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Abstract Walking behavior is modulated by controlling
joint torques in most existing passivity-based bipeds. Con-
trolled Passive Walking with adaptable stiffness exhibits
controllable natural motions and energy efficient gaits. In
this paper, we propose torque–stiffness-controlled dynamic
bipedal walking, which extends the concept of Controlled
Passive Walking by introducing structured control parame-
ters and a bio-inspired control method with central pattern
generators. The proposed walking paradigm is beneficial in
clarifying the respective effects of the external actuation and
the internal natural dynamics. We present a seven-link biped
model to validate the presented walking. Effects of joint
torque and joint stiffness on gait selection, walking perfor-
mance and walking pattern transitions are studied in simu-
lations. The work in this paper develops a new solution of
motion control of bipedal robots with adaptable stiffness and
provides insights of efficient and sophisticated walking gaits
of humans.
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1 Introduction

Stability guaranteed bipedal walking is one of the keys but
also one of the more challenging components of humanoid
robot design. Investigations on bipedal walking can help bet-
ter understand the essentials of complex human gaits and
build efficient bipedal walking prototypes.

Different from the actively controlled walking which
is often found in commercial humanoids, passivity-based
dynamic bipedal walking may not reach equilibrium at every
moment during motion, but can realize stable cyclic loco-
motion. Passive dynamic walking (McGeer 1990) has been
presented as a possible explanation for the efficiency of the
human gait, which showed that a mechanism with two legs
can be constructed so as to descend a gentle slope with
no actuation and no active control. Several follow-up stud-
ies demonstrated these kinds of walking machines work
with reasonable stability over a range of slopes (Collins
et al. 2001; Suzuki et al. 2005) and on level ground with
kinds of actuation added (Collins et al. 2005; Wisse et al.
2007). Recently, studies on passivity-based dynamic walk-
ers with flat feet, which are more similar to humans in mor-
phology, attracted considerable attention (Wisse et al. 2007;
Hobbelen and Wisse 2008a; Wang et al. 2010a,b). Compared
with the actively controlled walking, passivity-based walking
achieves higher efficiency and performs more natural gaits
(Collins et al. 2005). However, passivity-based bipeds often
has limitations in versatility, such as performing various loco-
motion modes and completing different tasks (Vanderborght
et al. 2008).

Natural bipedal walking is different from the passivity-
based walking mentioned above. Humans are able to actively
control walking gaits according to different environments
and tasks, while keeping efficiency, elegance and simplicity
(Perry 1992). Inspired by the natural bipeds, several studies
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made efforts to add a certain amount of active control into
passivity-based walking to obtain a versatile walker with low
energy consumption and controllable walking patterns (Man-
dersloot et al. 2006; Geng et al. 2006; Hobbelen and Wisse
2008a). Most of these studies achieved velocity control by
only adjusting the external energy input, while the intrinsic
characteristics (such as the natural frequency and joint com-
pliance) of the walker maintained invariant.

As manifested by previous studies, stiffness plays an
important role in energy exchange and modulating walking
performance during locomotion of both humans (Kim and
Park 2011; Ishikawa et al. 2005) and passivity-based bipedal
robots (Wang et al. 2010a; Huang et al. 2012). Actuators
with adaptable compliance can exploit the natural dynam-
ics, reduce the energy consumption and extend the versa-
tility (Owaki et al. 2008; Hosoda et al. 2008; Kormushev
et al. 2011; Ugurlu et al. 2012). Different types of compli-
ant actuators were designed and applied in robotics (Ham et
al. 2009), such as the pneumatic artificial muscles (Vander-
borght et al. 2008) and MACCEPA (short for mechanically
adjustable compliance and controllable equilibrium position
actuator) (Ham et al. 2007). However, in most existing studies
on dynamic walking, the stiffness (or compliance) is changed
off-line. The transition of different patterns, velocities and
step lengths through controlling stiffness in real time was
not investigated. Our previous study has demonstrated that
a passivity-based bipedal walker with adaptable compliance
based on the concept of Controlled Passive Walking (Ham
et al. 2007) is able to change the velocity and step length
to a desired natural motion by controlling joint compliance
in both simulated model and the physical robot (Huang et
al. 2013). In this type of walking, the natural dynamics can
be adjusted in real time. Nevertheless, it was a relatively
preliminary validation without a systematic control method.
The respective effects of joint torque and joint stiffness (rep-
resent for external input and internal dynamics, respectively)
on walking performance, speed control and walking pattern
transition were not studied.

The biologically inspired control methods based on cen-
tral pattern generators (CPGs) can modulate the motion per-
formance (e.g., speed and gait type) smoothly with only a
few control parameters (e.g., drive signals) (Ijspeert 2008;
Ijspeert et al. 2007), which is suitable for the control of
dynamic walking with adaptive stiffnesses and controllable
torques. In this paper, we build a human-like passivity-based
dynamic walking model with an upper body, flat feet and
adaptable compliant joints. A CPG model is presented and
applied to controlling the proposed bipedal walker. The CPG-
based control approach reduces the control parameters and
simplifies the control structure with a natural way. The model
has two control parameters for adjusting joint torques and
joint stiffnesses, respectively. Thus, the external actuated
torques and the natural dynamics can be controlled indepen-

dently during walking. We name this type of bipedal walk-
ing as torque–stiffness-controlled dynamic walking, which
expands the concept of controlled passive walking. It is eas-
ier to control the locomotion to the desired natural motion
with specific walking velocity and step length. In the simula-
tions, we validate the effectiveness of the proposed torque–
stiffness-controlled dynamic walking, and study the effects
of joint torques and joint stiffnesses, respectively, on walking
performance, gait selection and pattern transitions.

2 Dynamic bipedal walking model

2.1 Biped model

To study the walking performance of passivity-based dynamic
walking with controllable joint torques and joint compliance,
we proposed a seven-link bipedal walking model, which con-
sists of an upper body, two thighs, two shanks and two flat
feet. Each leg includes a hip joint, a knee joint and an ankle
joint. The proposed bipedal walker travels forward on level
ground. A kinematic coupling has been added at the hip to
keep the upper body midway between the two thighs, which
is similar to former studies (Wisse et al. 2007; Ham et al.
2007). We assume that the friction between the walker and
the ground is sufficient, thus the flat feet do not deform or
slip. All strikes are modeled as instantaneous, fully inelastic
impacts where no slip and no bounce occurs.

Previous studies indicated that the torque–angle relation of
human walking is quite similar to that of a torsional spring
(Weiss et al. 1986a,b; Frigo et al. 1996). Thus, in lots of
passive bipedal walkers, the compliant joints are modeled
as torsional springs (Owaki et al. 2008; Hobbelen and Wisse
2008b; Huang et al. 2012). Different types of compliant actu-
ators were also designed and applied in bipedal robots to
improve the performance (Ham et al. 2007; Hobbelen and
Wisse 2008b; Ham et al. 2009). Actuators with variable stiff-
nesses can exploit the natural dynamics and reduce the energy
consumption (Vanderborght et al. 2009). The control of most
variable stiffness actuators can be considered as controlling
the equivalent equilibrium position and stiffness (Vander-
borght et al. 2013). In this paper, the variable stiffness actua-
tors equipped on each joint are modeled as simple torsional
springs with both adjustable equilibrium positions and the
spring constants. The joint torques are calculated as follows:

T = −k · (θ − ˜θ) − d · θ̇ (1)

where T is the joint torque generated by the spring-like actu-
ators, k is the spring constant, θ is the joint angle, i.e., the
angle between the two sticks connected at the joint, and ˜θ

represents the equilibrium position, where the joint torque
is zero. d is the damping coefficient. In order to alleviate
the oscillatory joint motion, we add a damper to each joint.
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Fig. 1 The seven-link bipedal walking model. The upper body, the legs
and the feet are modeled as rigid sticks without flexible deformation.
The mass of each part is averagely distributed among the corresponding
stick. a The degree of freedom, b the mass distribution and the torsional
springs at the joints

The damping coefficients are set according to the critical
damping. θ̇ is the joint angular velocity. Thus, the control
parameters of the mechanical system are all the equilibrium
positions and spring constants, which determine the torque
and stiffness of each joint. Figure 1 shows the structure and
the related variables of the biped model.

In this study, we employ a simple and general torsional
spring model in order to exploit the essential characteristics
of variable stiffness actuators. Thus, the results of this study
can be expected to be suitable for a large variety of dynamic
bipedal walkers with adaptable stiffness.

2.2 Walking phases

Different from most former passivity-based bipedal walking
models with point feet or round feet (Taga et al. 1991; Ver-
daasdonk et al. 2009; Owaki et al. 2012), the biped model
in this paper is mounted with flat feet, which is more close
to humans in the structure and walking gaits. Flat-foot walk-

ers have the ability of standing stably and can help us study
the effects of foot rotation and ankle compliance in dynamic
walking (Wang et al. 2010a; Chevallereau et al. 2008). When
the compliant ankle is actuated, as is the case in Meta (Hobbe-
len and Wisse 2008b), extra energy can be inserted in the
toe-off phase (Ker et al. 1988).

In this study, different walking phases are distinguished
by the constraint conditions. A walking gait is denoted as the
sequence of certain walking phases under a specific order. A
walking pattern refers to a limit cycle with specific velocity
and step frequency. Thus, different patterns may be realized
with the same gait. Different from most of existing studies
on passivity-based walking, the series of walking phases is
not predefined in this study. The dynamic switching of the
walking phases is more close to that of natural human walk-
ing.

The walking sequence of the flat-foot walker is more com-
plicated than that of the round-foot walker or point-foot
walker (Wang et al. 2010a; Huang et al. 2012). When the
flat foot strikes the ground, there are two impulses, “heel-
strike” and “foot-strike”, representing the initial impact of
the heel and the following impact as the whole foot contacts
the ground, respectively. Each foot has three contact cases:
foot contact, heel contact and toe contact. Thus, there appears
three possible human-like gaits, distinguished by the order of
three important events: heel-off of the trailing leg, heel-strike
of the leading leg and foot-strike of the leading leg.

Figure 2 illustrates the walking phase sequences during
one step of these three gaits. All the three gaits start from
push-off phases, shown as phase A and phase B in Fig. 2.
In phase A, the trailing leg keeps knee-straightening and the
shank is constrained to the same direction of the thigh. When
the constraint knee torque decreases to zero, the knee joint
is unlocked and made compliant, and the walker moves to
phase B. Phases C and D are single-stance phases. The dif-
ference of the two phases is the direction of the knee torque
of the swing leg. The torque bends the knee in phase C while
stretches the knee in phase D. After the knee impact, the
constraint on the knee joint of the swing leg is added again
and the walker moves to phase E , where the motion comes
to the bifurcation point. In the case of small joint torques and
joint stiffnesses, the heel of the trailing leg will not rise up
until foot-strike of the leading leg, and the walker performs
gait 1. If the heel rise of the rear leg occurs between the heel-
strike and the foot-strike of the front leg, the walking will
falls into gait 2. When the ankle torque is large enough, the
trailing leg performs heel rise before the swing leg touches
the ground, which is called premature heel rise in previous
studies (Hobbelen and Wisse 2008b). Then the biped model
will move to dynamic walking with gait 3. After foot-strike,
the stance leg and the swing leg will be swapped and another
walking cycle will begin. Therefore, compared with previ-
ous point-foot walkers or round-foot walkers, the proposed
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Fig. 2 The schematic diagrams of the three walking gaits of dynamic bipedal walking with flat feet and adaptable compliant joints. a, b and c
represent gait 1, gait 2 and gait 3, respectively. Since impacts are instantaneous, only motion phases are marked. One leg is gray for clarity

flat-foot walker can realize multiple walking gaits and thus
be used to study gait transitions of dynamic bipedal walking.

The equilibrium position and stiffness of each joint are dif-
ferent in different walking phases. If moving to another phase
is detected, the control parameters will change to the new set
according to the new phase. Phase switching is triggered by
foot contact information and certain joint angles. Since the
bisecting mechanism equipped at the hip joint restrains the
direction of the upper body, the two springs at the hip joints
have the same stiffness and opposite equilibrium positions.

2.3 Walking dynamics

The Lagrange’s equation of the first kind is used to construct
the equations of dynamics. We suppose that the x-axis is
along the forward direction while the y-axis is vertical to the
ground upwards, as indicated in Fig. 1. The configuration of
the walker is defined by the position of the hip joint and the
angle of each stick. Thus, the posture of the model can be
arranged in a generalized vector:

q = (xh, yh, θ1, θ2, θb, θ2s, θ1 f , θ2 f )
′
. (2)

The superscript ′ means the transposed matrix (the same in
the following paragraphs). The positive directions of all the
angles are counter-clockwise. Note that the dimension of the
generalized vector in different phases may be different. When
the knee joint of the swing leg is locked, the freedom of the
shank is reduced and the angle θ2s is not included in the
generalized coordinates. Consequently, the dimensions of the
mass matrix and the generalized active force are also reduced

in some phases. The detailed derivation of the equations of
motion and impacts and the mechanical parameter values can
be found in “Appendix A”. The mechanical parameter values
of the biped model are set based on a rough estimation of
mass distribution and morphology of humans (Wisse et al.
2007; Wang and Crompton 2004).

3 CPG-based control system

Although other control methods may be applied to the pro-
posed torque–stiffness-controlled dynamic walking, we con-
sider that the bio-inspired CPG-based approach, which can
simplify the control structure and reduce the dimension of
inputs, is suitable for the biped model with multiple joints
and limb coordination.

3.1 Related works

Central pattern generators (CPGs) are considered as neural
circuits which can produce coordinated gait patterns of high-
dimensional rhythmic output signals while receiving only
simple, low-dimensional, input signals (Ijspeert 2008). Stud-
ies in neuroscience revealed that CPGs are distributed net-
works made of multiple coupled oscillatory centers (Del-
volve et al. 1999). Several studies have reported evidences
of the existence of CPG in vertebrates (Amemiya and Yam-
aguchi 1984; Cazalets et al. 1995). For many animals, CPGs
can produce rhythmic patterns of neural activity and control
motion gaits.
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Inspired by biological studies, a variety of CPG models
have been designed and applied to locomotion control of dif-
ferent types of biomimetic robots, e.g., (Ijspeert et al. 2007;
Fukuoka et al. 2013; Kim et al. 2011; Li et al. 2012). Inves-
tigation on ZMP-based humanoid robots demonstrated that
the walking performance can be improved by adding CPG
components to the controller (Or 2009). Several studies tried
to introduce CPG-based control methods to passivity-based
bipedal models. Taga et al. (1991) implemented adaptive con-
trol of a CPG-controlled bipedal walking model and demon-
strated the robustness in unpredictable environments with
perturbations. Verdaasdonk et al. (2009) applied CPG mod-
els to controlling a passive walker with rotational hip stiff-
ness. The results revealed that CPG-based control approach
is beneficial in improving walking efficiency and eliminat-
ing chaos. Owaki et al. (2012) studied CPG-controlled loco-
motion of a passive biped model with leg stiffness and hip
stiffness. By controlling only one parameter, the model can
exhibit walking and running gaits.

Previous studies indicated that CPG-based control meth-
ods could enhance robustness against perturbations, improve
efficiency, and modulate complex motion behaviors (e.g.,
speed control or transitions between different gaits) by
receiving only a few input signals (Ijspeert 2008). Thus,
CPG-based control methods are very suitable for controlling
bipeds with adaptable stiffness and walking pattern transi-
tions. In this paper, we introduce real-time stiffness control
to CPG. The CPG model controls not only the joint torque
but also the joint stiffness, which is different from most exist-
ing studies on CPG-controlled bipedal walking. In former
research on passivity-based bipedal walking, the higher cen-
ter usually generates only a single driven signal for tuning the
basic rhythm of joint torques (Owaki et al. 2012; Verdaas-
donk et al. 2009; Taga et al. 1991). The novelty in this paper
is the addition of another input signal for the adjustment of
joint stiffness in bipedal walkers. The natural dynamics such
as the velocity and the step frequency can be controlled by
adjusting joint stiffness.

3.2 Control architecture

In this paper, the torques acted at joints for the actuation is
called as external actuation, while the structural properties
such as joint stiffness and natural limb frequency are consid-
ered as internal natural dynamics. For controlling gait per-
formance through tuning both external actuation and internal
natural dynamics, the input of the control system in this study
is the desired walking pattern while the outputs (i.e., the com-
mands sent to musculo-skeletal system) are joint torque and
joint stiffness. The control system receives feedbacks from
the motion states of the walker and the interaction between
the mechanical system and environments. The architecture
is shown in Fig. 3.

Fig. 3 The diagram of the control scheme. The control system receives
the expected walking performance and sends commands as joint torque
and joint stiffness to the mechanical system. The sensory feedback is
from the motion states of the walker to both the neural signal controller
and the coupled neural oscillator

The performance of different walking patterns is evaluated
by velocity and step frequency. Different from most previ-
ous studies which control only the speed, the CPG model in
this paper is expected to control both velocity and step fre-
quency simultaneously. Thus, the walking behavior can be
modulated over a wider range by controlling natural dynam-
ics. In this study, step length is defined as the increment of
the x-coordinate of the hip joint from a foot-strike to the next
foot-strike. Walking velocity of each step is calculated by
dividing the step length by the time duration between two
consecutive foot strikes.

The control system consists of a neural signal controller
and coupled neural oscillators. The neural signal controller
generates appropriate signals ue and us according to the
desired and the actual walking performance. The two para-
meters ue and us are responsible for adjusting the equilibrium
position and the stiffness of each joint, respectively. There-
fore, controlling ue changes only the joint torques with fixed
joint stiffness, while controlling us changes stiffnesses and
thus torques. The coupled neural oscillators provide rhyth-
mic patterns of joint torques and joint stiffnesses. The motion
of each joint is stimulated by two unit oscillators, for induc-
ing equilibrium position and stiffness, respectively. The cou-
pled neural oscillators are composed of twelve coupled unit
oscillators, associated with walking phase-dependent sen-
sory feedback from the motion states (i.e., the generalized
coordinates and velocities) and foot contact information.
Similar to Owaki et al. (2012), interaction among different
joints contains both inter- and intra-limb coordination.
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3.3 Neural signal controller

A neural signal controller is designed to update the signals
ue and us for realizing real-time walking pattern transitions
according to the variance of desired walking pattern. The con-
troller can also improve the robustness against disturbances.

If only one walking criterion, for example the velocity, is
specified a desired value, the control can be implemented by
changing each of ue and us or both the two. In this study,
these three control methods are denoted as method-I (control
only ue with fixed us), method-II (control only us with fixed
ue) and method-III (control both ue and us), respectively.
The control rule is designed as follows:

u(n + 1) =
⎧

⎨

⎩

u(n) + G p(Vdes − V (n)), n = 1
u(n) + G p(Vdes − V (n))

+ Gd(V (n − 1) − V (n)), n ≥ 2,

(3)

where Vdes is the desired velocity, V (n) is the velocity of the
nth step, G p and Gd are gain coefficients, and u(n) denotes
ue (method-I), or us (method-II), or both ue and us (method-
III) of the nth step. In method-III, we empirically choose
a combination that the two parameters increase or decrease
proportionally, satisfying the following constraint:

ue(n + 1) − ue(n) = a · (us(n + 1) − us(n)), n ≥ 1, (4)

where a is a constant coefficient.
The control rule shown by Eq. (3) is analogous to incre-

ment proportional-derivative (PD) control. The proportional
term is for restraining the error, while the derivative term
is important for detecting the tendency of error and pre-
venting too large maximal deviation, which is necessary
owing to the hysteretic effects of the variation of ue or us

on walking gaits of passivity-based bipeds. Increasing G p

can help the velocity or step length converge. However, too
large G p may lead to unstable gaits. A appropriate Gd can
prevent ue and us from changing too fast, which is help-
ful in reducing the oscillatory behaviors. a is used to adjust
the portions of equilibrium position control and stiffness
control in controlling velocity. In this study, in method-I
G p = 0.25, Gd = 0.25, in method-II G p = 7, Gd = 1.5,
and in method-III a = 0.017 and G p = 0.1, Gd = 0.02 for
ue while G p = 6, Gd = 1.2 for us .

In the case that the walking pattern is modulated by con-
trolling both velocity and step frequency, both ue and us

have to be changed during the transition. The control rule is
designed as:

ue(n + 1) = ue(n) + G p(Vdes − V (n))

+ Gd(V (n − 1) − V (n)) (5)

us(n + 1) = us(n) + Gs
p( fdes − f (n))

+ Gs
d( f (n − 1) − f (n)) (6)

where Gs
p and Gs

d are the gain coefficients for frequency con-
trol. fdes and f (n) are the desired frequency and the step fre-
quency of the nth step, respectively. The other variables have
the same meanings as in Eq. (3). In this study, the parameter
values are set as G p = 0.05, Gd = 0.02, Gs

p = 15, Gs
d =

4. Although each of the two control parameters ue and us may
affect both velocity and frequency, the walking gait can fall
into a small region around the desired pattern under alter-
nately control actions of Eqs. (5) and (6) with appropriate
parameters. The values of the gain coefficients are chosen
manually in this study. Note that the optimal parameter val-
ues may be changed when the controller is applied to a phys-
ical bipedal robot, according to the specific design details.
However, the qualitative tendencies of motion control can be
preserved.

3.4 Coupled neural oscillators

The coupled neural oscillators receive input signals ue and us

and output rhythmic joint torques and stiffnesses, to gener-
ate periodic stable gaits. The control system contains twelve
unit oscillators. Each joint is controlled by two unit oscilla-
tors, producing the equilibrium position and stiffness, respec-
tively. Since the above mentioned kinematic coupling at the
hip to keep the upper body midway, the stiffness will be
set equal for both the two hip joints, and the equilibrium
position will be set opposite. Due to this reduction, there
are actually only ten independently unit oscillators. How-
ever, to make the control architecture close to the phys-
ical structure of the biped, we keep the form of twelve
unit oscillators in the rest of this paper. The connections
between the unit oscillators and the feedbacks from the state
variables of the biped and the foot contact information are
expected to represent the general bipedal walking character-
istics among various walking gaits. Thus, walking pattern
can be controlled simply by changing the two parameters ue

and us .
In order to study the respective effects of joint torque and

stiffness, the interaction terms of the unit oscillators for equi-
librium control do not include coupling with the unit oscilla-
tors for stiffness control, and vice versa. Inter-limb coordina-
tion between the two legs is established between the hip unit
oscillators on the contralateral side. Inhibitory connection
of equilibrium positions results in phase difference between
hip angles and thus form periodic motions. Intra-limb coor-
dination makes the stiffnesses of ipsilateral joints increase or
decrease proportionally. The structure of the coupled neural
oscillators is shown in Fig. 4.

The equations of the unit oscillator model are adapted from
the work of Taga et al. (1991). A unit oscillator controlling the
joint equilibrium position can be mathematically represented
by the following equations:
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Fig. 4 The schematic diagram of the coupled neural oscillators. The
neurons marked with “e” is for equilibrium position control, while the
neurons marked with “s” for joint stiffness control. The outputs of the
coupled neural oscillators to the mechanical system are the equilibrium
angle and stiffness (thus the torque and stiffness) of each joint as shown
in the figure

u̇i = 1

τi

(

ci · ũe
i − ui +

∑

j, j �=i

wi j (˜θ j + di j · ˜θi ) − βvi

+ Feed,i (q, q̇)
)

v̇i = 1

τ
′
i

(−vi + ˜θi )

˜θi =
⎧

⎨

⎩

π/2, ui > π/2
ui , −π/2 ≤ ui ≤ π/2, i = 1, 2 · · · 12
−π/2, ui < −π/2

(7)

where i is the index of the joints (see Fig. 4); ui and vi are
state variables; ˜θi is the output of the unit oscillator, i.e., the
equilibrium position; ũe

i is the input signal, which is equal to
ue or −ue or a constant, depending on the specific joint and
the walking phase; τi and τ

′
i are time constants for equilib-

rium position control; β is the coefficient of adaptation effect
for equilibrium position control; ci is a signal coefficient; di j

is a coefficient to adjust the coordination among different
joints; wi j is the connection weights; and Feed,i is the feed-
back from the motion states of the walker to the unit oscillator
for equilibrium position of joint i . The output is constrained
in the range from −π/2 to π/2. The parameter values and
the expressions of feedback are listed in “Appendix B”.

The unit oscillator controlling the joint stiffness is given
by the following equations:

u̇s
i = 1

τ s
i
(cs

i · ũs
i − us

i +
∑

j, j �=i

ws
i j (k j − ds

i j · ki ) − βsvs
i

+ Fs
eed,i (q, q̇))

v̇s
i = 1

τ
′ s
i

(−vs
i + ki )

ki = max(0, us
i ) (8)

The variables of the oscillators controlling stiffness are
marked with a superscript “s”. These variables have simi-

lar meanings with those in Eq. (7). us
i and vs

i are the state
variables; ki represents the stiffness of joint i ; ũs

i is the input

signal, which is equal to us ; τ s
i and τ

′ s
i are time constants

for joint stiffness control; βs is the coefficient of adaptation
effect for stiffness control; cs

i is a signal coefficient; ds
i j is a

coefficient to adjust the relation among the stiffness of dif-
ferent joints; ws

i j is the connection weights and Fs
eed,i is the

feedback to the unit oscillator for stiffness of joint i . The
parameter values and the expressions of feedback are also
listed in “Appendix B”.

Note that the expression and parameter values of each unit
oscillator are different for different walking phases. There-
fore, the CPG model can adjust its frequency with the gait
period of the biped, and thus performs rhythmic patterns
accompanied with the walking cycles.

Derivative feedbacks of hip and ankle angles are added
to the coupled neural oscillators for decreasing time delay
effects and preventing the limb moving too fast to maintain
stable walking. The unit oscillator for controlling equilibrium
position of the knee joint of the swing leg receives feed-
back from the amount of foot clearance. The knee torque
of the swing leg adapts to the current leg posture to avoid
foot scuffing by as low energy consumption as possible.
The existence of foot rotation is an important difference
between flat-foot walkers and round- or point-foot walk-
ers. Former studies indicated that ankle joint plays a sig-
nificant role in providing power (Kuo et al. 2005). Thus, we
particularly focus on the feedback of ankle stiffness. The
unit oscillator for ankle stiffness of the stance leg receives
sensory feedback from the ankle joint angle and angular
velocity. The stiffness increases adaptively in dorsiflexion,
which is consistent with the general tendency of human
normal walking (Frigo et al. 1996). All these principles
of feedback mentioned above are appropriate for differ-
ent gaits, velocities and step lengths. Thus, flexible walk-
ing pattern transitions can be realized by just tuning ue

and us .

4 Experimental results

The experiments in this paper focus on the independent
effects of joint torque and joint stiffness with a bio-inspired
control system. The velocity and step frequency are expected
to be controlled independently without coupling. Since step
length is more visualized than step frequency and comparing
simulated walking with human motion in step length is more
convenient than in step frequency, we use walking velocity
and step length (equivalent to velocity and step frequency,
since step length is the ratio of velocity to frequency) as the
performance criteria in experiments. We investigate multiple
gaits (gait 1, 2 and 3 in Sect. 2) which result from the flat-
foot structure. Velocity, step length, efficiency, gait distribu-
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tion and pattern transitions of the proposed torque-stiffness-
controlled dynamic walking are studied with adaptable exter-
nal actuation and natural dynamics.

Since the level of joint torque and joint stiffness are deter-
mined by the values of ue and us , respectively, the two input
signals ue and us are our main concerned control parame-
ters in the experiments. In this study, ue changes in the
range from 0.21 to 0.45, while us in the range from 16 to
37. Larger ue stands for larger actuation torques, especially
the ankle torques in push-off phases and the hip torques in
singe-support phases. Increasing us makes the joints stiffer.
All simulations and data processing were performed using
MATLAB 7 (The MathWorks, Inc., Natick, MA) based on
the EoMs mentioned in “Appendix A”.

4.1 Walking gait distribution

In simulation of the proposed locomotor system, stable walk-
ing cycles of different gaits are realized with appropriate
parameters. The results indicate that gait 1 has the minimal
step length while gait 3 has the maximal step length. In gait
1, heel rise of the rear leg occurs at the moment of foot-strike
of the leading leg. The occurrence of heel rise is between
heel-strike and foot-strike of the front leg in gait 2. In gait
3, heel rise appears in singe-support phases before the swing
leg contacts the ground, which is called “premature heel rise”
in previous studies (Hobbelen and Wisse 2008b).

Several former research have studied different gaits of
both trajectory-control walkers (Tlalolini et al. 2009) and
passivity-based walkers (Huang and Wang 2012) with flat
feet. Our previous study compared the motion characteristics
of different gaits and showed that ankle stiffness is important
in gait selection (Huang et al. 2012). In this paper, we explore
the effects of the two control parameters ue and us on gait
selection. Heel rise occurs if the ankle torque is high enough
to lift the stance leg, thus large ue and us lead to early heel
rise. Gait distribution for different input signals ue and us is
shown in Fig. 5, which indicates that small ue leads to gait
1, while gait 3 is concentrated in the area with both large
ue and us . Gait 2 is distributed between gait 1 and gait 3.
In certain extreme conditions, the bipedal walker performs
hybrid gaits (see “gait 1 and 2” and “gait 2 and 3” in Fig. 5).
Two different gaits alternatively appear in different steps of
the walking, which usually appears in the transitional region
between two gaits.

Biological studies indicated that pushing off of the trailing
leg begins slightly before the leading leg touches the ground
(Kuo et al. 2005). Thus, locomotion around the boundary
between gait 2 and gait 3 in the ue − us plane in Fig. 5 is
the closest to human normal walking. Our previous research
(Huang et al. 2012) has demonstrated that the gaits which
are more close to human normal walking have better perfor-
mance in efficiency.
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Fig. 5 Gait distribution in the ue −us plane. “gait 1 and 2” and “gait 2
and 3” represent hybrid gaits, in which two different gaits alternatively
appear in different steps
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Fig. 6 Walking velocity for varying control parameters ue and us . The
dot-dash line, solid line and dashed line represents gait 1, gait 2 and
gait 3, respectively,

4.2 Effects of joint torque and joint stiffness on walking
performance

In this sub-section, we show the walking performance by
variation of control parameters. Figure 6 describes walking
velocity with different ue and us . The general tendency indi-
cates that increasing either ue or us leads to forward acceler-
ation, since larger values of ue and us corresponds to more
energy input. When us is not larger than 22, the locomotion
performs gait 1 or gait 2 and the velocity is quite small below
0.6 m/s. In the case that us ranges from 28 to 37, stable peri-
odic walking can be obtained with relatively small ue and
gait 3 appears. Increasing us can decrease the threshold for
ue of the occurrence of gait 3. The normalized Froude num-
ber (defined as Fr = V/

√
gl, where V is the velocity, g

is the gravitational acceleration and l is the leg length) can
be used to quantify walking velocity (Hobbelen and Wisse
2008a). The obtainable velocity of the proposed biped model
ranges from 0.42 to 1.20 m/s. The corresponding range of Fr
is from 0.15 to 0.43.
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Fig. 7 Step length for varying control parameters ue and us . The dot-
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respectively,

The effects of ue and us on step length are similar with
those on velocity. Large ue and us result in large step length. It
is worth noting that the step length grows slowly with increas-
ing ue after reaching a relatively large value, and falls into a
small range around 0.88 m (1.1 times leg length). When the
walker performs long-step-length walking, large ue makes
the equilibrium position of the hip angle exceed the actual
hip angle greatly. The most forward position of the swing leg
is difficult to continue moving forward with increasing ue,
since the time delay effects. For long-step-length walking,
increasing ue primarily influences the angular velocity of the
swing leg, while only has a minimal influence in step length
(Fig. 7).

Step frequency can be obtained as the ratio of velocity to
step length. The variation of step frequency for different con-
trol parameters is shown in Fig. 8. For the motions with small
and moderate step lengths, most in the cases of gait 1 and gait
2, step frequency has almost no dependence on the signal ue,
since the tendencies of velocity and step length are similar
with varying ue. Hence joint torque has little influence in step
frequency. This result is consistent with previous studies on
passive walkers. For example, Kuo et al. (2005) reported that
the walking period is almost invariant with respect to the
energy input and the increase in velocity results mainly from
increasing step length. Different from the joint torque, joint
stiffness is the primary determinant of frequency. As Fig. 8
shows, large us leads to high step frequency. For the motions
with large step lengths, which often appear in gait 3, the fre-
quency shows obvious dependency on ue . With increasing ue,
the velocity increases while the step length stays at about the
same level. Therefore, the change of velocity results mainly
from the variation of step frequency in this case. Tuning either
joint torque or joint stiffness is effective for adjusting step
frequency in long-step-length walking.

Similar to previous studies on passivity-based walking
(Collins et al. 2005; Hobbelen and Wisse 2008a), energetic
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Fig. 8 Step frequency for varying control parameters ue and us . The
dot-dash line, solid line and dashed line represents gait 1, gait 2 and
gait 3, respectively,
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Fig. 9 Mechanical cost of transport of different us with equal veloci-
ties. The walking velocity stays at 0.73 m/s. The corresponding Froude
number is 0.26

efficiency in this paper is measured by the dimensionless
mechanical cost of transport cmt , defined as

(energy used)/(weight × distance travelled).

In this study, the energy consumption refers to the active
mechanical work. As the joint torques of the proposed model
are realized by torsional springs, which store and release
energy, certain positive work and negative work counteract
each other and hence the amount of active work is reduced.
The active work contributes to the increment of elastic poten-
tial energy by adjusting the equilibrium position and stiffness
of each joint. Figure 9 expresses the efficiency of the pro-
posed model for varying us at a constant velocity of 0.73 m/s
(Fr = 0.26), which is close to human normal walking veloc-
ity. The mechanical cost of transport cmt decreases monoto-
nously from 0.13 to 0.078 as us increases from 25 to 37. It is
worth noting that too large stiffness of the proposed dynamic
model may result in serious oscillation and unstable gaits,
which is also found in Hobbelen and Wisse (2008b). Thus,
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the joint stiffness discussed in this study is in a relatively
small range. For the relationship between joint stiffness in the
studied range and the energy efficiency (see Fig. 9), one pos-
sible explanation is that increasing joint stiffness can decel-
erate the leg angular velocities just before heel-strike and
foot-strike, and thus reduce the energy loss at impacts and
improve walking efficiency. Similar results were reported in
bipedal walking with actuation and passive springs on ankle
joints (Hobbelen and Wisse 2008b).

4.3 Walking stability analysis

In this study, similar to Wisse et al. (2007), walking stability
is quantified by the eigenvalues of the Jacobian of the stride
map, which indicate the trend of the accumulated errors of
each step. Suppose S is the stride function, which represents
the mapping from the initial conditions from one step to the
next step. Thus,

vn+1 = S(vn), (9)

where vn+1 and vn are the initial conditions of the (n + 1)th
step and the nth step, respectively. For the period-1 cyclic
motion, the vector of the initial conditions is a fixed point of
the stride function.

v f = S(v f ). (10)

The Jacobian can be obtained by the linearization of the stride
function at the fixed point.

Js = (S(v f + �v) − S(v f ))/�v, (11)

where Js is the Jacobian of the stride function. �v is a small
perturbation. If the moduli of all the eigenvalues are smaller
than 1, the errors decrease step after step and the fixed point
is stable.

Figure 10 shows the maximal modulus of the eigenvalues
of the Jacobian in the parameter range with obtainable cyclic
motions. It is difficult to find periodic gaits at larger or smaller
ue and us out of the studied range.

In general, the model has satisfactory performance on
stability, especially with moderate ue and us . The walker
can handle some disturbance with suitable joint torque and
stiffness. However, the stability becomes poor at the edge
of the studied parameter region. The moduli of eigenval-
ues exceed 1 when ue and us have high values, because
too large actuation leads to period-2 walking and chaotic
gaits, which have negative effects on stability. Another case
of low stability is the combination of small ue and large us ,
for example, the modulus of eigenvalue achieves 3.5 when
ue = 0.21, us = 37. The results indicate that large joint
stiffness while relatively small joint torque results in unsta-
ble walking. One possible reason is that bipedal walking with
high step frequency and small step length may be more sen-
sitive to small perturbations. It may suggest the importance
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Fig. 10 The maximal modulus of the eigenvalues of Jacobian for vary-
ing control parameters ue and us . The dot-dash line, solid line and
dashed line represents gait 1, gait 2 and gait 3, respectively. The gray
circles indicate period-2 motions

of appropriate coordination between joint torque and joint
stiffness for walking stability.

4.4 Different velocity control methods

In the following paragraphs, we will show the experimental
results of real-time walking pattern transitions. The motion
is adapted toward the desired walking performance by con-
trolling the two input signals ue and us .

Walking velocity is usually adopted as the control objec-
tive in bipedal walking (Hobbelen and Wisse 2008a; Ver-
daasdonk et al. 2009). Thus, velocity control of the presented
locomotor system is studied in this sub-section. As illustrated
in Sect. 3.3, the velocity control can be achieved by method-
I, method-II or method-III. Before the transition, the biped
model performs stable walking at the velocity of 0.46 m/s
(Fr = 0.164). At the end of the third step, the desired veloc-
ity changes to 0.63 m/s (Fr = 0.225). The transition starts
at the fourth step and the two control parameters ue and
us begin to vary according to the control lows presented in
Sect. 3.3.

The walking velocities of each step for the three control
methods are shown in Fig. 11a. Method-I produces the fastest
responses to the varying desired velocity. However, the rise
time of this control method is the longest. The motion does
not enter the relative steady state until the thirteenth step. In
addition, the velocity shows oscillatory characteristics dur-
ing the transition. The transition motion with method-II is
quite insensitivity to the change of desired velocity. In this
case, the rise time is shorter. Steady state is achieved after the
eleventh step with satisfactory control precision. Method-III
combines the advantages of the two former methods. The
velocity rises rapidly at the beginning of the transition and
converges to the desired value quickly. The transition is basi-
cally completed at the seventh step. All the three methods
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Fig. 11 Walking velocity control of the three different methods. a the
variation of velocity, b the variation of step length during the velocity
control. The desired velocity is changed from 0.46 to 0.63 m/s at the end
of the third step. The three solid lines describe the velocities or the step
lengths of each step of the three control methods, respectively. Method-
I, method-II and method-III represent changing only ue, changing only
us and changing both ue and us , respectively. The gray dot-dash line
in a represents the target velocity

have acceptable control precision, although the accuracy of
method-I is slightly worse than those of the other two meth-
ods. Comparison of the three control methods indicates that
walking performance is more sensitive to the external actu-
ation than to the internal dynamics. The effects of adjust-
ing joint stiffness exhibit in the motion characteristics with
a large delay. Moreover, adding joint stiffness control can
improve the control precision. In sum, changing both ue and
us is the optimal in sensitivity, convergence speed and control
accuracy.

The step lengths after the transition of the three control
methods are different (see Fig. 11b). A larger portion of
adjusting joint stiffness in the velocity control leads to a
higher step frequency and thus a smaller step length at the
end. The responses of the step lengths of the three meth-
ods are similar to the corresponding responses of veloci-
ties. Method-I has the maximal final step length. The step
length increases rapidly in the early period of the transi-
tion while achieves the relatively steady state after a long
time. Method-II results in the minimal final step length.
The variation of step length still shows insensitive char-
acteristics. The step length of method-III reaches the sta-
ble state in the shortest time, which is similar to the case
of velocity. The results of step length variation imply that
the proposed biped model can realize different walking pat-
terns with the same desired velocity. Adjusting the propor-
tions of ue and us [tuning the coefficient a in Eq. (4)] in
velocity control can change the frequency and step length
of the expected walking cycle with the same desired veloc-
ity.

Table 1 shows the mechanical costs of transport during the
transition periods of the three control methods. The period of
transition is denoted as the time duration from the step just
before changing desired velocity to the step when the differ-
ence between the actual and the desired velocities maintains
less than 0.003 m/s. This result is consistent with the effects
of us on efficiency as shown in Fig. 9. Method-II leads to the
highest average joint stiffness during the velocity transition
and results in the least energy loss at impacts. Thus, method-
II is the most efficient method. Contrarily, in method-I, the
joint stiffness keeps a relatively low level all the time and the
efficiency is the lowest. Method-III has the middle efficiency.

4.5 Walking pattern control

Since the control system in this study introduces joint stiff-
ness control, the walking velocity and step frequency can be
controlled simultaneously. Thus, walking pattern transitions
can be realized by controlling both ue and us . Equations (5)
and (6) are employed as the control law.

The velocity control in Sect. 4.3 is realized with the
same gait (gait 2). In walking pattern control, the difference
between the initial and the objective patterns can be increased
to achieve real-time gait transitions.

Table 1 Mechanical cost of transport of velocity transition of different control methods

Control
method

Initial velocity
(m/s)

Final velocity
(m/s)

Average velocity
(m/s)

Step number Walking distance
(m)

Energy consumption
(J)

cmt

Method-I 0.460 0.633 0.592 15 8.58 209.97 0.102

Method-II 0.460 0.632 0.557 10 5.23 96.38 0.077

Method-III 0.460 0.632 0.56 7 3.76 77.64 0.086
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The motion with increasing velocity and step length starts
at the velocity of 0.56 m/s and the step length of 0.53 m. At the
end of the third step, the desired velocity and step length are
changed to 1 m/s and 0.8 m, respectively. Thus, the expected
step frequency is changed from 1.05 to 1.25 s−1. At the end of
the twelfth step, the desired velocity and step length return to
0.56 m/s and 0.53 m, respectively. The variations of walking
velocity, step length and the two input signals ue and us are
indicated by Fig. 12.

Both the velocity and step length track the desired curves
with acceptable precision. After the seventh step, the velocity
and step length stay within small ranges around the desired
values till the objective pattern changes again. Gait switching
occurs at the sixth step. The ankle joint torque exceeds the
threshold value of premature heel rise by increasing ue and
us . The walker performs gait 3 rather than gait 2 after that.
At the twelfth step, the walker begins to perform the pattern
transition with decreasing velocity and step length. The biped
reaches relatively stable states after the nineteenth step. Gait
switching occurs at the fourteenth step. The walker performs
gait 2 rather than gait 3 after that. Finally, the velocity and
step length converge to 0.54 m/s and 0.5 m, respectively. The
steady error of walking gait transition is also a little larger
than velocity control. This result can be explained by that
changing each of ue and us can affect both walking velocity
and step length, thus Eqs. (5) and (6) are not completely
uncoupled. However, the steady errors are still acceptable.

Figure 12c, d describes the variations of the two control
parameters ue and us during walking pattern transitions. The
curves of ue and us show a resemblance to those of velocity
and step length, which indicates the effects of the two signals
on walking performance. The change of us exhibits more
oscillatory behaviors since step frequency is more sensitive
during walking gait transitions (Fig. 10).

Figure 13 shows the stickgram of the walking pattern tran-
sitions. The motion characteristics change rapidly around the
moment of gait switching.

5 Discussion

5.1 Different walking gaits

In this study, the passivity-based bipedal locomotion is inves-
tigated among three different walking gaits. Actually, not all
the possible gaits are discussed in Sect. 2.2. For example,
when the ankle stiffness of the leading leg in phase G is large
enough, toe-off of the trailing leg may occur before foot-
strike of the leading leg. Thus, the walker skips phase A and
B and moves to phase C directly. This kind of gaits without
push-off phases is rarely observed in normal human walking.
In our previous study (Huang et al. 2012), the motion charac-
teristics of all the possible gaits were studied and the results

showed that the gaits which are more close to human walk-
ing achieve better performance. Studies on gait comparison
of active walkers (Tlalolini et al. 2009) also indicated that
the best gaits include push-off phases. Consequently, only
the common gaits with push-off phases are analyzed in this
study. The rest gaits are ignored for their atypical perfor-
mance.

In human walking, the three different gaits are suitable
for different environments and tasks. Gait 1 usually appears
when the step length is confined to small values. Gait 3 has
the maximal velocity and step length. Moreover, people of
different ages exhibit variance in gait performance (e.g., dou-
ble support portion, stride length and local behaviors during
weight transfer) (Hollman et al. 2011; Ihlen et al. 2012). The
work in this study may provide potential explanations for the
gait variability.

5.2 Torque–stiffness-controlled dynamic walking versus
passivity-based dynamic walking

In passivity-based bipedal walking, the walker travels down
a slope completely passively or moves on a level ground with
certain actuation. Purely passive walking is usually limited
to one predefined pattern with no active control. To improve
the practical use and further study the motion behaviors of
passivity-based dynamic walking, a lot of researchers made
efforts to add active control to passive walkers (Ham et al.
2007; Hosoda et al. 2008), thus the bipeds can realize peri-
odic walking with different velocities and the walking perfor-
mance can be adjusted in certain ranges (Geng et al. 2006;
Mandersloot et al. 2006; Hobbelen and Wisse 2008a). In
most existing passivity-based walkers, the walking perfor-
mance is modulated by adjusting joint torques with fixed
joint stiffness.

Introducing adaptable joint compliance (controllable joint
stiffness) to passivity-based bipedal walking can broaden the
accessible performance ranges (Geyer et al. 2006; Hosoda et
al. 2008), improve walking efficiency (Wang et al. 2010a)
and provide evidences for biological studies (Kim and Park
2011). The control space is expanded by increasing the
dimensions of joint stiffness. Thus, both the external actu-
ation and the intrinsic kinetic properties can be adjusted for
walking pattern control. In this study, applying CPG-based
control approach to bipedal walking is similar to adding cou-
pling between the equilibrium positions / stiffnesses of differ-
ent joints, based on basic principles of human-like walking
involved in various walking patterns. Thus, the adjustments
of control parameters are constrained in a particular region in
the torque–stiffness space. The dimension of input is reduced
and the control structure is simplified by introducing the con-
straint.

Figure 14 shows the difference among passivity-based
walking with fixed stiffness, passivity-based walking with
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Fig. 12 Walking pattern
control for gait transitions. At
the end of the third step, the
desired velocity is changed from
0.56 to 1.0 m/s, while the desired
step length is changed from 0.53
to 0.8 m. At the end of the
twelfth step, the desired velocity
and step length return back to
0.56 and 0.53 m, respectively. a
the variation of velocity, b the
variation of step length, c the
variation of the input signal ue,
d the variation of the input
signal us . The gray dashed lines
in a and b represents the target
velocity and the target step
length, respectively. The red
circles indicate the moments of
gait switching. The gray dashed
lines in c and d describe the
moment when the target
walking pattern changes (Color
figure online)
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Fig. 13 The stickgrams of walking pattern transitions. The velocity and step length increase and then decrease gradually. The walker moves to
gait 3 from gait 2 at the sixth step, and returns to gait 2 at the fourteenth step

Fig. 14 Comparison of three types of passivity-based bipedal walk-
ing: a walking with fixed stiffness, b walking with adaptable stiffness,
c torque–stiffness-controlled walking with CPGs. Each axis represents
an input parameter (the torque or stiffness of a joint) of the mechanical
system. For clarity, only two axes for joint torques and one axis for joint
stiffness are plotted. Point A and point B indicate the initial and target
patterns of the walking pattern transition, respectively. A stickgram of

stable walking for 6 s is added to express the gait of each point in a and
b. In c, the trajectory of walking pattern transition is constrained in the
space enclosed by dot-dash-line surfaces. The point B

′
is the projection

of B to the joint torque plane. AB
′

is constrained to a specific orbit
by the coordination between joint torques. Coordination between joint
stiffnesses also exists, but it is not clearly displayed since only one axis
for joint stiffness is plotted in c

adaptable stiffness (e.g., controlled passive walking), and
torque–stiffness-controlled dynamic walking with CPGs pro-
posed in this study. The fixed-stiffness walkers are controlled
by adjusting only joint torques. Hence the natural frequencies
of the limbs keep constant (see Fig. 14a). For the walkers with
adaptable stiffness, the natural dynamics can be adjusted dur-
ing locomotion and the obtainable walking patterns are more
extensive (see Fig. 14b). In the torque–stiffness-controlled
walking with CPGs, the trajectories of walking pattern tran-
sitions are constrained in a specific sub-space, which is con-
structed based on the coordinations between the movements
of each limb and feedbacks from the motion states and foot
contact information (see Fig. 14c). Thus, natural and smooth
walking pattern transitions can be obtained by adjusting only
two parameters, and the respective effects of joint torque
and joint stiffness on walking performance can be stud-
ied.

Several biological studies revealed the significance of
stiffness in human walking. The tendinous tissues of the
skeletal muscle serve as energy-conserving mechanisms and
help improve adaptivity and efficiency in human walking and
running. The mechanical energy stored in the elastic elements
of muscle can be recovered as both kinetic and gravitational
energy (Ishikawa et al. 2005). Human experiments indicated
that an increase in leg stiffness with speed would benefi-
cially increase the propulsion energy (Kim and Park 2011).

Introducing adjustable natural frequency to bipedal walking
and analyzing the respective effects of external actuation and
intrinsic dynamics are also helpful in furthering our under-
standing of the insights of real human walking.

In existing studies, the state variables of GPG models are
often chosen as the torques generated by the flexor and the
extensor of each joint (Taga et al. 1991; Verdaasdonk et al.
2009). To analyze the functions of joint torque and joint stiff-
ness separately in motion control, we employ the equilibrium
position and stiffness of each joint as the CPG state variables,
which is equivalent to the antagonistic muscle models in the
view of dynamics.

Compliance (or impedance) control is chosen as the basis
of the model in preference to alternative robot control strate-
gies because muscles act more like tunable springs or compli-
ance devices. Compliance control has the further advantage
that it is applicable for a variety of motor tasks, and is both
more robust and more simple than alternative control strate-
gies.

5.3 The effects of joint torque and joint stiffness

Within all the obtainable stable walking cycles of our biped
model, the mechanical cost of transport ranges from 0.055
to 0.179. For example, at the velocity of Fr = 0.26, the
optimal cmt is 0.78 (see Fig. 9). The values are comparable
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with those of most existing passivity-based walkers (Hobbe-
len and Wisse 2008b; Collins et al. 2005). For steady-state
walking in this study, increasing velocity and step length
decreases the energetic efficiency, as also found in former
studies (Hobbelen and Wisse 2008a).

Biological studies indicated that an optimal stride fre-
quency for efficiency exists with any given speed in human
normal walking (Cavagna and Franzetti 1986). However,
only relatively small joint stiffness is considered in this
study for the avoidance of oscillatory behaviors and chaotic
gaits. The results of the proposed dynamic model validate
human frequency–efficiency curve below the optimal stride
frequency.

The experimental results of this study suggest that larger
stiffness results in higher energetic efficiency with equal
velocity. It implies that in order to achieve a larger velocity
within the studied range, adjusting joint stiffness is more eco-
nomical in efficiency than changing only joint torques. Large
stiffness can decrease angular velocities of limbs before
impacts and thus reduce the energy loss as mentioned in the
previous section. Another explanation is from the view of
works on CoM of the walker. With the same walking veloc-
ity, large stiffness means high step frequency and small step
length, and thus leads to low energy consumption, since the
rate of mechanical work performed on the CoM increases
with the fourth power of step length revealed by Kuo et al.
(2005).

5.4 Real-time control of velocity and step length

Several studies have investigated walking velocity control
of passivity-based bipedal walkers by adjusting the exter-
nal actuation. Mandersloot et al. (2006) realized transitions
between different velocities in three walking models in simu-
lation. The bipedal machine “Runbot” can walk at the veloc-
ity up to 0.8 m/s (Geng et al. 2006). The walking velocity
ranges from Fr = 0.25 to 0.5. Hobbelen and Wisse (2008a)
studied speed control of limit cycle walkers in both simula-
tion models and the prototype “Meta”. The obtained veloc-
ity of the physical prototype has a range of Fr = 0.1 to
0.28. Our previous study showed walking velocity transitions
of the bipedal walking robot Veronica with adaptable joint
stiffness (Huang et al. 2013). The achievable Fr of Veron-
ica is from 0.07 to 0.16, which is a little smaller than other
robots, caused by the limitation of the servomotor powers.
In this study, the proposed torque–stiffness-controlled biped
can realize walking at the speed from 0.42 to 1.2 m/s with
the leg length as 0.8 m. The corresponding Fr ranges from
0.15 to 0.43. The range is wider and the general velocity is
larger than those of most bipedal walking prototypes with
adaptable compliant joints, since the model described in this
study is relatively ideal, for example the joints are friction-
less.

Real-time velocity control is realized in the proposed
torque–stiffness-controlled walking with a CPG-based con-
trol method. The normalized velocity Fr transits from 0.16
to 0.23 with different control methods. The effects of joint
torque and joint stiffness on speed control are separately
studied. The results reveal that the advantage of adjusting
actuation torques over tuning stiffness is the fast response
to the variation of desired performance. It means that the
effects of adjusting the natural dynamics of the mechani-
cal system itself are embodied on the walking performance
more slowly, compared with the variation of external actu-
ation. The possible explanation may be that both positive
and negative torques on the limbs are increased by increas-
ing only the joint stiffness, thus it takes more steps to con-
verge to the walking cycle with new natural frequency.
Nevertheless, stiffness control shows benefits in fluency
and accuracy. Increasing the portion of stiffness control is
helpful in reducing the velocity oscillation and improving
the control precision. The walking velocity changes toward
the desired value smoothly with a small overshoot and a
small steady-state error. The locomotion better adapts to
the varied desired walking behavior by adjusting the nat-
ural dynamics of the mechanical system. In general, suitable
portions of joint torque and joint stiffness adjustments can
achieve the optimal performance in walking velocity con-
trol.

6 Conclusion

In this paper, we proposed a novel walking paradigm named
Torque–Stiffness-Controlled Dynamic Walking, which exte-
nds the concept of Controlled Passive Walking.

A seven-link bipedal walking model is built with an upper
body, two upper legs, two lower legs and flat feet. A torsional
spring with adjustable equilibrium position and stiffness is
mounted at each joint. Both the joint torque and the joint
stiffness (represents the external actuation and the intrinsic
natural dynamics, respectively) are adjustable on-line. The
biologically inspired control system based on central pattern
generators introduces coordination between the movements
of the limbs and feedbacks according to the natural motion
characteristics. The bipedal walker can perform stable walk-
ing with different gaits and realize walking gait transition in
real time dependent only on two control parameters, which
stand for the levels of joint torque and joint stiffness, respec-
tively.

In the experiments, we have studied the respective effects
of joint torque and joint stiffness on gait selection, walking
performance and walking pattern control. The results show
that both increasing joint torque and increasing joint stiffness
lead to higher velocity and larger step length. Step frequency
is mainly determined by joint stiffness. Joint torque has only
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a minimal influence on the frequency when the step length
is not very large. In walking performance control, the advan-
tage of changing the external actuation is the fast response,
while adjusting the intrinsic natural dynamics is beneficial in
fluency and control accuracy. The optimal choice is the com-
bination of these two manners. Walking pattern control with
specific velocity and step length can be realized by changing
joint torque and joint stiffness simultaneously.

Our study proposed a highly structured passivity-based
walking paradigm with adaptable joint torque and joint stiff-
ness. The bio-inspired CPG-based control system and the
mechanical system can behave cooperatively to adapt to the
desired walking performance among different gaits. The pro-
posed bipedal locomotor system may provide insights into
how people achieve efficient and flexible walking pattern
switching, and suggest a new solution to motion control of
bipedal robots with adaptable stiffness.

There are several ways to extend this study in the future.
We intend to eliminate the chaotic gaits in the cases of large
actuation, in order to extend the range of obtainable walking
performance. In addition, it is worth improving the control
methods to raise the accuracy in walking performance con-
trol.
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7 Appendix

7.1 Appendix A: Lagrange’s equations for the dynamic
walker

The model can be defined by the Euclidean coordinates r,
which can be described by the x-coordinate and y-coordinate
of the center of mass of each stick and the corresponding
directions.

The walker can also be described by the generalized coor-
dinates q:

q = (xh, yh, θ1, θ2, θb, θ2s, θ1 f , θ2 f )
′

(12)

We defined matrix J as follows:

J = dr/dq (13)

The mass matrix in rectangular coordinate r is defined as:

M = diag(ml , ml , Il , mt , mt , It , mb, mb, Ib,

ms, ms, Is, m f , m f , I f , m f , m f , I f ) (14)

where m-components are the masses of each stick, while I-
components are the moments of inertia, as shown in Fig. 1a.

The constraint function is marked as ξ(q), which is used to
maintain foot contact with ground, the direction of the upper
body and knee locking. Each component of ξ(q) should keep
zero to satisfy the constraint conditions.

We can obtain the equations as following:

Mq q̈ = Fq + Φ
′
Fc (15)

ξ(q) = 0 (16)

where Φ = ∂ξ
∂q . Fc is the constraint force vector. Mq is the

mass matrix in the generalized coordinates:

Mq = J
′
M J (17)

Fq is the active external force in the generalized coordinates:

Fq = J
′
F − J

′
M

∂ J

∂q
q̇q̇ (18)

where F is the active external force vector in the Euclidean
coordinates.

For the walking model in this paper, F includes gravita-
tion, the damping torques, and the joint torques generated by
the torsional springs. The sum of damping torques and com-
pliance torques are calculated by Eq. (1). Thus, the natural
dynamics of the model can be adjusted by controlling joint
stiffness and equilibrium positions.

Equation (16) can be transformed to the followed equa-
tion:

Φq̈ = −∂(Φq̇)

∂q
q̇ (19)

Then the equations in matrix format can be obtained from
Eqs. (15) and (19):

[

Mq −Φ
′

Φ 0

] [

q̈
Fc

]

=
[

Fq

− ∂(Φq̇)
∂q q̇

]

(20)

The equation of the strike can be obtained by integration
of Eq. (15):

Mq q̇+ = Mq q̇− + Φ
′
Λc (21)

where q̇+ and q̇− are the generalized velocities just after and
just before the strike, respectively. Here, Λc is the impulse
acted on the walker which is defined as follows:

Λc = lim
t−→t+

∫ t+

t−
Fcdt (22)

Since the strike is modeled as a fully inelastic impact, the
walker satisfies the constraint function ξ(q). Thus, the motion
is constrained by the followed equation after the strike:

∂ξ

∂q
q̇+ = 0 (23)
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Table 2 The parameters of the oscillators for equilibrium position control

ũe
1 w1 j c1 d1 j Feed,1

Hip joint of leg 1, i = 1

Phase A −ue w12 = −0.3, w15 = −0.05 1 d12 = 1, d15 = 1.5 0.02(θ̇2 − θ̇1)

Phase B −ue w12 = −0.3, w15 = −0.05 1 d12 = 1, d15 = 1.5 0.02(θ̇2 − θ̇1)

Phase C −ue w12 = −0.3, w15 = −0.05 1 d12 = 1, d15 = 1.5 0.02(θ̇2 − θ̇1)

Phase D −ue w12 = −0.3, w15 = −0.05 1 d12 = 1, d15 = 1.5 0.02(θ̇2 − θ̇1)

Phase E ue w12 = −0.3, w15 = −0.05 1 d12 = 1, d15 = 1.5 0.02(θ̇2 − θ̇1)

Phase F ue w12 = −0.3, w15 = −0.05 1 d12 = 1, d15 = 1.5 0

Phase G ue w12 = −0.3, w15 = −0.05 1 d12 = 1, d15 = 1.5 0

Phase H ue w12 = −0.3, w15 = −0.05 1 d12 = 1, d15 = 1.5 0.02(θ̇2 − θ̇1)

ũe
2 w2 j c2 d2 j Feed,2

Hip joint of leg 2, i = 2

Phase A ue w21 = −0.3, w24 = −0.02,

w26 = −0.05
1 d21 = 1, d24 = 0.5, d26 = 1.5 0.02(θ̇1 − θ̇2)

Phase B ue w21 = −0.3, w24 = −0.02,

w26 = −0.05
1 d21 = 1, d24 = 0.5, d26 = 1.5 0.02(θ̇1 − θ̇2)

Phase C ue w21 = −0.3, w24 = −0.02 1 d21 = 1, d24 = 0.5, d26 = 1.5 0.02(θ̇1 − θ̇2)

Phase D ue w21 = −0.3, w24 = −0.02 1 d21 = 1, d24 = 0.5, d26 = 1.5 0.02(θ̇1 − θ̇2)

Phase E −ue w21 = −0.3 1 d21 = 1, d24 = 0.5, d26 = 1.5 0.02(θ̇1 − θ̇2)

Phase F −ue w21 = −0.3, w26 = −0.05 1 d21 = 1, d24 = 0.5, d26 = 1.5 0

Phase G −ue w21 = −0.3, w26 = −0.05 1 d21 = 1, d24 = 0.5, d26 = 1.5 0

Phase H −ue w21 = −0.3 1 d21 = 1, d24 = 0.5, d26 = 1.5 0.02(θ̇1 − θ̇2)

ũe
4 w4 j c4 d4 j Feed,4

Knee joint of leg 2, i = 4

Phase A −ue w42 = −0.02, w46 = 0.02 1 d42 = 2, d46 = −1 0

Phase B −ue w42 = −0.02, w46 = 0.02 1 d42 = 2, d46 = −1 0

Phase C −ue w42 = −0.02, w46 = 0.02 1 d42 = 2, d46 = −1 0.2[− sin θ1 · θ̇1 + sin θ2 · θ̇2 +
sin θ2s · θ̇2s ]

Phase D ue w42 = −0.02, w46 = 0.02 1 d42 = 2, d46 = −1 0.0001(θ̇2 − θ̇1) − 0.003(θ̇2s −
θ̇2)

ũe
5 w5 j c5 d5 j Feed,5

Ankle joint of leg 1, i = 5

Phase A 0 w51 = 0.05 1 d51 = 0.67 0.02(θ̇1 − θ̇2)

Phase B 0 w51 = 0.05 1 d51 = 0.67 0.02(θ̇1 − θ̇2)

Phase C 0 w51 = 0.05 1 d51 = 0.67 0.02(θ̇1 − θ̇2)

Phase D 0 w51 = 0.05 1 d51 = 0.67 0.02(θ̇1 − θ̇2)

Phase E −ue w51 = 0.05 1.5 d51 = 0.67 0.02(θ̇1 − θ̇2)

Phase F −ue w51 = 0.05 1.5 d51 = 0.67 0

Phase G −ue w51 = 0.05 1.5 d51 = 0.67 0

Phase H −ue w51 = 0.05 1.5 d51 = 0.67 0

ũe
6 w6 j c6 d6 j

Ankle joint of leg 2, i = 6

Phase A −ue w62 = −0.05, w64 = 0.02 1.5 d62 = 0.67, d64 = −1

Phase B −ue w62 = −0.05, w64 = 0.02 1.5 d62 = 0.67, d64 = −1
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Table 2 continued

ũe
6 w6 j c6 d6 j

Phase C 0.1rad w64 = 0.02 1 d62 = 0.67, d64 = −1

Phase D 0.1rad w64 = 0.02 1 d62 = 0.67, d64 = −1

Phase E 0.1rad 1 d62 = 0.67, d64 = −1

Phase F 0.1rad w62 = −0.05 1 d62 = 0.67, d64 = −1

Phase G 0.1rad w62 = −0.05 1 d62 = 0.67, d64 = −1

Phase H 0.1rad 1 d62 = 0.67, d64 = −1

Table 3 The parameters of the oscillator for joint stiffness control

ũs
1 ws

1 j cs
1 ds

1 j

Hip joint of leg 1, i = 1

Phase A us ws
12 = 0.15, ws

14 = 0.1, ws
15 = 0.1, ws

16 = 0.1 1 ds
12 = ds

15 = 1

Phase B us ws
12 = 0.15, ws

14 = 0.1, ws
15 = 0.1, ws

16 = 0.1 1 ds
12 = ds

15 = 1

Phase C us ws
12 = 0.15, ws

14 = 0.1, ws
15 = 0.1, ws

16 = 0.1 1 ds
12 = ds

15 = 1

Phase D us ws
12 = 0.15, ws

14 = 0.1, ws
15 = 0.1, ws

16 = 0.1 1 ds
12 = ds

15 = 1

Phase E us ws
12 = 0.15, ws

15 = 0.1, ws
16 = 0.1 1 ds

12 = ds
15 = 1

Phase F us ws
12 = 0.15, ws

15 = 0.1, ws
16 = 0.1 1 ds

12 = ds
15 = 1

Phase G us ws
12 = 0.15, ws

15 = 0.1, ws
16 = 0.1 1 ds

12 = ds
15 = 1

Phase H us ws
12 = 0.15, ws

15 = 0.1, ws
16 = 0.1 1 ds

12 = ds
15 = 1

ũs
2 ws

2 j cs
2 ds

2 j

Hip joint of leg 2, i = 2

Phase A us ws
21 = 0.15, ws

24 = 0.1, ws
25 = 0.1, ws

26 = 0.1 1 ds
21 = 1, ds

24 = 0.2, ds
26 = 1

Phase B us ws
21 = 0.15, ws

24 = 0.1, ws
25 = 0.1, ws

26 = 0.1 1 ds
21 = 1, ds

24 = 0.2, ds
26 = 1

Phase C us ws
21 = 0.15, ws

24 = 0.1, ws
25 = 0.1, ws

26 = 0.1 1 ds
21 = 1, ds

24 = 0.5, ds
26 = 1.7

Phase D us ws
21 = 0.15, ws

24 = 0.1, ws
25 = 0.1, ws

26 = 0.1 1 ds
21 = 1, ds

24 = 0.5, ds
26 = 1.7

Phase E us ws
21 = 0.15, ws

25 = 0.1, ws
26 = 0.1 1 ds

21 = 1, ds
26 = 1.7

Phase F us ws
21 = 0.15, ws

25 = 0.1, ws
26 = 0.1 1 ds

21 = 1, ds
26 = 1.7

Phase G us ws
21 = 0.15, ws

25 = 0.1, ws
26 = 0.1 1 ds

21 = 1, ds
26 = 1.7

Phase H us ws
21 = 0.15, ws

25 = 0.1, ws
26 = 0.1 1 ds

21 = 1, ds
26 = 1.7

ũs
4 ws

4 j cs
4 ds

4 j

Knee joint of leg 2, i = 4

Phase A us ws
41 = 0.1, ws

42 = 0.1, ws
46 = 0.01 0.2 ds

42 = 5, ds
46 = 5

Phase B us ws
41 = 0.1, ws

42 = 0.1, ws
46 = 0.01 0.2 ds

42 = 5, ds
46 = 5

Phase C us ws
41 = 0.1, ws

42 = 0.1, ws
46 = 0.01 0.5 ds

42 = 2, ds
46 = 1.2

Phase D us ws
41 = 0.1, ws

42 = 0.1, ws
46 = 0.01 0.5 ds

42 = 2, ds
46 = 1.2

ũs
5 ws

5 j cs
5 ds

5 j Fs
eed,5

Ankle joint of leg 1, i = 5

Phase A us ws
51 = 0.1, ws

52 = 0.1 1 ds
51 = 1 5(θ̇1 f − θ̇1)

Phase B us ws
51 = 0.1, ws

52 = 0.1 1 ds
51 = 1 5(θ̇1 f − θ̇1)

Phase C us ws
51 = 0.1, ws

52 = 0.1 1 ds
51 = 1 5(θ̇1 f − θ̇1)

Phase D us ws
51 = 0.1, ws

52 = 0.1 1 ds
51 = 1 5(θ̇1 f − θ̇1)

Phase E us ws
51 = 0.1, ws

52 = 0.1 1 ds
51 = 1 5(θ̇1 f − θ̇1)
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Table 3 continued

ũs
5 ws

5 j cs
5 ds

5 j Fs
eed,5

Phase F us ws
51 = 0.1, ws

52 = 0.1 1 ds
51 = 1 5(θ̇1 f − θ̇1)

Phase G us ws
51 = 0.1, ws

52 = 0.1 1 ds
51 = 1 5(θ̇1 f − θ̇1)

Phase H us ws
51 = 0.1, ws

52 = 0.1 1 ds
51 = 1 5(θ̇1 f − θ̇1)

ũs
6 ws

6 j cs
6 ds

6 j Fs
eed,6

Ankle joint of leg 2, i = 6

Phase A us ws
61 = 0.1, ws

62 = 0.1, ws
64 = 0.01 1 ds

62 = 1, ds
64 = 0.2 10(θ̇2 f − θ̇2s)

Phase B us ws
61 = 0.1, ws

62 = 0.1, ws
64 = 0.01 1 ds

62 = 1, ds
64 = 0.2 10(θ̇2 f − θ̇2s)

Phase C us ws
61 = 0.1, ws

62 = 0.1, ws
64 = 0.01 0.6 ds

62 = 1.7, ds
64 = 0.83 0

Phase D us ws
61 = 0.1, ws

62 = 0.1, ws
64 = 0.01 0.6 ds

62 = 1.7, ds
64 = 0.83 0

Phase E us ws
61 = 0.1, ws

62 = 0.1 0.6 ds
62 = 1.7 0

ũs
6 ws

6 j cs
6 ds

6 j Fs
eed,6

Phase F us ws
61 = 0.1, ws

62 = 0.1 0.6 ds
62 = 1.7 0

Phase G us ws
61 = 0.1, ws

62 = 0.1 0.6 ds
62 = 1.7 0

Phase H us ws
61 = 0.1, ws

62 = 0.1 0.6 ds
62 = 1.7 0

Then the equation of strike in matrix format can be derived
from Eqs. (21) and (23):

[

Mq −Φ
′

Φ 0

] [

q̇+
Λc

]

=
[

Mq q̇−
0

]

(24)

Parameters
mb = 12.0 kg, upper body mass
mt = 2.5 kg, thigh mass
ms = 2.5 kg, shank mass
m f = 1.2 kg, foot mass
Ib = 0.36 kg m2, moment of inertia of upper body
It = 3.33 · 10−2 kg m2, moment of inertia of thigh
Is = 3.33 · 10−2 kg m2, moment of inertia of shank
I f = 4.0 · 10−3 kg m2, moment of inertia of foot
lb = 0.6 m, upper body length
lt = 0.4 m, thigh length
ls = 0.4 m, shank length
l f = 0.2 m, foot length
r = 0.3, foot ratio, which is defined as the ratio of the

distance between the heel and the ankle to whole foot length
g = 9.81 ms−2, gravitational acceleration

7.2 Appendix B: Parameters of central pattern generators

Parameters of oscillators for equilibrium position
The parameter values of an unit oscillator controlling the

equilibrium position [as shown in Eq. (7)]:
τ1 = τ2 = τ3 = τ4 = 0.02,
τ5 = τ6 = 0.05.

τ
′
1 = τ

′
2 = τ

′
3 = τ

′
4 = 0.01,

τ
′
5 = τ

′
6 = 0.02.

β = 0.005.
The expressions of ũe

i and Feed,i and the values of wi j , ci

and di j in each phase of different joints are listed in Table 2
(suppose leg 1 is the stance leg).

It is worth mentioning that not all the terms of wi j and
di j are listed in the tables. The absent terms are taken to be
zero. The column for feedback is not included in the table
if there is no feedback at the corresponding joint. The knee
joint of the stance leg in all the phases and the knee joint
of the swing leg in phase E, F, G and H are locked, and
the corresponding degrees of freedom are thus taken off, the
parameters of joint 4 in phase E, F, G and H and joint 3
are not listed in the above tables.
Parameters of oscillators for stiffness

The parameter values of an unit oscillator controlling the
joint stiffness [as shown in Eq. (8)]:

τ s
i = 1, τ

′ s
i = 0.2, i = 1, 2, . . . , 6

βs = 0.02.
The expressions of ũs

i and Fs
eed,i and the values of ws

i j , cs
i

and ds
i j in each phase of different joints are listed in Table 3

(suppose leg 1 is the stance leg).
Similar to the case of equilibrium position control, not all

the terms of ws
i j and ds

i j for stiffness control are listed in the
tables. The absent terms are taken to be zero. The column for
feedback is not included in the table if there is no feedback at
the corresponding joint. Similarly, due to knee locking, the
parameters of joint 4 in phase E, F, G and H and joint 3
are not listed in the above tables.
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