learning includes several problems related to graph
construction and to the definition of the number of states
and connections between them. Within the GHDBN, the
graph is fixed in terms of the number of stochastic vari-
ables, their domains, and their interconnections. Our goal
is to find an unsupervised method to learn the number
of states (i.e., behaviors at both levels of abstraction) and
their connections. The problem is challenging since we
need to learn the structure of both XH’s and XL’s states,
that is, to discover/modify/remove complex actions (states
of XH) and possible transitions between them, and dis-
cover/modify/remove low-level events (elementary behav-
iors, or states of XL) and possible transitions between
them.

2 This idea is consistent with neural evidence for theway humans repre-
sent actions, which ranges from simple kinematic acts to more complex
assemblies of goal-directed behaviors [48].

Fig. 2 A 2D topological map created from observations taken from a
simple random walk algorithm. Points represent observations

5.1 Incremental structure learning

Starting with the low-level variable XL, we claim that it
should reflect the spatial structure of the feature space
discretization. In other words, transitions between basic
behaviors are only allowed if the corresponding nodes of
a topological map over the feature space are connected. In
the present work, the observation space is clustered incre-
mentally using the instantaneous topological map (ITM)
algorithm [54,89], which provides a discrete representation
of the continuous feature space in the form of a graph where
feature space regions are represented as nodes and adjacent
regions are connected by edges.3 The topological map is
updated at every new observation Ot in order to minimize
the number of nodes as well as the model distorsion. The
overall complexity is linear in time and memory with respect
to the number of nodes.4 Figure 2 shows an example of a topo-
logical map created by clustering observations taken from a
simple random walk algorithm.

Each topological update corresponds to an update of the
conditional probability tables (CPTs) in the model. Adding
(removing) a node causes an increase (decrease) in the num-
ber of XL states, corresponding to adding (removing) a
column to the prior table πL|H, adding (removing) a column
to the end-of-sequence probability table PL|H

end , and adding
(removing) a row and a column to each of the transition prob-
ability subtables of aL|H. When an edge is added (removed),
a nonzero (zero) probability of the corresponding element

3 As an example, in a monodimensional feature space representing the
velocity, the basic behaviors (nodes) could be as follows: still (null
value), walking (medium value), running (high value).
4 Indeed, a comparison of ITM against well-kwown self-organizing
maps [58] and growing neural gas [39] is performed in [54] and it is
shown that ITMoutperfoms the others even in high-dimensional feature
spaces.
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in each of the subtables of the aL|H CPT is set, where a
zero value corresponds to an impossible transition between
the considered states. To reduce the computational efforts in
parameter updating, only the nonzero parameters of the aL|H
CPT are considered. Thus, the number of parameters to be
updated in the aL|H CPT is approximatively N × M × Mav,
whereMav is the average number of neighbors per node. For
example, given a topological map with 58 nodes in a three-
dimensional feature space with a resolution of ε = 0.36, the
average number of neighbors for each node is 7.9 (see [54]).

In general, it is not always correct to assume that the state
transitions on the neighborhood between regions of the fea-
ture space can be constrained. In action recognition, however,
we are often measuring features (which somehow depend on
some physical laws) in a continuous domain. Passing from
one state to another one far away in themap should be impos-
sible because changes in observations are usually gradual (if
analyzed in a short time window) and correspond to a series
of state transitions.

The structure learning of XH is more complicated because
this variable is not directly observed. The GHDBN could
be imagined as many growing hierarchical Markov models
(GHMMs) (as the number of XH states) unified in a single
structure. Having a sequence of observations, it is possible
to calculate a likelihood score for each of the submodels to
determine the most probable high-level state that has gen-
erated the observations. The solution used here is based on
measuring the likelihood ratio test between the likelihood of
the sequence, conditioned on a new XH state (representing
the current sequence of observations), and the likelihoods
conditioned on existing states [49]. If this score is below a
(fixed) threshold, we are possibly observing a complex action
that has not yet been modeled, so a new XH state will be
added and its relative parameters estimated. Moreover, the
scores for all XH states are compared to each other. If the
scores of two states differ by a quantity smaller than a preset
threshold, then these states are likely to represent a similar
complex action and are merged into a unique state.

5.2 Parameter learning

Once the structure of a model has been learned, the second
problem is how to learn the entries of the various CPTs that
will be used as the transition model. The classical approach
to parameter learning in probabilistic graphical models is the
expectation-maximization (EM) algorithm. Several variants
of EM exist, and here we classify an EM algorithm as batch
or online, emphasizing how the whole set of observations is
computed to learn the model. EM algorithms basically iter-
ate tomaximize a function. Batch EMvariants, unfortunately
often called online, have been proposed. Two examples are
the incremental EM [65] and the stepwise EM [61]. The
two algorithms differ in the way they incorporate new infor-

mation, but actually these are not purely online algorithms.
However, the main problem is that the more sequences that
are observed, the more significant memory and computa-
tional efforts are needed. Batch EM algorithms consider the
whole set of observations in each iteration, so they also
require the initial availability of the whole set of observa-
tions (we should collect the data of all the actions we must
model before starting the learning phase). Although batch
EM ensures convergence at least to a local maximum of the
observed data likelihood function, it results in slow learning;
moreover, the learned model does not adapt, hence making
it inapplicable in real-world applications.

We need a purely online EM algorithm that updates the
parameters by processing only the current observation. Sev-
eral purely online EM algorithms exist, but the majority
encompass both the stochastic gradient algorithm and the
EM algorithm. An example, used for parameter estimation
in Bayesian networks, is the EM(η) algorithm [7], later
improved by voting EM [18]. A similar version has been
implemented for DBNs (see [17]).

Let Xi be a node of a generic DBN, and let Pai be the set
of the parents of Xi . An entry in the CPT of the variable Xi

is

θi jk = P(Xi = xki |Pai = Pa j
i ). (2)

Thus, the updating rule is as follows:

θTi jk = (1 − η)θT−1
i jk + η

⎡

⎣ P(xki , Pa
j
i |yt , θT−1

i jk )

P(Pa j
i |yt , θT−1

i jk )

⎤

⎦ . (3)

Such an online updating rule is referred to as stochastic

learning, with
P(xki ,Pa j

i |yt ,θT−1)

P(Pa j
i |yt ,θT−1)

the instantaneous gradi-

ent estimate of the optimization problem constrained by∑
k θi jk = 1. Online EM algorithms exhibit asymptotic

behavior toward the real parameter below a certain variance.
This variance is proportional to η, and so the estimate will
oscillate around the true parameter. η can be viewed as a
forgetting bias of the learning algorithm. The system forgets
the past at an exponential rate proportional to η. However,
the oscillation of the parameter makes it possible to get out
of the local maxima when the environment changes and the
model needs to adapt its parameters again.

5.3 Inference in the model

Since our target is learning complex processes in real time,
a recursive filter approach is needed as an inferential algo-
rithm so that received data can be processed sequentially. The
technique used here is the well-known particle filter (PF)
algorithm [3]. PFs are sequential Monte Carlo algorithms
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Fig. 3 Sampling the GHDBN
in a topological order

used to represent probability densities with point masses (or
particles) in state-space models (see [31] for an exhaustive
review of Monte Carlo methods). Note that applying PFs to
a GHDBN involves sampling the variables in a topological
order for each time slice, as in Fig. 3 (i.e., we first sample the
variable labeled 1, then sample variable 2 with the evidence
of the sampled value of variable 1, and so on).

5.4 Learning algorithm

The overall learning algorithm for the GHDBN is a mix of
the previous procedures consisting of two separate phases:
observation and learning; the algorithm is schematically
described in the Table 1).

Note that ITM starts with two random nodes; XH is ini-
tialized to have one state (the first action known is the initial
observation sequence), and XL states reflect the topological
map. We suppose that an observation sequence (in the learn-
ing process) is complete (i.e., it must represent a complex
event from beginning to end).

Figures 4 and 5 show two examples of the GHDBN evolv-
ing in time. In the first case we are considering a simple
GHDBN composed of one XH state (represented as a rectan-
gle) and three XL states (represented as dark circles). Values
inside the circles show the probabilities at each time, for
example, at time t−1 P(XL

top|XH
1 ) = 0.4, P(XL

middle|XH
1 ) =

0.5, and P(XL
bottom |XH

1 ) = 0.1. In this example, we have

only one high-level state; thus, P(XH
1 ) = 1. Graph arcs

(going from left to right) represent possible state transitions.
For example, at time t − 1, we could jump from state XL

top

to XL
top with probability 0.15 and to XL

middle with probabil-
ity 0.85; from state XL

middle to XL
top with probability 0.10,

to XL
middle with probability 0.40, and to XL

bottom with prob-
ability 0.50. At time t , a new node is discovered by the ITM
clustering algorithm, so a new state is added. This state is
supposed to be the neighbor of the node corresponding to
XL
bottom , so a connection is added from XL

new to XL
bottom and

vice versa (showed by the arcs from time t to time t + 1). At
time t+2, ITM decides to delete the node relative to XL

top, so
this state and its connections are removed. Note that transi-
tion probabilities change over time owing to the EM learning
step.

In Fig. 5, we have a different situation. The observation
step in the learning algorithm has detected a new XH state
(i.e., by comparing its log-likelihood value against a fixed
threshold). The diagram now depicts two levels: the back-
ground level is the previous XH

1 state, while the foreground
level is the new XH

2 state. Now high-level state transitions are
possible, as represented by the bold arcs. It is worth noting
that the low-level PDFs and probability transitions are dif-
ferent from those in the previous example, but the structure
is the same.

5.5 GHDBN as a model of action understanding

Action understanding is a difficult task as it typically requires
predicting intentions hidden from the observation of an
action. The GHDBN provides a high level of abstraction and,
at the same time, the ability to recognize the basic compo-
nents of a complex task. To demonstrate the basic principles
of the GHDBNmodel, we have set up a simple experimental
scenario consisting of a human manipulating various objects
(Fig. 6). Computer vision algorithms continuously segment

Table 1 GHDBN learning
algorithm Observe action

Create a new XH state (initializing the CPT as uniform) and learn (with the current sequence of obs.)
only the submodel conditioned on it

a. Compute the likelihoods conditioned on each XH state

b. Compute, for each new state/old state pair, the likelihood ratio

c. If all these likelihood ratios are greater than a threshold (dependent on the number of parameters and
on the length of the sequence), the sequence probably refers to an unknown complex process and the
newly added XH state should be maintained. Otherwise, remove that state and learn the model
normally

Learn For each observation

a. Iterate ITM. Update the XL dimension and the structure of the CPTs πL|H, PL|H
end , and a

L|H

b. If a new XH state has been added in pass 1, apply the parameters update rules to all the CPTs
conditioned on the new XH state, that is, model only the new complex action

c. Else, apply the parameter update rules to all CPTs
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Fig. 4 An example of updating
a GHDBN with one XH state.
Arcs are directed from left to
right in a temporal order

Fig. 5 AGHDBNwith two high-level states. Observations causing the
topology changes are the same as in Fig. 4 (notice the same low-level
structure, here shown only from t − 1 to t + 1) but in this case we
suppose that a new XH state has been detected

the scene and track the position and velocities of both the
hand and all the available objects.

For the task at hand, we have adopted a simple three-
dimensional feature vector represented by the following
signals: hand acceleration, variation of distance between
hand and each object, and angle between hand velocity vec-
tor and hand-to-object vector. A distal goal of “moving
an object” could be segmented into subactions, for exam-
ple, approach object or grasp and dislocate
object, and so forth. Each subaction, in turn, is described
as a sequence of low-level states and, thus, as a path in the
topological map of the feature space. In this case, a simple
event could be represented by the node [1,−1, 0.01] (hand
velocity variation, hand–object distance variation, and hand–
object angle difference in radians), meaning that the velocity
is increasing, the distance between the hand and the object is
decreasing, and the angle between the direction of the hand
motion and the hand–object direction is small (the hand is
moving toward the object). This could be the initial low-
level state of the approaching object action. The final
state could be, for example, (−1; −0.1; 0.01), meaning that
the velocity is decreasing, as is the distance, but slower than
before (the hand is almost near the object).

For instance, suppose we observe an
approach-object action. How is learning performed?
Initially, the GHDBN has only one default XH state, so this
action will be assigned to that state (say, with id1). If the sys-
tem observes a radically different action, for instance grasp
and dislocate object, a new XH state should be cre-
ated, and this action would have been given id2, and so
on.

Figure 6 shows an example of action recognition (after
the learning of two high-level actions). For each frame, the
distributions of XH, XL, EH, and EL are shown. Let us focus
on the evolution of the XH state: from frame �1 to frame
�24 the most probable state is the first one (corresponding to
the approach-object action); at frame �36 the GHDBN
observes a possible transition to action 2 (corresponding to
the grasp-and-dislocate-object action); after this
frame the most probable action is indeed the second one.

Figure 6 shows an example of action recognition (we
assume the system had already observed a similar behavior
and had learned the model and its parameters).

6 Discussion and future works

In this paper we have presented a generative approach to
problems of mindreading. We have emphasized that two
kinds of generative scheme have been proposed in cognitive
science, neuroscience and robotics,which link to “theory the-
ory” and “simulation theory” of mindreading, respectively.
While the former compares perceived actions to optimal
plans derived from rationality principles and abstract “theo-
ries” of mind (i.e., models that describe how they behave),
the latter reuses its own internal (forward and inverse) mod-
els to perform a look-ahead mental simulation of perceived
actions.

Both theories require reliable models to work properly,
and their acquisition requires learning both task parameters
and structure. Here we argue that an intentional stance helps
solve the structure learning process by providing a proxy for
the “real” structure used by the brain to derive actions from
intentions, and vice versa. We discussed how structure learn-

123



Biol Cybern (2015) 109:453–467 463

Fig. 6 Recognition of a composite action (approach object
and grasp and dislocate object). Next to each frame we
depict the histogram of hidden GHDBN variables: XH, high-level
variable (two learned states); XL, low-level variable (ten learned
states); EH, end-of-high-level-sequence binary variable; and EL,
end-of-high-level-sequence binary variable. From frame �1 to frame
�36 the most probable state is the first one (corresponding to the
approach-object action); from the frame �40 until the end, the
most probable high-level state is the second one (corresponding to the
grasp-and-dislocate-object action). Shown also are the acti-
vations of low-level states during observation

ing can help the mindreading process, and we provided an
example (the GHDBN) of how structure initialization can
help in the learning of new parts of the model (e.g., actions
and intentions). The example we provided targets the recog-
nition of actions and intentions (equivalent to models of the
action-based tradition); it needs to be extended with other
components (encoding, for example, probabilistic relations
between beliefs, desires, and intentions) to manage more
complex cases of mindreading.

Relative to this issue, it is worth noting that both action-
based and teleological approaches (implicitly or explicitly)
use a concept of intentional stance, but these concepts are
slightly different. In the action-based view of generative
models, a kind of intentional stance is somewhat implicit
in the use of oneself as a model of another person, as recog-
nized in the “like-me” hypothesis of [62], which links to both
mentalistic processes and emotion attribution. In the teleo-
logical view of generative models, the intentional stance is
an explicit attribution process in which the learning agent
can use the folk-psychology concepts of desires, beliefs, and
intentions (and their relations) as a proxy for the “real” gen-
erative structure that the mammalian brain uses to generate
action.

As discussed by [27], the success of mentalistic expla-
nations of behavior ensure the survival of folk-psychology
concepts, despite the fact that their ontological status is
unclear. Ultimately, from a computational perspective, it is
only the success of causal inferences that matters, whether
or not the underlying model describes real entities. Thus,
the successful use of an intentional stance does not imply
per se that the structure it postulates is correct (or that folk-
psychology concepts are adequate to explain cognition and
behavior). However, recent neuroscience studies reveal that
the idea of a hierarchical generative model is at least a good
approximation of how the brain of living organisms solves the
intention-to-action and action-to-intention problems [35,48],
partially explaining the computational efficacy (although not
completely proving the empirical plausibility) of explana-
tions based on the intentional stance.

Although many scholars have focused on whether men-
talistic concepts such as “beliefs” and “desires” exist in the
brain, in the proposed perspective, the only assumption is that
the brain encodes dynamic processes at different hierarchi-
cal levels and time scales, arranged in a generative scheme in
which high-level processes drive low-level ones [55]. In this
view, long-lasting brain states (analogous to – although not
necessarily identical to – beliefs and intentions) could guide
low-level action and behavior dynamics through a generative
scheme [33,35]. If this view is correct, the structure postu-
lated by the intentional stance could ultimately boil down to
the fact that agentive behavior is better explained in terms of
deep architectures having multilevel dynamics, and that cer-
tain hidden states are long-lasting and “constitutive” of an
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agent (e.g., its beliefs and intentions) and distinguish it from
other individuals – which is not generally true of inanimate
objects.

We have proposed that in the same way the brain builds
generative models of its sensorium, it could build (hierar-
chical and generative) models of others’ behavior; but rather
than building them by a slow inductive process, it could use
an intentional stance to avoid costly structure learning. Our
computational proposal is an alternative to both the innatist
view that a theory of mind cannot be learned from experi-
ence and to the associationist view that theory of mind could
be acquired using associative rather than generative mecha-
nisms. Furthermore, as it adopts a rapid structural expansion
process starting from a fixed template – rather than a slow
bottom-up inductive process – it is compatible with evidence
that elements of a theory of mind are present early in infancy
[20] and guide infants’ knowledge acquisition [21].

In what follows, we discuss some additional arguments
that stem from our computational approach to mindread-
ing problems and that constitute open objectives for future
research.

6.1 Using an intentional stance to explain the behavior
of living organisms, and beyond

If learning agents tend to assume an intentional stance, it
is not implausible that they postulate an “agentive” struc-
ture among their very first hypotheses. Indeed, not only is an
intentional stance adopted to explain the behavior of humans
and other living organisms, but it is often applied to a much
larger class of processes (e.g., the movement of nonliving
objects such as balls or clouds, or to provide explanations of
why computers crash or why it rains).

These considerations suggest that causal reasoning is
indeed central to human cognition [46,68]. During infancy,
children (like other animals) plausibly try to learn the causal
structure of their world. A classical experiment has shown
that pigeons can learn spurious causal relations that lead
to “superstitious” behavior [83]. During learning, mental-
istic explanations for nonliving phenomena are mostly ruled
out, probably owing to a combination of poor prediction
accuracy and cultural learning. Still, even after significant
learning, certain features of humans and other living organ-
isms, such as characteristic traits (e.g., eyelike or smilelike
elements), certain kinds of movement (e.g., animal-like), or
the predictability of certain patterns of feedback, prompt
the causal attribution of folk-psychology structures. This
would explain why we attribute intentionality preferentially
to objects designed to look like or move as humans or that
have complex but predictable structures (such as computers
and cars), although we know that the hypothesized structure
could not be empirically true (i.e., cars do not have desires,
although their designers could).

Fig. 7 Ontogenesis of social cognition: from individual to social and
vice versa

6.2 Ontogenesis of social cognition: from individual
to social and vice versa

Our computational analysis links to the philosophical prob-
lem of explaining the links between individual and social
cognition, and the role of attribution processes for passing
from the former to the latter, or vice versa. As illustrated in
Fig. 7, generative models of self can be used to understand
others (similar to the “like-me” hypothesis). Alternatively,
generative models (and the intentional stance) could have
been initially developed to explain others’ behavior and be
successively adopted to the self, which would account for
a social origin of intelligence. Future research using gener-
ative models could help distinguish the two alternatives on
empirical bases.

6.3 Debate between action-based and teleological
approaches

As discussed earlier, both teleological and action-based
approaches to mindreading can be cast in terms of generative
(Bayesian) models. The former appeals to inverse inference
in generativemodels to explainmindreading in terms of ratio-
nality principles [5,20]. The latter uses the idea of generative
models to explain the commonalities between the neural cir-
cuits of action performance, observation, and prediction; for
instance, the action execution model is also used as a recog-
nition model [34,56,57]. Although it is not typically framed
in this way, the action-based approach considers issues of
optimality in the recognition process. It is often assumed
that action planning and execution follow optimality princi-
ples and minimize costs due to, for example, effort or time
[82,86]. When the same internal models are used for action
recognition, the same optimality principles are (implicitly)
incorporated into the recognition process.

From a computational viewpoint, these two approaches
solve the same set of problems (e.g., action understanding)
using partially different sources of information (e.g., motor
processes for the action-based approach vs. primarily visual
properties of objects for the teleological approach), which
could be more or less available in different contexts. This
fact suggests that action-based and teleological mechanisms
could coexist and cooperate to solve mindreading problems
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in a common generative framework, inwhich the brain essen-
tially uses (and fuses) all the available sources of information.
Furthermore, our emphasis on the generative approach does
not rule out the possibility of using associativemechanisms in
combination with them. Of course, this computational analy-
sis must be substantiated by empirical research, and thus
assessing the contribution of these mechanisms in mindread-
ing task is an open challenge for future research.

6.4 Extending the generative approach to joint actions
and communication

The computational architecture for mindreading that we
described can help in examining how increasingly more
complex forms of social interaction, such as those implying
joint actions and (linguistic or nonlinguistic) communica-
tion, develop on top of the same “interaction engine” [60]
for generating and recognizing action.

Indeed, in recent years cognitive psychology and neuro-
science have been shifting their attention from the study of
passive action observation (and mindreading) scenarios dis-
cussed herein to more active forms of interaction. Indeed,
mindreading abilities are part of a complex capacity for
social interaction (an “interaction engine”) that also includes
mechanisms for planning social actions, creating and picking
up affordances from others, achieving joint goals, form-
ing shared representations, engaging in social interactions
(cooperative or competitive), helping or hindering others,
communicating with others, influencing them, and changing
their goals.

These processes remain incompletely understood from
both empirical and computational perspectives, and their
study will likely form the agenda of social psychology and
neuroscience for many years to come. If we focus on the
somewhat more restricted scenario of “simple” joint actions,
and specifically face-to-face interactions such as dancing or
moving a table together, consensus is accumulating for the
idea that perceptual and action processes (say, recognizing
an action and executing the same or a complementary one)
largely use shared neural resources [32,41,51,53,77]. As
this body of evidence links well to the action-based family
of generative models discussed so far, it suggests a pos-
sible developmental process and a reuse of computational
processes from simpler to more complex social scenarios.

Still, it remains to be understood how production and
recognition processes are integrated and orchestrated so
smoothly that (despite their computational complexities)
joint actions seem to be performed in an effortless man-
ner. A useful starting point for understanding joint action
problems in their complexity is the proposal of Sebanz et
al. [81] that an architecture for joint action should solve,
in an integrated framework, two kinds of problems: high-
level (understanding and planning actions to achieve joint

goals) and low-level (prediction and coordination of behav-
ior in real time to achieve such goals). Furthermore, all these
processes interact with bottom-up dynamics of interaction,
such as the automatic alignment of behavior andmutual emu-
lation [42], which can also influence higher-level processes
of goal selection and action prediction [1,10]. Initial compu-
tational proposals have been put forward that explain joint
action [74] (see also [14,22,72,75]) and communication [71]
using and extending the same generative approach eluci-
dated so far. Of course, elucidating the neurocomputational
architecture of mindreading in the context of complex joint
actions and communication remains an open objective for
future research.
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