
Biol Cybern (2013) 107:263–288
DOI 10.1007/s00422-013-0555-5

REVIEW

A review of cell assemblies

Christian R. Huyck · Peter J. Passmore

Received: 17 January 2012 / Accepted: 6 March 2013 / Published online: 5 April 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Since the cell assembly (CA) was hypothesised,
it has gained substantial support and is believed to be the
neural basis of psychological concepts. A CA is a relatively
small set of connected neurons, that through neural firing can
sustain activation without stimulus from outside the CA, and
is formed by learning. Extensive evidence from multiple sin-
gle unit recording and other techniques provides support for
the existence of CAs that have these properties, and that their
neurons also spike with some degree of synchrony. Since the
evidence is so broad and deep, the review concludes that
CAs are all but certain. A model of CAs is introduced that is
informal, but is broad enough to include, e.g. synfire chains,
without including, e.g. holographic reduced representation.
CAs are found in most cortical areas and in some sub-cortical
areas, they are involved in psychological tasks including cat-
egorisation, short-term memory and long-term memory, and
are central to other tasks including working memory. There
is currently insufficient evidence to conclude that CAs are
the neural basis of all concepts. A range of models have been
used to simulate CA behaviour including associative mem-
ory and more process- oriented tasks such as natural language
parsing. Questions involving CAs, e.g. memory persistence,
CAs’ complex interactions with brain waves and learning,
remain unanswered. CA research involves a wide range of
disciplines including biology and psychology, and this paper
reviews literature directly related to the CA, providing a basis
of discussion for this interdisciplinary community on this
important topic. Hopefully, this discussion will lead to more
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formal and accurate models of CAs that are better linked to
neuropsychological data.
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1 Introduction

The cell assembly (CA) hypothesis states that a CA is the
neural representation of a concept (Hebb 1949). The CA
hypothesis (and indeed Hebb’s related learning rule) has been
increasingly supported by biological, theoretical, and simu-
lation data since it was made. The CA can act as a categoriser
of sensory stimuli, so the presentation of an object (for exam-
ple, an orange) to an individual may cause a particular CA to
become active, allowing the individual to identify the object
as an orange. Similarly, CAs can be activated without direct
sensory stimuli, so a person’s CA for orange will ignite when
they think about an orange.

CAs are composed of neurons, so they are an interme-
diate structure smaller than the entire brain, yet larger than
neurons. CAs provide an organising principle for the study
of mind and brain, though certainly not the only organising
principle. Moreover, CAs cross the boundary between psy-
chology and neurobiology, because psychological concepts
emerge from the behaviour of neurons.

As the neural representation of a concept, the CA is
extremely important, but there is no general agreement on
its definition, and the scientific community’s understanding
of CAs is incomplete. Many in the community support the
idea of CAs, but others are not confident that CAs exist. Per-
haps this is due to the range of disciplines that make use of the
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concept. This paper brings together the community’s current
understanding of this important concept.

This paper reviews evidence supporting the CA hypothe-
sis, and evidence that further explains CA behaviour, func-
tion, and structure. While our conclusion does ultimately rely
on converging evidence, we have read a significant fraction
of the research literature and have actively sought evidence
against our conclusion that CAs exist in mammalian brains.
A range of psychological, biological and modelling evidence
is used to develop a picture of current understanding of CAs.
While there is a rich knowledge of CAs, there are many unan-
swered questions involving CAs, and this paper discusses
some of them.

1.1 Hebb’s cell assembly hypothesis

Hebb’s CA hypothesis (Hebb 1949) states that a CA is a
collection of neurons that is the brain’s mechanism for rep-
resenting a concept. This hypothesis ties neurobiology to psy-
chology in that the collection of neurons is a neurobiological
entity, and the concept that they support is a psychological
entity. A simple example would be that a person’s concept of
dog is neurally implemented by a set of their neurons, their
dog CA. CAs encode elements of higher cognitive processes
like words, mental images and other types of concepts.

The standard model, derived directly from Hebb (1949), is
that these neurons have high mutual synaptic strength. When
a sufficient number of them fire, due to, for example, mention
of the word dog, they cause other neurons in the CA to fire,
which in turn cause other neurons in the CA to fire, leading
to a cascade of neural firing. This neural circuit can persist
long after the initial stimulus has ceased. The psychological
correlate of this persistent firing of the neurons in the CA
is a short-term memory (STM); without further support, this
reverberation can persist on the order of seconds.

The high mutual synaptic strength is a result of Hebbian
learning. The neurons have co-fired in response to earlier
stimuli, and this has caused the strength of the synapses
between them to increase. Thus, the CA is typically formed
due to repeated presentation of similar stimuli, and thus rep-
resents a long-term memory (LTM).

Knowledge of brain physiology and pharmacology has
advanced greatly since Hebb’s day, but, while taking account
of more modern knowledge, the CA hypothesis still rests
on three theoretical “principles” about CAs being organized
collections of neurons. These principles are

1. A CA is a relatively small set of neurons, which encodes
each concept.
With an estimated 1011 neurons in the human brain
(Smith 2010), the authors suggest a range of likely CA
sizes in terms of potentially constituent neurons, as being

103 to 107 neurons per CA. At the lower end of the range,
we suggest CAs are more likely to be atomic1, whereas at
the upper end of the range we imagine super-CAs com-
posed of many sub-CAs at many levels; e.g. one might
consider a cognitive map (Buonomano and Merzenich
1998; McNaughton et al. 2006) as such a super-CA. Note
also, at the individual neuron level, it is assumed that a
neuron may be a member of different CAs.

2. The neurons of a CA can show self-sustaining persistent
activity.
This persistent activity is often called reverberation. The
basic idea is that the neurons of a CA fire at an ele-
vated rate after the initial stimulation that ignited the
CA. (Please note, we consider that when substantially
activated, neurons emit a spike or “fire”, whereas acti-
vated CAs are said to “ignite” (Braitenberg 1978), and
potentially remain ignited and active for seconds.)

3. A CA’s set of neurons, which represents a particular con-
cept, is learned
Typically, this learning is assumed to be through synaptic
weight change. However, neural death, neural growth,
synaptic death, and synaptic growth may all play a part
in the growth of the CA, all within a Hebbian learning
framework.

These principles are the basis of the standard model, which
is further discussed, along with some of its variants, in Sect.
2.6. Important activities occur in the brain at a range of time
scales, and the CA provides coherence on at least two of these
scales, seconds for STM, and years for LTM.

1.2 What’s in the rest of the paper

Section 2 provides a relatively brief summary of the neural
data that supports the existence of CAs in human and other
mammalian brains. This section is driven by neural behav-
ioural data linked to psychological behavioural data, and
these data provide compelling evidence that CAs do exist
in mammalian brains. Though the CA model is informal,
this section also introduces a standard model and some of its
variants, while discussing one model that is clearly not a CA.

The existence of CAs leads to a series of questions about
their location, function, and form. Section 3 reviews cur-
rent understanding of these questions and their, tentative,
answers; this and later sections are necessarily more specula-
tive. One psychological system that is of particular interest is
working memory, and Sect. 4 deals with its relations to CAs
in some depth. These questions are more complex than the
existence question, and thus their answers depend more on
analysis of psychological behaviour, arguments from theory,

1 An atomic CA is not composed of other CAs.
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and simulation. These complex questions, combined with
the difficulty of analysing the behaviour of CAs composed
of thousands or millions of neurons, currently leave mod-
elling as the best method of addressing these questions about
CAs. Section 5 reviews models of CAs, and computational
systems that use them.

CAs do not provide all the answers to understanding the
brain, nor are they fully understood. In the hope of advanc-
ing the understanding of CAs, Sect. 6 discusses some current
questions about CAs, particularly some questions involving
learning. It also notes that CAs may vary from concept to con-
cept, and within one concept over time. Section 7concludes
this paper.

The primary concern of this paper is the functioning of
humans both psychologically and neurally. However, this
functioning is similar to that of other animals, in particu-
lar, other primates and other mammals. Consequently, much
of the evidence is drawn from animal studies.

Before turning to evidence of CAs in the brain, a final prob-
lem we faced building this review is that not all the potentially
relevant papers actually mention CAs, or near synonyms such
as neuronal ensembles. In this review, we tend to cite papers
that are explicitly about CAs, and we can only cite a sam-
ple of the papers we have looked at, and these, realistically,
are only a fraction of the published literature. The papers
that were included were highly cited, seminal, central to our
arguments, and usually some combination of the three. We
also frequently omitted second papers from authors, as the
first provided the link to the body of work.

2 Existence of cell assemblies

Hebb proposed CAs as a solution consistent with the physio-
logical and psychological data available in the 1940s. Since
that proposal, there has been a vast amount of scientific evi-
dence uncovered supporting his hypothesis that the neural
basis of concepts are sets of neurons that remain persis-
tently active and are formed by some sort of Hebbian learning
mechanism.

The basic structure of the brain is a loosely coupled net
of neurons where neurons are firing constantly at a low rate.
Other cells, such as glia, are widely considered to have lit-
tle cognitive effect at the level of individual concepts. This
neural structure is capable of supporting CAs with the CA
igniting when only a small subset of its neurons initially fire
(see Sect. 2.1).

CAs require population coding (principle 1), which is also
called ensemble coding. A relatively small set of neurons
is the basis of each CA, with neurons able to participate
in multiple CAs. The evidence supports the use of popu-
lation coding throughout the brain (Averbeck et al. 2006a,
and see Sect. 2.2) a review article shows that population

coding accurately correlates with a range of cognitive states
(Schoenbaum 1998), and a vast range of specific studies sup-
port different aspects of population coding.

There is a large body of evidence for persistent activity
(principle 2) (see Sect. 2.3) and for a fourth principle, syn-
chronous neural firing correlated with cognitive states, (see
Sect. 2.4). This evidence provides very solid support for the
existence of CAs. The data related to learning (principle 3)
provide further support for the existence of CAs (see Sect.
2.5). A set of neurons that adhere to these four principles are
a CA.

Several articles provide reviews of different sorts of evi-
dence for CAs. A wide range of data are presented showing
that neural firing behaviour supports a CA model (Harris
2005). Spike trains show structure that is not present in the
stimulus, and they are not strictly controlled by sensory input;
spikes are coordinated, and firing behaviour correlates with
internal cognitive states. A range of data, including imaging
data such as PET and MEG, but also behavioural, lesioning
and event-related potential data, suggests that CAs for words
are distributed in brain areas that are semantically specific
(Pulvermuller 1999). For instance, the CAs for action words
include neurons in motor cortices. Some of the evidence from
the sources in these reviews is recounted in the remainder of
this section.

2.1 Anatomical data

When developing his hypothesis, Hebb considered several
anatomical theories that still have substantial scientific sup-
port. Two in particular are that neurons are constantly active
throughout the brain, and that large amounts of cortex can be
removed with apparently little effect. Since 1949, there have
been many advances in the understanding of neuroanatomy,
with, for instance, more modern evidence showing that each
neuron tends to fire about once a second (Bevan and Wil-
son 1999; Bennett et al. 2000), providing a large range of
background activity.

When a neuron fires, it sends activation to neurons to
which it is connected, and neurons that have received a great
deal of activation fire (Churchland and Sejnowski 1999). Par-
ticular sets of neurons are driven at particular times, leading
to firing rates as high as every 5ms (Ylinen et al. 1995). Most
neurons lose their activation when they fire, and need more
activation to fire again (Krahe and Gabbiani 2004). Almost
all of the synapses of a neuron connect to a unique neuron,
and there are rarely as many as three synapses to one neu-
ron from a given neuron (Braitenberg 1989). Several neurons
need to fire as input to a neuron to make it fire (Churchland
and Sejnowski 1999; Bruno and Sakmann 2006).

Since many neurons are required to make another neu-
ron fire, and there is a large amount of background activ-
ity, a large number of neurons need to fire to make another
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neuron reliably fire. However, many neurons firing together
can make many other neurons fire, so groups of neurons will
tend to fire together. Sparse connectivity supports population
coding (see Sect. 2.2). Furthermore, since neurons can be
removed with little cognitive impact, the cognitive elements
must depend on a large distributed set of neurons.

Similarly, connectivity and firing support persistent activ-
ity (Sect. 2.3), because an initially firing set of neurons can
cause a second set to fire, which can in turn cause the first set
to fire. Of course, this behaviour need not be limited to two
non-overlapping sets of neurons, so the neurons in both sets
can fire at an elevated rate.

Broadly speaking, the cortex is an enormous collection
of neurons that is not easily separable into smaller structures
(Braitenberg 1989). At a coarse grain, the cortex has a laminar
architecture, that is a roughly 2,000 cm2 sheet with six thin
layers (Martini 2001), and this paper mostly considers cor-
tical CAs (but see Sect. 3.1.4). Neuroscientists have divided
the cortex into areas (e.g. Brodmann areas), and when there
are feed forward connections from one area of the brain to
another, there are almost always connections back from the
second to the first (Lamme et al. 1998). These recurrent con-
nections could support CAs that cross brain areas and thus
integrate features over a range of complexities and modali-
ties.

2.2 Cell assemblies and population coding

The first principle of the CA hypothesis is that each concept
is represented by a set of neurons. With population coding,
a particular concept is coded by a set of neurons that fire at
an elevated rate when the concept is perceived or is in STM.

An alternative to population coding is that a single cell rep-
resents a concept, commonly known as the grandmother cell
(Barlow 1972). However, a single neuron cannot represent a
concept because neurons die, and one would lose the concept
of one’s grandmother if that grandmother neuron died. Evi-
dence available to Hebb also eliminates this possibility; the
loss of large areas of cortex would remove many concepts,
and background neural activity would cause the concepts to
pop on and off. More recently, the growing understanding
of the prevalence of neural death (Morrison and Hof 1997)
shows that the grandmother cell hypothesis is untenable.

The other extreme alternative to population coding is that
all of the neurons code for each concept, and particular
firing behaviour determines which concept is active. Hebb
argued against this sensory equipotentiality using the effects
of learning (see Sect. 2.5). Subsequently, substantial direct
evidence has supported population coding over equipoten-
tiality, e.g. a review shows population coding is used in a
wide range of brain areas (Schoenbaum 1998).

Much of the evidence for population coding, and other
phenomena, is derived from the widely used technique of
placing electrodes in or near a neuron to measure its elec-
trical potential. The electrodes can measure depolarisations
and thus neural spiking. Direct recording of neural activa-
tion levels and spikes is, to a large degree, an ideal way of
understanding the behaviour of a neuron because it shows
when neurons spike, and it is widely believed that spiking is
how most information is passed between neurons. Electrodes
have been used for neural recordings for quite some time (e.g.
Hubel and Wiesel 1962; Fuster and Alexander 1971). The
use of electrodes and other single unit recording technology
has improved and continues to improve. Still with current
technology, it is only possible to measure about 1,000 neu-
rons simultaneously. Improved techniques, for instance opti-
cal techniques (see Wallace and Kerr 2010 for a review), are
expanding the number of neurons that can be simultaneously
recorded. These single unit recording techniques can work in
vitro or in vivo, enabling measurement of neurons in behav-
ing animals, and are leading to a better understanding of CA
dynamics. Unfortunately, these measurements are intrusive,
so only in rare cases can performing neurons be measured
in vivo in humans using single unit recording. Moreover, the
relatively small number of neurons recorded means that it
is difficult to record relatively precise dynamics of a large
number of neurons in a living animal.

One piece of evidence for population coding using single
unit recording involves neurons in the macaque visual cortex
that show population coding of shape (Pasupathy and Con-
nor 2002) with specific neurons spiking rapidly when specific
curves are present at particular angles from the centre of the
object. Note that, in this case, firing behaviour is directly
linked to environmental stimuli. Several neurons respond to
the same feature, but the sampled neurons collectively allow
a vast number of objects to be uniquely identified. Popu-
lation coding allows neurons to respond differentially to a
range of stimuli, and collectively they can accurately repre-
sent a range of stimuli despite the noise of neural response
(Averbeck et al. 2006a).

Population coding supports a diverse range of group
behaviour. The simplest behaviour is that a set of neurons
all respond to a particular stimulus, this is a group of grand-
mother cells. In a more complex form, two groups of cells
can code for specific features, say lines of two given angles;
activation of varying numbers or varying degrees of each
set can represent an intermediate feature (Hubel and Wiesel
1962). The degree of overlap is a topological issue (see Sect.
3.2) that enables a range of behaviour including continuous
valued categories (see Sect. 3.3).

There is a vast amount of evidence of population coding.
Many of the papers described below show population coding
(e.g. Sakurai et al. 2004; Nicolelis et al. 1995; Sigala et al.
2008) and many papers mentioned in Sect. 3.1). These are
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just some of the thousands of experiments showing sets of
neurons with elevated spike rates during specific cognitive
events.

While a range of neurons may respond to a particular stim-
ulus, it is not entirely clear if all responding neurons con-
tribute to the perception. There is evidence (Purushothaman
and Bradley 2005) that only the most active neurons partic-
ipate. If only some of the firing neurons are involved in the
perception, the population coding uses fewer neurons.

Population coding does exist without CAs. For example,
neurons in the primary visual cortex use population coding,
but their elevated activity does not persist when environmen-
tal stimulus ceases (Hubel and Wiesel 1962, though see Sect.
3.1.2). The connection between these visual cortical neurons
may be insufficiently strong to support reverberation. There
does seem to be some confusion in the literature about this
issue with, in some cases, the term Cell Assembly referring
to population coding without reverberation (e.g. Liebenthal
et al. 1994). In this case, the authors would prefer the term
neuronal ensemble, ensemble coding, or indeed population
coding, all of which refer to both reverberating and non-
reverberating sets of neurons.

2.3 Persistent activity

The second principle of the CA hypothesis is persistent
activity; the CA reverberates (Sakurai 1998b). A CA can
remain active after environmental stimulus ceases, and this
reverberation enables the CA to act as an STM (see Sect. 4).
Figure 1 reproduces Hebb’s illustration of this reverberation.

Fig. 1 A reverberating circuit (reproduced from Hebb 1949)

In the figure, the nodes represent neurons, and the numbers
represent order of neural firing, and is meant as an illustration.
In measured CAs, this figure is an extreme simplification;
hundreds of neurons may spike in any given millisecond,
each neuron may spike many times in a second, and any two
neurons may not have the same order of spiking in subsequent
spikes.

The standard mechanism for showing persistence is neural
firing measured by single unit recording, and there is exten-
sive evidence of persistence. One review shows sustained
activation in a range of brain areas including premotor and
inferior temporal neurons (Funahashi 2001). For example,
prefrontal neurons of monkeys showedelevated firing, asso-
ciated with particular tasks, which persistsduring delay por-
tions of those tasks (Assad et al. 2000). Persistentactivity
has also been shown in rat motor cortex that correlates in
task specific ways (Isomura et al. 2009). Rhesus monkeys
display persistent neural firing that correlates with duration
(Sakurai et al. 2004), so sets of specific task general neurons
maintain specific durations.

Firing behaviour has been linked to cognitive states. For
example, rhesus monkeys show elevated neural spiking in
the prefrontal cortex and medialis dorsalis for times up to
a minute while attending and recalling a place for reward
(Fuster and Alexander 1971). Sets of neurons respond to the
cue, while other sets respond during the delay, and a third
set responds during both cue and delay. As this is not hand
or item specific, this suggests sets of neurons that support
rehearsal.

There is a range of neuron types, though a discussion is
beyond the scope of this paper (but see Klausberger et al. 2003
for example). While typical neurons (e.g. pyramidal) fire rel-
atively regularly given a constant input, other neurons are
bursty going through phases when they fire frequently, and
then not at all. Bursty neurons oscillate on scales of less than
once per second as shown by single unit recording, and this
type of persistent activity occurs throughout sensory, motor
and association cortices (Steriade et al. 1993). In vitro record-
ings of rat cortical cells showed persistent firing of stimulus
specific cells lasting on the order of 10 s (Larimer and Strow-
bridge 2009). Many cortical and subcortical regions exhibit
this type of behaviour (Seamans et al. 2003). Similarly, spiny
neurons change between up and down states at a similar rate,
and particular neurons have correlated changes (Stern et al.
1998).

There are a wide range of techniques that, unlike single
unit recording, are non-invasive, for example, fMRI, MEG,
and EEG are all widely used. Unfortunately, none directly
measures the behaviour of single neurons; instead they mea-
sure the behaviour of a large number of neurons. For example,
fMRI measures blood flow in a region of the brain which cor-
responds to elevated neural firing rates in brain areas show-
ing the aggregate behaviour of many thousands or millions
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of neurons. As these techniques are non-invasive, humans
can be measured relatively easily. fMRI has been used to
show persistent activity in human prefrontal cortex that cor-
responds with the duration of a working memory (Curtis
and D’Esposito 2003). Persistent firing is indicated by fMRI
when people locate the source of a sound (Tark and Curtis
2009). This occurs in the frontal eye field even though the
location is behind the subject, so there is no direct sensory
stimulus.

Transcranial magnetic stimulation is a non-invasive proce-
dure that raises activity (neural firing) in specific areas of the
brain. If it is done before stimulus, the stimulus is recognized
faster, but if it is done during processing, processing is inter-
rupted (Silvanto and Muggleton 2008). Before stimulus, this
is consistent with raising all neural activity in the area which
speeds recognition by helping the winning CA ignite faster.
During processing, the increased activity causes competing
CAs to ignite inhibiting already ignited CAs.

2.4 Correlated activity and functional connectivity

There is evidence that neurons that react to the same stimulus
or cause the same action fire synchronously. Modellers have
used the saying “neurons that wire together, fire together”. If
two isolated neurons fire at an elevated rate, there is no par-
ticular reason for a relation between the firing times, but as
neurons that are directly connected affect each other’s firing,
their mutual firing timings may be correlated. If a large num-
ber of neurons are responding to a particular stimulus, they
should have correlated firing. Simulation evidence shows that
these synchronously firing sets of neurons can be learned
using Hebbian learning (Levy et al. 2001).

Correlated activity is not one of Hebb’s principles. von der
Malsburg (1981) introduced correlated activity as an exten-
sion of the basic CA theory of the day, proposing it as a
solution to the binding problem (see Sect. 5.2.2). Extensive
mathematical, simulation, and biological evidence indicate
that neurons involved in processing the same percept have
correlated activity. This enables synchrony to act as evidence
that a particular set of neurons population code a concept
(e.g. Bressler 1995; Sigala et al. 2008); if they are persistent,
and the concept has been learned, synchrony is evidence that
particular neurons are firing in support of the same cognitive
event.

A review article indicates that correlated firing occurs in
virtually all brain areas, and can be used to coordinate activity
across areas (Bressler 1995). For example, it has been shown
that frontal cortical neurons in monkeys fire synchronously
in response to a particular object (Abeles et al. 1993). This
synchrony is statistically significant, but not precise to the
millisecond level.

Another example shows neurons in the monkey prefrontal
cortex coding for task order. Neurons had highly correlated

elevated firing rates for particular events in a sequence,
and different elements had an orthogonal set of neurons
(Sigala et al. 2008). Similarly, there is highly correlated activ-
ity in neurons in the prefrontal cortex showing associations
between sensory modalities (Fuster et al. 2000). Neural fir-
ing in the rat anterior cingulate cortex was measured using
multiple single unit recordings, and the neurons tracked each
aspect of the task by entering collectively distinct states. Neu-
rons were correlated with specific other neurons in a task
and state-dependent manner. This indicated that the corre-
lated neurons were members of particular CAs (Lapish et
al. 2008), because they population coded for a concept, per-
sisted, and were learned; that is, CAs were involved in higher
order cognitive processing.

Externally measured neural firing in the rat hippocampus
can be used to determine the location of the rat, and there
is synchronous firing of neurons associated with a particular
location. However, firing synchrony is statistically more sig-
nificant than the correlation of single neurons with location,
so the best determinant of a neuron firing is not location but
the firing of particular other neurons (Harris 2005).

The evidence for synchronous firing is so significant that
it is has been called functional connectivity (e.g. Gazzaley
et al. 2004). Though the synapse between two neurons can-
not be easily traced, they are functionally connected because
they fire synchronously. Synchronous firing has been called a
signature of assemblies of cells as components of a coherent
code (Singer et al. 1997).

Another link between CAs and synchrony is that per-
cepts can be induced by synchronous presentation (Usher and
Donnelly 1998). When an ambiguous stimulus is presented,
flashing a subset of the stimulus at 16ms intervals leads the
subject to label the stimulus as an element of the category
consistent with the subset. The subjects do not notice the
flash and report a constant, ambiguous, stimulus. The visual
psychophysics experiments of Usher and Donnelly (1998)
are claimed to demonstrate that a global, cortically based,
visual binding and segmentation mechanism is sensitive to
stimulus asynchronies as low as 16ms. They attribute the
effect to synchronous neural activation representing spatially
separated stimulus elements. Although Usher and Donnelly
admit that further research is “required to test and reveal the
nature of the synchrony-binding mechanis”, asynchronies of
such short duration suggest that if their mechanism is CA
based (they do not discuss CAs), then a CA architecture that
can comfortably handle differences of a few milliseconds is
necessary and the obvious candidate mechanism is the syn-
chronous neural firing of CAs that maintains the genuine
asynchrony in the laboratory stimulus.

A third link between synchrony and CAs is shown using
voltage sensitive dyes. These dyes respond to the voltage
of cell membranes and thus can show the activity of neu-
rons; they are imaged using sensitive fast cameras pro-
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viding a picture of the membrane potential of many neu-
rons in a few mm square area, evolving rapidly (<.1 ms)
(Shoham et al. 1999). Experiments using these dyes showed
neurons in early visual areas spontaneously and synchro-
nously firing in the absence of visual stimulus; the firing is
correlated with firing of stimulus specific response (Grinvald
et al. 2003). Note that synchrony in this case is not linked with
persistence, but population coding.

Synchrony can also support interactions between CAs.
Evidence for CAs bound (see Sect. 5.2.2) by temporal syn-
chrony has been reviewed (Freiwald et al. 2001); for example,
neurons responding to a single moving bar respond in syn-
chrony as a gamma wave (Gray and Singer 1989). It has been
shown that neurons across different brain areas collaborating
in a task are synchronized, but are unsynchronized after the
task (Roelfsma et al. 1997).

Since binding can induce synchrony, if two neurons, or
sets of neurons, are firing synchronously, it does not mean
they are part of the same CA. However, it does imply they are
in some sense working together. However, the more circum-
stances that the neurons fire synchronously, the more likely
the neurons are to be part of the same CA.

Brain waves come in different forms (e.g. theta waves)
and emerge from populations of neurons firing roughly syn-
chronously. These oscillations are related to a long standing
theory of brain wave propagation (Beurle 1956). A review
describes how different frequencies have different cognitive
effects (Buzaski and Draguhn 2004), with slower frequen-
cies used to recruit larger groups of neurons. Theta waves are
slower than gamma waves, and it has been proposed that they
are used in working memory operations (Auseng et al. 2010).
Theta waves also support internal state consistency when rat
hippocampal ensembles that represent location switch from
the representation of one location to another on the theta wave
(Jezek et al. 2011).

One way of looking at CAs is that all neurons contribute
relatively independently. Another way is that waves of firing
create a form of short-term memory. This dynamical CA
hypothesis (Fujii et al. 1996) fits in with a synchrony theory
(von der Malsburg 1981).

The variety of waves provides different mechanisms for
supporting individual CAs and for linking CAs. These link-
ing mechanisms are not well understood, but it seems these
waves are a measurable property of interactions between
CAs.

2.5 Learning data

The third principle of the CA hypothesis is that CAs are
learned. Hebb used the prevalence of learned response in
making decisions to derive this principle. The importance
of learning fits in with the long-standing recognition of the
importance of learning to the functioning cognitive being

(James 1892). Hebb’s famous learning rule was introduced in
this context, and subsequently, substantial physical evidence
that this type of learning occurs has been found.

Hebb noted the importance of learned behaviour. For
example, eye blink to a moving object is a learned response,
though it is practically immune to extinction (Riesen 1947).
Later learning is based on earlier learning with early learn-
ing tending to be permanent. More recent neurophysiological
evidence of neurons becoming tuned to specific categories
has been unearthed (see Keri 2003 for a review).

There is substantial evidence of change in neural response
in adult animals that is correlated with cognitive learning. For
example, recording of two areas of rat motor cortex showed
increasing correlation of particular neurons as a task was
learned (Laubach et al. 2000). This enabled prediction of
success or failure of the animal performing the task from the
behaviour of recorded neurons alone. Another study of adult
monkeys shows recorded temporal cortical neurons becom-
ing tuned to specific category relevant features while learning
categories, and humans behaved similarly on the tasks (Sigala
et al. 2002). Similarly, gerbil primary auditory cortical neu-
rons become tuned to rising or falling modulated tones (Ohl
et al. 2001).

Another type of evidence comes from simultaneous activ-
ity, where learning-induced functional connectivity persists
for at least days in rats that have learned particular tasks (Baeg
et al. 2007). This connectivity increases rapidly during early
phases of learning, and then approaches an asymptote.

There is evidence that the hippocampus plays a spe-
cial role in the consolidation of memories (Sutherland and
McNaughton 2000). Also stimulation of in vitro hippocam-
pal cells creates temporally separated CAs (Olufsen et al.
2003). This implies that many CAs must include neurons in
several cortical areas including (at least in early stages of
learning) the hippocampus.

Items learned under high arousal persist longer, but are
more difficult to access initially. This is consistent with a CA
being formed; the CA formed under high arousal is difficult
to access initially since many of its neurons are in a refrac-
tory state (Kleinsmith and Kaplan 1963). One computational
model explains this via a CA-based simulation (Kaplan et al.
1991).

While an even brief review of the literature on sleep is
beyond the scope of this paper, sleep does play a role in
learning. For example, hippocampal place cells in rats that
are highly active during exploration show higher firing rates
during the next sleep cycle (O’Neill et al. 2008). Neurons that
co-fire in prefrontal cortex and hippocampus during activity
co-fire again in subsequent sleep and rest periods (Nitz and
Cowen 2008; Maquet 2001; Sutherland and McNaughton
2000).

There is a great deal of evidence of learning in adults, but
less onearlier learning. Behavioural research suggests that the
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ability to recognize objects improves throughout childhood
and adolescence (Nishimura et al. 2009).

There is neural evidence using fMRI that shows the early
visual areas complete their development for retinotopic map-
ping and contrast sensitivity by age seven, while later areas
for place, face and object selection take longer to develop
(Grill-Spector et al. 2008). One study uses fMRI to show that
the area of cortex devoted to face and place grows from chil-
dren to adolescents and on to adults while the corresponding
cognitive ability also grows (Golari et al. 2007). This does
not occur for object recognition implying the child (7 years
old) has fully or nearly fully developed object recognition
capacity.

Developmental studies have the problem of time. It takes
longer to run a developmental study compared to a relatively
brief study to learn a particular object or task. Overcoming
this problem, one study of visual object recognition of chil-
dren up to age one uses event-related potential as measured
by EEG. The study examined brain activity when presenting
novel and familiar toys and faces. Statistically significant
changes occurred throughout the year, though some types of
activity plateaued; e.g. the mid-latency negative component
(assumed as an obligatory attentional response) plateaus at
8 months (Webb et al. 2005). This indicates some early brain
changes that stabilize.

To this point, this section has used a converging evi-
dence approach with neural studies showing that some sets
of neurons use population coding, some persist, and some are
learned. One study shows a set of neurons that does all three
(Freedman and Assad 2006). Neurons in Macaque middle
temporal and intraparietal areas were recorded showing that
neurons responded with population coding to the movement
of objects in two particular sets of directions. These neurons
persistently fired during a delay. When the task changed so
that the monkeys had to respond to new sets of directions,
the population of neurons reorganised so that they responded
to the new categories. Similarly, primate prefrontal and cau-
date nucleus neurons population code for expected reward
or punishment (Histed et al. 2009). Many fire persistently
throughout the delay period, and as the task changes, the
neurons’ behaviours change.

2.6 The standard model and variants

The authors consider the category of CAs a natural kind, and
not one defined by necessary and sufficient conditions. Thus,
a model can be used to indicate the features that are central
to CAs. However, there really is no such thing as the stan-
dard CA model, but Hebb’s original idea is a good starting
point. CAs are typically considered to consist of neurons that
maintain persistent activity through strong connections with
all neurons being roughly similar, largely as described by
Hebb (1949).

A first modification of the model was the introduction of
inhibition (Milner 1957). Hebb did not have solid evidence
of inhibitory neurons or synapses, so left inhibition out of
the model. With subsequent biological support, inhibition
was added to the model, and supports competition between
neurons or CAs.

Neurons are firing constantly, and this background activ-
ity has been accounted for by Hebb’s standard theory. Back-
ground activity is not usually sufficient to ignite a CA, but
once sufficient additional firing has begun, activity in the
CA passes a critical threshold, the CA ignites, and can then
persist.

The authors also consider synchronous firing as part of
the standard theory. While not part of Hebb’s original theory,
there is broad evidence for synchronous firing in CAs, and
that it occurs is widely agreed in the scientific community.
However, the degree to which synchronous firing is used to
dynamically bind CAs is not widely agreed.

A neuron that never co-fires with the neurons in a CA is
not part of that CA. For that matter, one that is always out of
synchrony is also not part of the CA.

In addition to a widely agreed standard model, there are
several extensions. There is biological evidence for three
other mechanisms for sustaining persistent activity: synfire
chains, bistable neurons (Durstewitz et al. 2000), and short-
term potentiation (STP). In synfire chains, one set of neurons
activates another, then the second set activates a third, and so
on, until the initial set is reactivated. These sets of neurons
fire synchronously, leading to a chain of synchronously firing
neurons (Ikegaya et al. 2004). This differs from the standard
model, because the CA is broken into independently firing
subsets.

Bistable neurons are another less traditional form of per-
sistence. Mentioned in Sect. 2.3, some neurons move from
states of rapid firing (up states), to states of no firing (Stern
et al. 1998; Steriade et al. 1993). In another study, unstimu-
lated neurons moved to up states spontaneously, and synchro-
nously (Cossart et al. 2003); this behaviour is consistent with
attractor basins2 that can be used for STM. This bistability
differs from the standard model because neurons move into
states where they fire repeatedly without input; in the stan-
dard model, the neurons require input to fire. Rested bistable
neurons will shift to an up state with sufficient input.

A third alternative to CAs as STM items is storage via
STP, rapid synaptic modification that decays (Mongillo et al.

2 Statistical mechanics can be used to describe CAs, with a set of firing
neurons being an attractor basin. The Hopfield model (Hopfield 1982
and see Sect. 5.1.3) is a particularly good example of attractor basins
with a particular set of neurons firing and then continuing to fire in
response to a particular input. The firing pattern moves from the ini-
tial input state, down an energy slope to a new firing state, which has
attracted the activity.
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2008; Fusi 2008). The memory persists as long as the synaptic
changes are sufficient to support subsequent reactivation.

To a large extent, synfire chains, bistable neurons, and STP
fall within a loose definition of CAs. All use a small set of
neurons for a concept, support persistent activity, and can be
learned. Of course, all add a different flavour to CAs. A CA
based on synfire chains would have more cyclic, wave like
behaviour; bi-stable neurons require less input to a neuron to
maintain persistence; and STP allows CAs to form rapidly
compared to the standard model.

There is an alternative to CAs that has some support in the
academic community. This model uses a holographic reduced
representation so the same active concept can be represented
by two entirely separate sets of neurons. A set of neurons
represents a concept by its firing pattern (Plate 1995). This is
consistent with population coding, but the firing can pass to
another set of neurons, and may never return to the original
set. This passing of firing is not entirely consistent with self-
sustaining persistence; however, it is related to synfire chains.

Proponents (e.g. Eliasmith and Thagard 2001) of this
mechanism show that representations of different concepts
can be combined, thus solving the binding problem (see Sect.
5.2.2). Simulated neurons can be used to represent concepts
and the concepts can be bound using these mechanisms.
However, the authors are unaware of any biological evidence
supporting this type of binding.

A further problem with holographic representations is
symbol grounding (Harnad 1990); how does the neural fir-
ing pattern come to represent the particular concept? With
CAs, the neurons have been grounded by interaction with
the environment (see Sect. 6). With holographic representa-
tions, different sets of neurons need to represent the same
concept, and it is not clear how all of these sets might come
to represent the same concept. Moreover, if one concept
is, for example, associated with a second concept, all of
the different sets of neurons in the holographic representa-
tion will need to be associated with all the sets of neurons
that represent the second concept. In short, learning is the
main difference between CAs and holographic representa-
tions. It is not clear how holographic representations could
be learned.

Holographic representation and associated binding may
be compatible with individual neural behaviour. However,
the authors feel that it is at best as a complement to the CA
model instead of a replacement; it might perhaps be used as
a mechanism to create firing patterns of bound CAs in, for
example, language processing.

2.7 Cell assemblies are all but certain

The evidence referenced in this section strongly suggests
CAs do exist in the brain. The prevalence of population cod-
ing throughout the brain has been verified; voltage sensitive

dye techniques show this population coding, as do single cell
recordings. Evidence of persistence from single cell record-
ings includes both persistence of regular spiking, and per-
sistence of up bursty states; other imaging techniques show
persistent firing in areas, and transcranial magnetic stim-
ulation can disrupt cognitive behaviour by dynamically
modifying neural behaviour in specific small brain regions.
Functional connectivity indicates that CAs exist by show-
ing that particular neurons behave together. Finally, though
more difficult to analyse, learning data shows the firing of
neurons in response to particular cognitive states becomes
more correlated over time.

The evidence for CAs is compelling, and many read-
ers will find the support for CAs unsurprising. In many
fields, it is already assumed. For example, persistent neural
activity is currently being used to indicate working memory
(see Sect. 4).

Nonetheless, the scientific community will be unable to
fully confirm the existence of CAs until all the neurons in a
functioning brain can be dynamically monitored constantly.
Even then it would take years to understand developmental
behaviour. Consequently, it is possible to argue that CAs do
not exist.

Even though there is substantial evidence for the existence
of CAs, the extent and behaviour of CAs are still not well
understood. The next section shows the broad extent of CAs
and some of their functions.

3 Cell assembly details

The existence of CAs does not show that CAs are the basis of
all concepts. Of course, the term concept itself is ill defined,
roughly meaning a mental unit. Typical concepts include
things represented by concrete noun symbols such as dog,
but the authors would expect animals that did not use sym-
bols, but had categories for dogs (e.g. a macaque or pre-
verbal infant familiar with dogs) would have a category for
dog. Similarly, abstract nouns (like hope) and verbs (like run)
also label categories. Instances of categories (e.g. Dr Hebb)
and episodes (e.g. today’s lunch) are also concepts. Proce-
dural tasks (e.g. hitting a tennis ball) might not be concepts,
though once labelled, they probably do become concepts with
the explicit concept associated with the procedure.

Many questions about CAs remain unanswered, and sev-
eral are addressed here. The location of CAs in the brain
is addressed in Sect. 3.1. The size and shape of a CA are
discussed in Sect. 3.2. CAs have three primary and comple-
mentary functions; they categorise input, they are LTMs, and
they are STMs, but CAs are also involved in a range of other
processes and some of these processes are discussed in Sect.
3.3 and 4.
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3.1 Location of CAs

Population coding is common throughout the brain, but per-
sistence is not. That is, neurons may stop firing once the
stimulus ceases. However, in higher order areas (most of the
cortex), persistence allows cognitive states to persist. Once
information is in the brain, it can remain active via CA rever-
beration.

The cortex can be divided into areas, and one commonly
used division is the Brodmann areas (Figs. 2, 3); evidence is
provided below regarding the presence of CAs in different
cortical areas. In almost all cortical areas, there are neurons
that population code for specific features, and that persist
without external stimulus, implying that there are CAs in all
cortical areas except perhaps primary visual cortex. It is less
clear whether there are CAs in subcortical areas, but there is
evidence for CAs in some.

Fig. 2 Brodmann areas, lateral surface of the brain (courtesy of Mark
Dubin)

Fig. 3 Brodmann areas, medial surface of the brain (courtesy of Mark
Dubin)

3.1.1 Frontal and temporal lobes

Much of the frontal lobe is topologically distant from the sen-
sory and motor interfaces, with a chain of several intermedi-
ate layers of neurons needing to fire to cause frontal neurons
to fire caused by the environment. Among a range of other
functions, the frontal lobe is involved in working memory
tasks (see Sect. 4). There is substantial evidence for CAs in
all frontal areas. For example, the prefrontal cortex generates
persistent activity that outlasts stimulus (Wang et al. 2006);
single cell recordings of ferret medial prefrontal cortical neu-
rons show persistent activity. Comparisons to visual cortex
indicate that the cellular features, synaptic properties, and
connectivity properties of these prefrontal neurons favour
persistent activity.

Primary motor cortical neurons (Brodmann area 4 BA4)
have CAs. Electrode studies of owl monkey’s primary motor
cortical neurons (BA4) and dorsal premotor cortical neurons
(BA6) were used to guide a robotic arm (Wessberg et al.
2000); these neurons persisted throughout the action. Record-
ings of neurons in motor areas of rats learning a reaction time
task show elevated activity during the task, with most of the
recorded neurons active (Laubach et al. 2000); analysis of
firing can predict success or failure on particular instances of
the task; and behaviour is learned. A human unable to move
or sense his limbs for several years had electrodes implanted
into his motor cortex. The monitored activity of the neural
ensembles enabled control of computer devices and via them
external devices (Hochberg et al. 2006). The monitored neu-
rons individually behaved quite differently at different times
implying they participate in multiple CAs. Rhesus monkey
motor cortical neurons are broadly tuned to the direction of
arm movement with many neurons participating in a given
action; when the action is delayed, the same neurons remain
active (Georgopoulos et al. 1986). This shows BA4, which
is close to the motor interface, has sound evidence for CAs,
and these CAs need to persist to complete the appropriate
action.

A learned response of frontal eye field (BA8) neurons
of monkeys was associated with gaze target visual features
(Bichot and Schall 1999). These neurons fired persistently
while searching for the associated target. Prefrontal neurons
(BA9) of monkeys showed task specific firing during execu-
tion and delay portions of tasks (Assad et al. 2000). Rhesus
monkey prefrontal cortical neurons stored action sequences
in CAs (Averbeck et al. 2006b). Prefrontal cortical neu-
rons (BA9 and BA10) also fire during the delay portion of
a task with specific neurons correlated with specific visual
cues (Quintana and Fuster 1999). PET scans showed persis-
tent elevated activity in premotor cortex (BA6), and frontal
cortex (BA10) when the subject had learned to associate a
visual stimulus with an auditory stimulus (McIntosh et al.
1998).

123



Biol Cybern (2013) 107:263–288 273

Orbitofrontal neurons (BA11 and BA12) of rats, measured
by single unit recordings, exhibit persistent firing specific to
reward or punishment (Gutierrez et al. 2006). Moreover, they
fire in anticipation of the reward or punishment. Ventrolat-
eral prefrontal cortical neurons of the macaque correspond
to the inferior frontal gyrus in humans. These macaque neu-
rons population code and respond to semantically specific
macaque calls and do so persistently (Romanski et al. 2004).
Macaque rostral inferior neurons (a homologue of human
BA44) fired in a delay period before the macaque grasped-
specific objects, with neurons population coding specific
actions (Gallese et al. 1996). Dorsolateral prefrontal corti-
cal neurons (including BA46) and ventrolateral prefrontal
cortical neurons (including BA45 and BA47) of monkeys
responded in a cue task with population coding and persis-
tently for abstract rules (Wallis et al. 2001).

Like the frontal lobe, the temporal lobe is also topologi-
cally distant from the sensory and motor interfaces. Though
many areas contain CAs that persist, CAs in this lobe, in
general, are driven more by environmental stimuli than in
the frontal lobe. Nonetheless, persistence after external stim-
ulus has ceased is evident throughout.

There is strong evidence derived from single neuron
recording that inferior temporal cortex (BA20) has CAs.
One test of this area showed that neurons population code
for specific images and specific features (Desimone et al.
1984). Face-specific neurons were found in the fusiform
gyrus (BA37), with neurons responding persistently, but the
image remained present. In macaques performing a shape
matching task, these neurons population code for specific
shapes and spiking persists (Gochin et al. 1994). Similarly,
shape-specific neurons fire during delay in a paired associa-
tion task (Naya et al. 1996).

Single cell recordings of middle temporal neurons (BA21)
show that they collectively encode direction of motion of
visual stimuli. Moreover, during a delay task, neurons have
elevated activity showing persistence (Bisley et al. 2004).
This area is also called V5 (a vision area) and it responds to
visual stimuli, such as direction of motion, with population
coding (Maunsell and Van Essen 1983). In macaques, these
neurons are broadly tuned to moving visual stimulus, and
fire persistently and synchronously with neurons respond-
ing to different stimuli firing asynchronously (Kreiter and
Singer 1996). More recently, persistence beyond environ-
mental stimulus has been noticed (Ranganath et al. 2005).

Responses from human neurons of the superior temporal
gyrus (BA22) and nearby areas were explored before surgery
for epilepsy. These neurons showed persistent activity for up
to 2 s in response to auditory clicks (Howard et al. 2000).
This is a relatively rare example of a single unit study of the
human brain, and is strong evidence for human CAs.

Piriform cortical neurons (BA27) of rats, measured by sin-
gle unit recording, fired persistently with population coding

in response to particular odours (Rennaker et al. 2007). In the
piriform cortex (BA27), Zelano et al. [2009], using fMRI,
found sustained activity associated with olfactory working
memory. Similarly, entorhinal (BA28 and BA34) and hip-
pocampal neurons of behaving rats fire persistently and syn-
chronously (Chrobak and Buzaski 1998), measured by single
unit recording. Further studies showed that groups of neurons
in this area fired with graded responses (Egorov et al. 2002).

Neurons from the parahippocampal gyrus (BA35 and
BA36), hippocampal formation, rhinal cortex and inferior
temporal cortex (BA20) of monkeys performing a delay task
showed population coding and persistent firing during the
delay period (Riches et al. 1991). Hippocampal place cells
(BA35) can be used to predict the location a rat will move to
in the next theta cycle (Dragoi and Buzaski 2006). Macaque
temporal pole neurons (BA38) show population coding for a
complex stimulus, including presentation of opposed halves
of that stimulus, persisting for seconds after the stimulus
(Nakamura et al. 1994).

Marmoset auditory cortical neurons (BA41 and BA42)
population code for tones, and fire persistently (Bendor and
Wang 2008). Postsubicular rat neurons (BA48) population
code for head direction. Moreover, persistent firing has been
induced by direct current injection (Yoshida and Hasselmo
2009).

3.1.2 Occipital and parietal lobes

The occipital and parietal lobes contain primary and higher
sensory areas. While some researchers feel that even neurons
in primary sensory cortices are parts of CAs (Harris 2005),
there is evidence of persistence in higher sensory areas, but
less in primary sensory areas.

The occipital lobe consists of areas for early visual
processing. There is evidence for population coding in pri-
mary (BA17) (e.g. Hubel and Wiesel 1962), secondary
(BA18) (e.g. Pogio and Fischer 1977) association (BA19)
visual cortices (Fischer et al. 1981), though there has been
little evidence of persistence with single unit recording. How-
ever, using fMRI, BA17 shows increased activation when
subjects recall visual stimulus (LeBihan et al. 1993), and
functional connections during delay tasks in visual cortices
(BA18 and BA19) (Gazzaley et al. 2004). Similarly, neurons
in the primary visual cortex of blind subjects are activated
during Braille reading (Sadato et al. 1996). Such studies sug-
gest that there is input from higher areas to the lower visual
cortical areas, and that this input is able to fire neurons in
these areas.

In the parietal lobe, there is evidence for persistence in
all areas. Somatosensory neurons (BA5 and BA7) of rhe-
sus monkeys fired persistently in expectation of executing
a task (Quintana and Fuster 1999). Owl monkey posterior
parietal neurons (BA7) were used to guide a robotic arm
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(Wessberg et al. 2000); these neurons persisted throughout
the action. Parietal neurons (BA7) of rhesus monkeys fired
while they considered and performed viewer and object cen-
tred tasks (Crowe et al. 2008); in all cases, state was popula-
tion coded, and these neurons fired persistently. Single unit
recordings of neurons from the supramarginal gyrus (BA40)
of macaques show population coding and persistence asso-
ciated with visual saccades (Nakamura et al. 1999).

fMRI studies show elevated activity in the angular gyrus
(BA39) in response to linguistic tasks (Booth et al. 2004).
Single unit recordings showed elevated firing rates in the
parietal reach region during reach planning and this was
population coded for direction (Scherberger et al. 2005).
Similarly, fMRI showed elevated activity in the parietal oper-
culum (BA43) in tacitly modulated visual tasks (Macaluso
et al. 2000).

Suites of rat primary somatosensory cortical neurons
(BA1-3) respond to whisker stimulus with latencies increas-
ing in deeper cortical areas (Moore and Nelson 1998). While
these neurons did not fire persistently after the stimulus, ante-
rior parietal cortical neurons (BA1-3) of rhesus monkeys that
showed elevated activity during tactile tasks showed elevated
activity during delay tasks (Zhou and Fuster 1996). These sin-
gle cell recordings show a form of short-term haptic memory
in early sensory processing.

The emerging view is that sensory cortex involved in rel-
atively early processing is also used for short-term storage
(Pasternak and Greenlee 2005). Thus CAs involve neurons
in early sensory areas in parietal and occipital lobes.

3.1.3 Limbic and insular lobes

All Brodmann areas in the limbic lobe exhibit population
coding and persistent neural firing. Suites of macaque ante-
rior cingulate cortical neurons (BA24) responded persis-
tently and correlated with cognitive phenomena, such as
search, order, and reward anticipation in a sequence learning
task (Procyk et al. 2000). Anterior cingulate cortical neu-
rons (BA33) population coded for stimuli during the delay
period of a classical conditioning experiment (Kuo et al.
2009).

Rat anterior cingulate cortical neurons fire persistently
during a delay task (Lapish et al. 2008). Monkey cingulate
motor neurons (BA23 and BA6) exhibit persistent firing dur-
ing the delay period of a delay task (Crutcher et al. 2004).
Rabbit posterior cingulate cortical neurons (BA29) fired per-
sistently during a delay period in a conditioned stimulus
task (Talk et al. 2004). Rat retrosplenial cells (BA26, BA29
and BA30) fired in relation to one or more of the variables
location, direction, running speed, or movement. Some fired
in anticipation, implying ignition before external stimulus
(Cho and Sharp 2001).

Macaque posterior cingulate cortical neurons (BA31) pop-
ulation code for direction of eye saccade, and firing persists
beyond the movement (McCoy and Platt 2005). Macaque
pregenual cingulate cortical neurons (BA32) fired persis-
tently with population coding for specific tastes (Rolls 2008).

Using fMRI, Siegel et al. [2006] noted varying levels of
sustained reactivity to emotional stimuli in the subgenual cin-
gulate cortex (BA25) and amygdala. Single cell recordings
showed elevated firing rates in many neurons in BA25 when a
macaque went to sleep (Rolls et al. 2003). Other neurons had
elevated firing for novel visual stimulus, which decreased as
the stimulus was repeated. As these elevated rates were less
than 5 spikes per second, this is merely suggestive evidence
for CAs in this area.

The insular lobe is small with only three Brodmann areas.
Population coding is shown in all three, but persistence is less
evident. Rat gustatory cortical neurons (BA13 and BA14)
form distinct, population coded CAs that respond to partic-
ular stimulus by undergoing coupled changes in firing rates
over several 100 ms (Katz et al. 2002). Parainsular auditory
cortical neurons (BA52) of squirrel monkeys responded to
specific tones, but there was insufficient evidence to see if
they persist for a significant time after the stimulus (Bieser
and Muller-Preuss 1996).

This paper’s use of Brodmann areas to divide the cor-
tex is intended to show that CAs are prevalent throughout
the cortex, except perhaps BA17. Clearly, Brodmann areas
can be subdivided, and other systems for partitioning the
brain exist. Moreover, in most cases, homologues of other
animals have been used to infer neural firing in the human
brain. In some cases, e.g. premotor areas, these areas are
quite similar, but in language areas for example, the func-
tion has changed. However, these invasive studies can be
aligned with imaging studies, such as fMRI, and other tech-
niques.

Most of the evidence presented here of CAs in corti-
cal areas is based on population coding and persistence;
however, the evidence does not exhibit learning. Method-
ologically, it is more difficult to find learning in particular
neurons than to record spikes. Single unit recording devices
need to be placed before the learning is done, and then
the learning has to affect those neurons being measured.
There is evidence of learning (see Sect. 2.5), but this paper
has not provided references to learning in each Brodmann
area, assuming that the behaviour has been learned at some
time.

The existence of CAs in all or almost all higher cortical
areas aligns well with Hebb’s idea of CAs as the basis of con-
cepts. When a concept persists in the brain after the stimulus
ceases, an active CA supports this STM. It is possible that
some concepts are represented by some other neural mech-
anism than CAs, however the authors are unaware of any
sound evidence of such a mechanism concept pair.
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3.1.4 Subcortical areas

While it is unlikely that CAs exist in every area of the brain
and the nervous system, there is evidence of CAs in some
subcortical areas. However, as a rough guide, CAs have less
prevalence as areas get further from the cortex.

There is evidence for CAs in noncortical forebrain areas.
Spiny neurons in the striatum exhibit loosely synchronised
up and down state dynamics that indicate they are parts of
CAs that include cortical neurons (Stern et al. 1998). Neu-
rons in the nucleus accumbens exhibited persistent states
(O’Donnell and Grace 1995). Neurons in the rat amygdala
fired persistently during fear (Repa et al. 2001); moreover,
this response was learned over a series of several trials.

There is population coding in the thalamus. Neurons in
the cat lateral geniculate nucleus respond reliably to a partic-
ular stimulus (Reinagel and Reid 2000). Similarly, rat pos-
terior medial neurons fired robustly in response to whisker
stimulation with neurons responding to multiple whiskers
and multiple neurons responding to particular whiskers
(Nicolelis et al. 1993). While head direction neurons in the
thalamus fire persistently (Stackman and Taube 1998), there
is little evidence of persistent firing in other parts of the
thalamus.

The cerebellum is involved in eye blink conditioning.
Classical conditioning experiments show that cerebellar
neurons learn to respond to conditioned stimuli, and per-
sist during a delay period while conditioning (Christian and
Thompson 2003). There is some evidence of CAs in the
hindbrain. In this case, reverberatory activity is maintained
without sensory or other external stimulus. However rever-
beration can be maintained via sensory stimulus, as is usually
the case in primary visual cortex (BA17) and with thalamic
head direction neurons. It is also possible the reverberatory
activity is maintained by non-sensory input to the nervous
system, as may be the case with some areas involved in emo-
tion processing.

While this section has shown evidence that CAs are in
many areas of the brain, it has not shown the extent of CA
involvement in those areas. It is not clear that all neurons in,
for example, the forebrain are part of CAs.

3.2 Topology of a cell assembly

Some aspects of the topology of a CA have extensive empir-
ical evidence. CAs overlap with particular neurons partici-
pating in multiple CAs (e.g. Georgopoulos et al. 1986). CAs
cross brain areas, so that some CAs are made of neurons in
multiple brain areas (e.g. Pulvermuller 1999).

A great deal of the theoretical structure of CAs has been
discussed (e.g. Wickelgren 1999). Central to this is the over-
lapping coding of CAs. The idea of overlapping coding is
that some, perhaps most, neurons participate in multiple

CAs. New concepts composed of pieces of old concepts will
contain some new neurons, though they will also contain
some of the neurons from the base concepts.

Overlapping encoding relates to population coding (see
Sect. 2.2), where a concept is composed of a large set of,
but not the majority of, neurons. There is extensive evidence
for overlapping encoding (e.g. Tudusciuc and Nieder 2007;
Georgopoulos et al. 1986). The degree of overlap varies from
CA to CA. For example, there is evidence that task spe-
cific CAs are largely orthogonal in frontal areas (Sigala et al.
2008), while there is extensive overlap in CAs in motor areas
(Georgopoulos et al. 1986). Overlapping enables more CAs,
but it also supports sharing of information between CAs.
If two CAs share many neurons, they are probably closely
related. An interesting mathematical model includes overlap
in CAs for optimal decisions (Bogacz 2007). A similar infor-
mation theoretic work suggests that less overlap is better in
sensory systems (Field 1994). Note that the earlier use of
atomic assemblies does not imply that a CA is orthogonal to
other CAs, merely that it is not composed of other CAs.

A range of imaging and non-imaging data suggests that
CAs for words are distributed in brain areas that are seman-
tically specific (Pulvermuller 1999). For instance, the CAs
for nouns with strong visual associations include neurons in
visual cortices. Similarly, concrete nouns can be predicted
via fMRI from the brain areas active when the subject thinks
of them (Just et al. 2010). Synchronous activity of neurons
in behaving rats (Nicolelis et al. 1995) indicates that neural
ensembles across several brain areas collaborate to integrate
sensory information and determine action. However, it is not
entirely clear when CAs cross brain areas. Moreover, the
nature of CA processing and formation across laminar levels
and brain areas is poorly understood (but see Douglas and
Martin 2004 for a proposal).

Orthogonality and CAs in multiple brain areas raise the
question of how many neurons are in a CA. The answer to this
question has less evidence, but single unit recordings show
hundreds of neurons firing at elevated levels for a remem-
bered concept (Histed et al. 2009). This is close to the lower
range of 103 neurons in a CA that the authors suggested while
introducing principle 1. This answer also raises the question:
are there different types of CAs? As proposed in Sect. 1.1,
smaller CAs are more likely to be atomic. That is, they can-
not be decomposed into other CAs. Larger CAs are likely to
be composed of other CAs, and can act to support composite
structures such as cognitive maps.

It also seems likely that some neurons are more central to
a particular CA than others. These central neurons may fire
more frequently than less central ones, and may have closer
links to other neurons in the CA, so membership of a neuron
in a CA can be thought of as graded instead of binary.

Other topological issues such as neural type, involvement
across laminar layers, and precise neural dynamics are poorly
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understood. However, it is likely that topological parame-
ters will vary between CAs and within a CA during its life
time.

3.3 Function of cell assemblies

From a cognitive perspective, CAs fulfil a wide range of
cognitive roles. As Hebb stated, CAs are LTMs and STMs.
Persistent firing beyond sensory stimulus is a STM. The for-
mation, via Hebbian learning, of a set of neurons, which can
persistently fire, is an LTM. CAs vary in the degree that they
are stimulated by the environment or from other parts of the
brain. As commonly understood, CAs are ignited, in appro-
priate circumstances, by sensory stimulus, and categorise that
stimulus. These prototypical CAs can also be used as STMs
that can be ignited by internal processes such as working
memory. In current day thinking, STM, LTM and categori-
sation are the primary functions of CAs.

Neurons in CAs can function without persistence, firing
persistently or transiently based on sensory stimulus. By the
principles introduced in Sect. 1.1, if a set of neurons can per-
sist or occasionally persists without a sensory stimulus, it is
a CA. Nonetheless, the CA concept is more continuous than
binary. Sets of neurons that are population coded and stimu-
lus responsive, but rarely ignite due to internal processes are
to a lesser degree CAs; for example, neurons in early visual
areas rarely persist without sensory stimulus, and thus are
less prototypical examples of CAs. While prefrontal neurons
associating a tone with a colour (Fuster et al. 2000) are mem-
bers of a prototypical CA, as they persist without stimulus for
seconds during delay tasks, are quickly learned and popula-
tion coded. Beyond these factors, CAs vary by their ignition
speed, duration of persistence, size, and learning properties.

As categorisers, CAs take a vast range of possible inputs
and categorise them as the same thing; e.g. pictures of differ-
ent dogs, their bark, the name, or even their smell can activate
one’s dog CA. An example from the literature involves infe-
rior temporal neurons that respond to particular shapes in a
wide range of similar rotations (Logothetis et al. 1995). A
similar work shows that medial temporal neurons respond to
particular objects from all angles and even different pictures
(Quiroga et al. 2005). This goes beyond specific objects with
specific neurons firing for specific tasks (Sakurai 1998a).
Note that categories do not need to be discrete as bump sen-
sors have been used to model continuous categories (Wang
2001). Also, categorisation may involve systems beyond the
CA, gaining continued and directed input from senses, and
contextual evidence and control from higher areas.

There is evidence that episodes are encoded by CAs
(Dragoi and Buzaski 2006). For example, rat hippocampal
place neurons (O’Neill et al. 2008) fire at an elevated rate dur-
ing sleep after the associated places are visited, and places

that were visited in sequence co-fire. Moreover, particular
rat hippocampal neurons fired when the rat was at particular
locations when running a maze, and in similar order dur-
ing cognitive rehearsal of running the maze (Pastalkova et
al. 2008). This showed internally generated CA sequences
that also predicted task performance errors. CAs involving
mouse hippocampal place cells could even predict future
paths (Dragoi and Tonegawa 2011).

Top-down and bottom-up evidence (Engel et al. 2001) can
be combined to ignite a CA. Anticipation can lead to prim-
ing in a CA that in turn leads to more rapid recognition or
disambiguation when a sensory stimulus is provided. When
ambiguous sensory information supports the ignition of dif-
ferent CAs, top-down information can support a particular
CA, and thus it alone of the options ignites. Synapses con-
nect sensory areas to higher areas and vice-versa, so infor-
mation flows between sensory and higher areas, supporting
the combination of evidence (Lamme et al. 1998).

Beyond categorisation, STM and LTM, CAs support a
range of other activities. They support working memory (see
Sect. 4), associative memory, figure-ground separation, and
imagery; single unit recordings of human neurons responded
to both the presentation of pictures and the task of imagining
the picture (Kreiman et al. 2000).

CAs support associative memory (Diester and Nider
2007). Individual CAs are associated with other CAs via
excitatory synapses from neurons in the first CA to neurons
in the second, and via shared neurons (Sigala et al. 2008).
Evidence comes from monkey cortical neurons, where mon-
keys were trained to associate pairs of pictures. Recordings
of neurons in the anterior temporal cortex showed one set
that responded to both pairs of stimuli, and a second that
responded to one; the second type of neuron had elevated fir-
ing during the delay phase of picture presentation when the
associated cue was presented (Sakai and Miyashita 1991).
There is also extensive simulation of CAs supporting asso-
ciative memory (see Sect. 5.2.1). Similarly, association leads
to priming. There is evidence that semantic priming via pic-
tures for action words leads to an effect on error rates (Setola
and Reilly 2005). “This suggests the possibility of a broader
account of priming effects in terms of CAs.” That is prim-
ing and the closely related concept of associative memory
emerge naturally from a network of CAs.

It is well known that primates can make use of cardi-
nality and this is supported by CAs. Monkeys were trained
to associate particular pictures with particular cardinalities,
providing a label. Particular neurons in the prefrontal cortex
were recorded and responded more or less identically to the
label and cardinal category (Diester and Nider 2007). This
type of association may provide a basis for symbol grounding
in humans. Symbol grounding is particularly important as it
shows how symbols gain their meaning (Taddeo and Floridi
2005), and symbols are very important in modern society
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and in artificial intelligence. Indeed there is growing support
for a neural basis to symbols in the larger cognitive science
community (e.g. Gallese and Lakoff 2005).

Hebb discusses figure-ground separation as one of the ben-
efits of CAs. The figure is activated by CA ignition and this
causes it to psychologically pop out. Some evidence shows
that edge detecting neurons in BA18 respond when the edge
is part of the figure but not when they are part of the ground
(Qiu and von der Heydt 2005). This is consistent with the
higher order information (e.g. from V3) boosting the activity
of neurons in the figure at a lower level.

One very important aspect of CAs is that they are active.
CAs that encode symbols are active symbols (Hofstadter
1979; Kaplan et al. 1990). When a CA is active, it influences
other CAs, by spreading activation or inhibition to them. This
enables one CA to prime many others, inhibit many others,
and be involved in other types of processing simultaneously.
This active processing can also involve dynamic binding (see
Sect. 5.2.2).

It appears that motion is driven by central pattern gener-
ators (CPGs) (Butt et al. 2002). CPGs consist of neurons,
and they must be triggered. Neuron firing in the motor cortex
also causes actions (Brecht et al. 2004). So, neurons in the
motor cortex must interact with CPGs. For example, CPGs
are involved in walking. It is not clear whether the neurons
in the CPG are part of the CA; are those CPGs involved in
walking part of the walk CA? However, on a continuum, those
neurons are at most weakly part of the CA. The neurons in
the motor cortex may or may not persist, and those that do
not are weakly part of the CA. Those that do (Laubach et al.
2000) are clearly part of the CA. Moreover, CAs, like CPGs,
persist, so CAs can be considered CPGs (Yuste et al. 2005).

CAs are involved in a wide range of cognitive processes,
but it is not clear when and how they collaborate. There is
some evidence about their collaboration in working memory
tasks (see Sect. 4), and evidence from simulations (see Sect.
5).

4 Short term and working memory

While it is simple to say CAs are involved in complex psy-
chological systems, for example, associative memory, and to
provide evidence that they are, building an accurate simu-
lated neural model of associative memory is extremely dif-
ficult, and one can argue that associative memory cannot be
truly understood without such a simulation. A good simula-
tion provides explicit details of basic processes, and shows
how more complex behaviour emerges. Progress is being
made on a range of cognitive tasks, but the neural implemen-
tation of these tasks, like associative memory, is not well
understood. This section will make a speculative description

of one complex psychological system, the working memory
system, and its task-specific use.

One of the basic assumptions of Hebb’s CA hypothe-
sis is that an active CA is the neural basis of an STM. In
the intervening 60 years, a related form of memory, work-
ing memory, has been studied extensively. Working memory
combines short-term buffers and central executive processes
(Jonides et al. 1993). Psychological evidence exists that the
working memory and STM are separate systems with STM
supporting working memory (Engel et al. 1999).

Central executive processing is largely based in the frontal
cortex, and working memory leads to behaviour that is more
complex than simple STM, while retaining access to a wide
range of memories stored outside the frontal cortex (see
(Constantinidis and Procyk 2004) for a review of region spe-
cific involvement.) Executive processing is under voluntary
control, and its mechanisms are an active area of research
(Miyake et al. 2000).

An active CA is an STM as evident during sensing,
where CAs are ignited from the environment with little input
from frontal areas. However, frontal areas can also access
these areas during sophisticated processes such as mem-
ory retrieval (Buckner and Wheeler 2001). During mem-
ory retrieval, frontal areas may begin with, for example, a
goal-directed attempt to remember. This, in essence, query
is sent to other areas of the brain in an attempt to retrieve the
memory. For example, parts of the medial temporal lobe are
involved in storing events. If the memory is retrieved, there
is enhanced firing in the medial temporal lobe (Henson et al.
1999); that is the CA ignites.

There is not universal agreement on the psychological
basis of working memory, but one popular model uses the
central executive, the visuospatial sketchpad, and the phono-
logical loop (Baddeley 2003). The sketchpad and the loop act
as limited capacity buffers, and the executive control deci-
sions.

There is growing evidence that working memory and LTM
are closely related, see Burgess and Hitch [2005] for a review
of models. In this description, STM is maintained by neural
firing (a traditional active CA) or short-term potentiation, and
LTM by long-term potentiation. Different working memory
subsystems can be used to perform different types of tasks
such as retaining lists of words or lists of digits. Of course,
STMs can be retained as LTMs, but the actual neural mech-
anism is not entirely clear, though it seems to involve the
hippocampus (see Sect. 6).

The sketchpad, loop, and executive need to be imple-
mented neurally. One computationally simulated model that
could apply to the loop uses neurons with highly weighted
synaptic connections to model a concept (a CA), inhibitory
neurons to limit activity, and short-term synaptic depression
for item order (Deco and Rolls 2005). Once a sequence is
presented, it will repeat.
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There are working memory limitations, and while these
limits are not entirely clear, one body of evidence supports
one item as the focus of attention and a few others in STM
(Nee and Jonides 2008). Simulations of these limitations use
winner take all effects (see Sect. 5.2), e.g. with a global
inhibitory neural pool (Deco and Rolls 2005).

Neurons involved in working memory in frontal areas are
responsive to a broader range of inputs, while in more lat-
eral areas they are more domain specific (Goldman-Rakic
1996). For example, fMRI revealed that visual areas retained
fine-tuned orientation features in a delayed orientation task
(Harrison and Tong 2009). Individual recording of macaque
inferior temporal and prefrontal neurons during delayed
matching to sample tasks shows how the two areas inter-
act through working memory (Miller et al. 1996). The task
is for the monkey to recognise an object, hold it in memory
and then respond (for a reward) when a variant of the object
is later presented. Neurons in both areas respond to visual
stimulus, though a larger percentage of the inferior temporal
neurons was responsive. Only the prefrontal neurons fired at
an elevated rate during the delay period. That is the CA for
the remembered object persisted in the prefrontal area, but
the linked CA in the inferior temporal area did not.

The working memory system is a re-entrant network
(Goldman-Rakic 1995) based on the prefrontal and hip-
pocampal regions, which still communicates with other areas
of the brain. During a working memory task, CAs in pre-
frontal areas are coactive with domain-specific CAs in ante-
rior areas (D’Esposito 2007), and the two are dynamically
bound. This evidence is largely based on imaging studies, but
is consistent with a CA igniting when the memory becomes
active. It resembles the AI theory, the society of minds, where
different experts (brain areas) cooperate to achieve very com-
plex tasks (Minsky 1986).

There are a number of working memory tasks (see Durste-
witz et al. 2000 for review). One task with a computationally
simulated neural model is a variant of the Wisconsin Card
Sorting Task. The neural model uses a store of a single item,
but this item is replaced when a dynamic gating mechanism
is signalled by error feedback (O’Reilly et al. 2002). A the-
ory of working memory was proposed (Cowan 1988) and
has evolved. This theory explicitly uses CAs as the neural
basis of STM and LTM. The role of CAs in working mem-
ory models is central and understanding of CAs continues to
evolve.

5 Cell assemblies and models

Single unit recording is the best current method for under-
standing individual in vitro neural behaviour though only
a relatively small number of neurons can be recorded at
a given time. Lesioning, voltage sensitive dye techniques,

transcranial magnetic stimulation, fMRI and other imaging
techniques all give us a better picture of neural behaviour,
but all are incomplete. Computational models fill the gaps
that these techniques miss.

While there are extensive data to support the existence
of CAs in the brain, and extensive data about the behaviour
of individual neurons, groups of neurons, and psychologi-
cal properties that emerge from behaving CAs, CAs them-
selves are still not well understood. Consequently, there are
a wide range of theories as to how CAs behave. Some of this
is closely tied to psychological data, and other theories are
more speculative. In particular, it is very difficult to see com-
plex human behaviour (e.g. language processing, or problem
solving) at the neural level in the functioning brain. There is a
long history of CA models, including computational models;
for example, an early simulation showed that CAs emerged
(Rochester et al. 1956) in response to environmental stimuli.
While they persisted, this particular model could not show
that one CA could activate another, but this model suffered
from the lack of inhibition as this was not in the underlying
theory at the time.

5.1 Basis of model

Models are based on axioms. One relatively simple way to
model CAs is to assume that they are based on some relatively
simple mathematical formulas. The more popular method is
to base them on neural behaviour; of course, neural behaviour
is very complex and also needs to be modelled.

5.1.1 Mathematical models

One set of models of CA behaviour is based on a relatively
coarse set of assumptions, modelling CAs by a set of behav-
iours determined by mathematical equations. The benefits of
the mathematical approach include making the set of assump-
tions explicit, and simulations computationally inexpensive.

The TRACE equations are an example of this (Kaplan
et al. 1991). This model takes advantage of neural para-
meters, but uses these to develop a model of a CA that has
particular properties including activity, fatigue, short-term
connection strength, long-term connection strength and
external input. These equations are used to model learning
new concepts and the duration of concepts in STM. Figure 4
shows a model ignition curve with neurons in a CA receiving
some input, but then, via a cascade of firing, causing more
neurons to fire. The CA persists long after the stimulus has
ceased. Note that the lined CA persists longer than the dotted
CA.

In another model, CAs are represented by variables includ-
ing activity and connectivity that are used to drive behaviour
(deVries 2004). In this case, behaviour is binding objects to
their locations.
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Fig. 4 Derived from Kaplan et al. (1991). The CA is at rest for the
first 100 ms, then externally stimulated for the second 100 ms. This
leads to the ignition of the CA with a high degree of activity, and the
persistence beyond stimulation. Different CAs have a different length
of persistence

Another mathematical model is based on graph theory.
It considers neurons as nodes of a graph, and synapses as
the arcs in that graph. Using a range of biologically realistic
parameters for number of neurons, synaptic strength, and
synapses per neuron, the number of neurons in a CA can
be derived (Valiant 2005). Moreover, this model supports
associative memory (see Sect. 5.2.1).

5.1.2 Neural models

Any CA model based on neurons needs to define the neuron
model. This section gives a very brief review of neural models
(see Burkitt 2006 for a more extensive review).

Simple or point neural models include integrate and fire
neurons (Abbott 1999; McCulloch and Pitts 1943), leaky
integrate and fire neurons (Amit 1989), fatiguing leaky
integrate and fire neurons (Huyck 2007), and Boltzmann
machines (Ackley et al. 1985). A particularly interesting
point model gets a wide range of spiking behaviours from
two parameters (Izhikevich 2004). These are spiking models
because the neurons simulate a spike to transfer informa-
tion from one neuron to another. Models can also involve
continuously valued output, e.g. the Spike Response Model
(Gerstner and Kistler 2002).

More precise simulation of neural behaviour is done by a
compartmental models (e.g. Hodgkin and Huxley 1952), of
which there are a wide range (see Brette et al. 2007, for a
review). Compartmental models are expensive to simulate,
but with fewer compartments there is less computation.

5.1.3 Topology

The neurons have to be connected, and biologically they are
connected by synapses from one neuron to another. Topology
involves the neurons, the connections, and properties of the
connections. For simple neural models, the main property is
synaptic weight, but this is relatively simplistic.

A great deal of simulation has taken advantage of unrealis-
tic topologies where all neurons are connected to each other,
and connections are bidirectionally weighted (e.g. Hopfield
1982). This allows the system to move to a permanently sta-
ble state and the use of relatively simple statistical mechanics
(Amit 1989). This stable state, or attractor basin, is often con-
sidered a CA, and its persistence makes it consistent with the
basic idea of a CA. Moreover, the CAs can be calculated by a
type of Hebbian learning. Many simulations take advantage
of this type of connectivity (e.g. Amit 1989; Sougne 2001).
However, perhaps due to this lack of realism, the Hopfield
model is falling out of favour as a model for processes in the
real brain.

In the brain, neurons are not connected to every other neu-
ron, but a single neuron has thousands or tens of thousands of
synapses (Churchland and Sejnowski 1999). There is some
evidence for small world topologies (Bullmore and Sporns
2009), and random topologies (Bertschinger and Natschlager
2004; Valiant 2005 have also been used in simulations; both
have the benefit of existing mathematical expertise, and both
are more realistic than full connectivity. Finally, more realis-
tic topologies can explicitly copy known biological topology
(Douglas and Martin 1991).

5.1.4 Learning

Learning is important for CAs, and Hebbian learning rules
are used widely in simulations. There are, however, a wide
range of plausible Hebbian rules. A complete discussion
of these rules is beyond the scope of this paper, as is a
complete discussion of the underlying biology of learning
(but see Sect. 6).

Typically, learning is modelled as a permanent change in
synaptic weight. However, learning can reasonably involve
neural growth, neural death, synaptic growth, synaptic death,
and transient synaptic weight change. Synapses that only
rarely cause the post-synaptic neuron to fire can be pruned,
and neurons that rarely cause their post-synaptic neurons to
fire can be pruned. New neurons can be added, and their
synapses can grow based on the success of nearby synapses.
These are all forms of Hebbian learning.

A full-fledged Hebbian learning rule typically increases
the synaptic weight when the two neurons co-fire, and
decreases the weight when one fires and the other does not
(see Gerstner and Kistler 2002 for a review). These rules
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model the biological actions of long-term potentiation and
depression.

In addition to permanent changes in synaptic weight,
changes can be temporary. There is sound evidence for both
short-term depression and potentiation (Zucker and Regehr
2002; Hempel et al. 2000), but these two mechanisms are
used less in current models.

Co-firing requires the neurons to fire at the same time,
and biological evidence shows the timing involves the order
of neural firing (Bi and Poo 1998). If the presynaptic neuron
fires first, and the postsynaptic neuron fires within 20 ms there
is an increase in strength; if they are reversed, there is a
decrease.

A related problem is that for Hebbian learning to sup-
port the spread of a CA into new areas requires the neurons
in the new area to fire. Background neural firing can sup-
port movement into new areas, but this requires the neural
model to support neural firing without incoming activa-
tion.

There is also mathematical research on Hebbian learning.
One mathematical treatment of learning shows that Hebbian
learning can be used for principal and independent compo-
nent analysis (Fyfe 2005).

By making use of different learning mechanisms, a wide
range of behaviours can be learned. Moreover, these learn-
ing mechanisms are based on pairs of neurons, and when
combined with complex topologies, a vast range of learning
becomes possible.

5.2 Simulations

Since Rochester et al. 1956, there have been a vast range
of CA simulations, and they have come with increasing fre-
quency. For example, one system successfully modelled the
learning of CAs (Hetherington and Shapiro 1993). The neural
model was continuous output, the network included excita-
tory and inhibitory neurons, there was sparse connectivity,
and the learning rules capped synaptic weights. CAs per-
sisted, were unique, and grouped similar stimuli.

Others have shown that neural models can implement CAs
in isolation. One system uses CAs to categorise vowel sounds
(Hoshino et al. 2002). Another uses a multi-level neural sys-
tem to learn to categorise various line drawings of buildings
(Knoblauch et al. 2007). Various layers in the system are
modelled on human brain areas and the their known process-
ing. Recurrent connections allow a soft winner takes all sys-
tem of CAs that interact to satisfy constraints at multiple
levels.

CAs have also been applied to a range of model tasks.
Perhaps the most common simulation is associative memory.

5.2.1 Models of associative memory

There is a review of associative memory models based on
simulated CAs (Lansner 2009), and it should be noted that
CAs themselves are auto-associative memories; given one
input, a similar pattern is retrieved. More typically, asso-
ciative memory refers to hetero-associative memory with an
input being associated with a different output. An early exam-
ple of this (Fransen et al. 1992) uses relatively fine grained
neural models to show pattern completion, and persistent
behaviour. This acts as a proof that a CA model can imple-
ment associative memory.

An even earlier example uses a bistable neuron pool;
the simulated system can learn concepts, and associations
between concepts (Amari 1977). In this case, and in most
cases described in this section, the system learns the con-
cept, i.e. a CA is formed, and associations between CAs are
also formed.

Another model uses well-connected neurons (Palm and
Sommer 1995) to store auto-associative memories (CAs) and
associations between CAs. Patterns can be gradually learned
via Hebbian learning. A related model (Wennekers and Palm
2000) uses simulated spiking neurons to encode objects. Dur-
ing retrieval, multiple objects can be retrieved with neurons
associated with particular concepts firing synchronously. If a
neuron is associated with multiple objects, it is synchronous
with both sets.

More recently, integrate and fire neurons were used to
learn CAs, and then associate those with cognitive maps
(Salihoglu et al. 2009), and an ambiguous stimulus could
be disambiguated by the context of the current map. Learn-
ing took advantage of the recurrent multi-layer dynamics
of the system. Similarly, fatiguing leaky integrate and fire
neurons were used to learn and retrieve hierarchical cate-
gories, with super-class CAs associated with sub-class CAs
by neural overlap (Huyck 2007). Figure 5 shows a subset of
the overlapping CAs; the super-category, Mammal, supports
generalization if a novel type of Mammal is presented.

Fig. 5 Derived from Huyck (2007). Hierarchical categories stored as
CAs with overlapping neurons. Each cell represents a neuron. Those
with a C are part of the Cat CA, with D the Dog, and with M the super-
category Mammal
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A graph theoretical model (Valiant 2005) stores concepts
and their associations. The model lacks a biologically plau-
sible learning mechanism, but concepts and associations
between concepts are stored as sets of neurons, and the
model works with a range of biologically plausible parame-
ters including numbers of neurons, neurons per CA, synaptic
strength, and connections per neuron.

Inhibition is often used at a neural level to support compe-
tition between CAs. This can lead to winner take all effects
(Lundqvist et al. 2006 and see Sect. 5.2). If an ignited CA has
a large number of strong inhibitory connections to another
CA, it will suppress the other CA. If both are mutually
inhibitory, and inactive, an ambiguous stimulus will start to
ignite both, and they will compete.

5.2.2 Decisions, binding and language

CAs can also be used in systems that perform a range of
sophisticated processing tasks. Computationally, it has been
shown that a large enough net with CAs is Turing com-
plete3 (Byrne and Huyck 2010). The real challenge is to build
neuro-psychologically realistic simulations. While there are
proposals to model an entire brain at the neural level on super-
computers (Markram 2006), CA dynamics will still need to
be understood before these models can successfully learn and
process environmental input. Simulations using CAs include
complex state transition mechanisms, variable binding, and
learning.

A system of CAs can be used to store state as in a finite
state automata. Imagine that there are several states each rep-
resented by a CA, if only one is active, the system is in that
state. The neural system also has input, and if a new (non-
state) CA is ignited by the environment, having categorised
the environmental input, this input CA can act as input to
the automata. Now input from two CAs, the current state and
input, can ignite a third CA, the new state. The third CA can
extinguish the first (via inhibitory synapses). This is a basic
means of acting with CAs.

CAs have been used as the model of the basic categorising
unit in networks that categorise visual input (Bogacz 2007).
These CAs emerge from continuous input and continuous
output neurons, and the system integrates information over
time to make decisions. CAs have also been used as the model
of the basic semantic unit in a system that models brain storm-
ing (Iyer et al. 2009).

A CA-based model (Wichert 2001) is able to use pictorial
reasoning, simple rules, and goal directed behaviour using
automata to implement an agent. This agent is able to learn
spatial cognitive maps, and improve its own behaviour.

3 If a language is Turing complete, anything that can be programmed
can be programmed in it. So, to some degree, CAs are equivalent to
Java.

One criticism of current simulated neural systems is that
they cannot solve the binding problem (Jackendoff 2002), so
that there must be a CA for each concept including combined
concepts. Without binding, a system would need a CA for the
concepts Red, Blue, Square, Red Square, and Blue Square if
it were to use them. Binding is important because it allows
combinatorial expansion of states. For instance, if the system
has ten noun CAs, and ten verb CAs, it can have 20 states.
However, if it can bind these, it can have 100 states. Binding
also allows rules with variables, which in themselves are
Turing complete.

A relatively recent modification of neurocomputational
theory supports a functional role for synchronous firing (see
Sect. 2.4 and von der Malsburg 1981). CAs remain central
to this model, though precise timing of spikes becomes
more important. Synchrony has been used to bind in several
models. For example, spiking neurons are used to sim-
ulate binding by synchrony (Sougne 2001). Though por-
tions of this model have well-connected topologies, binding
via synchrony is a complex task. Another CA-based model
(Knoblauch et al. 2004) implements a regular language parser
and binding via synchrony. A long standing model has used
spiking neurons and global inhibition as a basis for feature
binding (Terman and Wang 1995).

CAs have been used with structured binding circuits as
another method of enabling binding (van der Velde and de
Kamps 2006). A third method of binding is short-term poten-
tiation (Huyck 2009), which has been used in a CA-based
cognitive model of context-free natural language parsing.
CAs are the grammar rules, words, and the semantic results
of a parse.

Modelling learning is also important. Learning simula-
tions have been done on a range of basic categories, for
example, visual categories (Knoblauch et al. 2007), for asso-
ciations (see Sect. 5.2.1), and on learning weightings for
rules (Belavkin and Huyck 2010), but there are a range of
more complex phenomena, like learning rules that use vari-
able binding, that have not been explored. Learning new
categories is closely related to the symbol grounding prob-
lem (Harnad 1990), with learned CAs derived directly from
environmental stimuli. For example, one system models the
acquisition of spoken words using neurons that learn CAs
(Gargnani et al. 2007).

Models can also be used to show that CAs can perform
as expected. For example, a 3D neural topology is simulated
to show that CAs can form in the striatum (Humphries et
al. 2009). Another model simulates the striatal spiny neuron
network showing that sequences of CAs emerge in response
to a sequence of inputs (Ponzi and Wickens 1977); this model
is more closely linked to biological behaviour than the most
models.

There are a vast range of possibilities for neural models
of cognition from non-neural connectionist models to highly
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accurate compartmental models. One set of principles, that is
compatible with CAs (O’Reilly 1999), permits some explo-
ration of the model space while still linking the model to a
sensible degree of biological realism.

A great deal of modelling work has shown how a neural
system can perform a task in principle. However, this work
almost always has a relatively weak link to psychology much
less neurophysiology. One challenge for future modelling
work is to provide a more accurate neuropsychological expla-
nation.

6 Discussion

While many researchers across many disciplines have worked
on CAs, the complexity of the brain makes it difficult to gain a
comprehensive understanding. This complexity includes the
large number of neurons and synapses, the complexity and
diversity of individual synapses and neurons, and a diverse
range of effects over different time ranges. The CA pro-
vides conceptual support for understanding the behaviour of
a group of neurons much smaller than the whole brain. How
might the scientific community move forward from current
knowledge to a richer understanding of CAs?

While there is extensive evidence that CAs persist (see
Sect. 2.3), simulations that persist, and psychological the-
ories that predict the strength and duration of a memory
(Anderson and Lebiere 1998), there is no sound link between
these. Assuming that the strength of a memory has a direct
relation with the number of firing neurons in its CA, a good
computational model would reflect that firing behaviour. The
authors are not aware of such a model, with existing CA mod-
els either persisting forever, or stopping after a relatively brief
time. Moreover, a good model would also be able to learn
those CAs, and have the strength and duration emerge.

The issue of learning, or CA formation, is central to the
study of CAs. Indeed, it has already been raised in the guise
of data supporting the hypothesis (Sect. 2.5) and model learn-
ing rules (Sect. 5.1.4). The research on learning is vast, and a
brief discussion is useful. While synaptic change may drive
CA formation, it does occur in a large system of neural activ-
ity. This activity must support learning dynamics beyond the
neuron (Abbott and Nelson 2000); however, this behaviour
is not currently well understood.

CA formation is central to the standard model and its
derivatives, with Hebb’s learning rule as part of his original
hypothesis. Biologically, it seems that the rule is instantiated
by a form of long-term potentiation (Malenka and Nicoll
1999) and long-term depression (Ito 1989), and both lead
to relatively long-term changes in the ability of one neuron
to cause a particular other neuron to fire. Though there is
extensive evidence for short-term plasticity (e.g. Zucker and
Regehr 2002), this is not typically included in CA models.

While it is relatively easy to look at the dynamics of
synapses, it is very difficult to inspect the biological forma-
tion of a CA because it involves a large number of neurons.
Typically, theory states that there is a bifurcation between
a set of neurons that cannot persistently fire and, through a
slight synaptic strength increase, a set of neurons that can per-
sist. This theory has been duplicated in simulations (Amit and
Brunel 1995), but leads to a problem of an abrupt appearance
of CAs, and the inability of CAs to remember novel stimulus
(Durstewitz et al. 2000). The use of short-term potentiation
in models has reduced this problem, as the new CA is initially
supported by short-term changes, which support longer-term
changes via repeated neural co-firing.

This problem of rapid formation of CAs relates to the dif-
ference between semantic and episodic memories. Semantic
memories tend to require the presentation of many instances
to form an associated CA, while episodic memory forms
in one presentation. CAs for episodic memories must be
formed after one presentation, since events do not happen
twice. This encoding may use a CA in the hippocampus
combined with neurons to encode specific semantic elements
(Eichenbaum 2000). This CA may be reactivated in later
stages (e.g. sleep) to support memory consolidation
(Qin et al. 1997). Hippocampal damage could then lead to a
loss of memory of those episodes (Paller 1997).

Semantic memory provides another set of challenges,
including questions involving the formation of CAs in the
young animal; for example, when do CAs for particular con-
cepts form? How do CAs for a concept learned early (e.g.
animal) evolve into sets of concepts (e.g. cat and dog)? These
questions are particularly important as it is very likely that the
development of later CAs depends on those early CAs, and
computational models would be more robust if they were
based on relatively biologically and psychologically accu-
rate developmental CA models. These questions are difficult
to answer biologically because they involve relatively long-
term study of a developing brain.

The authors are unaware of any significant evidence
of the neural evolution of categorisation in infants using
single-cell recording. There is of course long standing evi-
dence of early cell specialisation in response to stimulus
(Hubel and Wiesel 1962); there is just not evidence of
these or later neurons forming CAs. Nonetheless, existing
data do not contradict Hebb’s hypothesis. Improving EEG
and other non-invasive techniques (Reynolds and Richards
2009) may help uncover the mechanisms of early CA forma-
tion.

The dynamics of CA formation are thus, at least poten-
tially, quite complex. For example, the spontaneous reoccur-
rence of neural firing patterns, neural avalanches, has been
proposed as a potential mechanism involved in CA forma-
tion (Plenz and Thiagarajan 2007). As this obeys power law
dynamics in size, every neuron can be linked with every other
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neuron, allowing CAs to involve any set of neurons in the
brain.

There are further problems of CA learning with existing
CAs. CAs may recruit new neurons and lose neurons, and
since membership of a CA is not binary, this loss or gain
of a given neuron is a matter of degree. Similarly, CAs may
fractionate into separate CAs. There is also research in circuit
formation making use of, for instance, laminar architecture
(Raizada and Grossberg 2003), and brain areas (Knoblauch
et al. 2007). Learning is an important key to understanding
CAs.

In the authors’ view, the CA is a graded concept. We sus-
pect, and evidence provided in this paper supports the idea
that, prototypical CAs are the basis of typical concepts and
their associated symbols. As such, prototypical CAs are the
neural basis of basic symbols used in, for instance, natural
language processing. As CAs are a graded category, less typ-
ical CAs, but things still reasonably called CAs, may be the
basis of a wide range of cognitive phenomena ranging from
cognitive maps to complex motor skills.

There are many questions about how CAs relate to a wide
range of processes (e.g. path finding, language, and theory
formation), and higher order structures. These are difficult
questions, but as scientific understanding of these mecha-
nisms is weak, even suggestive biological and psychologi-
cal evidence, and plausible psychological and computational
models would be useful.

7 Conclusion

The standard model is that CAs are the neural basis of con-
cepts. The CA is a small set of interconnected neurons that
can persist without external stimulus, is learned, and is sup-
ported by synchronous firing behaviour. The model has some
alternatives.

CAs are in a large range of brain areas. CAs are involved
in varying degrees in a large range of cognitive tasks; they
are categorisers and act as STMs and LTMs, but they are
also intimately involved in priming and associative memory;
they are important, but less central, in complex tasks such as
language and working memory.

The full CA hypothesis states that CAs are the basis of
all concepts. This paper has not provided support for this
claim. Though the authors have not found a contradiction,
it is plausible that some other mechanism is used for some
concepts; however, no mechanism currently suggests itself.
While CAs may or may not be the neural correlate of all
concepts, there is evidence that they are the neural correlate
of many. For these concepts, CAs provide a crucial bridge
between categorisation, LTM and STM.

CAs are not the sole answer to understanding the brain.
For example, higher order structures and systems play crucial
roles in human behaviour. Nonetheless, CAs are a key link

between biology and psychology, providing an intermediate
level of analysis between neurons and the brain. CAs at this
intermediate level are also the basis of symbolic concepts and
thus symbols. So, CAs provide the bridge between subsym-
bolic and symbolic reasoning. However, our current models
of CAs, both computational and theoretical, are relatively
crude and underspecified, and the links to neuropsychologi-
cal behaviour are far from complete.

Evidence for CAs can be evaluated based on neural
and psychological behaviour. Tying psychological states and
processes to neural behaviour is difficult but can be done with
single unit recording, and with less certainty via other tech-
niques. While this paper has provided evidence that supports
the general CA model, it has not fully shown the structure of
a single functioning CA much less the structure of all CAs.

Similarly, models of CAs should account for both neural
and psychological data. Better neural models are obviously
more reliable, and reasonable topologies are important; input
to simulations is better when it follows known biological
paths, for example, via retinal centre surround detectors.
Also, the models are better when they adhere to the four
theoretical principles of CAs.

The prototypical CA, as defined by these four principles,
is a flexible yet solid concept that can be used across disci-
plines. There is sufficient evidence for this concept that it can
be used now for discussion and model development. Since
understanding of neuroscience and psychology is incomplete
and will develop, the concept of CA needs to remain flexible
to accommodate the evolving understanding of neuropsy-
chology.

Improving our understanding of CAs will lead to a bet-
ter understanding of animal cognition. CAs provide a very
important mechanism that is central to cognitive behav-
iour supporting categorisation, STM and LTM, and provid-
ing support for other processes. Computational systems that
make use of CAs to perform in complex environments and
learn about those environments can make use of the knowl-
edge of neuropsychology.

The authors hope that this review will distribute existing
information on CAs, that it will stimulate further discussion
and research on the prevalence, function, and behaviour of
CAs, and that this will lead to significant advances in the
understanding of cognitive neuropsychology.
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