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Abstract This paper describes large-scale simulations of
growth, network formation, and behavior in cultures of disso-
ciated cortical cells. A neuron model that incorporates synap-
tic facilitation/depression and neurite outgrowth/retraction
was used to construct virtual cultures of 10,000 cells whose
spiking behavior and evolution were investigated in closed-
loop simulations. This approach allows us to perform detailed
analysis of the effects of model parameters on burst shape
and timing, their changes, and the interrelationship among
these behaviors, gross network structure, and model para-
meters. We examined the effects of two parameters—
network composition (fraction of excitatory cells) and neuron
excitability (activity level corresponding to neurite outgrowth
equilibrium)—on network structure and behavior. Our results
suggest that much of the burst shape and timing observed
in vitro can be explained by a model that includes only
closed-loop neurite outgrowth and dynamic synapses; fea-
tures such as LTP/LTD, random connectivity, long-distance
connections, and detailed neurite topology are not necessary.
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1 Background

Cortical cultures grown on multi-electrode arrays (MEAs)
have been a compelling method for studying formation of
neural circuits for around 30 years (Gross 1979; Pine 1980).
They seem to promise to open a window on how the activi-
ties and connections of individual neurons contribute to the
development and computation of networks. They also allow
investigators to examine neural network development (Jimbo
et al. 1998; van Pelt et al. 2004a; Wagenaar et al. 2006),
to record from and stimulate large numbers of cells (Jimbo
et al. 2000), to study the effects of pharmacological agents
(Echevarría and Albus 2000), to look at spatiotemporal activ-
ity patterns and the relationship between individual cells and
the network as a whole (Segev et al. 2004), to explore net-
work responses to stimuli (Jimbo et al. 1998), and to see
the relationship between developing connectivity and activ-
ity patterns.

In living preparations, network behavior commonly con-
verges to whole-culture bursting behavior (van Pelt et al.
2004a). Besides its theoretical interest (Destexhe and Gas-
pard 1993; Tsodyks et al. 2000), understanding such activity
could have a variety of clinical implications (Wagenaar et al.
2005).

This type of preparation presents a rich set of capabili-
ties for living preparations, for numerical simulation, and for
formal analysis. One can examine how the network bursts
themselves change as development progresses (van Pelt et
al. 2004a; Stegenga et al. 2008; Gritsun et al. 2012), how
network behavior depends on experimental parameters such
as number of neurons and their density (Wagenaar et al.
2006; Ito et al. 2010) or the fraction of inhibitory cells
(Chen and Dzakpasu 2010), or on the correlational rela-
tionships between bursts and inter-burst periods (Mok et al.
2012).
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In this paper, we present the first large-scale simulations
that approach the size and time scale of development in the
living preparations and that incorporate a closed-loop growth
model in which neural activity can affect neurite outgrowth
(which in turn can affect neural activity). Specifically, we
incorporate a simple model of activity-dependent neurite out-
growth into a model of cortical cells to simulate the develop-
ment of networks among 10,000 neurons. We then examine
how network activity evolves during development and how
its final bursting behavior—both burst shape and inter-burst
timing—depends on network parameters.

2 Modeling and simulation

To conduct this investigation, we developed a purpose-built
simulator that utilizes graphics processing unit (GPU) hard-
ware to allow large and extremely long-duration simulations
to run to completion in reasonable time periods (days or
weeks, instead of months or years). This simulation included
dynamical neuron and synapse models, an arrangement of
10,000 neurons in a 100×100 rectangular array, plus a model
of activity-dependent neurite outgrowth that modified net-
work connectivity during simulated development. Data col-
lected during simulations included neurite outgrowth infor-
mation, neuron spiking rates, and network spike counts. We
then analyzed these data to identify bursting behavior, if any,
to show how burst shape changed during development, and
to examine the statistical structure of inter-burst timing.

2.1 Neuron and synapse models

We used a simplified, lumped neuron model that neglected
the details of underlying physiological structure, such as ion-
channel dynamics and concentration. This neuron model was
an integrate-and-fire type and included synaptic, constant
bias, and noise currents (Abbott 1999):

Cm
dVm

dt
= 1

Rm
(Vrest − Vm) + Isyn + Iinj + Inoise (1)

where Vrest was both the asymptotic and reset potential, Isyn

was the total synaptic current, Iinj was a constant depolar-
izing current, Inoise was a noise current, and Cm and Vm

were the membrane capacitance and resistance, respectively.
When Vm exceeded Vthresh, the firing threshold, a spike event
was generated and Vm was set to Vrest. This model also incor-
porated an absolute refractory period, Trefract.

Synapses exhibited dynamics that included activity-
dependent facilitation and depression, using the model of
Markram et al. (1998) and Tsodyks et al. (1998) with four
state variables: three that governed the fraction of synaptic
resources in particular states—x (recovered state), y (active

state), and z (inactive state)—and one, u, that represented
synaptic efficiency,

dx

dt
= z

τrec
− uxδ(t − tsp) (2)

dy

dt
= − y

τI
+ U xδ(t − tsp) (3)

dz

dt
= y

τI
− z

τrec
(4)

du

dt
= − u

τfacil
+ U (1 − u)δ(t − tsp) (5)

where δ(t − tsp) was the unit impulse at time tsp, the arriv-
ing spike time. The three time constants τI , τrec, and τfacil

governed inactivation after an arriving spike, recovery from
inactivation, and facilitation after a spike, respectively. The
synaptic current produced by an arriving spike was Isyn =
W y, where W was the strength of the connection. See tables 8
and 9 in the “Appendix” for parameter values used (Maass
et al. 2002).

2.2 Network and growth models

Simulations were conducted by constructing networks with
model neurons on a rectangular grid. Connectivity strength
(connectivity weight matrix, W ) was determined dynami-
cally by a model of neurite growth and synapse formation
(van Ooyen et al. 1995; van Ooyen and van Pelt 1996). The
extent of neurite outgrowth, and thus a cell’s region of con-
nectivity, was modeled as a circle with radius Ri (for cell i)
that changed at a rate determined by a sigmoidal function of
that cell’s firing rate:

dRi

dt
= ρG(Fi ) (6)

G(Fi ) = 1 − 2

1 + exp((ε − Fi )/β)
(7)

where Fi was neuron i’s firing rate (normalized to be in the
range [0, 1]), ρ was an outgrowth rate constant, ε was a con-
stant that sets the “null point” for outgrowth (the normalized
firing rate that caused no outgrowth or retraction—one of
the network parameters whose effects were explored), and β

determined the slope of G(·), the function that related firing
rate to outgrowth rate. Figure 1 shows G(Fi ) for ε = 0.6 and
β = 0.1.

This phenomenological model was derived by a num-
ber of studies that demonstrated that low levels of electric
activity (low firing rate) stimulated neurite outgrowth, and
high levels led to retraction (Cohan and Kater 1986; Fields
et al. 1990; Schilling et al. 1991; Grumbacher-Reinert and
Nicholls 1992). It has been theorized that intracellular Ca2+
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Fig. 1 Dependence of outgrowth/retraction on cell firing rate

concentration is the underlying mechanism regulating this
activity-dependent outgrowth (Kater et al. 1988, 1990). This
is conceptually similar to homeostatic synaptic scaling (Tur-
rigiano 2008), formulated as outgrowth or retraction (and
thus formation or elimination of synapses), rather than as up
or down regulation of receptors at existing synapses.

In the living preparation, development takes place over
a period of weeks. To make the simulations described here
practical, we used the same value for the outgrowth rate con-
stant, ρ = 10−4s−1, as van Ooyen et al. (1995). Extensive
analysis and simulation were performed to determine the
maximum step size that could be used for updating the con-
nectivity with that rate constant, and a value was chosen well
below that (100s growth update step size for a 0.1 ms neu-
ron/synapse update step size). This ρ essentially corresponds
to a dimensionless time scale; we used a conversion factor
of 40 to convert our simulations to 28 days in vitro (DIV).

Overlap between circular extents of neurite outgrowth was
used to determine neuron coupling strengths, W . Coupling
strengths were computed for all pairs of neurons that had
overlapping connectivity regions as the area of their circles’
overlap; this caused connections to be created and destroyed
dynamically as the simulations progressed. In effect, we
assumed that the circle of connectivity for a single neuron
was uniformly filled with neurites and that overlapping areas
produced synapses with uniform density. Thus, the connec-
tion strength between two neurons can be considered to be
the net effect of a number of synapses proportional to the
areas of overlap. Over the time course of these simulations,
each neuron developed connections to, on average, 33 to 127
other cells.

The bulk of the neurons in the network were excitatory; a
fraction were chosen to be inhibitory—this fraction was one
of the network parameters whose effects were explored. Sim-
ilarly, most neurons were not spontaneously/endogenously
active, but a few (10 %) had their firing threshold, Vthresh,

A

B

C

Fig. 2 Layouts used for different numbers of endogenously active
(EA, black dots) and inhibitory (INH, striped dots) neurons. Non-
endogenously active, excitatory neurons shown as gray dots. a 10 %
EA, 2% INH, b 10 % EA, 10 % INH, c 10 % EA, 20 % INH

lowered from 15 mV to a value chosen from a uniform dis-
tribution in the range 13.565 mV ≤ Vthresh ≤ 13.655 mV
to produce spontaneous firing at a rate of between 0.02 and
6 spikes/s.

We used the set of standardized, 10×10 layouts of endoge-
nously active and inhibitory neurons presented in Fig. 2,
repeating them in a 10 × 10 pattern to fill the 100 × 100
arrangements. These layouts were chosen to maximize the
distance between nearest inhibitory cells and endogenously
active cells, and to allow for comparison of different simu-
lations by providing them with the same layouts if they had
the same fraction of excitatory cells.

2.3 Neural culture simulator

Figure 3 presents the simulations’ algorithmic structure. Each
simulation proceeded as a sequence of 100 s activity epochs
(inner loop). Within each epoch, connectivity was kept con-
stant and neuron and synapse states were updated with a
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Fig. 3 Simulator algorithm structure. A 0.1 ms time step included neu-
ron and synapse updates and was repeated 1,000,000 times to produce
a 100 s activity epoch. Activity epochs, separated by growth updates,
were repeated to produce 28 DIV simulations

0.1 ms time step according to Eqs. (1)–(2). Neuron spike his-
tories (neuron number and firing times) were accumulated for
the entire epoch. At the end of each epoch, the average firing
rate of each neuron was calculated from its spike history and
that average was used to adjust its neurite outgrowth accord-
ing to Eqs. (6) and (7). Areas of overlap were then computed
and synaptic weights were adjusted; this caused synapses to
be created when corresponding weights first became non-
zero.

Simulations consisted of networks of 10,000 neurons in
100 × 100 arrangements simulated for 600 epochs (corre-
sponding to 28 DIV). This duration was chosen by running
test simulations and examining the connectivity radii of all
neurons as a function of time to detect stationarity. Because of
the smooth, slow variation of radii along time, their derivative
was used as a test for stationarity. The derivatives converged
to small values for some sets of simulation parameters, while
for others there was no indication of such convergence. The
criterion for acceptable stationarity was the observation of
radii varying less than 15 % during 100 epochs (Stiber et al.
2007). The simulation length of 600 epochs was chosen as
a reasonable compromise that included a usable segment of
stationary behavior for those simulations that converged.

Preliminary simulations indicated that, while the equi-
librium values of neuron connectivity radii vary based on
parameters and neuron type and location, generally the ratio
between the number of neurons and the number of connec-
tions stabilized at around 1:46 (keeping in mind that “connec-
tion” here corresponds to multiple synapses in a living prepa-
ration). Therefore, the states of 10,000 neurons and about
460,000 “synapses” were required to be updated every time
step using in this case an exponential Euler method. Conse-
quently, a 600 epoch simulation of a 100 × 100 arrangement

represents 6 × 108 time steps, or approximately 2.8 × 1014

state updates.
The simulator was implemented as a single-threaded

program and as a parallel, multi-threaded program using
OpenMP. Benchmarks indicated that the single-threaded
implementation of a 100 × 100 network would take at least
2,000 h (83 days). This work also suggested that paralleliza-
tion using OpenMP could not feasibly lead to a large enough
speedup to make such simulations practical, and thus, we
turned to a GPU implementation using compute unified
device architecture (CUDA).

CUDA is a parallel computing architecture developed by
NVIDIA, which enables GPU programming through a C-like
programming language. In the CUDA model, code that is to
execute on the GPU is written as a “kernel” and called from
host (CPU) code as a function. When the kernel function
is called, the CUDA runtime generates a large number of
threads to exploit data parallelism using the parallel GPU
hardware. The final simulator version runs almost entirely
on the GPU, producing an approximately 23 times speedup
compared with the single-threaded version (Kawasaki and
Stiber 2012). Simulations were run on NVIDIA Tesla C1060
and M2090 devices.

We collected and recorded:

radius history Radius of each neuron for each activity
epoch.
rate history Average firing rate of each neuron for each
activity epoch.
spike history Number of spikes produced by the entire net-
work in each 10 ms time bin for the entire simulation. We did
not record each individual neuron’s spike history in 10 ms
bins because of memory constraint—it would require about
480 GB to store 10,000 neurons’ spike histories for a 600
epoch simulation using 10 ms bins—and because it was not
necessary for the current investigation.

3 Data analysis

Three categories of data analyses were done. We first plotted
the raw data and simple statistics to provide an overview of
developmental changes during the entire course of simulated
development. We then used a detection algorithm to capture
burst times (if any) and network activity during bursts. This
information was then used to describe network intra- and
inter-burst activity.

We chose two parameters (fraction of excitatory neurons
and the null point for outgrowth, ε) and observed network
behavior as these were varied. We ran 600 epoch (28 DIV)
simulations with the set of parameters (fraction excitatory
cells, target rate) = (0.8, 0.1), (0.8, 1.0), (0.8, 1.9), (0.9, 0.1),
(0.9, 1.0), (0.9, 1.9), (0.98, 0.1), (0.98, 1.0), and (0.98, 1.9).
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3.1 Basic analysis

As metrics of the neural network behaviors, we calculated
and plotted measures of neuron activity and neurite out-
growth versus time. In particular, we considered radius his-
tory and rate history as described previously. These were
plotted against time for all neurons in what we called basic
plots.

We also computed average per neuron firing rate (APNFR)
from the network spike history: spike count of the entire net-
work per second normalized per neuron and expressed as
Hz/neuron, derived by the formula (network spike history)/

(0.01 × 10, 000). The entire history of each simulation was
summarized by a simple APNFR histogram, plotted on log-
log axes because of the wide range of rates and counts (4–5
orders of magnitude in both cases). APNFR was also plot-
ted as a function of time along each simulation, in which the
raw APNFR values were averaged to produce 1,000s time
resolution.

Besides plotting radius histories of all neurons together
versus time, we also plotted the mean and standard deviation
of all excitatory (excluding edge neurons) and inhibitory neu-
rons’ radii versus time using 1,000s windows.

3.2 Burst shape

The extremely long simulation lengths prevented examina-
tion of bursting via the basic plots of neuron firing rates sim-
ply due to the enormous resolution that would have been
required. Instead, we used APNFR to identify bursting. We
established a firing rate threshold to separate bursting from
background firing using the APNFR statistics summarized
by the histograms shown in Fig. 5. Note that this figure dis-
plays two types of quantization: along the X -axis, these are
the bin widths (wide to the left; becoming invisibly narrow
to the right) and along the Y -axis, an increment representing
a difference of 1 in the bin counts (noticeable only for small
counts).

More specifically, we compared the distributions of
APNFR for segments of simulations known to not contain
bursting to those for segments known to contain bursting.
From this, we determined that the mean inter-burst APNFR
was 0.21 (spikes/second/neuron); intra-burst APNFR aver-
aged around 1. We thereby established a firing rate thresh-
old to detect burst initiation and cessation to minimize the
probability of false positives while also minimizing burst
timing errors. For simulations that produced bursting, dur-
ing non-bursting periods APNFR was also 0.21 with a stan-
dard deviation of 0.04; we chose 0.5 spikes/second/neuron
as a threshold for burst detection—more than 7 standard
deviations above the mean (Kawasaki 2012). This value
excluded almost all background activity but still allowed
detection of bursts in the early simulation period, when their

Fig. 4 Example burst patterns. Plots of APNFR versus time from
beginning of burst for bursts at around 5 DIV (a) and 24 DIV (b) with
parameters (target rate, fraction excitatory cells) = (1.0, 0.98)

heights were usually lower. Figure 4 shows example bursts
from early (A) and late (B) simulation times. This choice
of burst detection—statistical separation of burst behavior
from background firing—is one of three basic approaches
for burst detection in the literature [for example, van Pelt et
al. (2004b)]. A second identifies bursts via peak firing rate
and then uses half that rate as the definition of burst start and
end [for example, Gritsun et al. (2010)]. Other investigators
[such as Chen and Dzakpasu (2010)] use hand-tuned thresh-
olds for burst detection. Variation in these methods can be
assumed to produce some variation in burst shape results.

Once we identified bursts, we could characterize them.
Bursts could be characterized by intra-burst profile, or shape,
and inter-burst profile, generally statistics derived from inter-
burst intervals, but also including measures of serial depen-
dency of each interval on previous ones.

The shape of a burst was described using width, peak
height, peak position, and spike count. The width was the
duration of a burst, measured from a positive-going crossing
of the detection threshold to the subsequent negative-going
crossing. Peak height was the maximum APNFR within a
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burst and peak position was time from burst start to that peak.
Spike count per burst was the total number of network spikes
in the burst normalized per neuron.

To explore burst shape evolution during each simula-
tion, we divided 600 epoch simulations into windows of 10
epochs, calculated the mean values of these burst profile sta-
tistics, and plotted them versus simulation time.

3.3 Inter-burst behavior

Inter-burst profiling was based on burst peak times, tbi ,
i = 0, 1, 2, . . .), reducing the sequence of bursts to a point
process. We applied a variety of basic measures of point
process evolution, variation, and correlational structure:

burst “ratime” (rate vs. time) plots We plotted the number
of bursts per second along simulation time.
basic inter-burst interval (IBI) statistics The differences
between successive times in the point process is the inter-
burst interval (IBIi = tbi+1 − tbi ), which is the reciprocal
of the “instantaneous” burst rate. We computed the coeffi-
cient of variation (CV, σ/μ) of the IBIs and created an IBI
histogram (IBIH) for the last 100 epochs of each simulation
using a 1s bin size.
IBIH characterization We characterized the shape of the
IBIH by fitting a generalized extreme value (GEV) distribu-
tion, in part to facilitate comparison with the literature (Grit-
sun et al. 2011). The GEV distribution is a family of contin-
uous probability distributions developed with extreme value
theory to combine type I (Gumbel), type II (Frechet) and
type III (Weibull) extreme value distributions. Distributions
whose tails decrease exponentially, such as normal distribu-
tions, lead to type I. Distributions whose tails decrease as a
polynomial, such as Student’s t, lead to type II. Distributions
whose tails are finite, such as the beta, lead to type III. The
GEV distribution is characterized by three parameters: shape
(ξ ), scale (σ ), and location (μ). The ξ parameter determines
the form of the GEV distribution: ξ = 0, type I; ξ > 0, type
II; and ξ < 0, type III.
We used the MATLAB mle() function to get maximum like-
lihood estimates (MLEs) for the parameters of GEV distrib-
utions from the IBIs (The MathWorks Inc.). Then, we used
the MATLAB gevpdf() function (generalized extreme value
probability density function) to plot the probability density
function of the GEV distribution with parameters returned
by the mle() function on top of the IBIHs for the last 100
epochs of each simulation. We also separately plotted the
evolution of the GEV distribution μ and σ along simulation
time using 100 epoch bins.
IBI temporal patterns Serial correlations in bursting (for
example, periodicities) were evaluated first by computing the
power spectrum for the sequence of IBIs (Brillinger 1975;
Brillinger et al. 1976; Rigas 1992). In application to point

process intervals, frequencies are relative to burst number,
i (count, also termed “order”), rather than time (though of
course events happen along time, so their count relates to the
passage of time). Peaks in the power spectra corresponded
to periodicities in the IBIs. The highest possible frequency
observable would be 0.5 cycles/order, corresponding to a
periodicity of two (short-long-short-long-· · · ).
A second measure of temporal patterns involved the cre-
ation of return maps of IBIs, which were reduced dimen-
sionality representations of the underlying dynamical attrac-
tors (Rapp et al. 1985; Bergé et al. 1986). In these maps,
IBIi+1 was plotted against IBIi to create a first order inter-
val return map. More generally, the j th order interval return
map would be the plot of interval i + j versus interval i .
A summary of the use of return maps in diagnosing dif-
ferent deterministic or stochastic behaviors is beyond the
scope of this section, but suffice it to say that purely stochas-
tic behaviors generally produce non-systematic scatterings
of points while deterministic behaviors—be they periodic,
quasi-periodic, or chaotic—will generally produce distinc-
tive patterns. Combinations of stochastic and deterministic
elements will often produce patterns that are characteristic of
the deterministic element, with additional stochastic scatter.

4 Results

Results presented here are from a set of 9 simulations that
explore the parameter space described by fraction excitatory
cells = (0.8, 0.9, 0.98) and target rate ε = (0.1, 1.0, 1.9).

Figure 5 presents average per neuron firing rate (APNFR)
histograms for all simulations. Each histogram displays a
large peak at a low rate around 0.2 Hz, corresponding to
the background (non-bursting or inter-burst) neural spik-
ing behavior, and a secondary peak at a much higher rate
(between 10 and 100 Hz), corresponding to intra-burst spik-
ing. The burst detection threshold, 0.5 Hz, can be seen to be,
in all cases, well above the bulk of the background firing
distribution.

4.1 Basic plots

Figure 6 shows plots of radius and rate histories along simula-
tion time for each of the nine simulations. For the sake of con-
ciseness, only plots for excitatory, non-spontaneously active,
interior, neurons are presented. These plots include a sepa-
rate curve for each of the roughly 9,300–9,500 such neurons;
any spread illustrates the range of behaviors, though their
distribution is obscured by the limited plotting resolution. In
most cases, final firing rates (lower plots) converged onto the
target rate, ε, except for spontaneously active neurons (not
shown) with firing rates above the target rate. Those neurons
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Fig. 5 APNFR histograms for the entire simulation period for given ε (indicated at left) and fraction excitatory cells (indicated above), log-log
axes. APNFR bin size 0.01 Hz

did not slow down, though slower firing spontaneously active
neurons did speed up. As a result, while most neurons’ fir-
ing rates converged toward the target, spontaneously active
cells’ rates invariably filled the range from the target rate up
to the maximum the individual thresholds supported (in these
simulations, around 6 Hz).

Observations of APNFR were consistent with those of the
individual neurons’ firing rates. Rates stayed near their spon-
taneous value (0.21 Hz per neuron) until neurons grew to con-
nect to each other in a wide enough neighborhood, sometime
around 5 DIV. Note that this APNFR does not imply that all
cells were firing. To be precise, only the spontaneously active
cells were firing initially; since these represented 10 % of the
entire network, this APNFR corresponded to their average
rate of 2.1 Hz.

Once neurons were sufficiently interconnected, non-
spontaneously firing neurons started firing and APNFR
increased dramatically to around the target rate parameter

used for neurite outgrowth. This was true even for those sim-
ulations that did not appear to have stationary radii near the
end of the simulation (as described in Fig. 7. In those cases
(fraction of excitatory cells = 0.8), APNFR declined slowly
during the course of the simulation even as connection radii
increased.

Connectivity radii for edge and corner neurons were larger
than those shown, probably due to them having fewer neigh-
bors and thus less input stimulation. Inhibitory neurons gen-
erally had moderate radii, except for simulations with the
most inhibitory cells (fraction of excitatory cells = 0.8),
where they had larger radii. Spontaneously active neurons
had a wide range of different connectivities, likely due to the
variability in their firing thresholds.

Large, broad “bursts,” with enormous APNFR corre-
sponding to all of the cells in the network firing at high rate
for hundreds of seconds with multi-epoch quiescent periods
between, were exhibited by the simulation with the fewest
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Fig. 6 Basic plots of connectivity radius (top, each part) and firing rate (bottom, each part) for the entire simulation period for given ε (indicated
at left) and fraction excitatory cells (indicated above)

inhibitory cells and lowest target rate (fraction of excitatory
cells = 0.98, ε = 0.1). These “bursts” extended over many
simulation epochs and coincided with long-duration declines
in interconnection radii; the “inter-burst” intervals, also many
epochs in duration, coincided with steady increases in inter-
connection radii. This pretty clearly represented a hysteretic
switching of the network between two firing behaviors, rather
than actual bursting, and thus, this simulation was excluded
from most subsequent analyses.

Note that, excepting that indicated above, bursting behav-
ior is not apparent in the firing rate plots due to their low
resolution compared with burst duration. However, APNFR
analysis invariably detected burst initiation at around 5 DIV.
This appears to correspond to radii of around 1.5, which
would be around the value at which neurons a distance of
2 apart diagonally first form synapses, suggesting that the
minimum neighborhood size for initiation of bursting was
greater than four-connected.

4.2 Connectivity and firing rate evolution

Figure 7 summarizes the average and standard deviation
of connectivity radii for non-endogenously active, non-
edge excitatory and inhibitory neurons as a function of
time. Each simulation was broken into non-overlapping 100-
epoch segments, with radii for each neuron of the particular
type (non-endogenously active, non-edge excitatory or non-
endogenously active, non-edge inhibitory) averaged together
to yield a single value for that type. In all cases, neurons’
radii grew steadily and linearly until some time around 5
DIV, when interactions among cells generally increased cell
activity and therefore decreased neurite outgrowth rate.

Except for those simulations with the highest fraction
of inhibitory neurons, excitatory cells had wider connec-
tivities from after around 5 DIV onward. For at least four
of the simulations (fraction excitatory cells = {0.9, 0.98},
ε = {1.0, 1.9}), it can be seen clearly by eye that radii are
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Fig. 7 Evolution of average radii, and standard deviation of radii (“error” bars), for all simulations (solid line for excitatory, non-spontaneously
active, interior neurons, and dashed line for inhibitory neurons). ε indicated at left and fraction excitatory cells indicated above

stationary by the end of the simulation. These were all char-
acterized by an overshoot in connectivity radii of inhibitory
cells between around 5 and 10 DIV and very little variation
in excitatory or inhibitory cell radii across the network.

For simulations with the greatest fraction of inhibitory
cells, not only was the average inhibitory cell radius greater
than that of the average excitatory cell, but both sets of radii
were still increasing at the end of the simulation. Inhibitory
cells in those simulations also had much greater variation in
their radii and higher firing rates. This suggested a positive
feedback effect, in which greater connectivity drove greater
inhibition, preventing cells from reaching their target firing
rate and thus spurring them to further neurite outgrowth.

4.3 Burst shape

The basic idea that burst shape changed as simulations pro-
gressed was introduced in Fig. 4. Figures 8, 9, 10, 11 show

this shape evolution in detail for all simulations. Figure 8
presents an overview of this evolution, plotting mean burst
shapes in 10 epoch time windows. As networks grew, bursts
were observed starting at around 5 DIV for all simulations.
Networks with higher target rate tended to start bursting ear-
lier, likely from the slightly faster growth rate that this pro-
duced. Early bursts were typically wider and lower, gradually
evolving into narrower and more intense ones with longer ris-
ing phase until (and if) stationarity was reached.

Generally speaking, burst peak APNFR ranged from
40 Hz/neuron to 180 Hz/neuron. For the four simulations
with target rates of 1.0 and 1.9 previously determined to
appear stationary by simulation’s end, burst heights were 70–
80 Hz/neuron (for fraction of excitatory neurons = 0.98) and
95–100 Hz/neuron (for fraction of excitatory neurons = 0.90).
This is consistent with firing rates observed in the literature
[for example, Gritsun et al. (2012)], under the assumption
that each electrode in a multi-electrode array records spiking
from around one or two neurons.
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Fig. 8 Evolution of burst shape for all simulations. ε indicated at left and fraction excitatory cells indicated above

Simulations (0.80, 1.0) and (0.80, 1.9) show bursts that
appear to be in the process of disappearing toward the end.
This is consistent with the plots of connectivity radii in Fig. 7,
which show increasing radii and declining firing rate.

The large, long-duration high-firing-rate behavior of
(0.98, 0.1) shows itself clearly (after passing through a devel-
opmental phase of intense, short-duration bursting). Note that
now that we are plotting rates only within bursts; the network
activity in that case is revealed to be similar in intensity to
the “true” bursts shown in the other simulations. We tenta-
tively conclude that, while the other simulations produced
behaviors in which burst initiation and termination were a
stationary result of short-time-scale dynamics, in this partic-
ular simulation changing connectivity was the variable that
switched neuron behavior between low and high firing rates.

As shown in Fig. 9 and Table 1, true bursts ranged in
duration from tens to hundreds of milliseconds in duration.
Thus, interestingly, a rough doubling of target rate did not
result in much difference in burst shape. Width data for sim-
ulations (0.80, 1.0) and (0.80, 1.9) again suggest that their

burst activity was in the process of being extinguished as
interconnection radii increased.

The width data in Fig. 9 clearly shows the initial, very
broad (250–500 ms) bursts that fairly quickly sharpened up
to much shorter duration (less than or around 200 ms). Burst
peaks invariably occurred at least half-way through the burst.
During early development, peaks occurred late in the burst
(65–70 % of the way through the burst), indicating that burst
built up slowly. At later phases of development, peaks were
much closer to midway through the bursts, consistent with
faster build-up.

How bursts with durations significantly less than a sec-
ond contributed to APNFR is partially explained by Fig. 10,
which shows the average number of spikes that a neuron con-
tributed to each burst (more precisely, the number of spikes
per burst divided by the number of neurons in the network).
Over broad ranges, and despite changes in burst width, spikes
per burst was generally close to constant, with early wide, low
bursts being composed of a similar number of spikes as late,
brief, intense bursts. Again, for the four stationary simula-
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Fig. 9 Evolution of mean burst width (solid curve) and mean peak position (dashed) for all simulations. ε indicated at left and fraction excitatory
cells indicated above

Table 1 Mean burst height (Hz
per neuron) and burst width (s)
during final 10 simulation
epochs (equivalent to around 28
DIV)

Target rate/fraction
excitatory cells

0.80 0.90 0.98

1.9 22.4284, 0.2119 102.1598, 0.1485 80.5281, 0.1788

1.0 11.7088, 0.0717 95.1390, 0.1515 72.7651, 0.1867

0.1 75.9360, 0.1140 169.1908, 0.1050 –

tions, differences in target rate produced very little difference
in this measure of burst shape.

As in the other plots, the simulation at (0.80, 1.0) is espe-
cially notable due to the apparent rapid extinction of bursting
near the end of the simulation.

4.4 Inter-burst timing

Figure 11 shows evolution of burst rate (bursts/s) with vary-
ing simulation parameters. Networks with lower target rates
generated fewer bursts per second, and networks with higher

target rates generated higher burst rates. For the four sim-
ulations that clearly resulted in growth stationarity—(0.90,
1.0), (0.98, 1.0), (0.90, 1.9), and (0.98, 1.9)—the burst rate
scaled with the target rate. Thus, the networks’ behaviors
responded to different target rates by altering the rate of burst
production, rather than changing the burst shape. For (frac-
tion excitatory cells, target rate) = (0.90, 1.9), one can see
most obviously an overshoot of bursting at the early period
of development.

In the case of (0.80, 1.0) and (0.80, 1.9), burst counts
increased dramatically near the simulation end. Note that
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Fig. 10 Evolution of mean spike counts per burst for all simulations. ε indicated at left and fraction excitatory cells indicated above

burst height (Fig. 8), burst width (Fig. 9), and spikes per
burst (Fig. 10) all varied at the same time; this appears to have
compensated for the increased burst count to keep APNFR
stable—the result was more frequent, “smaller” bursts with
fewer spikes per burst.

Figure 12 shows distributions of inter-burst intervals
(IBIs). The shapes of most IBI distributions were skewed
(more short IBIs than long ones). Qualitatively, their appear-
ance is consistent with that of Poisson or renewal processes
with dead time (and consistent with living preparations, if
one considers the smaller bin size possible here due to the
order of magnitude greater number of bursts recorded due to
our simulation methods). Networks with lower target rates
generated longer IBIs, as expected. Interestingly, variability
was greater for lower target rates, as can be seen in the coef-
ficients of variation in Table 2. Networks with higher target
rates had more frequent, more regularly spaced bursts. For
the four stationary simulations, almost doubling the target
rate resulted in a near halving of the CV, suggesting that the

mechanism for burst timing variability was largely indepen-
dent of target rate in those cases.

The effect of increasing inhibition on IBI distribution was
more complex. Increasing inhibition led to a decrease in the
distribution’s mode and, often but not always, its mean. This
was consistent with Fig. 11, though some of this change
was due to burst extinction for fraction of excitatory cells
= 0.8. Increasing inhibition also generally led to an increase
in CV—inhibition made bursting more irregular.

Figure 13 shows how the location and scale parameters
of the generalized extreme value (GEV) distributions fitted
to the IBIHs evolved as the simulations progressed; Table 3
gives their values (and that of shape) for the final 100 epoch
window as illustrated in Fig. 12. As the 95 % CIs show, all
but those with a target rate of 0.1 were fit well by the GEV.
The figure shows a rapid change in parameters due to extinc-
tion of bursting behavior for the (0.80, 1.0) simulation and
the apparent stationarity of the simulations with parameters
(0.90, 1.0), (0.98, 1.0), (0.90, 1.9), and (0.98, 1.9). Based on
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Fig. 11 Evolution of burst rates (bursts/s) for all simulations. ε indicated at left and fraction excitatory cells indicated above

the parameter values in the table, IBIHs could be categorized
into the three distribution types:

Type I (exponential tails) The (0.98, 1.9) simulation had
a shape parameter with confidence interval spanning zero
and thus was arguably type I.
Type II (polynomial tails) The simulations with target
rates of 1.0 and 0.1 fell into this category, with positive
shape parameters.
Type III (short tails) The (0.80, 1.9) and (0.90, 1.9)
simulations had negative shape parameters and so fell
into this category. As shown in Table 2, the CVs for these
IBIHs were increasing (the distributions getting wider),
but their tails were not getting longer; hence, they were
categorized differently than (0.98, 1.9).

Power spectra of inter-burst intervals were also calculated
to address the issue of whether these IBI sequences were pro-

duced by periodic processes. Except for the (0.1, 0.98) case
(in which the behavior switching of the network—essentially,
three giant “bursts”—was detected), all spectra were flat,
indicating no serial correlations and no evidence for periodic
structure in the IBI sequences. Note that this does not rule out
a deterministic, chaotic, process; only periodic processes.

The burst interval return maps of Fig. 14 also support the
assertion that the burst timing was the result of a stochastic
process for most simulations. For the four clearly station-
ary bursting simulations, point scatter is consistent with the
interval histograms of Fig. 12 with only a non-deterministic
scatter, dead time decreasing with increased inhibition, and
no apparent preferred sequence of intervals.

The return map for (0.80, 1.9) suggest that there may have
been an element of periodicity involved, with long intervals
between 1 and 2 s followed by short intervals of less than 0.5 s,
and vice versa. This is revealed by the fairly distinct clusters
near the X and Y axes. More detailed examination revealed
that these clusters extended throughout the 23–28 DIV inter-
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Fig. 12 Distribution histograms of IBIs (IBIHs) between 23 and 28 DIV, with overlaid fitted GEV functions. ε indicated at left and fraction
excitatory cells indicated above

Table 2 Coefficient of variation (CV) of IBI distribution during
23–28 DIV

Target rate/fraction
excitatory cells

0.80 0.90 0.98

1.9 0.4046 0.4052 0.3511

1.0 0.8513 0.7407 0.6378

0.1 0.9514 0.9078 –

val plotted. We hypothesize an explanation, supported by a
lack of a peak in this simulation’s IBI power spectrum, that,
for the most part, IBIs were stochastic and between 1–3 s.
However, occasionally, the system’s state was perturbed into
the neighborhood of a period-2 attractor with an IBI between
1–2 s. A sequence of IBIs alternating between 1–2 s and 0–
0.5 s was then produced, until an interval greater than around
2 s was produced (note the cluster near the Y axis extended
up to around 3 s), at which point the system’s state escaped
that attractor’s neighborhood and reentered the apparently
stochastic region of its state space.

5 Discussion

We have presented results of activity-dependent growth and
neural activity integrated together in closed-loop simulations
of dissociated cortical tissue cultures for their full develop-
mental time span and for realistic network size. This was
used to explore a simple, activity-dependent growth model
that doesn’t involve neurite guidance or LTP, to see how much
of network behavior can be explained. This is complementary
to recent work by Gritsun et al. (2012) that examined a pair
of open-loop simulations: one generating neurite outgrowth
via chemotaxic guidance and one using the resultant connec-
tivity to examine network spiking behavior. In the current
simulation, however, the network changes itself through its
own activity. Moreover, this simulation allows us to investi-
gate just how simple a model of network formation is suf-
ficient to reproduce observed bursting behavior. In general,
we show that complicated development/connectivity models
(such as those incorporating LPT/LTD, random connectiv-
ity, long-distance connections, or detailed neurite topology)
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Fig. 13 Evolution of GEV distribution parameters for inter-burst inter-
vals (solid line for location (μ)—corresponding to distribution mean—
and dashed line for scale (σ )—corresponding to distribution variance;

95 % CIs shown as error bars). 100 simulation epoch, non-overlapping
time windows used. ε indicated at left and fraction excitatory cells indi-
cated above

Table 3 GEV distribution parameters (including 95 % CIs for the parameters) between 23 and 28 DIV for each simulation

(Target rate, fraction
excitatory cells)

ξ σ μ

(1.9, 0.80) −0.1816 (−0.1860, −0.1772) 0.7377 (0.7242, 0.7514) 1.5058 (1.4852, 1.5264)

(1.0, 0.80) 0.3326 (0.2955, 0.3697) 0.7606 (0.7398, 0.7821) 0.7698 (0.7456, 0.7941)

(0.1, 0.80) 0.5777 (0.3675, 0.7878) 22.9950 (19.1373, 27.6304) 25.8650 (21.5988, 30.1311)

(1.9, 0.90) −0.0741 (−0.0926, −0.557) 1.0366 (1.0100, 1.0639) 2.4695 (2.4310, 2.5079)

(1.0, 0.90) 0.2628 (0.2147, 0.3109) 2.4257 (2.3165, 2.5400) 3.6092 (3.4749, 3.7436)

(0.1, 0.90) 0.5401 (0.3064, 0.7739) 27.6732 (22.7352, 33.6837) 31.1553 (25.5226, 36.7880)

(1.9, 0.98) 0.0063 (−0.0141, 0.0268) 0.7824 (0.7621, 0.8033) 2.4605 (2.4317, 2.4893)

(1.0, 0.98) 0.2879 (0.2427, 0.3330) 1.9881 (1.8996, 2.0806) 3.7917 (3.6844, 3.8990)

(0.1, 0.98) – (–, –) – (–, –) – (–, –)
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Fig. 14 First order return maps of inter-burst intervals for 23–28 DIV. ε indicated at left and fraction excitatory cells indicated above

are not necessary to explain network bursting, to replicate
many bursting characteristics, nor to replicate their evolu-
tion. A closed-loop model that couples neurite outgrowth
with neuron activity and includes simple long-time-scale
dynamics (here, synaptic facilitation and depressions) is
sufficient.

Even with the relatively small number of simulations
completed here, some conclusions can be drawn regarding
the effects of two simulation parameters, fraction of excita-
tory cells and target firing rate, on overall network behav-
ior. These two parameters relate to two different aspects of
the simulation: network structure (in terms of the balance of
excitation and inhibition) and neurite outgrowth (and thus
extent of interconnectivity). In this discussion, we describe
the influences of these parameters on network behavior (burst
shape and timing), network connectivity patterns, the poten-
tial influence of each on the other, and compare these results
with previous investigations of activity-dependent neurite

outgrowth and bursting activity in living cortical tissue cul-
tures and short-duration simulations.

By comparison with previous results for small networks,
the work here clearly shows the importance of network scale
for behavior (Stiber et al. 2007). That earlier work was largely
identical to the current report in methods, with the exception
of using smaller, 100-neuron networks. With such small net-
works, only global bursting driven by a hysteresis relation-
ship between the slow variable (growth rate) and the average
electrical activity in the network (Babloyantz and Destexhe
1991; Destexhe and Gaspard 1993), such as that exhibited
here by (0.98, 0.1), occurred. These kinds of oscillations in
connectivity were similar to those observed in smaller, 16-
cell simulations (van Ooyen and van Pelt 1996).

It is important to note that both connectivity patterns and
network spiking behavior are emergent properties of net-
work changes as directed by simulation parameters. Individ-
ual cell firing rates affect connectivity patterns, mediated by

123



Biol Cybern (2014) 108:423–443 439

target rate, which in turn affects firing rates and, eventually as
development progresses, burst shape and timing. The bursts
themselves affect neuron firing rates and thus connectivity.
Similarly, the distribution of inhibition affects firing rates,
connectivity, and bursting in a feedback loop. Moreover, the
model employed is fairly parsimonious and thus reduces the
space of mechanisms likely to be essential for generating the
bursting behaviors seen in the living preparations.

5.1 Burst shape

While we can compare evolution of burst shape in a qual-
itative manner, it is difficult to make precise quantitative
comparisons, due to the fact that experiments must sample
network activity via electrode arrays. Other large-scale sim-
ulation work also chooses to report sampled data, rather than
whole-network activity, generally not documenting the sam-
pling algorithm used (Gritsun et al. 2012). From a practical
point of view, given the number of parameters in any model,
it is unrealistic to expect precise quantitative comparisons in
any event.

Generally speaking, as connectivity developed, bursts
started at low intensity and long duration, as shown in Fig. 8.
As bursts grew more intense and briefer, the net result was
that the number of spikes in each burst stayed surprisingly
constant (Fig. 10). This is consistent with the latter phase of
development observed in experiments using dissociated rat
cortex cells cultured on planar multi-electrode plates, which
demonstrated age dependent network burst patterns (van Pelt
et al. 2004b,a). In general, those experiments showed that:

– Initially short and slightly skewed bursts lasting on the
order of 1–2 s evolved, during the 3rd week in vitro
(WIV), into long-lasting bursts of about 6s with almost
symmetrical firing rate profiles.

– At later ages (about 4th WIV), network bursts tightened
up to about 200 ms. Bursts at this age were characterized
by highly synchronized onsets, reaching peak firing lev-
els within less than 60 ms—this pattern persisted for the
rest of the culture period.

Note that those previous results used a different definition
of burst onset and offset, based relative to each burst’s peak
firing rate rather than determined to segment each burst from
the background interburst activity. This could explain some
of the deviation between those and the current results.

Another possible cause for this difference could be the fact
that, in the living preparation, neocortical cell cultures pass
through a period of delayed development of synaptic inhibi-
tion relative to excitation (Ramakers et al. 1994; Huizen et
al. 1985). Increasing inhibitory feedback later on might have
the effect of prolonging the bursts (van Pelt et al. 2004a).

Since our model applied the same growth rate to excita-
tory and inhibitory cells, this might be one of the factors
that made a difference. Burst durations at later ages (about
4th WIV) were about 200 ms, which are consistent with our
results.

Maximal firing rates reported vary considerably, possi-
bly depending critically on the particulars of the electrode
array used (for the living preparations) or algorithms used to
subsample simulated activity (for computer models). Max-
imal firing rates reported during bursts range from around
500 spikes/s [for example, van Pelt et al. (2004a)] to around
5,000 spikes/s [for example, Gritsun et al. (2012)]. Depend-
ing on one’s assumptions regarding the number of neu-
rons recorded by each electrode, these results might cor-
respond to a range of 8–100 spikes/second/neuron (ignor-
ing the issue of fraction of neurons participating in any
particular burst); our results, with burst peak APNFR of
around 40–100 spikes/second/neuron), are consistent with
these.

In the current simulations, there is a definite region of
parameter space that produced sustained, stationary burst-
ing. We did not, however, adjust the distribution of firing
rates for endogenously active cells as we changed the tar-
get firing rate. It is possible that the behaviors seen for the
lowest target firing rate (0.1 Hz) would have been greatly
altered if we had made the same factor of 10 adjustment
in endogenously active cell firing (in that case, considering
endogenously active cell firing rate as relative to target rate,
rather than in absolute terms). As it stood, almost all endoge-
nously active cells were firing faster than the target rate, and
thus, their connectivity to the rest of the network was all but
extinguished for a target rate of 0.1 Hz. Thus, at this low-
est rate, bursts were still growing more intense and briefer
at the end of the simulations, leading in the case of (0.98,
0.1) to global bursting likely the result of hysteresis-based
switching between two stable firing regimes—one fast and
one slow—as connectivity grew and ebbed.

It is interesting to compare these results with theoreti-
cal and experimental analysis of bursting in randomly con-
nected networks with endogenously active cells (Latham
et al. 2000a,b). Such analysis indicated that the number of
endogenously active cells changed network behavior among
low firing rate, bursting, and high firing rate. Changes in con-
nectivity for the (0.98, 0.1) case was equivalent to varying
endogenously active cell input to the rest of the network,
switching it between low and high firing rate.

The effect of inhibition on burst shape was similarly most
pronounced at the extreme value in which 20 % of the cells
were inhibitory. Except for the lowest target rate, this led
to wider, less intense, more frequent bursts that appeared
to be continuing toward extinction. The interplay between
this behavior and connectivity is discussed later in this
paper.
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5.2 Burst timing

Both inhibition and target rate had clear effects on burst tim-
ing. Target rate had a very strong effect on interburst interval
distribution, as shown in Fig. 13 and Table 3. Lower tar-
get rate induced higher ξ value (longer tail), higher σ value
(more irregular), and higher μ value (longer IBIs; also seen in
Fig. 11 as fewer bursts per unit time). The values of the GEV
parameters were in the range of those from living prepara-
tions (Gritsun et al. 2011). Because the number of spikes per
burst was relatively constant (Fig. 10), these changes meant
that rate of burst production was the primary mechanism for
network adaptation toward the target firing rate.

Similarly, at the lowest fraction of excitatory cells (0.80),
less intense bursts with fewer spikes per burst were produced.
Thus, the primary mechanism for network adaptation toward
the firing rate was also rate of burst production.

Though the GEV scale values (σ , Table 3) show little sys-
tematic effect, the coefficient of variation (CV, σ/μ, Table 2)
clearly indicated that bursts were relatively more irregular as
inhibition increased and target rate decreased.

5.3 Connectivity

The basic plots, Fig. 6, show individually the common ele-
ments of interconnection evolution during network growth.
These are summarized in Fig. 7, which also illustrates a clear
dependency on simulation parameters.

Overall, radii of all neurons grew until there was sufficient
overlap for each cell’s net input to perturb its growth. At that
point, the most striking simulation feature is the divergence
of growth rates of inhibitory versus excitatory cells. In all but
the simulations with greatest inhibition, excitatory cell radii
continued to grow, while inhibitory cells’ radii on average
decreased. This is in part consistent with smaller (36 neu-
ron) simulations of neurite outgrowth that showed a transient
overshoot in connectivity (van Ooyen et al. 1995). However,
in that other work, there was an overshoot in all connectivity,
not just inhibitory.

The most obvious parameter dependency of connectiv-
ity is what might be a bifurcation in parameter space lying
between 80 and 90 % excitatory neurons. For simulations
on one side of the possible bifurcation point (fraction of
excitatory cells = 0.80), inhibitory and excitatory cells’ radii
diverged but inhibitory cells’ radii were, on average, greater
than those of excitatory cells. On the other side (fraction of
excitatory cells = {0.90, 0.98}), inhibitory cells’ radii were,
on average, less than those of excitatory cells.

It makes sense that less bursting would translate into
reduced neuron activity and thus correlate with wider con-
nectivity. What remains unexplained is why this affected, for
the most part, only the inhibitory cells or in which direction
the causal relationship worked (i.e., does less bursting cause

Table 4 Mean neurite radii of ordinary excitatory neurons at simulation
end (excitatory, non-spontaneously active, interior neurons)

Target rate/fraction
excitatory cells

0.80 0.90 0.98

1.9 2.1988 2.0990 1.8334

1.0 2.4285 2.1235 1.8229

0.1 2.9991 2.8485 2.2982

Table 5 Mean neurite radii of inhibitory neurons at simulation end

Target rate/fraction
excitatory cells

0.80 0.90 0.98

1.9 4.6770 0.8673 0.9525

1.0 5.8238 0.8964 0.9828

0.1 5.1943 1.3611 1.4618

wider connectivity or vice versa). In addition, in those sim-
ulations, there was no transient overshoot and all radii were
still increasing at the end of the simulation. This may be par-
tially at variance with much smaller outgrowth simulations,
in which stronger inhibition (via strengthened synapses, not
larger numbers of inhibitory cells) increased overshoot (van
Ooyen et al. 1995; van Ooyen and van Pelt 1996), though even
in those simulations, higher inhibition levels would cause
indefinite radii increase.

Given the rough parameter space exploration here, the
quantitative relationship between simulation parameters and
connectivity can only be outlined. Tables 4 and 5 present
the final mean excitatory and inhibitory radii. Generally
speaking, for excitatory cells, connectivity grew shorter
range as target rate increased. However, the change was not
dramatic—nowhere near proportional to the change in tar-
get rate. This reinforces the idea that average network firing
rate, and that of individual neurons, was primarily mediated
by rate of burst production, which indeed is what is shown
in Fig. 11.

Just as the fraction of excitatory cells imposes a clear qual-
itative change in network connectivity behavior, the quanti-
tative effect of this parameter is also much clearer. As frac-
tion of excitatory cells increased, connectivity grew shorter
range—there does not seem to be any explanation needed
other than the obvious lower need for excitatory input. On
the other hand, inhibitory cells seemed much more sensi-
tive to the presence or absence of stationary bursting. On
one side of the putative bifurcation, the decrease of excita-
tory cells from 98 to 90 % (fivefold increase in inhibition
from 2 to 10 %) decreased inhibitory cell radii around 10 %;
crossing that bifurcation, the change to 80 % excitatory cells
(twofold increase in inhibition to 20 %) resulted in an enor-
mous increase in inhibitory radii.
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Table 6 Standard deviation of neurite radii of ordinary excitatory neu-
rons at simulation end (excitatory, non-spontaneously active, interior
neurons)

Target rate/fraction
excitatory cells

0.80 0.90 0.98

1.9 0.1614 0.1305 0.1287

1.0 0.1618 0.1299 0.1388

0.1 0.1050 0.0897 0.1030

Table 7 Standard deviation of neurite radii of inhibitory neurons at
simulation end

Target rate/fraction
excitatory cells

0.80 0.90 0.98

1.9 1.0497 0.0329 0.0062

1.0 0.3883 0.0522 0.0061

0.1 0.6084 0.1062 0.0160

Those observations were for average connectivity radii.
Tables 6 and 7 summarize the final standard deviations for
excitatory and inhibitory cells, respectively (which can also
be seen in Fig. 7). While higher target rates led in some cases
to more variability in connectivity for excitatory cells, this
relationship was not strong. The effect of changing inhibition
on inhibitory cell radii variability was much clearer, with
increasing inhibition leading to greater variability, as in other
investigations (van Ooyen et al. 1995). Remember that the
(0.98, 0.1) simulation didn’t result in bursting at all.

5.4 Interplay of connectivity and bursting behavior

We can draw some tentative conclusions regarding the inter-
play between connectivity and bursting behavior. With higher

target rates, connectivity grew (arguably) slightly narrower
while IBIs grew more regular. Greater inhibition produced
clearly more irregular, wider connectivity and more irregu-
lar IBIs. Given that the time scale of outgrowth was greater
than that of bursting behavior, we conclude that narrower,
more regular connectivity produced more regular IBIs, while
wider, irregular connectivity produced more irregular IBIs.
It is important to note, however, that the effects of varying
the two simulation parameters were not straightforward.

Going forward, it may be profitable to consider this in the
context of cluster point processes (Gómez et al. 2005). The
timing of bursts can be thought of as a primary process; the
timing of individual neurons’ spikes, a subsidiary process.
This conceptually decomposes the network’s activity into
two parts: the timing of the bursts and the timing of indi-
vidual cells’ spikes within each burst. As cells’ connectivity
radii increased, they integrated a larger number of other cells’
spike trains. This pooling reduced the net variability induced
in each neuron’s behavior due to inter-neuron (subsidiary
process) variability arising from their independent noise and
internal parameter differences. The result was greater vari-
ability in the observed primary process, which is merely the
collective behavior of the entire network. Understanding how
different poolings of subsidiary process events in a recurrent
network can lead to variability in primary process events—
how bursting emerges from the interactions of a huge number
of neurons and synapses—will require an examination of the
spatio-temporal activity of the entire network to compare
activity at the time scales of spiking and bursting.

6 Appendix: Neuron and synapse parameters

See Tables 8 and 9.

Table 8 Neuron parameters

Parameter Model Summary Unit Value

tm Neuron The membrane time constant sec 3.0 × 10−2

Cm Neuron The membrane capacity C 3.0 × 10−8

Rm Neuron The membrane resistance Ohm 1.0 × 106

Vresting Neuron The resting membrane voltage Volt 0.0

Vthresh Neuron The threshold voltage Volt [13.565 × 10−3, 13.655 × 10−3] for
spontaneously active neuron, 15.0 × 10−3

for other neuron

Vreset Neuron The voltage to reset Vm to after a spike Volt 13.5 × 10−3

Inoise Neuron The standard deviation of the noise to be
added each integration time constant

Ampere [1.0 × 10−9, 1.5 × 10−9]

Vinit Neuron The initial condition for Vm at time t = 0 Volt [13.0 × 10−3, 13.5 × 10−3]
Trefract Neuron The absolute refractory period sec 3.0 × 10−3 for excitatory neuron, 2.0 × 10−3

for inhibitory neuron
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Table 9 Synapse parameters

Parameter Model Summary Unit Value

Iinject Neuron The constant current to be injected into the LIF neuron Ampere 13.5 × 10−9

U Synapse The use parameter II:0.32

IE:0.25

EI:0.05

EE:0.5

D Synapse The time constant of the depression sec II:0.144

IE:0.7

EI:0.125

EE:1.1

F Synapse The time constant of the facilitation sec II:0.06

IE:0.02

EI:1.2

EE:0.05

W Synapse The weight (scaling factor, strength, maximal amplitude) II:−19

IE:−19

EI:60

EE:30

τs Synapse The synaptic time constant msec II:6

IE:6

EI:3

EE:3

delay Synapse The synaptic transmission delay msec II:0.8

IE:0.8

EI:0.8

EE:1.5

II inhibitory to inhibitory; IE inhibitory to exitatory; EI exitatory to inhibitory; and EE exitatory to exitatory synapses
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