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Abstract Clinical electroencephalographic (EEG) record-
ings of the transition into generalised epileptic seizures show
a sudden onset of spike-wave dynamics from a low-amplitude
irregular background. In addition, non-trivial and variable
spatio-temporal dynamics are widely reported in combined
EEG/fMRI studies on the scale of the whole cortex. It is
unknown whether these characteristics can be accounted for
in a large-scale mathematical model with fixed heteroge-
neous long-range connectivities. Here, we develop a model-
ling framework with which to investigate such EEG features.
We show that a neural field model composed of a few coupled
compartments can serve as a low-dimensional prototype for
the transition between irregular background dynamics and
spike-wave activity. This prototype then serves as a node in
a large-scale network with long-range connectivities derived
from human diffusion-tensor imaging data. We examine mul-
tivariate properties in 42 clinical EEG seizure recordings
from 10 patients diagnosed with typical absence epilepsy
and 50 simulated seizures from the large-scale model using
10 DTI connectivity sets from humans. The model can repro-
duce the clinical feature of stereotypy where seizures are
more similar within a patient than between patients, essen-
tially creating a patient-specific fingerprint. We propose the
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approach as a feasible technique for the investigation of
patient-specific large-scale epileptic features in space and
time.
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1 Introduction

A defining feature of patients with epilepsy is the occurrence
of seizures, which are accompanied on the electroencephalo-
gram (EEG) by specific changes in spatio-temporal rhythms.
In this context, the background state of the EEG channels
is temporally irregular and typically desynchronised. Dur-
ing periods of spontaneously occurring absence seizures,
the temporal waveform takes on the characteristic form of
a spike-wave discharge (SWD) (Weir 1965) and is accompa-
nied by increased global correlation (Cohn and Leader 1967;
Amor et al. 2005; Garcia-Dominguez et al. 2005; Aarabi
et al. 2008). This is in addition to patient-specific properties
(Schindler et al. 2011) which have also been noted during
fMRI measurements (Moeller et al. 2010). Although large-
scale synaptic networks are implicated in these generalised
seizure events (Pinault and O’Brien 2005; Meeren et al. 2002;
Blumenfeld 2005) it is unclear whether dynamical models
incorporating such realistic, heterogeneous connectivity will
support transitions to epileptic states with more globally syn-
chronised dynamics.

Modelling seizure dynamics with SWD using dynamical
systems approaches at the macroscopic scale has received
much recent attention (Breakspear et al. 2006; Marten et al.
2009; Goodfellow et al. 2010; Taylor and Baier 2011; Wang
et al. 2012). These models have predominantly focussed
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on the temporal aspects of SWD seizures, although it has
recently been shown that small network extensions to such
models can have profound implications for the dynamics
(Goodfellow et al. 2010, 2012a). Although each of the
frameworks employed supports a natural extension to large,
or whole brain models (Sotero et al. 2007; Babajani-Feremi
and Soltanian-Zadeh 2010; Bojak et al. 2010), these exten-
sions have not been used in the context of generalised epi-
lepsy. Clearly, an important facet of the exploration of the
mechanisms and properties of absence epilepsy is the inves-
tigation of macroscopic models of extended, large-scale brain
networks.

Recent advances have brought to the forefront of clini-
cal neuroscience the relevance of large-scale brain networks,
as revealed for example by diffusion-tensor imaging (DTI)
which has, to some extent, been validated against experimen-
tal tract tracing studies (Parker et al. 2002a) and against stan-
dard brain atlases (Parker et al. 2002b). Emerging alongside
this data are modelling frameworks with which to investi-
gate the effect of network connectivity on large-scale dynam-
ics (Jirsa et al. 2010; Deco et al. 2011). In incorporating
long-range connectivity into large-scale brain models one
can distinguish two approaches. In the first of these, long
range, or so-called heterogeneous connections are super-
posed onto a continuum formulation of propagating activ-
ity in macroscopic neural fields (Jirsa and Kelso 2000). A
second approach is to discretise the connectivity in a hier-
archical approach, which then naturally supports the inclu-
sion of adjacency matrices (Breakspear and Stam 2005;
Sotero et al. 2007; Babajani-Feremi and Soltanian-Zadeh
2010).

The aim of this study is to investigate patient-specific
properties of epileptic seizures. To this end, we introduce a
large-scale hierarchical model of SWD seizures and suggest a
method by which to analyse such patient-specific properties.
The large-scale model is formulated to incorporate anatom-

ically derived human brain connectivity from the DTI of ten
human subjects. We use our analysis methods to investigate
patient-specific aspects of both model output and clinical
seizure data.

2 Models/methods

Population level descriptions of epileptic rhythms have been
attempted at various scales. Neurophysiologically motivated
population models such as those based on (Jansen and Rit
1995; Breakspear et al. 2006) were used to describe the tem-
poral properties of epileptic seizure dynamics. A key problem
when dealing with more detailed models is that the analysis
and understanding of their properties becomes increasingly
difficult. At a higher level of abstraction, neural field mod-
els (Amari 1977; Wilson and Cowan 1972) can be employed
which still retain many key properties such as firing rate trans-
fer functions, different timescales and interactions between
excitatory and inhibitory populations. Specifically, these fea-
tures have been shown to be important in the context of
epilepsy modelling (Wendling et al. 2002; Breakspear et al.
2006; Goodfellow et al. 2010; Taylor and Baier 2011).

Spatial extensions to both sets of models exploring phys-
iologically relevant connectivity for cortical rhythm genera-
tion have been explored (Sotero et al. 2007; Bojak et al. 2010;
Deco et al. 2011). In order to investigate the relevance of these
networks for generalised epilepsies, we propose a hierarchi-
cal large-scale model based on the simplest model which
incorporates the above features and is known to produce epi-
leptic SWD. Furthermore, as we are specifically interested
in spatio-temporal patterns and SWD morphology which do
not require explicit representation of complex thalamocor-
tical interaction, our work abstracts away from this detail
similar to what has been done in other works (Taylor and
Baier 2011; Goodfellow et al. 2010; Wang et al. 2012).

Fig. 1 A single compartment is made up of three interacting popula-
tions (E , I1 and I2) represented in the oval (left side of the figure). Four
compartments are then coupled construct a ‘node’ for local dynamics.
Nodes are then coupled heterogeneously using DTI data. Nodes (red
spheres) and edges (grey lines) for connectivity set 1 obtained from

DTI data from http://piconmat.com/ are shown on the right side of the
figure. Only edges with strength greater than 0.75 are shown for
illustrative purposes. All edges are included in simulations. Image
generated using BrainNet viewer (http://www.nitrc.org/projects/bnv/)
(Colour online)
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Ultimately, we wish to build up to a whole brain scale
model of epileptic activity. This is composed of heteroge-
neously coupled nodes, representative of activity at a local
(ECoG) level, which in turn comprises coupled space-inde-
pendent oscillators. An exemplary hierarchical connectivity
scheme is shown in Fig. 1.

2.1 Space-independent model

As an entry point to describe local cortical dynamics, we
use an extended three layer version of the two layer model
described by Amari (1977). We begin with a space-indepen-
dent system containing one population of excitatory neurons
and two populations of inhibitory neurons that has previ-
ously been used to model SWD (Taylor and Baier 2011)
and is described by the following set of ordinary differential
equations (Eq. 1):

Ė(t) = h1 − E + w1 f [E] − w2 f [I1] − w3 f [I2]
İ1(t) = (h2 − I1 + w4 f [E])/τ1

İ2(t) = (h3 − I2 + w5 f [E])/τ2 (1)

In this model, an excitatory population (E) is self-exciting
and also drives two inhibitory populations (I1,2). The inhib-
itory populations operate at different time scales (τ1,2) and
inhibit the excitatory population via negative feedback. Input
from one population to another is mediated by a firing rate
transfer function ( f ) multiplied by a connectivity parameter
(w1,...,5). In place of the Heaviside step function used orig-
inally by Amari, we incorporate a piecewise linear (PWL)
transfer function as an approximation to the physiologically
plausible (Eeckman and Feeeman 1991) sigmoid function.
The PWL function is defined as follows:

f (v) =
⎧
⎨

⎩

0, v ≤ −l
(v + l)/2l, −l < v < l
1, v ≥ l

, (2)

where v = E, I1 or I2, and l > 0 determines the steepness
of the transition and is a parameter.

Finally, additive constants (h1,2,3) are included as in the
original Amari model. Note that for w3 = 0 the system
reduces to a two layer model as the subsystem E/I1 becomes
independent of I2. Equally, for w5 = 0, the equation for I2

has a stable fixed point at solution h3/τ2 that is independent
of the E/I1 subsystem and, consequently, when I2 is at fixed
point, it does not affect the E/I1 subsystem dynamically.

2.2 Multiple coupled compartments: local connectivity

Starting from Eq. 1, we construct a discrete spatial model
of local dynamics using coupling between a small num-
ber of compartments with distance-dependent connectivity
strengths. At the local level, these connectivities operate on

three discrete levels, namely, self-coupling (wks), nearest-
neighbour coupling (wkn), and coupling to distant compart-
ments (wkf ):

dk
i j =

⎧
⎨

⎩

wks, |i − j | = 0
wkn, |i − j | = 1
wkf , |i − j | > 1

, (3)

where k = E, I1, I2 indexes the source of the connection,
and i, j = 1, . . . , n, where n is the number of local com-
partments. Throughout this study, we consider wkf = 0 for
simplicity, which means that local compartments are con-
nected only to their nearest neighbours.

The equations for the local system are then as follows:

Ėi = h1 − Ei +
∑

j

d E
i j f [E j ] (4)

−
∑

j

d I1
i j f [I1 j ]

−
∑

j

d I2
i j f [I2 j ]

İ1i = (h2 − I1i + w4 f [Ei ])/τ1

İ2i = (h3 − I2i + w5 f [Ei ])/τ2

which is spatially homogeneous with periodic boundary con-
ditions.

To study the influence of this additional coupling on the
dynamics of Eq.4, we investigate systems composed of a
small number of compartments. Specifically, we use two,
three, and four coupled compartments.

For bifurcation analysis numerical solutions were com-
puted using the Matlab 2010a ‘ode23’ differential equation
solver, giving time series from which the minima and max-
ima were recorded for a given parameter value. Forward and
backward parameter scans were computed using random ini-
tial conditions, then continued using the end condition as
initial conditions for the subsequent simulation with the new
parameter value (to test for bistability). For Fig. 4, the type of
dynamics was represented symbolically and the boundaries
group the areas of qualitatively different behaviour.

2.3 Large-scale extension: long-range connectivity

Now we suggest a method by which to extend the system
of a small number of coupled oscillators into larger net-
works of connected nodes incorporating realistic cortical
coupling schemes. To this end, we use diffusion-weighted
magnetic resonance imaging and probabilistic tractography
connectivity information from the piconmat database.1 This
data includes connectivity obtained from ten healthy human
subjects. The tractography connection maps are between

1 http://piconmat.com.
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the aparc + aseg regions defined by FreeSurfer2 using the
multi-fibre probabilistic index of connectivity (PICo) method
(Parker et al. 2003) and are based on data obtained using a
3T Philips Achieva scanner. All connection matrices were
inferred using 1,000 streamlines as described in Rose et al.
(2009). Individual streamlines in this context are fibre tracks
determined by the PICo method. Using the same number of
streamlines for all subjects and not biasing the network by, for
example, limiting the number of nodes or edges in the adja-
cency matrix, comparisons between simulated outputs can
be made using non-graph theoretical measures (as detailed
in Sect. 2.4).

The probabilistic connectivity is incorporated into the
model in the form of a static adjacency matrix (C) with
values used to indicate connection strengths between the
node on the i th row and the mth column. The diagonals of this
matrix are set to zero as this represents self-to-self connec-
tivity which is already incorporated in the node as described
in the previous section.

As expanded upon in the results section, each node (N )
is modelled by four underlying compartments with short-
range local coupling and periodic boundaries as per Eq. 4
(Sect. 2.2). In this framework, long-range (inter-node) con-
nectivity is included as follows: each compartment of a node
receives the same excitatory input from the average output
of the four compartments of each connected node. Thus, the
hierarchical connectivity scheme can be formalised as

Ėi = h1 − Ei +
∑

j

d1
i j f [E j ]

−
∑

j

d2
i j f [I1 j ]

−
∑

j

d3
i j f [I2 j ]

+gi

İ1i = (h2 − I1i + w4 f [Ei ])/τ1

İ2i = (h3 − I2i + w5 f [Ei ])/τ2 (5)

gi =
Nm∑

m=1

Ci,m f

⎡

⎣
1

n

∑

j

E j (t − T )

⎤

⎦ ,

where Nm is the number of nodes in the high level network
specified by the adjacency matrix, C . The use of long-range
excitatory coupling between nodes follows the large-scale
modelling approaches of Goodfellow et al. (2012a), Deco
et al. (2009), Honey and Sporns (2008), Sotero et al. (2007).
Realistic time delays (T ) are included into the model and
are linearly scaled with Euclidian distance between nodes.
Delays are grouped into seven bins with a conduction veloc-
ity of 7 m/s as in Bojak et al. (2010). Equations were solved

2 http://surfer.nmr.mgh.harvard.edu.

Table 1 Model parameters

Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

w1, wEs 0.6 0.6 0.6 0.6 0.5
wEn – 0.3 varies 0.3, 0.45 0.3
w2, wI1s 1.3 1.3 1.3 1.3 1.95
wI1n – 0.2 0.2 0.2 0.3
w3, wI2s 1.3 1.3 1.3 1.3 1.95
wI2n – 0.2 0.2 0.2 0.2
w4 4 4 4 4 4
w5 0 0.2 Varies Varies Varies
h1 0.5 0.5 0.5 0.5 0.5
h2 0.5 −3.7 −3.7 −3.7 −3.7
h3 −0.5 −0.5 −0.5 −0.5 −0.5
l 0.1 0.1 0.1 0.1 0.1
τ1 0.66 0.66 0.66 0.66 0.66
τ2 100 100 100 100 40

numerically using ‘dde23’ in MATLAB. The parameters for
all figures are summarised in Table 1.

2.4 Quantitative comparison between datasets

The EEG is thought to originate mainly from cortical sources,
with various factors playing a role in the contribution such as
source density, cortical folding and skull structure amongst
others. The location of the sources, relative to the scalp elec-
trode can also play a role. As a first approximation, we con-
sider the mean of the excitatory variables in the DTI nodes
which are closest in Euclidian space to the scalp electrode to
be representative of the EEG output.

We compare differences between seizures within and
between patients both simulated and also using clinical
recordings. To this end, we use two measures of the spa-
tiotemporal properties of the seizure, one linear (cross cor-
relation, the MATLAB ‘corr’ function) and one nonlinear
(mutual information as in Brown et al. (2011), bin size 100
using base 2 bit). Each measure is applied to each seizure and
results in a 19 * 19 symmetric matrix which is a measure of
correlation between 19 standard EEG channels. Aarabi et al.
(2008) showed with a sliding window approach that both lin-
ear and nonlinear measures indicate stationarity during the
course of absence seizures. We therefore applied these mea-
sures to the entire seizure using zero lag.

To calculate differences between seizures within and
between patients the sum of the absolute value of differ-
ences between the matrices was taken. This single value
indicates the variability in space and time between any two
seizures. Larger values indicate greater variability (greater
differences) between seizures.

Our clinical data includes 10 patients with clinically diag-
nosed absence epilepsy from The Department of Neurology,
University Hospital Schleswig-Holsten in Kiel, Germany and

123



Biol Cybern (2013) 107:83–94 87

(a)
−4 −3 −2 −1 0

−0.5

0

0.5

1
M

in
,M

ax
 E

h
2

H
H

NF

NF

(b)
−4 −3 −2 −1 0

−1

−0.5

0

0.5

h
2

M
in

, M
ax

 E H
IP

NF

Fig. 2 Bifurcation diagram of the one compartment model (Eq. 1)
using the PWL function as in Taylor and Baier (2011) scanning param-
eter h2. a w5 = 0; oscillations are bounded by Hopf bifurcations (H) at
−4 and 0. The stable focus value next to the oscillatory region linearly
increases (decreases) before becoming a stable node on the left (right)
side at point NF. b w5 = 2. Transition from a node to a focus (NF) at
h2 = 0.25 followed by a supercritical Hopf bifurcation (H) at h2 = 0.
Spike-wave oscillations occur between h2 ≈ −3.6 and h2 ≈ −4 where
there is an inflection point (IP) as described by Rodrigues et al. (2010)

from The Department of Neurology, Inselspital, Bern, Swit-
zerland (mean 4.2 seizures per patient, range 3–7 seizures per
patient) sampled at 256 Hz and referenced using the Hjorth
method. Further details of this patient data is included in the
Supplementary online material (Supplementary Table 1). Our
simulated data includes the use of DTI connectivity obtained
from 10 healthy humans with 5 simulated seizures per person.

3 Results

3.1 Space-independent model

We begin our investigation by considering the simplest of
our models, namely the one compartment case, Eq. 1, which
represents local dynamics. To characterise its dynamics, we
show two bifurcation diagrams of Eq.1 as a function of the
offset parameter h2 in Fig. 2. In Fig. 2a, w5 = 0, which
reduces the system to two dimensions (the E/I1 subsystem)
with no influence from the slow inhibitory population. In
Fig. 2b, we set w5 = 2, which recovers the contribution of
the slowly activating inhibitory population to the excitatory
population E . The values of the other parameters were cho-
sen following previous studies and include the possibility of
spike-wave dynamics.

In Fig. 2a, for positive values of h2 > l (right side of the
figure) the system is encountered in a stable node. Decreasing
h2 first leaves the node unaffected (between 0.5 and l) and
then leads to linearly increasing fixed point values of E . In
this linearly changing region, the fixed point is a stable focus.
At h2 = 0, there is a supercritical Hopf bifurcation which
leaves the focus unstable and creates a limit cycle. This limit
cycle begins with fixed frequency and zero amplitude at the
bifurcation point and its amplitude subsequently increases
as h2 decreases until h2 ≈ −1.5. A further decrease of h2

beyond h2 ≈ −2.5 leads to diminishing amplitudes until the
limit cycle disappears in another supercritcal Hopf bifurca-
tion at h2 = −4 leading to a stable focus solution. The limit
cycle frequency changes in the oscillatory region, increasing
the closer it gets to the two bifurcation points. In the region
h2 � −4.1, there is again a single stable node solution.

The system incorporating a third variable displays iden-
tical dynamics to the two-dimensional system for −2 � h2

as can be seen by comparing the right side of Fig. 2a, b.
However, the limit cycle born for decreasing h2 sustains an
increase in amplitude as h2 decreases until h2 ≈ −3.6. On
the left side of the diagram, for −5 < h2 � −4.1, there
is a high-amplitude oscillation with a frequency that is con-
siderably slower compared to the small-amplitude limit cycle
described above. Bounded by these two simple periodic oscil-
lations there is a limit cycle with two maxima and two min-
ima in the region −4 < h2 < −3.6. In this region, the
waveform closely resembles the SWDs of absence seizures
(Taylor and Baier 2011). Both the slow oscillations and the
SWD are made possible by the addition of the third layer
with the slowly activated inhibitory population. The infor-
mation above provides a starting point for the investigation
of coupled systems with multiple compartments in order to
study the spatio-temporal features of the local network model
Eq. 4.

3.2 Multiple coupled compartments: local connectivity

In principle, one could use a single compartment Eq. 1 as
a ‘node’ to build up a large-scale model. Transitions from
background to epileptic dynamics would then typically be
modelled by parameter changes from a limit cycle behaviour
with small amplitude and faster frequency to the SWD with
slower frequency and comparatively large amplitude (as in
Fig. 2b when parameter h2 switches from, e.g.−3 to −3.5)
or directly from a fixed point to SWD [parameter set as, e.g.
in Taylor and Baier (2011)]. However, employing a more
detailed neural mass model it was argued recently that near-
est-neighbour local connectivity could induce plausible out-
of-phase oscillatory behaviour deterministically to create an
irregular rhythmic background activity in the spatial aver-
age (Goodfellow et al. 2010). To model the local transition
to epileptic dynamics, we therefore approximate background
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Fig. 3 Background dynamics of the spatially extended coupled sys-
tem Eq. 4. a Time series of the excitatory variables of all compartments.
From left to right Simple periodic oscillations in a single compartment;
simple periodic, synchronised oscillations in two coupled compart-
ments; complex periodic oscillations in three coupled compartments

where only two variables have identical waveforms; temporally irregu-
lar and spatially desynchronised activity in four coupled compartments.
b Clinical ECoG recordings from four neighbouring electrodes during
an inter-ictal state without epileptiform features

activity in the same spirit by a small set of coupled compart-
ments.

We consider the third layer (I2) as being a requirement for
the SWD activity to be present as this enables the appropriate
minimal ‘bursting’ mechanism to robustly generate spike-
wave model discharges (Taylor and Baier 2011). In order
to investigate desynchronised background, one approach to
take is to study the model without the third layer, whilst
keeping all parameters constant in spatially coupled sys-
tems. In addition, if we seek to find a minimal model capa-
ble of producing the desired properties, we can take the
approach of sequentially increasing the number of compart-
ments. Figure 3 shows time series from systems of one, two,
three and four coupled compartments where h2 = −3.7 and
w5 = h3 = 0 reverting the system to a two layer model (c.f.
Fig. 2a).

Increasingly complex behaviour occurs up to four com-
partments. For only one compartment simple, regular oscil-
lations occur. This is shown in Fig. 3a (left panel) and is
essentially a time series from the bifurcation diagram in
Fig. 2a. Using two coupled compartments (Fig. 3a, second
panel), the model again produces simple regular oscillations
although with a slower frequency. The two oscillators are
phase synchronised and have identical waveforms in both
compartments. In three coupled compartments (Fig. 3a, third
panel), we still observe phase synchrony; however, two of
the compartments have the same waveform and one does not.
This causes a more complex repeating waveform. Finally, in
four compartments (Fig. 3a, right panel), we obtain irreg-
ular, non-identical oscillatory waveforms which are pres-

ent in all four compartments. In addition, changes in phase
synchrony occur over time in the four compartment model
(near the centre of the panel). Desynchrony and irregular,
seemingly random waveforms are features present in inter-
ictal EEG and ECoG. Figure 3b shows an electrocorticogram
(ECoG) recording of neighbouring contacts. A single scalp
EEG electrode is assumed to record the meanfield of an area
the includes a number of ECoG contacts. Note the partial
phase synchrony and irregular waveform in each contact and
a tendency to wax and wane (compare the right panel of
Fig. 3a). It is important to note that no noise or random term
is added to the model in these simulations. The deterministic
model produces the important feature of temporally irreg-
ular waveforms combined with spatial desynchrony. How-
ever, in contrast to previous modelling approaches which
ignore the spatial component and add a random noise term,
this now arises from the interactions between the four
compartments.

We now include the third layer by using non-zero values
for w5 and h3, the results of which are shown in Fig. 4. Fig-
ure 4 shows a diagram of regions of model output and exem-
plary time series of the different types of activity produced
by the four compartment model. This is done using different
parameter values of excitatory–excitatory coupling strength
(wEn) and excitatory–slow inhibitory coupling strength (w5).
We numerically determine stable solutions, thus elucidating
which dynamic regimes can be observed and where transi-
tions between them take place, which suffices for the pur-
poses of the current study. A systematic bifurcation analysis
is left for future work.
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Fig. 4 Results from the four coupled compartment system. Diagram
scanning wEn and w5. Various regions of activity can be observed with
exemplary time series of the excitatory variables shown in each inset.
Each inset for w5 > 0.5 shows one full cycle and is, therefore, repre-
sentative of full model dynamics at the corresponding parameter values.

−E are plotted in the insets as in subsequent figures to aid in compari-
son. The diagram shows areas of synchronised activity which gets less
synchronous for smaller values of wEn when w5 is sufficiently large.
For smaller values of w5, low-amplitude oscillations and fixed point
(FP) solutions are shown

For values of w5 < 0.5, the system reverts to the dynam-
ics of the two layer model. This is because h3 = −0.5 and
when w5 < |h3| the contribution of the third variable to the
excitatory variable is zero. When in the background state, the
activity depends on the excitatory coupling. For small values
of wEn , the desynchronised background activity dominates
(Fig. 4, middle inset, left side). If the excitatory coupling is
stronger the model goes to a fixed point solution (Fig. 4,
inset at lower left corner). Our model therefore allows us
to describe background dynamics by either a self-oscillating
or a steady state dynamics.

Increasing the strength of w5 increases the amount of
input to the slow inhibitor from the excitatory location. If
the strength of this input is greater than the h3 offset then
the slow inhibitor begins to influence the dynamics of the
system. With active participation of the third population
layer (using w5 > |h3|) there are areas of poly-spike-wave
dynamics (polySWD), simple SWD and slow waves. All
are synchronised when wEn is sufficiently large. Areas of
polySWD and SWD are present for many values of wEn ,
meaning that the model can describe transitions from either
the fixed point or the oscillatory background state to SWD
using a change of parameter. For mid values of wEn (e.g.
0.2025), when w5 is sufficiently large (e.g. 2) the waveforms
are not perfectly synchronised; however, this degree of de-
synchrony is subtle and is dependent on wEn . An exam-
ple of such subtle phase shifting leading to desynchrony
is shown in the corresponding inset of Fig. 4. For smaller
values of wEn , the polySWD or SWD become strongly phase
shifted.

Due to the relationship between w5 and h3, instead of w5

one can also use the stimulus parameter h3 to take the system
from background activity to the synchronised SWD (results
not shown).

The model is, therefore, capable of producing a desyn-
chronised background state using either two or three layers.
We have also demonstrated that the model is capable of
producing highly synchronised spike-wave dynamics. Fur-
thermore, we have shown that there are possibilities for
the model dynamics to change states by altering either
the connectivity parameter w5 or the stimulus parame-
ter h3. Figure 5 shows the time series of all four excit-
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Fig. 5 Dynamics of spatially extended four compartment three layer
model. a Transition from low-amplitude desynchronised oscillations to
highly synchronised high-amplitude SWD caused by a gradual ramping
in the connectivity parameter w5 and back again where wEn = 0.3. b
as in a except wEn = 0.45 and with additive noise in all variables
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Fig. 6 Simulation results in the large-scale model (Eq. 5) with connec-
tivity set 1, seizure 1. Upper panels Spatio-temporal activity at different
time points shown as topological profiles. Zoom of two simulated chan-
nels (Fp2, Fp1). Lower left panel Time series of all 19 simulated chan-

nels. Lower right panel Interpolated topological profile at t ≈ 2.5 s.
Colour indicates variable value. Image is a modified still from Supple-
mentary Movie 1 (Colour online)

atory variables using the four compartment model subject
to a ramp in parameter w5 which accounts for enhanced
input to the slow inhibitory population. In Fig. 5a, wEn =
0.3 ensuring the background state has deterministic irreg-
ular desynchronised oscillations. In Fig. 5b, an alternative
scenario is shown where w5 = 0.45 and a noise term
is added to all variables to model the background activ-
ity. We can therefore account for both approaches to the
modelling of background activity in our model, i.e. deter-
ministic irregular oscillations, or a fixed point plus noise.
The first in agreement with Goodfellow et al. (2010),
the second following the approach of Breakspear et al.
(2006).

When changing the w5 parameter in both cases from a
value in the area of background state in the bifurcation dia-
gram to a value in the SWD state and back again, we observe
the apparently immediate onset and offset of SWD that is
similar to observations in clinical EEG recordings. The sud-
den onset happens despite the fact that the parameter is
ramped continuously and it occurs only after the parame-
ter has reached its final value. If the mean of all excitatory
variables is considered (as will be used in the next section)

the transition occurs from highly irregular desynchronised
background to strongly synchronised SWD in both cases.

The reported results qualitatively also hold true for
larger systems with more complicated Gaussian distributed
connectivity values (see Supplementary Fig. 1 for an exam-
ple). Thus, we consider the four compartment model to be
a robust prototype to describe the transition from irregular
background to synchronous SWD.

3.3 Large-scale extension: long-range connectivity

Seizures were simulated in the large-scale model by ramping
the w5 parameter globally from the background state to the
seizure state and back again. Random initial conditions were
used for each simulation and the model was simulated in the
background state until any transient activity had disappeared
prior to any parameter ramping. The initial conditions at the
point of seizure onset, whilst always in the background state,
were, therefore, different.

In Fig. 6, we show an exemplary time series of the 19
simulated EEG channels along with a topological profile of
activity in all spatial locations at t ≈ 2.5 s into the seizure.

123



Biol Cybern (2013) 107:83–94 91

SWD, polySWD and slow wave oscillations can be observed
in all simulated channels. There is some degree of irregular-
ity in the oscillations in both space and time with regard to
waveform and amplitude. For example, the amplitude of the
oscillations in channel Fz are of higher amplitude than those
in channel T6. In the topological heatmap (right panel, Fig. 6),
a complex spatial activity profile can be observed. This spa-
tial heatmap varies over time, a movie of which can be seen
in Supplementary Online Movie 1 (SOM1). During SOM1
one can observe rapidly changing non-trivial spatio-tempo-
ral activity. It is important to emphasise that the simulation
is not intended to reproduce patient-specific spatio-temporal
features, rather more generic features common to all absence
seizures, i.e. SWD, polySWD, slow waves, high synchrony,
large amplitude and complex, non-trivial spatial profiles.

3.4 Quantitative comparisons between datasets

An important feature of clinical epilepsy is that seizures of a
particular patient tend to evolve in stereotypical ways, which
is a phenomenon known as stereotypy (Schindler et al. 2011).
The interesting question of whether the complex spatio-tem-
poral patterns observed in our large-scale simulations can
support this feature was, therefore, investigated as follows.

Cross correlation and mutual information were used to
study the impact of different connectivity structures on wide-
spread spike-wave activity. In the upper panel of Fig. 7, com-
parisons are made between clinical datasets within patients
(red asterisks) and between patients (black circles) for each
of the 10 patients. In all cases, the seizures within patients are
more similar than when the seizures are compared to other
patients. In analysis of simulated seizures, the same is also
true and is shown in the lower panel of Fig. 7. Similar results

Fig. 7 Comparisons of seizures using cross correlation. Difference
between two seizures from within the same patient (red asterisks) and
the difference with a seizure from another patient (black circles). Larger
values indicate the seizures are more different. Upper panel Results
using clinical data. Lower panel Results using simulated seizures from
different connectivity sets (Colour online)

were also obtained using mutual information (Supplemen-
tary Fig. 2).

4 Discussion

In this study, we presented a large-scale, patient-specific
model for the investigation of spike-wave dynamics as seen
during absence seizures in humans. In a discrete, hierarchical
network approach, we demonstrated that a simplified local
model of four coupled compartments was sufficient to cap-
ture key spatio-temporal dynamics relating to the transition
between a desynchronised background state and the more
highly correlated seizure state. Realistic long-range connec-
tivity derived from human data was then incorporated into
the model in order to extend to the larger spatial scale. We
demonstrated that despite the inevitable heterogeneity of this
anatomical network, transitions from background to SWD
could still be modelled alongside non-trivial spatio-tempo-
ral dynamics. Beyond absence seizures, this approach can be
applied to other forms of generalised epilepsies and also to
partial epilepsies that present specific spatio-temporal seizure
evolution patterns. Whereas previous approaches to model
SWD often made the assumption of spatial homogeneity
(Breakspear et al. 2006; Marten et al. 2009), modelling large-
scale dynamics of abnormal rhythms with heterogeneities in
the connectivity might be crucial for understanding patient-
specific spatio-temporal features of, e.g. absence epilepsy
(Garcia-Dominguez et al. 2005; Blumenfeld 2005; Moeller
et al. 2008; Bai et al. 2010).

Our initial studies of the space-independent system dem-
onstrated that the inclusion of a third variable in the Amari
oscillator, namely, the slowly activating inhibitory popu-
lation, led to qualitative changes in the system dynamics
(Fig. 2). The three-dimensional system Eq. 1, therefore, sup-
ports a parameter-driven transition from background oscilla-
tions to spike-wave dynamics via the modulation of a model
parameter. We demonstrated the specific case of this param-
eter being the strength of activation of an inhibitory pop-
ulation. This is in line with previous models of parame-
ter driven transitions to SWD in space independent mod-
els (Marten et al. 2009; Breakspear et al. 2006) and adds
evidence to the importance of connectivity between popu-
lations of excitatory and inhibitory neurons for transitions
to seizure dynamics. In the current study, we have shown
that this feature is preserved in higher dimensional represen-
tations of large-scale brain dynamics incorporating realistic
long-range connectivity.

In extending the model spatially, several different pro-
totypes for the number of compartments that could serve as
representing local dynamics were considered. Borisyuk et al.
(1995) used two coupled neural field oscillators in a sim-
ilar approach, and observed complex periodic and chaotic
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dynamics resulting from the coupling. We ultimately used
four coupled compartments showing complex, partly desyn-
chronised oscillations which in addition showed waxing and
waning of the amplitudes consistent with ECoG recordings.
This was chosen as a basis for further work and as a pro-
totype for further spatial expansion. Four compartments is
fitting with the original Amari model in that it is the small-
est possible configuration which allows both symmetrically
coupled and uncoupled neighbour(s) and is translationally
invariant with periodic boundaries. This approach is compat-
ible with previous studies of small networks of neural mass
models to account for the dynamics of background rhythms
(David and Friston 2003; David et al. 2005; Ursino et al.
2010). An alternative representation of the fluctuating EEG
background state can be given by a model with noise driven
steady states (e.g. Suffczynski et al. 2004; Breakspear et al.
2006 in models of transitions to the absence-like seizures).
A limitation of this approach is that the nature of correlations
between noisy inputs to different compartments is unknown.
The approach of coupled asynchronous oscillators has been
previously used by Goodfellow et al. (2010) and can pro-
duce irregular time series on the mean field, as confirmed
in this study. However, the bifurcation scan Fig. 4 and time
series Fig. 5 show that our model is able to implement both
mechanisms depending on the exact choice of parameters.

We have shown that inter-ictal and ictal transitions
can occur in our model. Specifically, this is achieved by
gradually ramping the w5 parameter between states. This
parameter represents the connectivity from the excitatory
populations to the slow inhibitory populations. Such a param-
eter has been hypothesised to represent dynamic inhibitory
mechanisms operating on a slow time scale such as extracel-
lular potassium, glial processes or subcortical (e.g. thalamic)
input (Wang et al. 2012). This increased activation of such
processes has been modelled in part in more detailed alter-
native model formulations. For example, Breakspear et al.
(2006) showed that SWD can arise as a result of an increase
in the parameter representative of connectivity strength from
the cortex to a subcortical thalamic population. Furthermore,
changes in levels of carbon dioxide, oxygen and pH due to
hyperventilation have been biophysically implicated in such
thalamocortical interactions (Sherwin 1967) and the absence
seizures (Hughes 2009). The gradual decrease in our parame-
ter w5 can be compared to a return to the normal resting level
of a property such as pH as a result of normal breathing.

We have used the Amari oscillator as a basis for our work;
however, it is important to note that alternative models could
be used instead. For example, recent studies using purely phe-
nomenological models showed functional network structure
(Benjamin et al. 2012) and excitability (Goodfellow et al.
2012b) can play a role in seizures. This approach of using
simplified, less biophysically motivated models, has been
used by other authors in similar studies of large-scale brain

models (Honey and Sporns 2008; Deco et al. 2009). Alter-
natively, in future studies, the present simplified model for
SWD can be substituted by models incorporating more phys-
iological details (Breakspear et al. 2006; Marten et al. 2009;
Goodfellow et al. 2010).

Modelling the spatio-temporal aspects of epileptiform
EEG is a crucial step towards understanding the macro-
scopic mechanisms of epilepsy. In particular, even so-called
generalised seizures are not spatially homogeneous events
that can be sufficiently characterised by the production of
SWD rhythms alone. References (Moeller et al. 2008) and
(Bai et al. 2010), for example, revealed distinct spatial charac-
teristics of SWD in humans. Furthermore, Holmes (2004) and
Rodin and Ancheta (1987) have reported non-trivial spatial
distributions of EEG rhythms during generalised seizures.

Combined EEG and fMRI of the absence seizures has
shown patient-specific fingerprints (Moeller et al. 2010). The
observed property of patient-specific features has been dem-
onstrated in our model containing heterogeneous connectiv-
ity. Such a patient-specific property could not be shown in a
homogeneous model of the cortex (Robinson et al. 2002).
We have therefore demonstrated that the patient-specific
connectivity is one potential explanation for the observed
features.

In future studies, our model can be used for more detailed
investigations of spatio-temporal dynamics and the underly-
ing connectivity patterns using various other network topol-
ogies. This could include those from clinically diagnosed
epileptic patients. This may be important as some authors
have reported differences in large-scale epileptic networks
in mesial temporal lobe epilepsy (Focke et al. 2008) and
juvenile myoclonic epilepsy (Muircheartaigh et al. 2011).
This preliminary study based on the extended Amari oscil-
lator could be used in future to quantitatively compare clini-
cal and simulated data similarly to other approaches (David
et al. 2004). Until recently, most multivariate data analy-
sis of epileptic EEG is done without reference to a specific
spatio-temporal model of the phenomenon under observa-
tion whereas our model allows us to compare to multivariate
properties at the level of the clinical EEG.

Such a model can also be used for the investigation of the
proposed focal cortical onset of generalised seizures (Meeren
et al. 2002), spatially localised ‘focal’ (simple partial) sei-
zures, or secondary generalised seizures with a focal onset
through the use of heterogeneous parameter ramping. Indeed,
this technique could also be used to ramp only specific nodes
in, for example the mesial frontal and orbito-frontal regions
to study the patterns of propagation as suggested in Holmes
(2004).

In this study, we formulated the large-scale framework
to study patient-specific features of generalised SWD, com-
paring model output directly to clinical EEG. For general
future purposes this might be supplemented with a more
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realistic conversion of model variables to EEG signals in
accordance with Westmijse et al. (2009), Bai et al. (2010).
Various approaches of such forward models exist in the liter-
ature for population level mathematical models (Kiebel et al.
2006; Sotero et al. 2007; Valdes-Sosa et al. 2009; Cosandier-
Rimele et al. 2010). In addition, comparisons to fMRI data
can be made by including a model to account for the hemody-
namic response (Friston et al. 2003; Valdes-Sosa et al. 2009).
It will be of interest to infer features of functional connec-
tivity and compare to underlying structural networks in the
case of generalised seizures (Zhang et al. 2011).
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and U. Stephani, Neurology, University Hospital Kiel and K. Schin-
dler, Department of Neurology, Inselespital, Bern, CH for clinical EEG
data and discussion of neurological matters. We acknowledge financial
support form EPSRC and BBSRC. PNT thanks G. Parker and M. Muld-
oon for discussion. We thank C. Rummel, M. Müller and G. Leaver for
discussion.

References

Aarabi A, Wallois F, Grebe R (2008) Does spatiotemporal synchro-
nization of EEG change prior to absence seizures?. Brain Res
1188:207–221

Amari S (1977) Dynamics of pattern formation in lateral-inhibition type
neural fields. Biol Cybern 27(2):77–87

Amor F, Rudrauf D, Navarro V, Ndiaye K, Garnero L, Martinerie J,
LeVanQuyen M (2005) Imaging brain synchrony at high spatio-
temporal resolution: application to MEG signals during absence
seizures. Signal Process 85(11):2101–2111

Babajani-Feremi A, Soltanian-Zadeh H (2010) Multi-area neural mass
modeling of EEG and MEG signals. NeuroImage 52(3):793–811

Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, Desalvo M,
Novotny EJ, Constable RT, Blumenfeld H (2010) Dynamic time
course of typical childhood absence seizures: EEG, behavior, and
functional magnetic resonance imaging. J Neurosci 30(17):5884

Benjamin O, Fitzgerald THB, Ashwin P, Tsaneva-Atanasova K, how-
dhury F, Richardson MP, Terry JR ( 2012) A phenomenological
model of seizure initiation suggests net-work structure may explain
seizure frequency in idiopathic generalised epilepsy. J Math Neu-
rosc 2(1):1

Blumenfeld H (2005) Cellular and network mechanisms of spike-wave
seizures. Epilepsia 46:21–33

Bojak I, Oostendorp TF, Reid AT, Kotter R (2010) Connecting mean
field models of neural activity to EEG fMRI data. Brain Topogr
23(2):139–149

Borisyuk GN, Borisyuk RM, Khibnik AI, Roose D (1995) Dynamics
and bifurcations of two coupled neural oscillators with different
connection types. Bull Math Biol 57(6):809–840

Breakspear M, Stam CJ (2005) Dynamics of a neural system with
a multiscale architecture. Philos Trans R Soc B Biol Sci
360(1457):1051–1074

Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson
PA (2006) A unifying explanation of primary generalized seizures
through nonlinear brain modeling and bifurcation analysis. Cereb
Cortex 16(9):1296

Brown G, Pocock A, Zhao M, Lujan M (2011) Conditional likelihood
maximisation: a unifying framework for mutual information fea-
ture selection. J Mach Learn Res 13:26–46

Cohn R, Leader HS (1967) Synchronization characteristics of par-
oxysmal EEG activity. Electroencephalogr Clin Neurophysiol
22(5):421–428

Cosandier-Rimele D, Merlet I, Bartolomei F, Badier JM, Wendling F
(2010) Computational modeling of epileptic activity: from cortical
sources to EEG signals. J Clin Neurophysiol 27(6):465

David O, Friston KJ (2003) A neural mass model for MEG EEG: cou-
pling and neuronal dynamics. NeuroImage 20(3):1743–1755

David O, Cosmelli D, Friston KJ (2004) Evaluation of different mea-
sures of functional connectivity using a neural mass model. Neu-
roImage 21(2):659–673

David O, Harrison L, Friston KJ (2005) Modelling event-related
responses in the brain. NeuroImage 25(3):756–770

Deco G, Jirsa V, McIntosh AR, Sporns O, Kotter R (2009) Key role of
coupling, delay, and noise in resting brain fluctuations. Proc Natl
Acad Sci USA 106(25):10302

Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the
dynamical organization of resting-state activity in the brain. Nat
Rev Neurosci 12(1):43–56

Eeckman FH, Freeman WJ (1991) Asymmetric sigmoid non-linearity
in the rat olfactory system. Brain Res 557(1–2):13–21

Focke NK, Yogarajah M, Bonelli SB, Bartlett PA, Symms MR, Duncan
JS (2008) Voxel-based diffusion tensor imaging in patients with
mesial temporal lobe epilepsy and hippocampal sclerosis. Neuro-
Image 40(2):728–737

Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling.
NeuroImage 19(4):1273–1302

Garcia-Dominguez L, Wennberg RA, Gaetz W, Cheyne D, Snead OC,
Velazquez JLP (2005) Enhanced synchrony in epileptiform activ-
ity? Local versus distant phase synchronization in generalized sei-
zures. J Neurosci 25(35):8077

Goodfellow M, Schindler K, Baier G (2011) Intermittent spike-wave
dynamics in a heterogeneous, spatially extended neural mass
model. NeuroImage 55(3):920–932

Goodfellow M, Schindler K, Baier G (2012a) Self-organised transients
in a neural mass model of epileptogenic tissue dynamics. Neuro-
Image 59(3):2644–2660

Goodfellow M, Taylor PN, Wang Y, Garry DJ, Baier G (2012b) Mod-
elling the role of tissue heterogeneity in epileptic rhythms. Eur
J Neurosci 36(2):2178–2187

Holmes MD, Brown M, Tucker DM (2004) Are generalized seizures
truly generalized evidence of localized mesial frontal and fronto-
polar discharges in absence. Epilepsia 45(12):1568–1579

Honey CJ, Sporns O (2008) Dynamical consequences of lesions in cor-
tical networks. Hum Brain Mapp 29(7):802–809

Hughes JR (2009) Absence seizures: a review of recent reports with
new concepts. Epilepsy Behav 15(4):404–412

Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked
potential generation in a mathematical model of coupled cortical
columns. Biol Cybern 73(4):357–366

Jirsa VK, Kelso JAS (2000) Spatiotemporal pattern formation in neural
systems with heterogeneous connection topologies. Phys Rev E
62(6):8462–8465

Jirsa VK, Sporns O, Breakspear M, Deco G, McIntosh AR
(2010) Towards the virtual brain: network modeling of the intact
and the damaged brain. Arch Ital Biol 148(3):189–205

Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of
evoked responses in EEG MEG with lead field parameterization.
NeuroImage 30(4):1273–1284

Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR (2009)
Onset of polyspike complexes in a mean-field model of human
electroencephalography and its application to absence epilepsy.
Philos Trans R Soc A Math Phys Eng Sci 367(1891):1145

Meeren HKM, Pijn JPM, Van Luijtelaar ELJM, Coenen AML, Lopesda
Silva FH (2002) Cortical focus drives widespread corticothalamic

123



94 Biol Cybern (2013) 107:83–94

networks during spontaneous absence seizures in rats. J Neurosc
22(4):1480

Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, Steph-
ani U, Siniatchkin M (2008) Simultaneous EEG-fMRI in drug-
naive children with newly diagnosed absence epilepsy. Epilepsia
49(9):1510–1519

Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M,
Gotman J (2010) Absence seizures: individual patterns revealed
by EEG-fMRI. Epilepsia 51(10):2000–2010

Muircheartaigh JO, Vollmar C, Barker GJ, Kumari V, Symms MR,
Thompson P, Duncan JS, Koepp MJ, Richardson MP (2011) Focal
structural changes and cognitive dysfunction in juvenile myoclonic
epilepsy. Neurology 76(1):34–40

Parker GJM, Stephan KE, Barker GJ, Rowe JB, MacManus DG,
Wheeler-Kingshott CAM, Ciccarelli O, Passingham RE, Spinks
RL, Lemon RN et al. (2002a) Initial demonstration of in vivo
tracing of axonal projections in the macaque brain and compar-
ison with the human brain using diffusion tensor imaging and fast
marching tractography. NeuroImage 15(4):797–798

Parker GJM, Wheeler-Kingshott CAM, Barker GJ (2002b) Estimat-
ing distributed anatomical connectivity using fast marching meth-
ods and diffusion tensor imaging. IEEE Trans Med Imaging
21(5):505–512

Parker GJM, Haroon HA, Wheeler-Kingshott CAM (2003) A frame-
work for a streamline-based probabilistic index of connectivity
(pico) using a structural interpretation of mri diffusion measure-
ments. J Magn Reson Imaging 18(2):242–254

Pinault D, O’Brien TJ (2005) Cellular and network mechanisms of
genetically-determined absence seizures. Thalamus Relat Syst
3(3):181

Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale
brain activity in normal arousal states and epileptic seizures. Phys
Rev E 65(4):041924

Rodin E, Ancheta O (1987) Cerebral electrical fields during petit mal
absences. Electroencephalogr Clin Neurophysiol 66(6):457–466

Rodrigues S, Barton D, Marten F, Kibuuka M, Alarcon G, Richardson
MP, Terry JR (2010) A method for detecting false bifurcations in
dynamical systems: application to neural-field models. Biol Cy-
bern 102(2):145–154

Rose CJ, Morris D, Haroon H, Embleton K, Logothetis N, RalphLam-
bon M, Parker GJ (2009) Piconmat.com version 2.0: a web-based
probabilistic tractography data service

Schindler K, Gast H, Stieglitz L, Stibal A, Hauf M, Wiest R, Mariani
L, Rummel C (2011) Forbidden ordinal patterns of periictal intra-
cranial EEG indicate deterministic dynamics in human epileptic
seizures. Epilepsia 52:1771–1780

Sherwin I (1967) Alterations in the non-specific cortical afference
during hyperventilation. Electroencephalogr Clin Neurophysiol
23:532–538

Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez
JC (2007) Realistically coupled neural mass models can generate
EEG rhythms. Neural Comput 19(2):478–512

Suffczynski P, Kalitzin S, Lopes Da Silva FH (2004) Dynamics of non-
convulsive epileptic phenomena modeled by a bistable neuronal
network. Neuroscience 126(2):467–484

Taylor PN, Baier G (2011) A spatially extended model for macroscopic
spike-wave discharges. J Comput Neurosci 31(3):679–684

Ursino M, Cona F, Zavaglia M (2010) The generation of rhythms within
a cortical region: analysis of a neural mass model. NeuroImage
52(3):1080–1094

Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina
Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, Ozaki
T (2009) Model driven EEG fMRI fusion of brain oscillations.
Hum Brain Mapp 30(9):2701–2721

Wang Y, Goodfellow M, Taylor PN, Baier G (2012) A phase space
approach for modelling of epileptic dynamics. Phys Rev E
85:061918

Weir B (1965) The morphology of the spike-wave complex. Electroen-
cephalogr Clin Neurophysiol 19(3):284–290

Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic
fast activity can be explained by a model of impaired GABA ergic
dendritic inhibition. Eur J Neurosci 15(9):1499–1508

Westmijse I, Ossenblok P, Gunning B, VanLuijtelaar G (2009) Onset
and propagation of spike and slow wave discharges in human
absence epilepsy: a MEG study. Epilepsia 50(12):2538–
2548

Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys J 12(1):1–24

Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan
C, Chen G, Jiao Q (2011) Altered functional–structural coupling
of large-scale brain networks in idiopathic generalized epilepsy.
Brain 134(10):2912–2928

123


	Towards a large-scale model of patient-specific epileptic spike-wave discharges
	Abstract
	1 Introduction
	2 Models/methods
	2.1 Space-independent model
	2.2 Multiple coupled compartments: local connectivity
	2.3 Large-scale extension: long-range connectivity
	2.4 Quantitative comparison between datasets

	3 Results
	3.1 Space-independent model
	3.2 Multiple coupled compartments: local connectivity
	3.3 Large-scale extension: long-range connectivity
	3.4 Quantitative comparisons between datasets

	4 Discussion
	Acknowledgments
	References


