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Abstract A wide range of evidence has shown that infor-
mation encoding performed by the visual cortex involves
complex activities of neuronal populations. However, the
effects of the neuronal connectivity structure on the popu-
lation’s encoding performance remain poorly understood. In
this paper, a small-world-based population encoding model
of the primary visual cortex (V1) is established on the basis of
the generalized linear model (GLM) to describe the compu-
tation of the neuronal population. The model mainly consists
of three sets of filters, including a spatiotemporal stimulus fil-
ter, a post-spike history filter, and a set of coupled filters with
the coupling neurons organizing as a small-world network.
The parameters of themodelwere fittedwith neuronal data of
the rat V1 recorded with a micro-electrode array. Compared
to the traditional GLM, without considering the small-world
structure of the neuronal population, the proposedmodel was
proved to produce more accurate spiking response to grating
stimuli and enhance the capability of the neuronal popula-
tion to carry information. The comparison results proved the
validity of the proposed model and further suggest the role of
small-world structure in the encoding performance of local
populations in V1, which provides new insights for under-
standing encoding mechanisms of a small scale population
in visual system.
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1 Introduction

Understanding how sensory stimulus information is encoded
in sequences of action potentials (spikes) of a sensory neu-
ronal population andwhatmakes neurons fire are challenging
problems of systems neuroscience. Given any stimulus, pre-
dicting the neural response as accurately as possible would
help to give insights into understanding the computations car-
ried out by the neural ensemble and to comprehend further
the encoding mechanism of the sensory system.

Current studies have mainly used linear or nonlinear
regression methods to investigate the relationship between
response of neural populations and visual stimuli (Ashe and
Georgopoulos 1994; Fu et al. 1995; Luczak et al. 2004). Lin-
ear least squares regression is the simplest and most com-
monly used regression technique. However, this method is
performed under the assumption that neural responses in a
time bin are Gaussian distributed (Brillinger 1988), which
is obviously not appropriate for describing spiking activ-
ity of neural responses. Generalized linear models (GLMs)
emerge as a flexible extension of ordinary least squares
regression allowing one to describe the neural response as
a point process (Chornoboy et al. 1988) and find a best fit
to the data (McCullagh and Nelder 1989; Paninski 2004).
The linear-nonlinear Poisson (LNP) cascade model (Simon-
celli et al. 2004), as the simplest example of GLMs, con-
volves the stimulus with a linear filter, subsequently trans-
forms the resulting one-dimensional signal by a pointwise
nonlinearity into a non-negative, time-varying firing rate,
and finally generates spikes according to an inhomogeneous
Poisson process. Other encoding models, extended on the
basis of LNP cascade model, have also been shown to per-
form well for the prediction of spike trains in the hip-
pocampus (Harris et al. 2003), in the retina (Pillow et al.
2008, 2005), and in the motor cortex (Truccolo et al. 2010),
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and for decoding motor cortical activity (Lawhern et al.
2010).

Besides the GLMs, there are also other types of models
established to describe the computation process of neuronal
population in V1 with an aim to reveal some encoding mech-
anisms of the visual cortex, such as the recurrent network
model (Kaiener et al. 2009; Kriener et al. 2008), the infor-
mation integrationmodel (Wang et al. 2011), and the general-
ized thinning and shift (GTaS) model (Trousdale et al. 2013).
However, few models have taken the small-world structure
of neural ensembles into consideration. The recently devel-
oped methods have provided powerful tools for studying the
functional connectivity property of brain networks (Sporns
and Zwi 2004; Eldawlatly et al. 2009; Partzsch and Schüffny
2012; Leergaard et al. 2012). Most of them demonstrated
that biological networks presented small-world properties,
observed not only in large neural networks with each node
representing a cortical area (Sporns and Zwi 2004; Bas-
sett and Bullmore 2006; Kaiser 2008), but also in the local
neural networks recorded with microelectrode arrays (Yu
et al. 2008; Gerhard et al. 2011). A small-world network
constitutes a compromise between randomandnearest neigh-
bor regimes, resulting in a short average path length despite
the predominance of local connections (Kaiser 2008), which
reflects the high efficiency of the network in transmitting and
processing information (Achard and Bullmore 2007). Sev-
eral simulated models have also been established to prove
the important role of topological structure in representing the
encodingdynamics of neural populations (Pernice et al. 2013,
2011; Trousdale et al. 2012). However, most of those mod-
els are based on a large quantity of neurons (even more than
10,000), which exceeds the recording capability of MEA.
Thus, these models have difficulty obtaining direct supports
and examination from electrophysiological experiments.

In this paper, we established a population encoding model
following the building principle of GLM to describe the com-
puting process of local neuronal populations recorded from
V1. The model is mainly composed of three sets of linear fil-
ters, which respectively capture the covariate of visual stim-
uli, dependencies on its own post-spike history (for example,
refractoriness, recovery periods, and adaptation), and depen-
dencies on the recent spiking of adjacent coupling cells.
The main difference from the ordinary GLM was the last
part, in which we additionally constructed a small-world
network when depicting coupling relationship among the
neuronal population. The electrophysiological experiments
under grating stimuli were designed to fit parameters of the
model and to check the model further. The results show that
both the encoding and decoding accuracy were improved by
taking the small-world network structure into account, sug-
gesting that the small-world structure of the local population
in V1 may play an important role in encoding visual infor-
mation.

2 Material and methods

2.1 Framework of the population encoding model

The population encoding model built here is to describe the
computing process of local neuronal populations recorded
from V1. Since the spiking probability of each individual
cell is reported to be related to modulation by stimuli, past
neuron activity, including its own and the coupled ensem-
ble’s (Okatan et al. 2005; Truccolo et al. 2005), the spik-
ing of individual neurons among an N -neuron population
was described with three sets of linear filters: a spatiotem-
poral stimulus filter (denoted by R); a post-spike-dependent
filter (denoted by P), which captures mostly refractoriness,
recovery periods, and adaptation of the neuron; and a set
of coupling filters C, which capture dependencies on recent
spiking of other coupled cells. The summed filter responses
are then exponentiated to obtain an instantaneous spike rate
for each individual neuron. Note that the coupling relation-
ship among the network satisfies small-world properties (see
Sect. 2.2 for details), which is the main difference from the
ordinary GLMs. The framework of the small-world based
population encoding model (SW-based model for short) is
shown in Fig. 1.

2.2 Building each part of the model

As is shown in Fig. 1, each neuron from an N -neuron popu-
lation is modeled with three sets of filters with coupling neu-
rons constituting an N -neuron small-world network. Given
an arbitrary stimulus s, and the spikinghistory of anN-neuron
population B1:N

1:i , the conditional intensity function of a sin-
gle cell’s spiking activity in the i th time bin ti is

λ
(
ti |B1:N

1:i , s, θ
)

= λR (ti |s, θR) λP (ti |B1:i , θP ) λC

(
ti |B1:K

1:i , θC

)
(1)

where θ = {θR, θP , θC } indicates the parameters of filters
to be fitted with the neuronal data recorded from V1 (see
Sect. 2.3). λR (ti |s, θR) is the spiking intensity induced by
the extrinsic covariate of the stimuli s and is modeled as
λR = exp (R·s). The corresponding filter R is represented
with a spatiotemporal filter, which is approximated with the
product of a spatial filter and a temporal filter (Liu and Yao
2014; Sun and Dan 2009):

R (x, y, τ ) = Rs (x, y) Rt (τ ) (2)

with Rs (x, y) denoting a spatial filter and obtained by
approximating the measured receptive field (RF) with a 2D
Gabor function in a least-squares way, and Rt (τ ) the tem-
poral filter represented using a set of gamma distribution
models (see Sect. 2.3.1 for details). λP (ti |B1:i , θP ) and
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Fig. 1 Model schematic for the
neural population with
small-world structure: each
neuron has a stimulus filter, a
post-spike filter, and coupling
filters that capture dependencies
on spiking in other neurons.
And the coupled neurons
constitute a “small-world”
network. Summed filter output
passes through an exponential
nonlinearity to produce the
instantaneous spike rate

Stimulus filter Nonlinearity

Post-spike 
filter

Coupling filters

Small world network

Input image

Coupling filters

λC
(
ti |B1:K

1:i , θC
)
of Eq. 1 represent the components of the

intensity function conditioned on the spiking history B1:i
of its own and that of other K -coupled neurons. They are,
respectively, modeled as

λP = exp

⎡
⎣μ0 +

Q∑
n=1

p(tn)Bi−n

⎤
⎦ (3)

λC = exp

(
K∑

k=1

ck · Bk

)
= exp

⎛
⎝

K∑
k=1

Q′∑
n=1

ck (tn) B
k
i−n

⎞
⎠ (4)

In Eq. 3, μ0 is the baseline log-firing rate of the cell, p(tn)
indicates the gain coefficients of post-spike filter P at time
tn . In Eq. 4, ck and Bk represent the modulation filter and the
history spiking of the kth coupling neuron. The post-spike
filter P and coupling filter C were represented using a set of
raised cosine basis of the form

b j (t)

=
{

cos(a log[t+d]−φ j)+1
2 if a log(t+d)∈[

φ j −π, φ j +π
]

0 Otherwise

(5)

All model coefficients θ were fitted with neuronal data
recorded fromV1using standardmaximum-likelihoodmeth-
ods (Paninski 2004) as well as their significance value
(denoted by p). For each neuron group, not all coupling fil-
ters among neurons were retained, which also aligns with the
sparse connectivity in the visual cortex (Bassett and Bull-
more 2006; Eavani et al. 2015). To eliminate some unnec-
essary couplings, the common way is to set a significance
level α empirically (e.g. 0.01 or 0.001) or to add a penalty
upon αt without considering the connectivity property of the

network. In this paper, we set a dynamic threshold αt to gen-
erate a small-world structure, as strong as possible. First of
all, the threshold should keep each unit connected with at
least one unit of the network, and the degree of the N -neuron
connected network should be larger than ln(N ). Secondly,
the small-world property of each thresholded network was
then checked in the following way. The average path lengths
L (Eq. 6) and clustering coefficient F (Eq. 7) of the obtained
networkwere calculated and comparedwith those of 100 ran-
dom networks, which were constructed by randomly repo-
sitioning the connections maintaining the same number of
nodes and connections as the original estimated network.

L = 1
1
2N (N − 1)

∑
i> j

di, j (6)

F = 1

N

N∑
i=1

2Ei

Ki (Ki − 1)
(7)

In the above, N is the number of nodes in the network, di, j
indicates the number of shortest path connecting notes i and
j,Ki indicates the number of nodes that connected with node
i and Ei presents the number of actual connections among
node iwith its neighbors. Let λ indicate the ratio between the
average path length of the target model and that of a random
network, γ the ratio between the average clustering coef-
ficients of the two networks. Sw = γ /λ. A “small-world”
property was inferred if the ratio Sw > 1 (Achard et al. 2006;
Humphries et al. 2006; He et al. 2007). The structure of the
network was finally determined with the threshold that pro-
duces the strongest small-world property (equal to the largest
Sw). We also set a control model to prove the advantages of
the proposed model by estimating the connectivity in a simi-
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larwaybutwithout a small-world structure (Sw ≈1), denoted
by nSW-based model for short.

2.3 Electrophysiological experiments

The experiments were designed both to fit the parame-
ters of the established model and to examine the model’s
performance. Each set of parameters was fitted with neu-
ronal responses to sinusoidal drifting gratings of the pre-
ferred speed and spatial frequency for most neurons, vary-
ing in orientation (12 equally spaced orientations, 0◦–
330◦) and repeated at least 20 times, except the spa-
tiotemporal filters (see Sect. 2.3.1 for detail). We used
V1 from Long Evans rats as the animal model. The neu-
ronal data were obtained with a polyimide-insulated plat-
inum/iridium micro-electrode array (Clunbury Scientific,
USA) that were arranged in four rows with four wires in
each row (electrode diameter = 50µm; electrode spacing=
350µm; row spacing = 350µm; impedance= 20−50 k	)

and recorded with a Cerebus system (Blackrock Company,
USA).

Offline analysis was performed using a program in MAT-
LAB. The single unit activity was obtained using a band-
pass filter between 250Hz and 5kHz, threshold detecting
and spike sorting in preprocessing.

2.3.1 Measuring the spatiotemporal receptive field of each
neuron

As mentioned in Sect. 2.2, the spatiotemporal filter was
approximated with the product of a spatial filter and a tempo-
ral filter (Eq. 2), which are obtained by fitting the spatial and
temporal RF, respectively. The RFs for individual neurons
are measured by reverse correlation (Jones et al. 1987) with
a single bright square (6.6◦ ×6.6◦) flashing on a black back-
ground at each of the 11 × 11 positions in a pseudo-random
sequence (20 flashes/position). The spatial RF profile at each
temporal delay was approximated with a 2D Gabor function
(Eq. 8). The response amplitude as a function of time was
fitted with gamma distribution function (Eq. 9) (Liu and Yao
2014; Sun and Dan 2009).

Rs (x, y)

= We−((x−x0) cos θ+(y−y0) sin θ)2/σ 2
x −((y−y0) cos θ−(x−x0) sin θ)2/σ 2

y

(8)

Rt (τ ) = A (τ − τ0)
α e−(τ−τ0)/σ+A0 (9)

where W is amplitude of the RF response, x0 and y0 refer
to location of theRF centre, σx and σy determine width and

length of the RF, θ is orientation. A, α, σ, τ0 and A0in Eq. 9
are free parameters.

2.3.2 Verifying the encoding effect of the model

The model was validated using another set of oriented grat-
ings, with the preferred speed, spatial frequency, and orien-
tation, presenting for 1 s and repeating 20 times. The raster
output from each channel of the model was obtained and the
time-varying average response (PSTH) was computed in 1-
ms time bins, smoothed with a Gaussian kernel of widths
2ms.

Toquantify the prediction accuracyof themodel, the resid-
ual error [defined as the difference between the true and pre-
dicted values (Andersen et al. 1992)]was computed and aver-
aged over nonoverlappingmoving timewindows [tT−I ∼ tI ]
(T − I ≥ 1) with Eq. 10.

e (tT ) =
(

T∑
i=T−I

Mi −
∫ tI

tT−I

λ (t) dt

) /
I (10)

whereMi denotes themean firing rate of the neuron in the i th
time bin, λ is the conditional density of the model indicating
the predicted firing rate in each time bin, and I represents the
number of bins.

2.4 Checking the model-based decoding performance

To check decoding performance of the established model,
we applied the regularized logistic regression (Bishop 2007)
to decode the stimulus orientation from a single-trial popu-
lation response predicted by the model under the stimuli of
an arbitrary oriented drifting sinusoidal grating of the pre-
ferred speed and spatial frequency for most recorded neu-
rons. Each grating was presented for 1 s and repeated 20
times. The decoder was to decide whether this population
response occurred in a trial under the stimulus with orien-
tation θ1 or θ2, ranging from 0◦ to 330◦, in steps of 30◦.
Such a classification has proven useful to assess the quality
of different population coding schemes (Berens et al. 2011).
We trained the logistic regression model using the glmnet
toolbox (Friedman et al. 2010) in MATLAB with L1/2 reg-
ulation instead of L1 regulation. The L1/2 regulation has
proved to achieve better constringency performance than L1

regulation (Zhao et al. 2012). For each pairwise combination
of stimulus orientation, the cross-validation was performed
using repeated random subsample technique (80% training
data, 20% test data) for the whole regularization path (50
regularization parameters spaced between e−10 and e). The
correct percentage over all tested data for each orientation
was averaged to estimate the decoding performance based
on population response predicted by the model.
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Fig. 2 The spatiotemporalRFof the recorded neuron and the estimated
spatial and temporal stimulus filters. a Illustration of parameter fitting
of spatiotemporal RF. Spatial RF in each frame (33ms/frame) was fitted
with 2D Gaussian (upper, white ellipse). Shown are spatial RF profiles
at ten temporal delays (circles in lower trace). The fourth frame shown

is the RF at the time of peak response. Amplitude of Gaussian fit is
plotted against time (lower trace) to obtain the temporal stimulus filter.
b The spatial filters for the 14-neuron group from the example dataset.
The red circle indicates the spatial profile RF shown in a (color figure
online)

3 Results

3.1 Electrophysiological results

A total of five datasets (containing 14, 15, 16, 15, 12 units,
respectively) have been collected in five rats’ V1 with the
same MEA to fit and to examine the model further. The
detailed results of the onewith 14 units are presented together
with the key results of other datasets.

The spatiotemporal RFwas firstmapped for each recorded
neuron. The spatial profile and temporal dynamic of RFs
were fitted according to the method referred to in Sect. 2.3.1
to estimate the spatial and temporal stimulus filters. Fig-
ure 2a presents the mapped spatial RFs at different time
delays (upper) of an example neuron (also mentioned in
Figs. 3, 4) and the response amplitude as a function of
time (lower, indicated with blue empty dots). The former
was fitted with a 2D Gabor function (Eq. 8) and indicated
with an ellipse in Fig. 2a (upper). The latter was fitted

with gamma distribution function (Eq. 9) and denoted with
a solid line in Fig. 2a (lower). The performance of each
fitting was assessed with goodness-of-fit statistics, includ-
ing the adjusted coefficient of determination (denoted by
adjR2) and root mean squared error (denoted by stdEr-
ror), summarized in Table 1. The estimated spatial fil-
ters of the 14-neuron group (Fig. 2b) formed an approx-
imate complete mosaic covering a small region of visual
space.

The post-spike-dependent filters and coupling filters were
both represented using a set of raised cosine pulses as basis
functions (Eq. 5, Fig. 3a) according to the inter-spike interval
(ISI) distribution and the temporal structure of the normal-
ized cross-correlation histogram (CCH), which was obtained
from the normalized joint PSTH by subtracting the cross-
product of the PSTHs and then dividing by the SD of PSTH
predictors. The temporal range was chosen after the obser-
vation that the magnitude of most estimated filters decline
back to zero well within the first 40–60ms. The exponenti-
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Fig. 3 a Seven-dimensional basis for post-spike filters (upper) and four-dimensional basis for coupling filters (lower). b Estimated post-spike filter
for the example mentioned in Fig. 2. c The coupling filters from the rest of the population for the example neuron mentioned in Fig. 2

ated post-spike and coupling filters estimated for the exam-
ple neuron (mentioned in Fig. 2a) were shown in Fig. 3b, c,
respectively.

The significance p value of each coupling filter between
each pair of neurons was obtained using the penalized
maximum-likelihood method. Then the dynamic threshold
was determined to transform the p matrix to a binary graph
to estimate the connection structure of the network. The
threshold was adjusted until the strongest small-world prop-
erty (corresponding to the largest value of Sw) emerged (see
Sect. 2.2). Figure 4 shows the estimated binary connection
matrix of the SW-based model (Sw = 1.52, Fig. 4a) in
addition to that of the control nSW-based model (Sw =
1.02, Fig. 4b) without the small-world structure. The cor-
responding typical characteristics of both networks across
all recorded datasets are shown in Table 2. The main
difference between the two kinds of networks was the

number of connections among the population as well as
their connection structures. The small-world property disap-
peared with the number of connections growing much larger
(Fig. 4c). In the reverse, it was not a connected network
any more if the threshold was set less than the first value
in Fig. 4c.

3.2 Examination results of the model

The model built in this paper was tested in both encoding
accuracy and decoding performance.

To test the encoding accuracy, the response of individual
neurons to 20 repeats of 1-s novel stimuli (see Sect. 2.3.2
for detailed information) was predicted under the SM-based
model. The firing rate in each 1-ms time bin was computed
and averaged across 20 trials. The residual error between
the predicted PSTH (smoothed with a Gaussian kernel of
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Fig. 4 The binary connectivity matrix of the 14-neuron network for
the SW-based model (a αt = 0.0247) and nSW-based model (b
αt = 0.0308). A solid circle at row i and column j indicates a directed

link from neuron i to neuron j . Neurons are sorted according to the
electrode from which they were recorded from. c The network index
Sw and the number of the connection plotted against the threshold level

widths 2 ms) and the recorded neuron data was computed
(blue line, Fig. 5a). The residual error predicted by the control
model (denoted by the nSW-based model) was computed in
a similar way and is shown with a red line in Fig. 5a. The
accuracy of the each model to predict individual neurons
responses within 1 s was computed with Eq. 10 (Sect. 2.3.2),
respectively. The prediction accuracywas compared between
the two models across all five datasets (n = 72, Fig. 5b).
From the comparison we can see that the SW-based model
predicted more accurate individual response (34.5 ± 3.1%
less residual error) than the nSW-based model. The results
show that computation described by theSW-basedmodelwas
much closer to the encoding process of the neurons recorded
inV1, compared to the nSW-basedmodel, suggesting that the
small-world structure of a local neuronal populationmight be
necessary to predict responses of individual neurons in V1.
However, it is not enough to evaluate the capacity to extract
stimulus information that the responses carry.

Table 1 The goodness-of-fit statistics for fitting spatial and temporal
RFs

Spatial RF Temporal RF

adjR2 0.7983 ± 0.1042 0.8915 ± 0.0521

stdError 0.5557 ± 0.0412 0.9768 ± 0.1201

adjR2 refers to the “adjusted coefficient of determination”, and stdError
the “root mean squared error” mentioned in Sect. 3.1. All results are
shown as mean ± SD for all recorded neurons (n = 72)

To examine further the decoding performance of the pro-
posedmodel,we used the L1/2 regularized logistic regression
to decode stimuli information (taking the grating’s orienta-
tion for an example) from the population response predicted
by the established model. The grating’s orientation (θ1 or θ2,
see Sect. 2.3.2 for detailed information) was decoded from
each short (50-ms) segment of the population response dur-
ing the presentation of a grating stimulus. The percent correct
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Table 2 Characteristics and the summary predicted effect of both models

Datasets N SW-based model nSW-based model �e

αt Sw αt Sw

*D1 14 0.0247 1.52 0.0308 1.02 34.5 ± 3.1%

D2 15 0.0086 1.33 0.0104 1.02

D3 16 0.0107 1.45 0.0174 1.03

D4 15 0.0123 1.38 0.0212 1.01

D5 12 0.0120 1.46 0.0207 1.01

D1–D5 indicate different datasets. The one marked with * is the example dataset shown throughout the paper. N represents the number of individual
neurons, αt the threshold. Sw is the typical characteristic index of the small-world network referred to in Sect. 2.2. �e represents the decreased
residual error for all recorded neurons computed with Eq. 10 compared with the control model. The result corresponding to the last column is shown
as mean ± SD for all recorded neurons

Fig. 5 Encoding performance
compared between both models.
a The residual error between the
true PSTH of the neuron to 1-s
novel stimuli in 1-ms time bins
and the predicted response
under the SW-based model
(blue) and under the nSW-based
model (red). b The predicted
error of the nSW-based model
for all 72 neurons plotted
against those of the SW-based
model. The SW-based model
predicts responses with lower
error than the control model.
The one plotted in red was the
predicted result for the target
neuron (color figure online)
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for each short segment was plotted against the time latency
and shown in Fig. 6a (blue line), in addition to that of the
control model (red line). The percent correct between the
100 and 500ms after stimulus onset were averaged to repre-
sent the decoding accuracy for each combination of grating
orientations. Figure 6b shows the comparison result of the
decoding accuracy plotted against �θ(�θ = |θ1 − θ2|), in
which θ1 and θ2 is ranging from 0◦ to 330◦, in steps of 30◦.
Note that orientations whose difference is 180◦ were con-
sidered unique orientations with �θ = 0, and the difference
betweenorientations,which is larger than90,was taken as the
supplementary angle of its original difference instead. Thus,

there are, in total, four different �θ values. For each �θ ,
there are several different combinations. The final decoding
accuracy at each �θ in Fig. 6b was the mean correct per-
cent of all combinations. The comparison results indicate
the decoding performance is improved across all �θ values
by taking the small-world structure of neuronal populations
into account. However, Fig. 6 only presents the decoding
performance differences between two examples. We made
further analysis upon the decoding performance between
the two types of ensembles to see whether the conclusion
is stable across different neuronal groups (see Sect. 3.3 for
details).
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Fig. 6 Decoding performance under both models. a Time course of the decoding performance for both models averaged over each combination
of �θ . b Average decoding performance for both models plotted as a function of �θ . The color code is as in a (color figure online)

3.3 Effect of small-world degree on a model’s performance

To explorewhether the degree of small-world propertywould
influence the encoding and decoding performance of the
model, we constructed a set of 14-neuron networks based
on SW-based models (in total nnet = 151), derived from
all five datasets. The encoding and decoding accuracy of
each population were evaluated following the above ways,
respectively. The distribution of the computed Sw from all
14-neuron networks is shown in Fig. 7a. We graded the set
of networks into several different groups, i.e. strong group
(Sw ≥ 1.45, nnet = 34), modest group (1.30 ≤ Sw <

1.45, nnet = 87), and weak group (Sw < 1.30, nnet = 30).
Then statistical comparisons were made between different
groups on both the encoding and decoding accuracy, as
shown in Fig. 7b, c. In addition, we computed the encod-
ing and decoding accuracy of the control models based on
all networks (nnet = 151, Sw ≈ 1.00). From the com-
parison results we can see that there is no significant vari-
ation (pair t test, p > 0.1) between groups with differ-
ent degrees of small-world property, while the difference
between each group and the control model is significant (pair
t test, p < 0−5). The above results show that the encoding
and decoding performance of local population is significantly
affected by the small-world structure, whereas the model’s
performance has no distinct relationship with the degree of
small-world property.

As the results across all 14-neuron groups were stable,
we considered it justified to reconstruct networks with dif-
ferent numbers of neurons aiming to investigate whether the
conclusions depend on the number of neurons. Surprisingly,
the results of this analysis were highly consistent across 13-
neuron networks (nnet = 534 out of 784) and 12-neuron net-
works (nnet = 657 out of 2823). The above results suggest
that the encoding and decoding performance of the local pop-

ulation inV1would be improved by the small-world structure
regardless of its degree.

4 Discussion

An important problem in neurophysiology is to understand
how the sensory system encodes visual information andwhat
would affect the spiking activity of a single neuron or neu-
ronal populations. The most popular approach is to relate
the neuron’s spiking activity to three factors (Truccolo et al.
2005), i.e. the stimulus information, the neuron’s own spiking
history, and the modulation effect from coupling neurons. It
is also the basic principle of GLM, which was applied abun-
dantly to describe the computation process of a neuronal pop-
ulation and draw lots of valuable conclusions (Pillow et al.
2008). Nevertheless, little attention is given to the influence
of the network structure property in encoding and decoding
information of the neuronal population in V1. In this paper,
we extended the GLM to describe the spiking activity of a
neuronal population in V1 by specifying the network con-
nectivity according to small-world property, which has been
reported by amounts of studies (Yu et al. 2008; Gerhard et al.
2011).

The small-world network was also used in recent models.
For example, Zheng et al. (2014) established a small-world
neuronal networkmodel and proved the temporal order of the
spiking activity would be enhanced by introducing the small-
world connectivity. And our study further demonstrated that
the small-world structure would improve the encoding and
decoding performance of local neuronal population in V1.
There are also many researchers dedicating to exploring the
influence of network structure on the population dynamics
of neurons. Pernice et al. (2013) and Trousdale et al. (2013)
have respectively established numerical models and revealed
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Fig. 7 The performance comparison among models is based on net-
works with different levels of small-worldness. a The comparison on
encoding accuracy between models is based on networks with different

levels of Sw , referred to in Sect. 3.3. b The comparison on decoding
accuracy between models is based on networks with different levels of
Sw

the strong influence of the network structure on the popula-
tion activity dynamics, whereas those models are based on a
large quantity of neurons (evenmore than 10,000) and cannot
be examined in electrophysiological experiments. Haslinger
et al. (2013) established a regression tree-based neuronal
populationmodel and demonstrated the pattern-based encod-
ings were superior to those of independent neurons model.
Similarly, from our simulated results, we can also conclude
that the small-world structure (a type of neuronal popula-
tion pattern) may enhance the encoding and decoding per-
formance.

In conclusion, the simulating results of our model suggest
that the small-world structure of the local population may
play an important role in representing and carrying informa-
tion. Furthermore, it is hypothesized that neurons in V1 do
not encode visual information in an individual no pairwise
or pairwise way, but gather as a neuronal network with a
dynamic functional connectivity, which makes their spiking
activity more robust and diverse for carrying or processing
visual information.

However, the model’s predicting results do not com-
pletely agree with the recorded data. This discrepancy can
be explained by the following factors: (1) the parameters of
the SW-based model are mainly determined by the responses

of simple cells with obvious spatial RF. However, there are
other kinds of cells (e.g. complex cells) insensitive to loca-
tion of the stimuli (Hubel andWiesel 1962),whichmay affect
the results. (2) The number of recorded neurons is finite and
the integration from coupling neurons is also simulated with
the finite number of neurons. It is, in fact, impossible to esti-
mate how each neuron interacts with adjacent neurons (Wen
and Zhang 2009); this can also cause deviation. In addition,
the model was only fitted with small numbers of populations
(12–15) due to our limited experimental conditions. In the
future, we plan to use a larger amount (more than 20) of neu-
ron data to fit this model and wish to draw more valuable
conclusions.
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train model with time-structured higher order correlations. Front
Comput Neurosci 7:84. doi:10.3389/fncom.2013.00084

Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005)
A point process framework for relating neural spiking activity to
spiking history, neural ensemble, and extrinsic covariate effects. J
Neurophysiol 93(2):1074–1089. doi:10.1152/jn.00697.2004

TruccoloW,Hochberg LR,Donoghue JP (2010) Collective dynamics in
human and monkey sensorimotor cortex: predicting single neuron
spikes. Nat Neurosci 13(1):105–111. doi:10.1038/nn.2455

Wang Z, Shi L,Wan H, Niu X (2011) An information integration model
of the primary visual cortex under grating stimulations. Biochem
Biophys Res Commun 413(1):5–9. doi:10.1016/j.bbrc.2011.07.
120

123

http://dx.doi.org/10.1523/JNEUROSCI.3874-05.2006
http://dx.doi.org/10.1177/1073858406293182
http://dx.doi.org/10.1073/pnas.1015904108
http://dx.doi.org/10.1073/pnas.1015904108
http://dx.doi.org/10.1016/j.neuroimage.2014.09.058
http://dx.doi.org/10.1016/j.neuroimage.2014.09.058
http://dx.doi.org/10.1162/neco.2008.09-07-606
http://dx.doi.org/10.1162/neco.2008.09-07-606
http://dx.doi.org/10.3389/fncom.2011.00004
http://dx.doi.org/10.3389/fncom.2011.00004
http://dx.doi.org/10.1038/nature01834
http://dx.doi.org/10.1162/NECO_a_00464
http://dx.doi.org/10.1162/NECO_a_00464
http://dx.doi.org/10.1093/cercor/bhl149
http://dx.doi.org/10.1098/rspb.2005.3354
http://dx.doi.org/10.1088/1367-2630/10/8/083042
http://dx.doi.org/10.1007/s10827-008-0135-1
http://dx.doi.org/10.1162/neco.2008.02-07-474
http://dx.doi.org/10.1016/j.jneumeth.2010.03.024
http://dx.doi.org/10.1016/j.jneumeth.2010.03.024
http://dx.doi.org/10.3389/fninf.2012.00014
http://dx.doi.org/10.1111/ejn.12567
http://dx.doi.org/10.1111/ejn.12567
http://dx.doi.org/10.1016/j.jneumeth.2003.12.019
http://dx.doi.org/10.1162/0899766054322973
http://dx.doi.org/10.1162/0899766054322973
http://dx.doi.org/10.1007/s00422-012-0489-3
http://dx.doi.org/10.3389/fncom.2013.00072
http://dx.doi.org/10.1371/journal.pcbi.1002059
http://dx.doi.org/10.1523/JNEUROSCI.3305-05.2005
http://dx.doi.org/10.1038/nature07140
http://dx.doi.org/10.1385/NI:2:2:145
http://dx.doi.org/10.1073/pnas.0903962106
http://dx.doi.org/10.1371/journal.pcbi.1002408
http://dx.doi.org/10.3389/fncom.2013.00084
http://dx.doi.org/10.1152/jn.00697.2004
http://dx.doi.org/10.1038/nn.2455
http://dx.doi.org/10.1016/j.bbrc.2011.07.120
http://dx.doi.org/10.1016/j.bbrc.2011.07.120


388 Biol Cybern (2015) 109:377–388

WenY,ZhangQ (2009)Ensemble cortical responses to rival visual stim-
uli: effect of monocular transient. Biochem Biophys Res Commun
380(1):105–110. doi:10.1016/j.bbrc.2009.01.042

Yu S, Huang D, Singer W, Nikolic D (2008) A small world of neuronal
synchrony. Cereb Cortex 18(12):2891–2901. doi:10.1093/cercor/
bhn047

Zhao Q, Meng Y, Xu Z (2012) L1/2 regularized logistic regression.
Pattern Recog Artif Intell 25:721–728

Zheng Y, Wang Q, Danca MF (2014) Noise induced complexity: pat-
terns and collective phenomena in a small-world neuronal network.
Cogn Neurodyn 8(2):143–149. doi:10.1007/s11571-013-9257-x

123

http://dx.doi.org/10.1016/j.bbrc.2009.01.042
http://dx.doi.org/10.1093/cercor/bhn047
http://dx.doi.org/10.1093/cercor/bhn047
http://dx.doi.org/10.1007/s11571-013-9257-x

	A small-world-based population encoding model of the primary visual cortex
	Abstract 
	1 Introduction
	2 Material and methods
	2.1 Framework of the population encoding model
	2.2 Building each part of the model
	2.3 Electrophysiological experiments
	2.3.1 Measuring the spatiotemporal receptive field of each neuron
	2.3.2 Verifying the encoding effect of the model

	2.4 Checking the model-based decoding performance

	3 Results
	3.1 Electrophysiological results
	3.2 Examination results of the model
	3.3 Effect of small-world degree on a model's performance

	4 Discussion
	Acknowledgments
	References




