
Biol Cybern (2015) 109:333–347
DOI 10.1007/s00422-015-0646-6

ORIGINAL PAPER

Synchrony, waves and ripple in spatially coupled Kuramoto
oscillators with Mexican hat connectivity

Stewart Heitmann · G. Bard Ermentrout

Received: 4 July 2014 / Accepted: 29 January 2015 / Published online: 13 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Spatiotemporal waves of synchronized activity
are known to arise in oscillatory neural networks with lateral
inhibitory coupling. How such patterns respond to dynamic
changes in coupling strength is largely unexplored. The
present study uses analysis and simulation to investigate the
evolution ofwave patternswhen the strength of lateral inhibi-
tion is varied dynamically. Neural synchronization was mod-
eled by a spatial ring of Kuramoto oscillators with Mexican
hat lateral coupling. Broad bands of coexisting stable wave
solutions were observed at all levels of inhibition. The stabil-
ity of these waves was formally analyzed in both the infinite
ring and the finite ring. The broad range of multi-stability
predicted hysteresis in transitions between neighboring wave
solutions when inhibition is slowly varied. Numerical sim-
ulation confirmed the predicted transitions when inhibition
was ramped down from a high initial value. However, non-
wave solutions emerged from theuniformsolutionwhen inhi-
bition was ramped upward from zero. These solutions corre-
spond to spatially periodic deviations of phase that we call
ripple states. Numerical continuation showed that stable rip-
ple states emerge fromsynchronyvia a supercritical pitchfork
bifurcation. The normal form of this bifurcation was derived
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analytically, and its predictions compared against the numer-
ical results. Ripple states were also found to bifurcate from
wave solutions, but these were locally unstable. Simulation
also confirmed the existence of hysteresis and ripple states in
two spatial dimensions. Our findings show that spatial syn-
chronization patterns can remain structurally stable despite
substantial changes in network connectivity.
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1 Introduction

Dynamic changes in the effective connectivity of neu-
ronal networks are thought to underlie moment-by-moment
changes in brain function (e.g., Friston 1994, 2011). Such
changes can arise rapidly in fixed anatomical networks by
dynamic modulation of the synaptic gains (Tononi et al.
1994; Sporns et al. 2000). How those changes interact with
ongoing neural activity remains an active research question
(see Jirsa and McIntosh 2007). The present study explores
the effect of dynamic changes in lateral connectivity on the
spatial synchronization of neural oscillations. Specifically,
we use numerical simulation and linear stability analysis to
investigate the formation and dissolution of spatial waves
of synchronization among laterally connected neural oscil-
lators when the gain of lateral inhibition is dynamically
modulated.

Spatial waves of synchronized neural activity are ubiqui-
tous in the brain (see Wu et al. 2008, for a review). Trav-
eling waves have been observed in the local field poten-
tial of olfactory bulb (Delaney et al. 1994), motor cortex
(Rubino et al. 2006), visual cortex (Huang et al. 2004;
Benucci et al. 2007) and hippocampus (Lubenov and Sia-
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pas 2009). Stimulus-induced changes in the amplitude and
traveling distance ofwaves in visual cortex have been directly
attributed to dynamic modulation of the lateral connec-
tions (Nauhaus et al. 2009). In olfactory bulb, stimulus-
induced transitions from spontaneous traveling waves to uni-
form synchrony have been attributed to modulation of the
inhibitory connections in particular (Ermentrout et al. 1998;
Ermentrout and Kleinfeld 2001; Kazanci and Ermentrout
2007).

FollowingErmentrout andKleinfeld (2001), wemodel the
oscillatory neural dynamics as a spatial network of weakly
coupled oscillators where the phase of each oscillator repre-
sents the timing of the local neural activity. In such models,
spatial synchronization patterns are governed by the strength
and topology of the lateral coupling aswell as the shape of the
oscillator’s phase interaction function. The latter describes
the extent to which the phase of the oscillator is advanced
or retarded according to the timing of a perturbation. Phase
interaction functions that only ever advance the oscillator are
classified as Type I whereas those capable of both advancing
and retarding the oscillator are classified as Type II. Oscil-
lators with Type II phase interaction functions are gener-
ally better at synchronizing than those with Type I (Hansel
et al. 1995; Ermentrout 1996, 1998; Rinzel and Ermentrout
1998).

Manycortical neurons haveType II phase interaction func-
tionswhich can bemodeled using theKuramoto (1984) oscil-
lator. It represents a minimal Type II neural oscillator in
which the phase interaction is reduced to a simple sinusoidal
term. The lack of even components in the sinusoidal phase
interaction does preclude some exotic types of synchroniza-
tion patterns, such as chimeras (Abrams and Strogatz 2004;
Laing 2009). Nonetheless, spatially coupledKuramoto oscil-
lators adequately serve as a minimal neurobiological model
of synchronization in cortex (Breakspear et al. 2010; Heit-
mann et al. 2012, 2013).

Following Amari (1977), we model the lateral spread of
excitatory and inhibitory connection densities by the Mexi-
can hat function which defines the combined densities as a
difference of Gaussians. We fix the spatial spread of inhi-
bition at twice that of excitation, unless noted otherwise,
and manipulate the strength of the inhibitory density to
mimic dynamic modulation of the inhibitory synaptic gains.
The stability of wave solutions in this network is then for-
mally analyzed using linear perturbation methods (Ermen-
trout 1985; Kazanci and Ermentrout 2007). Wiley et al.
(2006) use a similar method to analyze waves in a ring of
oscillators with short-range uniform excitatory connectivity.
Their model has since been extended to include transmis-
sion delays (Sethia et al. 2011), uniform inhibitory connec-
tivity (Girnyk et al. 2012) and heterogeneous oscillation fre-
quencies (Omel’chenko et al. 2014). The latter study derives
an analytic expression for the stability of the wave solu-

tion in terms of the local mean field continuum. Kazanci
and Ermentrout (2007) analyzed the stability of the wave
solution when short-range excitation was augmented with
long-range inhibitory connections. Heitmann et al. (2012)
extended analysis to consider inhibitory surround connectiv-
ity where the strength of inhibition could be varied dynami-
cally. In that study, the spatial coupling was modeled on the
fourth derivative of the Gaussian. Here we consider Mexican
hat connectivity, which is more biologically principled, and
extend the analysis from the case of the infinite ring to that
of the finite ring.

Lastly, we analyze a non-wave solution—which we call
ripple—that emerges from the uniformly synchronous state
when it loses stability. Wiley et al. (2006) had correctly
predicted the existence of such a solution but had never
observed it. Girnyk et al. (2012) and Omel’chenko et al.
(2014) observed non-wave solutions which they call multi-
twisted states, but those solutions did not emerge from syn-
chrony. Our findings suggest that multi-twisted states and
ripple states belong to the same branch of solutions.

2 Model

Neural activity was modeled as a one-dimensional ring of
non-locally coupled Kuramoto (1984) oscillators

∂θx

∂t
= ω −

∫ L

0
G(|x − x ′|) sin (θx − θx ′) dx ′ (1)

where ω is the intrinsic oscillation frequency and θx is the
phase of oscillatory neural activity at spatial position x . The
ring has a finite spatial length L and periodic boundary con-
ditions by definition. The distancemetric |x−x ′|was defined
as the distance along the circumference of the ring. The spa-
tial coupling kernel,G(|x−x ′|), was defined by theMexican
hat function,

G(x) = exp
(
−x2/(2σ 2

e )
)

− h exp
(
−x2/(2σ 2

i )
)

, (2)

where σe and σi represented the spread of the excitatory and
inhibitory connection densities, respectively. Parameter h ∈
[0, 1] controls the contribution of the inhibitory coupling.
It was systematically manipulated, while the contribution of
the excitatory coupling remained fixed at unity.

3 Results

Three structurally distinct synchronization patterns were
observed depending upon the strength of lateral inhibition
and the initial choice of oscillator phases: Spatially uniform
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solutions (Fig. 1a) arose from random initial phaseswhen lat-
eral inhibition was absent or very weak (h ≈ 0). These types
of solutions have a winding number of zero and are com-
monly referred to as synchrony because all oscillators have
identical phases. Wave solutions (Fig. 1b) arose from ran-
dom initial conditions with moderate–high levels of lateral
inhibition (h � 0.5). Waves have a nonzero winding num-
ber that is commensurate with the length of the ring. Lastly,
ripple solutions (Fig. 1c) arose from near-uniform initial con-
ditions when lateral inhibition was weak (h = 0.2). Ripples
have a net winding of zero and resemble spatially periodic
deviations of phase from the uniform solution.

Ripples have previously been reported in two-dimensional
arrays of Kuramoto oscillators with lateral inhibitory cou-
pling based on the fourth derivative of the Gaussian (Heit-
mann et al. 2012). Here we confirm the existence of ripple
solutions in one dimension with conventional Mexican hat
coupling. We will later present a formal stability analysis of
the normal form approximation of ripples near the onset of
bifurcation. First we formally analyze the stability of waves
and uniform synchrony in the one-dimensional ring. These
have the known analytic solution,

θ(x, t) = ωt + mx, (3)

where ω is the intrinsic oscillation frequency (Hz) and m
is the wavenumber (rads/distance) of the spatial periodicity.
Uniform synchrony corresponds tom = 0. Spatially periodic
solutions are free to select any wavenumber m in the case of
the infinite ring but are restricted to wavelengths that are
commensurate with ring length L in the case of the finite
ring.

3.1 Stability analysis of waves on an infinite ring

The stability of the wave solution (3) was formally analyzed
by considering the growth or decay of spatial perturbations,
ψ(x, t), applied to the wave. Namely,

θ(x, t) = ωt + mx + ψ(x, t), (4)

where ψ(x, t) is some spatially periodic function (Ermen-
trout 1985). See alsoWiley et al. (2006), Kazanci and Ermen-
trout (2007), Sethia et al. (2011), Heitmann et al. (2012),
Omel’chenko et al. (2014). Substituting (4) into (1) yields
the growth rate of the perturbation,

∂ψx

∂t
= −

∫ +∞

−∞
G(|x−x ′|)H (

mx − mx ′ + ψx − ψx ′
)
dx ′

(5)

where H(θ) = sin(θ) is the phase interaction function for the
Kuramoto model, and the (x, t) parameter notation has been

Fig. 1 Spatially uniform, wave and ripple solutions that arise on the
ring under differing levels of lateral inhibition. The longitudinal axis of
the cylinder represents spatial distance (x), and the polar angle repre-
sents oscillator phase (θx ). Boxes illustrate the corresponding Mexican
hat coupling function. aUniform synchrony occurs when lateral inhibi-
tion is absent (h = 0). bWave solutions occur when lateral inhibition is
moderate (h = 0.5). c Ripple solutions occur when lateral inhibition is
weak (h = 0.2), and initial conditions are close to synchrony. Ripples
are structurally distinct from waves. The relative spread of inhibition
and excitation (σi = 2σe) is identical in all panels

omitted for brevity. For any even coupling function, G(x),
and any odd phase interaction function, H(θ), the lineariza-
tion of (5) has solution,

ψx = einxeλn t , (6)

where n is the spatial wavenumber of the perturbation and
λn is its eigenvalue. Furthermore, those eigenvalues λn are
readily computed as,

λn =
∫ +∞

−∞
G(x) H ′(mx) e−inx dx

−
∫

G(x) H ′(mx) e−i0x dx

= FT
[
J (x)

]
n − FT

[
J (x)

]
0

(7)
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where J (x) = G(x)H ′(mx) and FT is the Fourier transform.
The real part of λn is the growth rate of the perturbation
with wavenumber n. Any arbitrary spatial perturbation can
be represented as a linear combination of such perturbations
with a range of wavenumbers. For the perturbed wave (4) to
be stable, the growth rate of all such periodic perturbations
must be negative. In other words, the real part of λn must be
negative for all n. The set of all λn for a given wavenumber
m is called a dispersion curve.

3.2 Exact Fourier integral

In the case of Kuramoto oscillators, the Fourier integral

FT
[
J (x)

]
n =

∫ +∞

−∞
G(x) H ′(mx) e−inx dx (8)

can be solved exactly by substituting H ′(mx) = cos(mx)
and expanding the e−inx term with Euler’s formula. This
yields,

FT
[
J (x)

]
n =

∫ +∞

−∞
G(x) cos(mx) cos(nx) dx

− i
∫ +∞

−∞
G(x) cos(mx) sin(nx) dx

(9)

where
∫
G(x) cos(mx) sin(nx) dx = 0 because it is the inte-

gral of an odd function. Applying the trigonometric identity,

2 cos(mx) cos(nx) = cos(mx + nx) + cos(mx − nx)

to the remaining integral term and substituting the Mexican
hat function (2) for G(x) allows (9) to be written as,

FT
[
J (x)

]
n =

∫ +∞

−∞
exp

(−x2

2σ 2
e

)
cos(mx + nx) dx

+
∫ +∞

−∞
exp

(−x2

2σ 2
e

)
cos(mx − nx) dx

− h
∫ +∞

−∞
exp

(
−x2

2σ 2
i

)
cos(mx + nx) dx

− h
∫ +∞

−∞
exp

(
−x2

2σ 2
i

)
cos(mx − nx) dx .

(10)

Substituting the known integral,

∫ +∞

−∞
exp

(−x2

2σ 2

)
cos(2πkx) dx=√

2π σ exp
(
−2π2k2σ 2

)
,

into (10) gives the exact solution,

FT
[
J (x)

]
n = √

π/2 σe exp
(
− 1

2 (m + n)2 σ 2
e

)

+ √
π/2 σe exp

(
− 1

2 (m − n)2 σ 2
e

)

− h
√

π/2 σi exp
(
− 1

2 (m + n)2 σ 2
i

)

− h
√

π/2 σi exp
(
− 1

2 (m − n)2 σ 2
i

)
,

(11)

from whence the growth rates λn of each perturbation mode
(wavenumber n) to a given wave solution (wavenumber m)

are obtained exactly (Eq. 7).

3.3 Dispersion relations

Dispersion curves (λn) for selected wave solutions, m ∈
[0, 0.2, 0.3, 0.4], under moderate inhibition (h = 0.5) are
presented in Fig. 2a. Those parts of the dispersion curve
where λn > 0 correspond to unstable spatial modes of
the wave solution. In this case, wave solutions m = 0
(the uniform solution) and m = 0.3 are both unstable
because they have at least some spatial modes n where
λn > 0.

Wave solutions m = 0.1 and m = 0.2 appear to be stable
because λn < 0 for n ∈ [0, 0.4]. However, wemust ascertain
that λn < 0 for all n to be strict. From (7), we require that

FT
[
J (x)

]
n < FT

[
J (x)

]
0 (12)

for all n. For large n, we may neglect them terms in (11) and
write the left-hand side of (12) as,

FT
[
J (x)

]
n ≈ √

2π σe exp
(
− 1

2n
2 σ 2

e

)

−h
√
2π σi exp

(
− 1

2n
2 σ 2

i

)
, (13)

and observe that FT
[
J (x)

]
n → 0 as n → ∞. We conclude

that a given wave solution is stable against all large per-
turbation modes provided that the right-hand side of (12),
namely

FT
[
J (x)

]
0 = √

2π σe exp
(
− 1

2m
2 σ 2

e

)

−h
√
2π σi exp

(
− 1

2m
2 σ 2

i

)
, (14)

is greater than zero. For the case of h = 0.5 and σe = 2σi
(Fig. 2a), condition (14) simplifies to

exp
(
− 1

2m
2 σ 2

e

)
< 1
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Fig. 2 Stability of wave solutions on an infinite ring. a Dispersion
curves for selectedwaves (m = 0, 0.1, 0.2, 0.3) for the case ofMexican
hat coupling parameters σe = 1, σi = 2 and h = 0.5. Each dispersion
curve represents the growth rates λn of spatially periodic perturbations
(wavenumber n) applied to the wave (wavenumber m). b Stability map
for all waves (m) at all inhibitory coupling strengths (h)with the lateral
spread of excitation fixed at σe = 1 and the spread of inhibition fixed at
σi = 2. The green shaded region indicates stable wave solutions. The
four small crosses at h = 0.5 correspond to the wavenumbers (m =
0, 0.1, 0.2, 0.3) from panel a. The region bounded by the horizontal
dashed lines corresponds to those wave solutions (0.13 < m < 0.16)
which are stable for all h ∈ [0, 1]. c Same as the previous panel except
here, the lateral spread of inhibition σi is varied while the strength of
inhibition (h = 0.5) is fixed. In this case, the horizontal dashed lines
bound those wave solutions (0.088 < m < 0.16) that are stable for
all σi ∈ [0, 4]. Those waves that are stable at all parameter values are
robust against changes in network connectivity (color figure online)

which is true for all m. Hence, we may be confident that
λn < 0 for all n in the examples of m = 0.1 and m = 0.2.

3.4 Stability maps

Wave stability maps (Fig. 2b, c) were constructed from the
dispersion curves of a range of wave solutions m ∈ [0, 0.4]
withMexican hat coupling parameters in the range h ∈ [0, 1]
and σi ∈ [1, 4], respectively. The spread of excitation was
fixed at σe = 1. These maps reveal the region of parameter
space (shaded green) where Mexican hat coupling supports
stable waves on the infinite ring. The results generalize to
arbitrary values of σe by appropriate scaling of the spatial
variables m, n and σi.

The first map (Fig. 2b) shows the effect of inhibitory
strength, h, when the lateral spread is fixed at σi = 2. The
lateral inhibitory coupling is found to support a band of sta-
ble waves for any given level of inhibition. That band of
stability spans the uniform solution (m = 0) at low levels
of inhibition (h < 0.12). As inhibition increases, the band
shifts monotonically upward into higher wavenumbers. The
bandwidth of stable waves can thus be controlled by mod-
ulating the strength of the lateral inhibition. Nonetheless,
that bandwidth is broad enough that some wave solutions
(0.13 < m < 0.16) remain stable irrespective of the strength
of inhibition. The existence of these persistent wave solu-
tions shows that some synchronization patterns are immune
to changes in network connectivity.

The second map (Fig. 2c) similarly reveals a broad band
of stable wave solutions at all spreads of lateral inhibition
σi ∈ [1, 4] when the strength of inhibition is held fixed at
h = 0.5. In this case, the band of stable solutions does not
shift monotonically with the spread of inhibition, σi. This is
emphasized by the broad span of waves (0.088 < m < 0.16)
that are stable irrespective of the spread of the lateral inhibi-
tion. We conclude that manipulating the spread of inhibition
(relative to excitation) exerts only weak influence over the
emergent wave patterns. In any event, such a manipulation is
biologically implausible. Consequently, we fix σe = 1 and
σi = 2 for the remainder of the study and focus exclusively
on modulating the strength of inhibition, h.

3.5 Stability maps for the finite ring

In the case offinite rings, the spatial periodicity of the solution
must be commensurate with ring length. The same restric-
tion applies to the spatial perturbations. Hence, perturbations
that are not commensurate with ring length must be excluded
from the analysis. These exclusions subtly impact the stabil-
ity of the wave, most notably for small rings.

We extend the stability analysis of the previous section to
consider waves on a finite ring of length L by restricting the
continuous wavenumbers m and n to multiples of the ring
length, m → 2πm̂/L and n → 2π n̂/L , where m̂ and n̂
are integers. This gives the exact solution (11) to the Fourier
integral an explicit dependence on ring length,
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FT
[
J (x)

]
n = √

π/2 σe exp
(
−2π2(m̂ + n̂)2 σ 2

e /L2
)

+ √
π/2 σe exp

(
−2π2(m̂ − n̂)2 σ 2

e /L2
)

− h
√

π/2 σi exp
(
−2π2(m̂ + n̂)2 σ 2

i /L2
)

− h
√

π/2 σi exp
(
−2π2(m̂ − n̂)2 σ 2

i /L2
)

.

(15)

Together, Eqs. (7) and (15) describe the growth of spatial per-
turbations (n̂) to commensurate wavenumbers (m̂) in a finite
ring of Kuramoto oscillators with Mexican hat connectivity.

Figure 3a illustrates how the exclusion of non-
commensurate perturbations bolsters the stability of the uni-
form solution (m = 0) for a finite ring of length L = 5.
The filled circles show the eigenvalues λn of only those per-
turbation modes (n = 0, 0.2, 0.4 cycles/distance) which are
commensurate with the ring (n̂ = 0, 1, 2). The smooth curve
shows the matching dispersion curve for an infinite ring. The
uniformsolution is stable on thefinite ringbecauseλn ≤ 0 for
all of the commensurate perturbation modes. This is despite
the existence of unstable perturbationmodes (0 < n < 0.18)
on the infinite ring. Those unstable modes are not commen-
surate with the L = 5 ring and so do not impact stability.

Small rings are especially prone tofinite length effects. For
example, a ring of length L = 5 only supports stable waves
m = 0 and m = 0.2 (Fig. 3b). The stability limits of those
waves also extend significantly beyond the region predicted
by the infinite ring (green shaded region). This extended sta-
bility is due to the exclusion of non-commensurate perturba-
tion modes that would otherwise cause the wave to be unsta-
ble. Larger rings, on the other hand, support a greater num-
ber of commensurate modes. For example, the ring of length
L = 20 has stable waves at m = 0, 0.05, 0.10, . . . , 0.25
(Fig. 3c). Moreover, the stability boundaries for the finite
ring quickly approach that of the infinite ring as ring length
is increased.

3.6 Hysteresis

The analytic findings of broad bands of stable wave solutions
suggest that individual wave solutions will exhibit hysteresis
when the lateral inhibition is dynamicallymodulated. Specif-
ically, the stability map for the infinite ring (Fig. 2b) predicts
that slowly increasing (decreasing) the strength of inhibition,
h, should cause existing stable solutions to smoothly track
along the lower (upper) boundary of the region of stability.
Reversals in the direction of change will not affect the cur-
rent state until the inhibition has changed sufficiently for that
solution to become unstable.

The prediction for the finite ring (Fig. 3b, c) is similar
except that the waves will abruptly jump between the com-
mensurate wavenumbers in a discrete fashion. Nonetheless,
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Fig. 3 Effects of finite ring length onwave stability. aDispersion curve
for the uniform solution (m = 0) with moderate inhibitory coupling
(h = 0.25). The filled circles indicate the eigenvalues of those pertur-
bation modes (n = 0, 0.2, 0.4) which are commensurate with the ring
(L = 5). Solid line is the matching dispersion curve for the infinite ring.
The wave solution (m = 0) is stable on the finite ring because all of the
commensurate perturbations have eigenvalues λn ≤ 0. The same wave
is unstable on the infinite ring. b Horizontal lines map the stability of
waves (m = 0, 0.2, 0.4) commensurate with a ring of length L = 5.
Green shaded region reproduces the stability map of the infinite ring.
c Same as b except for a ring of length L = 20. The lateral spread of
excitation (σi = 1) and inhibition (σi = 2) is the same in all panels
(color figure online)

hysteresis is still predicted to occur. To test these predic-
tions, we simulated the evolution of wave patterns in a finite
ring (L = 20) while lateral inhibition was slowly ramped
between h = 0 and h = 1. Small Gaussian noise fluctuations
were applied to the oscillator phases after each increment in
h to ensure that unstable solutions were escaped. The ini-
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Fig. 4 Hysteresis in synchronization patterns on a finite ring (L = 20)
when inhibition is slowly ramped up and down. a Heavy black line
shows the evolution of an initial stable wave solution (m = 0.25) as
inhibition is slowly ramped from h = 1 to h = 0 and back to h = 1.
The initial wave steps down from m = 0.25 to m = 0.20 as inhibi-
tion decreases below h = 0.70. It steps down again to m = 0.15 as
inhibition decreases below h = 0.13. The wave then remains stable at
m = 0.15 for all subsequent values of h ∈ [0, 1]. Thin horizontal lines
indicate the theoretical stability for the finite ring. b Exemplar wave
solution m = 0.25 corresponding to label b in the previous panel. c
Evolution of initial uniform synchrony (m = 0) as inhibition is ramped

from h = 0 to h = 1 and back. The uniform solution gives way to spa-
tial ripple as inhibition increases above h = 0.13. The ripple solution
continues to increase in amplitude as inhibition is increased to h = 1.
Stability is maintained, and the ripple returns to synchrony by the same
path when inhibition ramps back down to h = 0. Ripple solutions do
not have unique wavenumbers, so the mean wavenumber m̄ is plotted
instead (Sect. 5). d Exemplar ripple solution corresponding to label d in
the previous panel. The lateral spreads of excitation (σi = 1) and inhi-
bition (σi = 2) are the same in all panels. See Supplementary Movies
S1 and S2 for animated versions of this figure

tial conditions were chosen according to the starting level of
inhibition.

As predicted, wave solutions on the finite ring dis-
cretely stepped down through the commensurate wavenum-
bers (m = 0.25, 0.20, 0.15) when inhibition was slowly
ramped down from h = 1 to h = 0 (Fig. 4a, b). Upon reach-
ing h = 0, the m = 0.15 wave maintained its stability even
after inhibition had returned to h = 1. The final synchroniza-
tion pattern remained stable even after substantial changes in
lateral inhibition. This despite the injection of noise at each
increment in h (see Sect. 5). See Supplementary Movie S1
for an animated version of Fig. 4a,b.

However, ramping inhibition in the reverse direction did
not cause waves to discretely step upward as predicted.
Instead, a low-amplitude ripple solution emerged when the
uniform solution lost stability at h = 0.13. The ripple
maintained its stability and grew in amplitude as inhibition

increased to h = 1 (Fig. 4c, d). The ripple returned to syn-
chrony by the same path when inhibition was subsequently
ramped back to h = 0. See Supplementary Movie S2.

The failure of the second simulation (Fig. 4c) to follow the
predicted path is due to the existence of solutions other than
waves. The analysis of wave stability correctly predicts the
loss of stability of the uniform solution at h = 0.13.However,
that analysis provides no information on the stability or exis-
tence of non-wave solutions, such as ripple. In the absence of
an analytical expression for ripple, we must revert to numer-
ical continuation techniques to map the bifurcation structure
of this system.

3.7 Numerical continuation

Bifurcationmaps of thefinite ring (L = 20)were constructed
numerically by continuing both stable and unstable solutions
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Fig. 5 Bifurcation map for a finite ring of length L = 20 with spread
of lateral inhibition fixed at σi = 2. a Numerical continuation of wave
solutions m = 0, 0.05, . . . , 0.35 (horizontal black lines) superimposed
on the stability map of the infinite ring (shaded green). Solid lines indi-
cate stable branches. Dashed lines indicate unstable branches. Branch

points (BP) indicate bifurcations of the solution curves. b Branch of
stable ripple solutions emerging from the uniform solution (m = 0)
at h = 0.13. Labels c–f mark the exemplar solutions shown in the
remaining panels. cUniform solution at h = 0.05. d–f Exemplar ripple
solutions at h = 0.2, h = 0.4, and h = 0.9, respectively

while allowing the strength of inhibition, h, to vary as a free
parameter (Figs. 5, 6). The commensurate waves of the ring
(m = 0, 0.05, 0.10, . . . , 0.35) served as the initial solutions
for each continuation. Rotational invariance was eliminated
by constraining the oscillator phases to solutions with odd
symmetry about x = 0 (see Sect. 5).

The stability of wave solutions computed by numerical
continuation (Fig. 5a) agrees with the analytic results for
the finite ring (Sect. 3.5, Fig. 3c). The wave loses stability
via pitchfork bifurcation which gives rise to a conjugate pair
of ripple solutions as inhibition is increased. The conjugate
ripple solutions are equivalent after reflection about the origin
(x = 0); hence, we only need follow one of each pair.

Stable ripple solutions were found to bifurcate from the
uniform solution (m = 0) via a supercritical pitchfork bifur-
cation when inhibition exceeds the critical value h = 0.13
(Fig. 5b). This branch of ripple solutions corresponds to that
observed in the hysteresis simulation (Sect. 3.6, Fig. 4c).
Selected solutions from this branch (Fig. 5c–f) illustrate the
monotonic growth in amplitude (peak phase deviation) of
the ripple as inhibition increases beyond the critical value.
Notice that these ripple solutions have a net winding of zero.

Ripple solutions with a net winding of 1 were found to
bifurcate from the first commensurate wave (m = 0.05) via a
subcritical pitchfork bifurcation at the critical value h = 0.22
(Fig. 6). Close inspection reveals that the ripple branch is
unstable at it emerges from the wave (Fig. 6a, inset). Sta-
bility is onset at the first limit point (LP) where the branch

folds backward (m = 0.061, h = 0.19) and subsequently
lost through another fold bifurcation indicated by the second
LP (m = 0.20, h = 0.96). In theory, this branch of sta-
ble solutions is not accessible by modulation of the lateral
inhibitory coupling because of the lack of a stable path from
waves. Nonetheless, the basins of attraction are sufficiently
close that stable ripple-on-wave solutions can be achieved
from stable waves in practice.

In contrast, ripple solutions bifurcating from the other
commensurate waves (m = 0.10, 0.20, 0.25)were never sta-
ble for this ring length (Fig. 6b). These unstable branches did
not warrant further consideration.

3.8 Normal form of the bifurcation to ripple

The use of sinusoidal coupling (or, in fact, any odd peri-
odic function for the coupling) makes it easy to determine
the direction of bifurcation of ripple since there will be no
quadratic terms in the Taylor expansion of sin(θ) about the
synchronous solution.We can subtract off the rotationmotion
andwrite sin(θ) in a truncatedTaylor series (up to third order)
to convert the existence of the ripple solution to Eq. (1) to a
solution to the integral equation:

0 =
∫ L

0
G

(|x − x ′|, h)
[
(θ(x ′) − θ(x)) − 1

6
(θ(x ′) − θ(x))3

]
dx ′ (16)
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Fig. 6 Emergence of ripple from waves on the finite ring (L = 20).
a Bifurcation plot showing the emergence of ripple solutions from the
first commensurate wave (m = 0.05) at h = 0.21. This branch is ini-
tially unstable, as shown in the inset. Stability emerges at the first LP
(h = 0.19,m = 0.061) and is lost at the second LP (h = 0.96,m =
0.20). The branch beyond the second LP is unstable (not shown). Labels

c–f correspond to the exemplar solutions shown in the lower pan-
els. b Bifurcation of ripple solutions from other commensurate waves
(m = 0.10, 0.20, 0.25). All of these ripple branches are unstable. c
The first commensurate wave solution (m = 0.05) at h = 0.05. d–f
Exemplar ripple solutions on the branch emerging from the first com-
mensurate wave

where we have specifically included the dependence of the
weight function, G on the inhibition parameter, h. If we
ignore the cubic terms, then this equation has a nontrivial
solution (θ(x) not a constant) if and only if h = h0 where h0
is the point at which the synchronous solution loses stability
at a zero eigenvalue (cf. Figs. 3b, c, 5b). Figure 5d and the lin-
ear stability analysis show that the spatial mode that emerges
at h = h0 is a single sine mode that has period L . The model
is on a ring so there will be arbitrary spatial translation, thus,
as in the numerical diagrams, we will restrict our analysis
to odd periodic functions (this is unnecessary, but allows us
to easily directly compare the analysis to the numerics). We
proceed as follows. We write

h = h0 + ε2h2 (17)

θ(x) = εr sin(2πx/L) + ε3v(x). (18)

We skip order ε terms in h and order ε2 terms in θ since the
nonlinearity contains no even terms. The unknown function
v(x)must be anoddperiodic function.At h0, the linear part of
Eq. (16) has a one-dimensional nullspace (in the space of odd
periodic functions) and is self-adjoint, so that the nullspace
of the adjoint is the same; both are spanned by sin(2πx/L).

We write

G(x, h) = G(x, h0) + (h − h0)G1(x) + O(h − h0)
2

where, for our choice of G (Eq. 2),

G1(x) = − exp
(
−x2/

(
2σ 2

i

))
.

Plugging the expansion for θ(x) into (16) and looking at the
order ε3 terms, we see that we are left with

−
∫ L

0
G(|x − x ′|, h0)[v(x ′) − v(x)] dx ′

= h2r
∫ L

0
G1(|x − x ′|)[sin(2πx ′/L) − sin(2πx/L)] dx ′

+ − r3

3

∫ L

0
G(|x−x ′|, h0)[sin(2πx ′/L)− sin(2πx/L)]3 dx ′.

The function v(x) is unknown, and the convolution equation
has a nontrivial nullspace so that the right-hand side must be
in the range of the integral operator for there to be a solution
v(x), whence we apply the Fredholm alternative theorem to
the right-hand side; namely, we multiply it by sin 2πx/L ,
integrate from 0 to L , and set the result to zero. Using a
symbolic algebra program such as Maple or Reduce makes
this quite simple, and we obtain the bifurcation equations:

0 = r [h2α + βr2] (19)

where α, β are the results of the integration. For example,
using our parameters, σe = 1, σi = 2, we obtain

α = 2
√

π
√
2

(
−1 + e8

π2

L2

)
e−8 π2

L2

The expression forβ is considerablymore complicated sowe
do notwrite it down explicitly here.Noting that the amplitude
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of the solutions is A := εr and using the fact that h − h0 =
ε2h1, we see from (19), that

A = q
√
h − h0 (20)

where q = √−α/β. The parameter q depends on L , σe, σi
and describes how rapidly the magnitude grows with devia-
tion from the critical value of h. Figure 7a shows the predicted
amplitude of the solution for L = 20 alongwith the truemag-
nitude. Panels b and c show the numerical solutions (gray)
compared to the sinusoidal solutions (black) predicted from
the analysis. Even for solutions with quite a large amplitude
(close toπ ), the theorymatcheswell. If q2 < 0, thenwemust
have h < h0 and the bifurcation is subcritical and unstable.
For q2 > 0, the bifurcation is supercritical and implies that
small stable ripple solutions will bifurcate from the synchro-
nous state. The function q = q(L) is plotted in Fig. 7d and
for all L > 0, is positive for σe = 1, σi = 2.

In sum, this analysis predicts that for all ring sizes, the
bifurcation will be supercritical, and ripple solutions are sta-
ble. Furthermore, the rate of growth as a function of the ring
size is minimized for rings about length 5. Numerical results
for rings of size 5, 10 and 20 confirm this.

3.9 Two spatial dimensions

To test the generality of our findings,we repeated our hystere-
sis simulation (Sect. 3.6) in two spatial dimensions using a
square domain of side length L = 20,with periodic boundary
conditions in both directions. The toruswas spatially coupled
using an isotropicMexican hat function (Eq. 2 with x ∈ R2).
As before, the strength of the lateral inhibition was slowly
ramped up and down between h = 0 and h = 1. The torus
was initialized with either a linear spatial wave solution or
uniform synchrony depending upon whether initial inhibi-
tion was strong (h = 1) or absent (h = 0). The presence
of a given wavenumber (m) in the two-dimensional solu-
tion was characterized by spatially filtering the pattern with
the appropriate planar wave grating and averaging the result
across all possible wave orientations. The resulting metric is
the spectral power of wavenumber m irrespective of wave-
front orientation. The average wavenumber m̄ in the spec-
trum, weighted by the magnitude of the spectral response,
equates to the mean spatial phase gradient of the pattern.

For the case of strong initial inhibition (Fig. 8), the ini-
tial wave pattern (Fig. 8a; m̄ = 0.28) maintained stability
until inhibition dropped below h = 0.79. The subsequent
commensurate wave (Fig. 8b; m̄ = 0.21) emerged and main-
tained stability until inhibition dropped below h = 0.07. The
next commensurate wave (Fig. 8d; m̄ = 0.14) remained sta-
ble thereafter, even when inhibition was abolished altogether
(h = 0). That wave solution persisted during the return of
inhibition until inhibition reached h = 0.25. Spatial rippling
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Fig. 7 Comparison of the numerical continuationwith the analytic cal-
culation for the ripple. a Comparison of the amplitude of the numerical
solution with the normal form approximation (Eq. 20) for a ring of
length L = 20. b The shape of the ripple obtained numerically (gray)
along with the normal form approximation (black) for the case of weak
inhibition (h = 0.2). c Same as panel b but in this case for medium
inhibition (h = 0.4). d Dependence of the magnitude parameter q on
the ring length L

(Fig. 8g, f) smoothly emerged out of the m̄ = 0.14 wave as
inhibition increased from h = 0.25 to h = 0.79. Finally,
the spatial ripple lost stability when inhibition exceeded
h = 0.79. The ripple abruptly gave way to the pattern shown
in Fig. 8e (m̄ = 0.21).

The sequential stepping through wavenumbers is clearly
seen in the spectral signature of the spatial patterns (Fig. 8i).
The spectrum shows the spatial wavenumbers present in the
pattern irrespective of wavefront orientation (Sect. 5). While
single wavenumbers are sequentially recruited when inhibi-
tion ramps down, multiple wavenumbers are simultaneously
recruited when inhibition returns. These wavenumbers com-
bine linearly to form spatial ripples. The smooth emergence
of ripple is revealed by the mean wavenumber of the patterns
(Fig. 8j). The sequential stepping down of the wavenumber
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Fig. 8 Hysteresis in two-dimensional synchronization patterns on a
finite (20 × 20) torus continuum. a–h Tracks the evolution of spatial
waves when inhibition is gradually ramped from h = 1 to h = 0 and
back to h = 1 (clockwise). Each panel shows the spatial pattern of syn-
chronization where gray scale indicates oscillator phase, θx ∈ [0, 2π ].
The waves step through a discrete sequence of spatial frequencies as
inhibition is ramped down (a–d). Spatial rippling emerges smoothly
upon the return of inhibition (h–e). i Spectral decomposition of the
spatial patterns during the ramping procedure. Color indicates spectral

power of the wavenumber irrespective of wave orientation. Blue is low,
and red is high. Labels a–h mark the positions of the corresponding
figure panels. The horizontal dashed line indicates the lower Nyquist
limit of the spectral analysis. The spectrum highlights those wavenum-
bers that are recruited by the pattern irrespective of wavefront orienta-
tion. jWeighted average wavenumber present in the spectral signature.
It represents the mean spatial phase gradient of the observed pattern.
Compare with Fig. 4a (color figure online)

in the two-dimensional ring is consistent with that of the one-
dimensional ring (compare Fig. 8j with Fig. 4). There is no
counterpart to spatial ripple in one dimension.

For the case of zero initial inhibition (Fig. 9), the two-
dimensional wave patterns followed a similar course to that
of the ripple patterns observed in one dimension. Namely,
the synchronous solution (Fig. 9a) gives way to a small-
amplitude ripple pattern with spatial frequency that increases
smoothly as inhibition is ramped from h = 0.07 to h = 0.60
(Fig. 9b–d). These smoothly changing patterns tended to
revert abruptly to waves when inhibition exceeded h ≈ 0.65.
We therefore restricted our range ofmanipulation to 0 ≤ h ≤
0.5. In doing so, we demonstrate that these patterns return
to synchrony (Fig. 9e–h) by the same route as which they
arrived (Fig. 9a–d). However, the return is not perfect. The

patterns in panels f and g exhibit well-defined pinwheels that
are absent in their counterparts (Fig. 9b, c). Nonetheless, the
gross topology of the solution is retained. The spectral sig-
nature (Fig. 9i) highlights the smooth rise and fall of the
wavenumbers that are recruited. Even though only commen-
surate wavenumbers are selected, they combine in ways to
yield smooth changes in the mean wavenumber (Fig. 9j).
This behavior is consistent with the emergence of ripple from
synchrony in the one-dimensional ring (compare Fig. 9j with
Fig. 4c).

In both cases just described, the evolution of the two-
dimensional pattern is reminiscent of that observed in the
one-dimensional ring but with qualitative differences due to
the additional degree of spatial freedom. For example, if we
bisect Fig. 9d through the two localized extrema in that pat-
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Fig. 9 Two-dimensional ripple solutions emerge from the uniform
solution. a–h Evolution of spatial patterns when inhibition is ramped up
and then down (clockwise).Color scales are the same as Fig. 8. Uniform
synchrony (a) loses stability at h = 0.07. A low-frequency spatial rip-
ple pattern emerges which increases in spatial frequency as inhibition
increases (b–d). The pattern retreats by a similar path when inhibition

recedes (h–e). iSpectral decomposition of the spatial patterns during the
ramping procedure. Solid white line is the spectrally weighted average
wavenumber. j Weighted average wavenumber redrawn versus inhibi-
tion. The advancing and retreating paths are close but not identical.
Compare with Fig. 4c (color figure online)

tern, then we obtain a one-dimensional cross section which
resembles a ripple solution of the ring (Fig. 5f). Similarly
in Fig. 8, spatial ripples (Fig. 8g) emerge from planar waves
(Fig. 8g) by the growth of spatial deviations to the wavefront.
If we bisect that pattern along a line parallel to the original
wavefronts, then we observe a one-dimensional cross section
that likewise resembles a ripple solution of the ring. Intu-
itively, these two-dimensional patterns may be interpreted as
contiguous sets of one-dimensional ripple solutions embed-
ded in space.

4 Discussion

Spatial neural network models typically approximate
inhibitory surround coupling with the Mexican hat func-
tion because it assumes little more than Gaussian spread-
ing of excitatory and inhibitory connection densities. In

sinusoidally phase-coupled oscillator networks, our analy-
sis shows that Mexican hat connectivity supports a broad
range of spatially synchronized wave solutions provided that
the spread of inhibition exceeds the spread of excitation. The
range of stable wavenumbers depends upon the strength of
the inhibitory surround. Hence, a specific range ofwave solu-
tions can be selected by an appropriate choice of inhibitory
strength. Likewise, transitions between neighboring wave
solutions can be achieved by dynamicmanipulation of inhibi-
tion. However, those transitions exhibit substantial hysteresis
due to the coexistence of multiple stable wavenumbers at any
given level of inhibition. In some cases, a wavenumber is sta-
ble at all levels of inhibition and thus cannot be escaped by
manipulation of inhibition alone.

By analyzing the linear stability of the wave solution, we
obtained exact solutions to the dispersion relation (5) describ-
ing the growth of spatial perturbations to waves in both the
infinite ring (11) and the finite ring (15). Stability maps for a
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range of wave solutions were obtained numerically by eval-
uating the growth of a range of perturbations to each wave
solution. The broad band of multi-stability is most evident in
the case of the infinite ring where coexisting wave solutions
occupy a continuum ofwavenumbers (Fig. 2).Multi-stability
is likewise observed in the case of the finite ring where solu-
tions are restricted to wavenumbers that are commensurate
with ring length (Fig. 3). At very small ring lengths (e.g.,
L = 5), the stability of each wave extends beyond the region
predicted by the infinite ring. This is due to the exclusion
of non-commensurate perturbation modes that would other-
wise render thewave unstable. This stabilizing effect of small
ring length quickly diminishes with increasing ring length
whereby fewer perturbation modes are excluded. Formally,
it is possible to find a ring length L such that a commen-
surate wave in a finite ring is arbitrarily close to the criti-
cal wavenumber of the infinite ring (see Fife 1978; Ermen-
trout 1981). Hence, for large rings, the stable wavenumbers
approach those of the infinite ring.

Irrespective of ring length, the band of stable wavenum-
bers in the stability map shifts monotonically higher with
inhibition. Numerical simulation confirmed the predicted
stepping down through commensurate stable wavenumbers
of the finite ring as inhibition was gradually decreased
from its maximum. However, the predicted stepping up to
higher commensurate wavenumbers was not observed when
inhibition was gradually increased from zero. Instead, the
wave solution—notably uniform synchrony—gave way to
the non-wave solution that we call ripple. Such solutions
have previously been reported in two-dimensional models
with inhibitory surround coupling based on the fourth deriv-
ative of the Gaussian (Heitmann et al. 2012). The present
findings confirm the existence of ripple solutions with Mex-
ican hat coupling in both one and two dimensions.

Wiley et al. (2006) correctly predicted the existence of
ripple-like solutions even though they never observed them.
They reasoned that such solutions, which they call non-
uniform twisted states, were the only conceivable way that
the uniform state could lose stability. Using numerical con-
tinuation, we observed stable ripple solutions emerge from
the uniform state via a supercritical pitchfork bifurcation.
The normal form calculation of this bifurcation provides a
fairly good approximation to the numerical continuation. In
particular, it showed that the dependence of the amplitude
on the strength of the lateral inhibition strongly depends on
the ring size. Intuitively, larger rings support more exten-
sive local winding of the ripple solution even though the net
winding is always zero.

Similar solutions—calledmulti-twisted states—havebeen
reported in rings of non-locally coupled oscillators with uni-
form inhibitory coupling (Girnyk et al. 2012) as well as
uniform inhibitory coupling combined with heterogeneous
oscillator frequencies (Omel’chenko et al. 2014). In those

cases, the solutions were observed far from the uniform state.
Our analysis suggests that non-uniform twisted states (Wiley
et al. 2006) and multi-twisted states (Girnyk et al. 2012;
Omel’chenko et al. 2014) are extremes of the same branch
of solution that we call ripple.

We also observed ripple-like solutions emerging from
wave solutions as they lost stability. These ripple solutions
inherit the winding number of the wave from which they
bifurcate. In all cases observed, the ripple emerged from
the wave via a subcritical pitchfork bifurcation and was
locally unstable. The branch that bifurcated from the first
commensurate wave (m̂ = 1) quickly returned to stability
through a subsequent fold bifurcation; hence, stable solu-
tions on that branch could be observed in practice. However,
no stable ripple solutionswere observed emerging from other
wavenumbers.

In two spatial dimensions, stable ripple readily emerges
from both the uniform state and the wave state. Unlike wave
solutions, ripple solutions lack hysteresis and exhibit smooth
changes in spatial frequency in response to dynamic changes
in lateral inhibition. Ripple patterns therefore have the poten-
tial to encode continuous changes in neural state variables
that wave patterns cannot. Further research is required to
investigate the properties of ripple solutions in two dimen-
sions.

Throughout this paper,we used the simplest possible inter-
action function for the oscillators, namely sin(θ), following
Kuramoto (1984). In general, the interaction function can
be any periodic function. The existence of waves and syn-
chrony still holds, but the stability calculation is more diffi-
cult. The loss of stability for the synchronous solution will
still be via zero eigenvalue, but the addition of even terms
into the interaction function makes the calculations much
more tedious with little qualitative difference. Thus, while
we have the simplest possible interaction function, results
will not qualitatively change. In general, equations of the
form (1) arise frommore general oscillatory neural networks
when the interactions between neurons are small (“weak cou-
pling” ansatz), so we expect to see the same types of dynam-
ics in much more general systems of spatially coupled neural
oscillators.

5 Methods

For computational efficiency, Eq. (1) was reformulated as

∂θx

∂t
= ω + cos(θx )

∫ L

0
G(|x − x ′|) sin(θx ′) dx ′

− sin(θx )
∫ L

0
G(|x − x ′|) cos(θx ′) dx ′ (21)
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by applying the trigonometric identity sin(u − v) =
sin u cos v − cos u sin v. Equation (21) was then numerically
integrated in the form

dθ

dt
= ω + cos(θ)

[
G ⊗ sin(θ)

]
− sin(θ)

[
G ⊗ cos(θ)

]
(22)

using a variable time-step Runge–Kutta method where ⊗
denotes spatial convolution with periodic boundary condi-
tions. Eq. (22) applies to both one-dimensional (x ∈ R1)

and two-dimensional (x ∈ R2) networks. For the one-
dimensional network: θ and ω are both (m × 1) vectors and
G is a (p×1) vector, wherem is the number of sample points
on the ring and p is the number of sample points on the cou-
pling kernel. For the two-dimensional network: θ and ω are
both (m × n) matrices, and G is a (p × q) matrix, where m
x n is the number of sample points on the torus and p x q
is the number of sample points on the coupling kernel. The
intrinsic oscillation frequency was set to ω = 0 without loss
of generality by moving onto a co-rotating frame.

5.1 Numerical continuation

Numerical continuation (Sect. 3.7) was done using the
CL_MATCONT software package (Dhooge et al. 2003).
Degenerate solutions due to rotational invariance were elim-
inated by constraining the oscillator phases to solutions with
odd spatial symmetry (θx = −θ−x ). This constraint pinned
the oscillator phase at position x = 0 to θ = 0. The
imposed symmetry also meant that only half of the ring
(0 < x < L/2) needed to be explicitly computed.

5.2 Hysteresis in the one-dimensional model

The hysteresis study (Sect. 3.6) approximated a continuous
ring of length L = 20 spatial units by simulating n = 400
oscillators equally spaced at dx = 0.05 units. Inhibition was
incremented in steps of dh = 0.01. At each step, the dynam-
ics were integrated for t = 100 time units using a variable
time-step Runge–Kutta method. Prior to each step, all oscil-
lator phases θx were perturbed by a small amount ofGaussian
noise, N (0, 2π/100), to permit escape from unstable solu-
tions.Wave solutions were characterized bywavenumber,m,
as defined by Eq. (3).

Ripple solutions do not have a unique wavenumber, so
were instead characterized by the mean wavenumber,

m̄ = 1

dx

1

n

n∑
i=1

∣∣∣θi+1 − θi

∣∣∣, (23)

where dx is the spatial distance between oscillators, n is the
number of oscillators, and θi is the phase of the i th oscillator.

The mean wavenumber m̄ is equivalent to m when the phase
solution is a true wave.

5.3 Hysteresis in the two-dimensional model

The two-dimensional hysteresis study (Sect. 3.9) followed
the same basic procedure as the one-dimensional study
(Sect. 3.6). Here, a continuous torus of 20× 20 spatial units
was approximated by a grid of 200× 200 oscillators equally
spaced at dx = 0.1 units. Spatial coupling was implemented
with the isotropic form of the Mexican hat function (Eq. 2
with x ∈ R2). Boundary conditions were periodic in both
spatial dimensions. Inhibition was incremented in steps of
dh = 0.01. At each step, the dynamics were integrated for
t = 10 time steps. In the first simulation (Fig. 8), inhibi-
tion was manipulated through the full range 0 < h < 1. In
the second simulation (Fig. 9), inhibition was manipulated
through the smaller range 0 < h < 0.6 where ripple was
stable.

5.4 Spectrograms

The spectrograms in Figs. 8 and 9 were computed by sweep-
ing each two-dimensional wave pattern with an isotropic
bandpass filter that progressively filtered spatial wavenum-
bers from m = 0 to m = 0.4 in steps of 0.025. The average
power within each passband served as a measure of wave
power that is independent of wavefront orientation. Prior to
filtering, each pattern was tiled 10 × 10 to reduce the lower
Nyquist frequency to 2

10L = 0.01 where L = 20 is the length
(width) of the torus. The periodic boundary conditions pre-
serve the spatial pattern under tiling. Filteringwas performed
in the Fourier domain using the MATLAB two-dimensional
fast Fourier transform with 2,000 frequency bins per dimen-
sion. Bandpass filtering was implemented using a 10th-order
Butterworth filter with a bandwidth of 0.005. Wavenumbers
below the lower Nyquist frequency were eliminated using a
10th-order Butterworth high-pass filter with frequency cutoff
set to 0.01.
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