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Abstract Human interaction partners tend to synchronize
their movements during repetitive actions such as walking.
Research of inter-human coordination in purely rhythmic
action tasks reveals that the observed patterns of interaction
are dominated by synchronization effects. Initiated by our
finding that human dyads synchronize their arm movements
even in a goal-directed action task, we present a step-wise
approach to a model of inter-human movement coordination.
In an experiment, the hand trajectories of ten human dyads
are recorded. Governed by a dynamical process of phase
synchronization, the participants establish in-phase as well
as anti-phase relations. The emerging relations are success-
fully reproduced by the attractor dynamics of coupled phase
oscillators inspired by the Kuramoto model. Three different
methods on transforming the motion trajectories into instan-
taneous phases are investigated and their influence on the
model fit to the experimental data is evaluated. System iden-
tification technique allows us to estimate the model param-
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eters, which are the coupling strength and the frequency
detuning among the dyad. The stability properties of the
identified model match the relations observed in the exper-
imental data. In short, our model predicts the dynamics
of inter-human movement coordination. It can directly be
implemented to enrich human–robot interaction.
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1 Introduction

People coordinate their movements in many situations of
daily life. This movement coordination can be intrapersonal,
e.g., coordination of one’s left with one’s right arm or inter-
personal, i.e., coordination with another person. There is a
wide range of actions that people can do together and for all
these actions movements need to be coordinated. Examples
range from handing over objects, manipulating a common
workpiece to setting up a table. In order to prevent collisions
and injuries in the worst case, the agents are required to keep
certain spatial and temporal relations of their actions. People
often seem to achieve such coordination without much effort
in a smooth manner.

1.1 Synchronization—a ubiquitous feature of human
movement coordination

Coordination often comes about as movement synchroniza-
tion during repetitive action. Synchronization can be under-
stood as the establishment of a bounded temporal relation-
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ship between the interacting entities, which is brought about
and sustained by a convergent dynamical process. Many
examples in literature provide evidence for movement syn-
chronization. When walking in a group, people tend to syn-
chronize their gait (van Ulzen et al. 2008). In experiments
requiring relatively simple movements, synchronization is
found to be a stable pattern in human behavior. Richard-
son et al. (2007) introduce a paradigm in which two peo-
ple are moving next to each other in rocking chairs. They
unintentionally rock in synchrony, although different weights
attached to the chairs manipulate the frequencies at which
they would naturally oscillate without human effort. Similar
behavior is observed in tasks in which people have to swing
handheld pendulums (Richardson et al. 2005) or are merely
moving their legs (Schmidt et al. 1990). Besides these behav-
ioral effects, synchronization affects social relationships. It is
found that falling into synchrony with somebody else serves a
purpose: it enhances perceptual sensitivity toward each other,
fosters cooperative abilities (Valdesolo et al. 2010) and leads
to the attribution of more positive characteristics to the inter-
action partner (Miles et al. 2009). All in all synchronization
of movements seems to play an important role in human
interactive behavior.

The contribution of this article is a systematic approach to
describe human–human interaction (HHI) in a quantitative
way. Our goal is to provide a description that can be applied
directly in human–robot interaction (HRI) for its evaluation.
We therefore address three research questions in this article:
First, is movement synchronization in HHI a phenomenon
that also holds in goal-directed tasks? Second, if yes, when
does synchronization between humans emerge during such a
task and which strategy is applied to do so? Third, how can we
capture the observed effects in a mathematical model which
is transferable to a robotic agent? The analysis of the exper-
imental data gathered in our previous study (Lorenz et al.
2011) shows that people also synchronize their arm move-
ments in a goal-directed task which is characterized by the
need for precise movements. These findings are in line with
previous studies on the topic (Schmidt et al. 1990; Richardson
et al. 2005, 2007). In general, movement synchronization is
found to be a guiding dynamical process which leads to stable
coordination patterns in natural HHI. With our approach, we
characterize the emerging patterns and the quality of coordi-
nation by the extent of phase synchronization. Through sys-
tem identification based on the experimental data, we obtain
a parameterized model which is ready for implementation
and evaluation in HRI.

Since modeling of HHI is the central contribution of this
article, an overview on related work toward the exploration
and modeling of human movement coordination is provided
in the following.

1.2 Modeling rhythmic movement coordination

Movement synchronization—as a basic principle of human
interactive behavior—is investigated by means of dynamical
systems that model interconnected perception–action loops
and generate dynamical patterns (Schöner and Kelso 1988;
Beek et al. 1995b). Warren (2006) provides a detailed intro-
duction on behavioral dynamics in this context. Pioneer-
ing work on modeling intrapersonal coordination of limbs
is conducted by Haken et al. (1985). The authors propose a
minimal dynamical model of coupled nonlinear oscillators—
known as the Haken–Kelso–Bunz (HKB) model—which suc-
cessfully reproduces the transition between stable coordina-
tion patterns during bimanual finger-tapping when changing
the cycle frequency as the control parameter. The observed
change of attractor basins depending on the extrinsic control
parameter is qualitatively described by a sinusoidal potential
function.

Several modifications of the HKB model are proposed.
Beek et al. (2002) introduce two additional oscillators to
represent the level of movement generation through the
end effectors while explicitly accounting for the mechan-
ical properties of a human limb. This neuro-mechanical
model should foster the fundamental analysis of the inter-
play between the neural and the effector level during purely
rhythmic simple movements. In order to gain deeper insights
into the dynamics of human coordination, experimental par-
adigms which utilize a human’s periodical input to drive
oscillatory mechanical systems with different eigenfrequen-
cies are applied repeatedly. Schmidt et al. (1993) employ the
task paradigm of swinging pendulums originally introduced
by Turvey et al. (1986). An extension of the HKB coupling
function by a frequency detuning term similar to the coupling
function proposed by Cohen et al. (1982) is found to account
for both the effects of different eigenfrequencies and external
forcing frequencies.

Originally developed to model intrapersonal coordina-
tion of movements, dynamical models of coupled oscilla-
tors are found to qualitatively explain interpersonal coordi-
nation as well. While participants had to swing hand-held
pendulums, Schmidt and O’Brien (1997) show the emer-
gence of unintended coordination in a laboratory task. It is
argued that the same mechanisms of dynamical self-orga-
nization as observed in intrapersonal coordination apply.
In a subsequent study, Schmidt et al. (1998) compare the
characteristics of intended intra- and interpersonal coordina-
tion by applying the same pendulum paradigm. Frequency
detuning imposed through different eigenfrequencies and
frequency levels are introduced as control parameters.
Depending on the frequency level and the intended phase
relation, the authors obtain the coupling strength of a local
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dynamical model similar to Cohen et al. (1982). The num-
ber of coordination breakdowns, the phase fluctuation and
the coupling strength reveal interpersonal coordination to
be weaker than intrapersonal coordination. However, the
regression method to identify the coupling strength relies on
a-priori knowledge of the pendulum-wrist system’s fre-
quency detuning, which limits the approach to oscillatory
effector systems.

Fundamental research work on fitting nonlinear dynamic
models to trajectories of human rhythmic movements is
conducted by Kay et al. (1987). Observed functional relation-
ships between the external driving frequency and the ampli-
tudes and peak velocities of the movements are found to be
reproduced well by a mixture of van der Pol and Rayleigh
oscillators with stable parameter fits. The model is fitted to
the limit cycle data in the position-velocity phase plane. In a
more general approach, Eisenhammer et al. (1991) propose
a reconstruction method of time series data based on polyno-
mial dynamical models which are fitted to the vector field of
an appropriate state-space representation of the data. While
also transients of a pair of coupled oscillators can be recon-
structed from simulated data, the method is rather sensitive to
noise and requires extensive observation of transient regimes
to yield stable results, since the whole state-space region is
reconstructed. Inspired by the numerous variations of cou-
pled oscillators models of rhythmic limb movements, Beek
et al. (1995a) systematically analyze how different compo-
nents such as linear and nonlinear elastic and friction terms
contribute to the composition of rhythmic movement. Jirsa
and Kelso (2005) show in their work on dynamical move-
ment models how the attractor landscape in its state space
can be formed to reproduce a variety of both discrete and
rhythmic movement behaviors, using their so-called excita-
tors. Elementary human movement trajectories in response
to different stimuli are replicated qualitatively by stimulating
the respective excitator model. The authors show that their
approach extends to coupled dynamical systems as well, yet
given a certain action task it may require a more sophisti-
cated design to obtain the desired features of coordinated
movement behavior. The aforementioned approaches accu-
rately model basic human motor behavior in rhythmic tasks,
yet the movement reproduction and coordination is tightly
encoded by the functional state-space representation of the
oscillator dynamics, making them less flexible in their appli-
cation to constrained, goal-directed tasks.

Similar to Beek et al. (2002), de Rugy et al. (2006) pro-
pose a neuro-mechanical unit per agent which employs a
cross-coupled pair of self-sustained oscillators. The intended
modes of coordination while swinging pendulums are rep-
licated as well as the effect of resonance tuning when the
pendulums were manipulated individually. Rocking side-by-
side in chairs is introduced in a task paradigm involving
whole-body movements by Richardson et al. (2007). Analyt-

ical results on observed coordination patterns are also related
qualitatively to the features of the HKB model, yet explicit
modeling is not conducted.

Common to the fundamental research work on rhythmic
movement coordination between humans, the exploration
and modeling is mostly approached by means of combined
oscillatory task-effector systems, such as hand-held pendu-
lums. However, little is known about the coordination behav-
ior of humans in more realistic action tasks, to what extent
the fundamental findings and modeling approaches on move-
ment coordination apply, and how the observed effects can
be described in a quantitative way.

The remainder of this article is organized as follows: in
Sect. 2, we review the design of our experimental task and
outline the pursued modeling approach. The reader is pro-
vided with the methods used for data reduction and anal-
ysis in Sect. 3. Analytical findings, development of the
model structure, and the parameter identification are pre-
sented in Sect. 4. After discussing the results on dyadic move-
ment coordination in Sect. 5, we draw our conclusions in
Sect. 6.

2 Approach

In this section, a brief description of the experimental task
is given. Movement data of the experiment also described
in Lorenz et al. (2011) are the basis for the investigation of
our research questions. We further provide a sketch of our
modeling approach including the mathematical definition of
synchronization we refer to in this article.

2.1 Experimental task

The investigation of our questions on human movement syn-
chronization places certain requirements on the design of an
experimental task. We consider the following points to be
relevant for synchronization:

– The task paradigm should integrate goal-directed as well
as repetitive actions which similarly appear in real-life
settings. To keep things simple, the task is to execute a
repetitive sequence consisting of a forward and a back-
ward movement in a closed trajectory, which we call a
cycle in the following. Multiple cycles are to be completed
in a continuous manner, which allows synchronization to
emerge among the agents. The forward as well as the
backward movement (half-cycles) are point-to-point arm
movements while carrying a tool in hand. This is where
goal-directedness comes into play: the tool (a pen) has to
be placed on two marked positions on a table alternately.
Note that the agents perform identical tasks.

– The topology of workspaces is arranged without overlap
of the movement trajectories. This enables the agents to
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Fig. 1 Experimental setup with two human agents. Participants are sit-
ting face to face. The task is to alternately tap with a pen on two assigned
points marked at the table. The action start off is triggered acoustically
via headphones. Motion trajectories of the pens are captured by a visual
tracking system.

perform in parallel without any interference or demand
for collision avoidance, which could restrict movement
synchronization.

– During task execution the agents’ movements might be
affected by sensory information that is available of the
other agent’s movements. In order to provide full visual
information, the agents are facing each other without any
occlusions. Since they are always able to observe their
opponents’ movements as well as start and target posi-
tions, synchronization is made as easy as possible.

The setup of the laboratory task involving the actions of
two agents is depicted in Fig. 1.

To investigate how movement synchronization is initial-
ized, the action start off among the dyad is modulated by
triggering it acoustically. Among all possible start off rela-
tions, three conditions are supposed to be capable of being
differentiated in our experimental task. They are picked as
follows: (1) both agents are triggered at the same time (zero-
cycle); (2) the second agent is triggered when the first agent
has passed a quarter of the first cycle, i.e., half the distance
between start and target (quarter-cycle); (3) the second agent
is triggered when the first agent has passed half of the first
cycle, i.e., reached the target (half-cycle). After the perfor-
mance of ten cycles, a trial is completed and the agents are
triggered to return to their start positions. For details on the
experiment, the reader is referred to the appendix.

2.2 Synchronization of coupled dynamical systems

Our goal is to capture the temporal relationship between the
dyads’ end effector motions in our experiment. To that extent,
we propose a modeling approach based on the synchroniza-
tion of coupled dynamical systems.

2.2.1 Defining synchronization among coupled oscillators

In this article, we adopt the dynamical systems approach to
describe movement synchronization: the emerging coordina-
tion patterns are represented by the attractors of a dynamical
system. Thereby attractors denote the regions in the dynam-
ical system’s state-space to which the system’s trajectories
are attracted. In particular, we treat the observed phenomena
of movement coordination in an action task as a synchroni-
zation problem of two coupled oscillators forming a coupled
dynamical system, which is in line with existing modeling
approaches (Haken et al. 1985; Rand et al. 1988; Schmidt
et al. 1993). The general dynamical equations of two limit
cycle oscillators that are mutually coupled are given by

ξ̇1 = F1(ξ1) + G1(ξ1, ξ2) (1)

ξ̇2 = F2(ξ2) + G2(ξ2, ξ1), (2)

where ξi is a vector of variables of any dimension for oscil-
lator i , Fi represents the limit cycle and Gi is the coupling
function that bidirectionally links the oscillators. If the oscil-
lators are harmonic, we can simply write Fi = ωi and ξi = θi ,
with the oscillator’s natural frequency ωi and its phase θi .
Depending on the coupling function Gi , the oscillators may
interact such that

|�n,m(t)| < ε, with �n,m(t) = nθ1(t) − mθ2(t) (3)

holds, with the generalized phase difference �n,m(t) and
a positive constant ε ∈ R. Positive constants n, m ∈ N allow
to detect synchronization of orders n : m. Thus, if �n,m(t)
becomes constant or fluctuates within some bounds, Fi are
synchronized, which is also called phase locking (Pikovsky
et al. 2001).

Note Since �n,m(t) quantifies the interaction in a sin-
gle variable, it is also called collective in dynamical sys-
tems theory. The dynamics of phase synchronization are then
described by the trajectory �n,m(t) and its attractors deter-
mine the collective behavior of the coupled dynamical sys-
tem.

2.2.2 From coupled oscillators to movement coordination

Following the definition of phase synchronization, the con-
cept of our systematic approach to model HHI is outlined
in Fig. 2. Each of the action tasks 1 and 2 is represented by
the agent’s end effector positions over time, which we call
the motion trajectory in the following. Since the interaction
of the coupled oscillators is described by the evolution of its
phases, the transformation between motion trajectories and
phases is required. It provides the phase of an action task,
which models one agent’s observation of the other’s action. If
the transformation is bijective, it can also provide the motion
trajectory of a robotic agent and model the generation of
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Fig. 2 Overview scheme depicting the two-layered model of move-
ment coordination. Agents 1 and 2 jointly engage in repetitive actions.
The observed actions are transformed to phases in the lower layer. In the
upper layer, the action coordination is governed by the individual and
joint behavioral dynamics modeled as coupled phase oscillators. Dark
arrows represent the modeling stage conducted in this article (HHI).
Light arrows outline the envisaged stage of action generation when the
scheme is deployed to a robotic agent 2 (HRI).

actions in HRI. In Lorenz et al. (2011) our experimental setup
for investigation of human–robot movement coordination is
outlined. Within this study, we restrict the investigation of
these transformations to model action observation in HHI.

Note As indicated in Fig. 2, the agents’ action tasks do
not necessarily need to be identical, as long as the motion
trajectories can be transformed to phase representations.

Each agent’s individual behavior regarding the task pro-
gress is represented by a self-sustained phase oscillator with
a constant natural frequency. Interaction is modeled through
the coupling function, hence temporal coordination patterns
as a result of the agents’ joint behavior are resembled by
phase synchronized oscillators. Both the above transforma-
tions as the required analytical tool and the dynamical system
model designed to capture the agents’ interactive behavior
are presented in the following.

3 Analytical methods

In this section, we provide a set of analytical tools to cap-
ture and characterize movement synchronization between the
agents, a prerequisite to the model design. Note that for rea-
sons of clarity, the presented methods are derived for a sin-
gle agent unless otherwise stated. If necessary, subscripts
1, 2 are used to indicate correspondence to agents 1 and 2,
respectively. For illustration purposes, parts of the presented
methods are exemplified based on the experimental data.

3.1 Data reduction to the effective task space

The experimental data gathered within this study consist
of the agents’ end effector positions over time, i.e., the
motion trajectories expressed in a three-dimensional Carte-

Fig. 3 a Sample three-dimensional motion trajectory and b projected
one-dimensional trajectory x(t) between the agent’s start and target
point. The origin 0 of the task space is set such that x(t) is zero-mean.

sian frame C (see Fig. 3). Data complexity can be reduced
to simplify the analysis, if only the information of the data
required for a minimal description of the task is kept. The
three-dimensional motion trajectory of each agent is pro-
jected into a one-dimensional subspace spanned by the vec-
tor difference of the respective target and starting point, as
illustrated in Fig. 3. This projection preserves the temporal
relation of the agents’ end effectors regarding the action task,
and thus represents the effective task space. Further analysis
is conducted based on the one-dimensional motion trajec-
tory x(t). The movement onset is defined as the instant of
time when the difference between the position of the end
effector x and its initial starting position exceeds 5 mm for
the first time.

3.2 Transforming the motion trajectory to phase

In order to investigate dyadic phase synchronization, we pres-
ent three methods transforming the motion trajectory x(t)
into a phase θ(t). Since we are not only interested in steady-
state synchronization but also in the potentially transient
process leading to phase synchronization, appropriate tech-
niques have to be able to reflect non-stationary features of
the data into an instantaneous phase.

3.2.1 State-space method

Assuming harmonic or quasi-harmonic movements, a two-
dimensional state-space (x, ẋ) can be defined. It is sufficient
to describe the state of a one-dimensional oscillatory system.
When the motion trajectory is plotted in its state space, the
cyclic nature of the movements becomes obvious, see Fig. 4.
The phase of the oscillatory system

θ(t) = arctan

( n ẋ(t)

−n x(t)

)
, (4)

can be extracted from the state-space trajectory, with

n ẋ(t) = ẋ(t)

| ˆ̇x | and n x(t) = x(t)

|x̂ |
being the normalized velocity and position. The constants ˆ̇x
and x̂ denote the extrema of the velocity and position,
respectively, observed in the motion trajectory, which can
be updated on-line after each half-cycle. In this context,
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Fig. 4 Normalized state-space trajectory for an experimental trial with
ten cycles, where the normalized velocity is plotted against the nor-
malized position. Trajectories form a closed curve with an approxi-
mately circular shape between movement start and end. The position x
is inverted to obtain a phase θ increasing over time.

Varlet and Richardson (2011) provide a benchmark on con-
tinuous phase computation using non-stationary, oscillatory
test signals and emphasize the superior performance when
half-cycle normalization is applied. The state normalization
provides a phase characteristic widely independent of the
actual physical constraints of human movements, i.e., the
peak amplitudes and velocities.

Note The state-space method is especially well-suited for
real-time analysis as long as the motion trajectory is quasi-
harmonic. For more complex tasks, the state-space trajec-
tories will differ from simple circular shapes. In such case,
the only way to obtain a meaningful phase with this method
is band-pass filtering, which selects only a single frequency
component or feature of the motion trajectory, respectively,
to be represented in the phase. If the measurements are noisy,
low-pass filtering of ẋ may be required, which introduces an
additional phase lag in real-time estimation.

3.2.2 Spectral method

Comparisons of the spectral signal analysis methods (short-
time) Fourier-, Hilbert- and wavelet-transform show equiv-
alent results due to their formal equivalence when their filter
kernels are parameterized accordingly (Bruns 2004). In this
article, we adopt the analytic signal concept based on the
Hilbert transform for computing a phase (Rosenblum and
Kurths 2007). The Hilbert transform provides the instanta-
neous phase and amplitude of the signal1 x(t) via construc-
tion of an analytic signal ζ(t), which is a complex function
of time defined as

1 The motion trajectory x(t) is treated as a signal.

ζ(t) = x(t) + j x̃(t) = A(t)e jθ(t), (5)

where x̃(t) is the Hilbert transform of x(t). It is given by

x̃(t) = 1

π
P.V.

∞∫
−∞

x(τ )

t − τ
dτ, (6)

where P.V. means that the integral is taken in the sense of the
Cauchy principle value. The instantaneous amplitude A(t)
and phase θ(t) of the signal x(t) are uniquely defined by (5).
Since we focus on the analysis of phase synchronization, we
are interested in the phase only given by

θ(t) = arg (ζ(t)) . (7)

Fourier spectra of the motion trajectories x captured in our
experiment show a single sharp peak denoting the mean cycle
frequency. Thus, the motion trajectories can be treated as nar-
row band signals and a meaningful phase can be obtained via
the spectral method.

Note The spectral method is nonlocal in time due to the
infinite integral bounds in (6). Therefore, its applicability to
real-time phase estimation is limited, although it is a well-
suited tool for off-line analysis. Both the state-space and the
spectral methods presented above require zero-mean motion
trajectories to obtain phases that cover an angular range of π

per half-cycle, i.e., the movement from the starting to the
target point or vice versa, respectively.

3.2.3 Hybrid method

Both the state-space and spectral methods perform well only
for quasi-harmonic motion trajectories. In our experimental
task paradigm, this requirement is fulfilled. However, repeti-
tive action tasks generally comprise a sequence of heteroge-
neous action primitives which compose the overall motion
trajectory, such as elementary point-to-point movements,
or even static dwelling periods where the position remains
rather constant. Inspired by the fundamental signal-theoretic
idea to capture an oscillation’s cyclic progress in a continu-
ous instantaneous phase, a novel approach is proposed here
that extends the notion of phase to describe the instantaneous
progress of an arbitrary cyclic action. The goal is to con-
struct an instantaneous, linear phase θ(t) in [0, 2π ] from the
motion trajectory x(t) previously observed for a single cycle
in time t = [0, T ] with cycle period T . First, the trajectory
has to be segmented into a sequence of P action primitives
such that for each primitive p = 1 . . . P an invertible repre-
sentation.

x p(t) = f p(χp) (8)

can be found, where x p(t) approximates the motion trajec-
tory and χp represents the relative time in p. In a second step,
a piecewise continuous phase
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Fig. 5 The first cycle of a representative trajectory with the durations
and parameters used for segmentation. Vertical dashed lines indicate
the threshold-based segmentation into four primitives per cycle. The
dwelling periods are considered as separate action primitives.

θp(t) = K p f −1
p (x p(t)) (9)

can be obtained, where f −1
p is the inverse of f p and K p is

a factor scaling χp to angular values. Guided by switching
conditions between the primitives which can be derived from
the segmentation, the phase θp(t) of the current primitive is
determined by (9) and accumulated over p in order to obtain
a continuous phase θ(t) of the whole motion trajectory.

In the following, we exemplify the idea of the hybrid
method. In Fig. 5, a close-up of a representative trajectory
showing the first cycle is given. To assure that invertible
representations (8) exist, the motion trajectory can be seg-
mented into four primitives per cycle and parameterized as
follows: the forward movement (p = 1) in time Tf(k) , the
dwell at the target point (p = 2) for Tt(k), the backward
movement (p = 3) in Tb(k), and the dwell at the starting
point (p = 4) for Ts(k), where k denotes the cycle index.
This kind of trajectory segmentation can be performed on-
line based on a threshold �xth with respect to the start and
target extrema x̂s(k) and x̂t(k), as visualized by horizontal
lines in Fig. 5.

A possible representation (8) for primitive 1 is the min-
imum jerk model validated for point-to-point hand move-
ments by Flash and Hogan (1985). It approximates the motion
trajectory

x1(t) = (
x̂t(k) − x̂s(k)

)
g(χ1) + x̂s(k), (10)

with the fifth-order polynomial

g(χ1) = 6χ5
1 − 15χ4

1 + 10χ3
1 (11)

minimizing jerk, and χ1 ∈ [0, 1] being the relative move-
ment time. In a next step, the minimum jerk model needs to
be inverted, which can be done by finding the real root χ1 of
the polynomial (11) in each time step. The phase for primi-
tive 1 can then be written as

θ1(t) = K1
χ1 − χth

1 − 2χth
, (12)

with the scaling factor

K1 = 2πTf(1)

T (1)
(13)

depending on the movement time Tf(1) and the cycle
period T (1). Note that the threshold-based segmentation cuts
off the beginning and the end of motion, thus in (12) the rel-
ative time χ1 is re-normalized by a transformation with χth.
The value χth is the real root of (11) at the value �xth.

Since the primitive 2 is characterized by dwelling without
considerable motion, a phase representation purely depend-
ing on time is proposed

θ2(t) = K2χ2 + θ1, (14)

with the scaling factor

K2 = 2π − θ1

T (1) − Tf(1)
. (15)

Note that here, χ2 is the relative time with respect to the
primitive entry. The offset θ1 in (14) accounts for the phase
accumulated previously in primitive 1 and enables a contin-
uous switching of the primitives. Due to symmetry of the
primitive sequence, the phases θ3(t) and θ4(t) are calculated
analogously to θ1(t) and θ2(t). If the primitive durations vary
between cycles, the phase does not exactly evaluate 2πk after
the completion of cycle k.

Note Arbitrary complex action sequences can be described
on-line with the hybrid method if a feasible segmentation and
hybrid representation of the action primitives is found. The
estimated phase is an indicator of a repetitive task’s relative
temporal progress, which is affected however by the chosen
parameterization. The approach can be enhanced by learning
and prediction techniques to improve the estimation perfor-
mance.

3.3 Measuring synchronization

In the following, the analytical tools and requirements to
detect and measure synchronization based on the agents’
phases θ1(t) and θ2(t) are presented.

3.3.1 Relating the phases—dyadic phase difference

Synchronization between the agents can be detected when
their phases are related to each other through the generalized
phase difference �n,m(t) given by the definition of synchro-
nization (3). In general, boundedness of the phase difference
can be found also for different cycle frequencies of the cou-
pled oscillatory system. For example, one agent performing
one cycle while the other completing two cycles can be still
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referred to synchronization, which would be called synchro-
nization of order 1:2. The participants in our experiment were
performing at similar cycle frequencies, which is indicated by
the standard deviation SD = 0.12 Hz at a mean M = 0.73 Hz
over all trials. Thus, the analysis of synchronization can be
restricted to the order 1:1 by calculating the dyadic phase
difference

�(t) = �1,1(t) = θ1(t) − θ2(t). (16)

Note Since the phase representations in Sect. 3.2 yield
angular values defined on the circle [0, 2π ], the phase is
unwrapped, i.e., 2π -jumps are removed such that � ∈ R. The
time series �(t) start at the movement onset of the delayed
agent and end after completion of ten cycles.

3.3.2 Experimental observation of synchronization

In theory, a coupled oscillatory system is synchronized, if its
phase difference stays bounded for all times. However, in our
experimental setting, we are obliged to apply a weaker crite-
rion to investigate synchronization due to a limited available
observation length of human movements: a thorough trade-
off between capturing a potential process of phase conver-
gence and the influence of the participants’ fatigue increasing
over time has to be made. With an observation length of ten
cycles chosen in our experiment, we are able to show that the
transient process of synchronization is happening in the first
few cycles of the task. The temporal differences between the
actions of both agents at key events, such as the time of tar-
get entry are decreasing within the first three cycles only (see
also Lorenz et al. 2011), which makes a length of ten cycles
a reasonable choice.

3.3.3 Quantification with the synchronization index

Numerous approaches on measuring synchronization from
time series can be found in literature, see e.g., Kreuz et al.
(2007) for a comprehensive comparison. Since the instanta-
neous phases represent the oscillatory entities in this article,
we follow a common approach to quantify phase synchroni-
zation: given the time series �(t) consisting of N directional
observations �(t j ), directional statistics provides a synchro-
nization index

SI =
∣∣∣∣∣∣

1

N

N∑
j=1

ei�(t j )

∣∣∣∣∣∣ = 1 − CV, (17)

where CV denotes the circular variance of an angular distri-
bution.2 The synchronization index SI is the length of the

2 the synchronization index SI is also called mean phase coherence.

mean resultant vector of the phase difference samples �(t j )

transformed into unit vectors in the complex plane.
Note SI lies in the interval [0,1]. Given a perfectly uniform

distribution of phase differences, it would equal zero. In per-
fect synchronization it would equal one, which means that
all samples of � point to the same direction.

4 Coordination model of the interacting dyad

In this section, we present the steps taken toward a model of
interpersonal movement coordination. Starting with an inves-
tigation of the experimental data regarding the characteristics
of movement synchronization, the model structure is devel-
oped and the model parameters are identified.

4.1 Experimental results

In a first step, we elucidate the temporal process leading to
synchronization and the phase relations emerging among the
partners by plotting the data and analyzing the phase differ-
ence.

4.1.1 Patterns of movement synchronization

In our study of human movement behavior in a goal-directed
task, we found relations between the movements of dyads
which were established over the course of a trial (Lorenz
et al. 2011). In order to visualize these findings, a frequency
distribution is plotted as a heat map of all motion trajectories.
Here the movement x2 of person 2 is represented as a func-
tion of the movement x1 of person 1. For each trial and cycle,
the actual position of person 2 is calculated as a function of
person 1’s position. The resulting curve is sampled with an
underlying grid of 100 × 100 cells and the number of times
each cell in the grid is hit by a curve is determined. Those
binned counts are plotted for each forward and backwards
movement separately into a heat map in which brightness
codes frequency of cell hits, see Fig. 6. In these plots, perfect
in-phase or anti-phase synchrony appear as straight diagonal
lines. During in-phase relation, the movements have no phase
shift, e.g., if person 1 is in the starting position at 0 m per-
son 2 is there as well. On their way to the target participants
are always at the same point in their trajectory. Thus, when
dyads are perfectly in-phase during forward movements, a
line goes from top left to bottom right. During backwards
movements—where the abscissa labeling goes down—the
plot shows a straight line from the bottom left to the top right
if the interaction partners are perfectly synchronized. In per-
fect anti-phase, this pattern is mirrored horizontally because
when one person is at the start position, the other person is
in the target position and vice versa. When participants are
not perfectly synchronized, data appear curved. Note that
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Fig. 6 How did synchrony evolve? This Figure contains frequency dis-
tributions (of all trials) of the hand position of person 2 relative to that
of person 1 (see also Lorenz et al. 2011). The hand positions are one-
dimensional positions between the start (=0 m) and target (=0.35 m).
The brighter a location in this picture is, the more often that positional
relationship occurred. Relative movements (between the two partici-
pants) shown up as lines. Perfect in-phase and anti-phase synchrony
would be straight diagonal lines, see upper right. The pictures show

that the participants tended to synchronize already early in the trial.
Data are plotted separately for the first, third, sixth, and ninth cycles. In
the zero condition (upper panels), phase relationships already appear
like in-phase and anti-phase relationships in the third cycle. In the other
two conditions (quarter-cycle in the middle panels and half-cycle con-
ditions in the lower panel) roughly the same happens, but there appear
to be slightly stronger and more deviations.

only the in-phase and the anti-phase relations are easy to
identify in this graphical representation because they appear
as straight lines. Other stable phase relations would show a
more complicated pattern and thus cannot be determined as
intuitively.

Most importantly, the heat map visualizes that in-phase
and anti-phase relationships are already established early in
the trial. During the first cycle, data tend to be curved for
all conditions. After that, movements are quickly adapted,
which is depicted by the curves becoming straighter. Data
of the zero-cycle condition show that people are already
almost perfectly adapted to each other after performing
the third cycle. Straight lines become prevalent indicating
in-phase movements. In contrast, during the half-cycle con-
dition, both the in-phase and anti-phase relations are estab-
lished roughly equally often until the ninth cycle. This is
interesting because one might have expected that if start-
ing off at the same time mainly leads to in-phase relations,
starting off at opposite positions should mainly lead to anti-
phase relations. Roughly the same result is observed for the
quarter-cycle condition. The difference to half-cycle is that
more curved lines appear during the quarter-cycle condition
and constant phase relations are established later there. This
indicates that it is more difficult to establish a stable in-phase
or anti-phase relation when starting off in an odd temporal
ratio.

4.1.2 Characterization of the attractor regimes

In addition to the graphical representation of synchroniza-
tion in the heat maps, the analysis of the phase difference
allows to further characterize the attractive domains of the
synchronization process.

Any prevalent phase relation can be made visible by histo-
gram representations of the phase difference time series, see
Fig. 7a–c. Since the attractor regime is characterized by the
relative phase relation within the dyad, we define the relative
phase difference

�r (t) =
{

|�(t) mod 2π | , if |�(t) mod 2π | ≤ π

2π − |�(t) mod 2π | , otherwise.

The data samples of �r (t) are assigned to 40 equally
spaced bins in [0, π ] and accumulated over all trials. Dis-
tinct peaks at angular values around multiples of π are com-
mon to the histograms of the three conditions zero-, quarter-,
and half-cycle. They become even sharper if only the second
half of each trial is considered where transient processes are
nearly completed. Totally uncorrelated phases would cause
approximately uniform distributions, whereas perfectly syn-
chronized phases would result in sharp vertical lines. The
center values of such peaks can thus be treated as features
appropriate for modeling. The width of the peaks is associ-
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Fig. 7 The histograms (a–c) of the relative phase difference �r show
clear peaks at values around 0 and π , which suggest multiples of π as
preferred phase relations or attractors, respectively. The heat maps (d–f)
depict the transient process of the relative phase difference toward its

attractor (ordinate), which is indexed by the phase angle of the delayed
person θi (abscissa). Frequency of the relative phase difference is coded
by brightness. The time series of �r and θi are generated with the spec-
tral method and accumulated over all trials in the three conditions.

ated with the variance and the synchronization index (17),
respectively.

With a closer look at the distributions, it can be stated
that in the zero-cycle condition (Fig. 7a) the participants’
phase difference predominantly stays in one single regime
at �r = 0, which refers to the in-phase relation. Starting off
in-phase means attaining an in-phase relation in nearly all of
the trials. In the quarter-cycle condition (Fig. 7b), two differ-
ent attractor regimes become visible: the in-phase attractor
but also an attractor at �r = π , which refers to the anti-
phase relation. Starting off in quarter-cycle leads to both the
in-phase and anti-phase relations, while it seems as if the lat-
ter was preferred. In condition half-cycle (Fig. 7c), the same
attractors as in quarter-cycle appear. Starting off in half-cycle
leads to both in-phase and anti-phase relations.

Note that the histograms only show the prevalent relative
phase relations over trials, which are �r = 0 and �r = π .
Though two attractors in Fig. 7b, c can be clearly identified,
it cannot be determined from the histograms if spontane-
ous switches between them occur within trials. Therefore,
we investigate the convergence of the relative phase differ-
ence

∣∣�r (t) − �r
∣∣ as a function of cycles, where

�r = 1

N − ⌊ 2N
3

⌋ + 1

N∑
j=

⌊
2N
3

⌋ �r (t j )

denotes the mean of each time series �r (t) taken over the
last third of the total samples N of each trial. The distribu-
tions in Fig. 7d–f are nicely aligned around zero between
cycle 6 and 9 for most of the trials, which illustrates over-
all convergence to the preferred attractors. The distributions
are scattered between 0 and π up to cycle 6, as an indica-

tion of the process of convergence happening in the first few
cycles of interaction. No preferred clusters around π can be
detected in these distributions. Thus, we can conclude that
besides the initial convergent process, within-trial switches
between the two preferred attractors rarely take place during
the experimental observation length.

Both the heat map representation and the phase differ-
ence distribution provide clear evidence of synchronization
in our goal-directed experimental task. The process of syn-
chronization is characterized by two attractor points of the
relative phase difference, namely the in-phase and the anti-
phase relations.

4.1.3 Initial phase difference

Though in the half-cycle condition the dyads are triggered
to start of in the anti-phase relation, both the anti-phase
and the in-phase attractors can be identified in the histo-
gram (Fig. 7c), with even a prevalence of the latter. For
clarification, the actual initial phase difference of each trial
is illustrated in Fig. 8. The distribution shows clusters for
the different conditions, yet under quarter- and half-cycle
with an additional phase delay around π with respect to the
phase relation triggered by the respective start off condition.
These delays are mainly caused by the participants’ reaction
and dwell times when engaging jointly in action. Especially
in the half-cycle condition, the actual initial phase differ-
ences are often close to the in-phase relation, which explains
the frequently appearing in-phase attractor in the histogram
(Fig. 7c). Due to the simultaneous start off trigger in the zero-
cycle condition, the actual initial phase difference is affected
less by the delay. In brief, the applied conditions are shown
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Fig. 8 Actual initial phase differences �0 = �(t = 0) over trials cal-
culated with the spectral method for the conditions zero-cycle (zc), quar-
ter-cycle (qc), and half-cycle (hc). Time t = 0 denotes the movement
onset of the delayed person. Dashed lines indicate the phase relations
triggered by the start off conditions.

to effectively trigger a distribution of different initial phase
relations, which enables to perform a parameter estimation
based on the response dynamics of the dyads.

Note In goal-directed tasks, a leadership among the dyad
can be defined when the sign of the phase difference � =
θ1−θ2 is evaluated: person 1’s phase θ1 larger than person 2’s
phase θ2 means that person 1 is leading the task by preced-
ing person 2’s action and vice versa. The symmetry of �0

observed in Fig. 8 is due to the initial trigger of action start
off, which is equally often assigned to each of the partners.

4.1.4 Evaluation of the synchronization index

The synchronization index SI given by (17) provides a quan-
tification of synchronization in a single number. Based on
the definition that a collective remaining constant over time
yields the highest degree of synchronization, the measure
penalizes any variability of the collective including, e.g., the
transient process when getting synchronized and also transi-
tions between attractors. Therefore, it has to be considered
that the choice of the variables constituting the system’s col-
lective affects the characteristics of the measure. When look-
ing at the scores of the synchronization index SI in Fig. 9, the
influence of the method used to estimate the phase variables
becomes obvious. A one-way repeated measures ANOVA
was performed to assess the difference between SI s obtained
with the state-space, spectral and hybrid method. As the
sphericity criterion was not met, Greenhouse–Geisser correc-
tion was applied. SI s differed quantitatively, F(1.2, 34.9) =
66.78, p < .001, which can be explained by a differing
sensitivity of the method to the variabilities in the move-
ment profiles. Only the dominating frequency determines
the phase of the spectral method (M = 0.84), which makes
it rather insensitive to small, local movement variabilities.
In contrast, such variabilities directly influence the instan-
taneous phase of both the state-space (M = 0.81) and the

SI

1

0.95
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0.75
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0.8
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Fig. 9 Synchronization index SI for the conditions zero-, quarter- and
half-cycle averaged over all trials. For comparison, SI is calculated sep-
arately for the phases estimated by the state-space, spectral, and hybrid
methods. The bars represent standard errors of the means.

hybrid methods (M = 0.77). The inferior score of the hybrid
method suggests that the parameterization of the minimum
jerk model chosen as the primitive representation does not
perfectly match the movement profiles observed in our exper-
iment.

The indexes given in Fig. 9 consider whole trials includ-
ing the transient process of synchronization. If the transient
process is neglected and the synchronization index is calcu-
lated only on the second half of each trial, similar qualitative
results can be obtained. In condition zero-cycle, the highest
index values are achieved on average. Thus, starting off in
zero-cycle enables the partners to reach highest quality of
synchronization. Starting off in quarter-cycle yields lowest
values due to a rather high phase variability within the dyads,
which is in agreement with the distribution Fig. 7b. Medium
index values are attained in half-cycle. The resulting indexes
show similar trends within methods, yet the one-way repeated
measures ANOVAs with the within-subject factor condi-
tion (zero-, quarter-, and half-cycle) performed for every
method did not reveal any significant differences between
start off conditions, all p > .05. If we interpret the synchro-
nization index as an analytical indication of strength of the
involved attractors, it cannot be clearly stated that the attrac-
tor strengths of the in-phase and the anti-phase relation differ
in our goal-directed experiment. In contrast, research work on
interpersonal movement synchronization in purely rhythmic
tasks provides evidence of different attractor strengths, i.e.,
the anti-phase attractor has a strong tendency to be weaker
than the in-phase attractor or even disappears (Schmidt and
O’Brien 1997; Richardson et al. 2007).

4.2 Modeling approach

The analysis of the phase variables reveals temporal inter-
action between the partners which is closely related to the
definition of phase synchronization. The emerging synchro-
nization effects can be modeled as a synchronization problem
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of two mutually coupled oscillators. In a next step toward the
coordination model, we set up an adequate model structure
and investigate its relevant properties.

4.2.1 Model of two coupled oscillators

First, we recall the general equations of motion of two limit
cycle oscillators (1) and (2) that are mutually coupled. Under
the assumption that the coupling functions Gi are weak and
the oscillatory dynamics are harmonic (Kuramoto 1984), the
above equations can be reduced to a simpler set written in
terms of the oscillators’ phase angles θi as

θ̇1 = ω1 + H1(θ2 − θ1) (18)

θ̇2 = ω2 + H2(θ1 − θ2), (19)

where ωi are the natural frequencies of the oscillators and
the coupling functions Hi depend on the phase difference
between the oscillators.

Note In our modeling approach, the phase θi (t) is assumed
to be quasi-harmonic. Harmonicity is either fulfilled due
to the harmonic nature of the movements the phase is
constructed from or it can be achieved by an appropriate
phase transformation, e.g., the hybrid method presented in
Sect. 3.2.3.

4.2.2 Extending the Kuramoto model

Several candidates for the coupling functions Hi in (18), (19)
have been proposed in the context of movement synchroni-
zation. One of them is the sinusoidal function proposed by
Rand et al. (1988) which yields the model equations

θ̇1 = ω1 + K sin(θ2 − θ1) (20)

θ̇2 = ω2 + K sin(θ1 − θ2). (21)

It is also known as the classical Kuramoto model
(Kuramoto 1984), where K is the coupling gain between the
oscillators. It is assumed to be isotropic for both oscillators.
We adopt the model of coupled Kuramoto oscillators for the
following reasons:

– Despite its simplicity, the observed main effects of syn-
chronization are replicated: The natural frequencies refer
to the agents’ individual frequency levels as an individual
behavior, whereas the additive nonlinear coupling term
allows synchronization between the agents to emerge.

– Emerging synchronization is explained as an effect of
co-adaptation with an isotropic bidirectional coupling.
Directionality of coupling characteristics would be hard
to identify from short-time bivariate data recorded dur-
ing natural HHI, since unsynchronized regimes have to
be observed extensively (Smirnov and Andrzejak 2005).

– The goal-directedness of the task constrains the ampli-
tudes of movements, thus only the quasi-harmonic phases
are considered. The two-degrees-of-freedom model fos-
ters parameter identification from noisy data.

The phase difference dynamics between the two oscilla-
tors are obtained by subtracting (21) from (20) and can be
compactly written as

�̇ = �ω − 2K sin �, (22)

with �̇ = θ̇1 − θ̇2 and the frequency detuning

�ω = ω1 − ω2. (23)

The analytical results from Sect. 4.1 show that the phase
relation between the interacting agents ends up predomi-
nantly either in in-phase (� = 0) or in anti-phase (� = π ).
Therefore, we extend the phase difference dynamics (22) by
two additional equilibrium points per period of �, which
yields the differential equation of the phase difference

�̇ = h(�) = �ω − 2K sin(2�) (24)

with the model equations

θ̇1 = ω1 + K sin [2 (θ2 − θ1)] (25)

θ̇2 = ω2 + K sin [2 (θ1 − θ2)] , (26)

called the extended Kuramoto model in the following.

4.2.3 Stability analysis

Next, the stability of the equilibrium points of the extended
Kuramoto model (24) is investigated. Setting �̇ = 0, one
obtains

2K sin (2�e) = �ω. (27)

The equilibrium points �e are then given by the solutions
of (27) or graphically represented, by the points of intersec-
tion of the curves 2K sin(2�) and �ω, see Fig. 10.

Note Equilibrium points �e, i.e., solutions of (27) exist,
if the parameter set (�ω, K ) satisfies the inequality

|�ω| − 2 |K | < 0. (28)

Let η = � − �e be a small perturbation away from �e.
In order to analyze the stability of the equilibrium points, we
investigate whether the perturbation grows or decays. First,
we derive a differential equation for η given by
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Δω

π Φ

Φ̇

Fig. 10 Stability of the equilibrium points of the extended Kuramoto
model. The phase difference between the two oscillators converges
close to 0 (in-phase) or π (anti-phase) depending on the strength of
coupling K and the frequency detuning �ω.

η̇ = d

dt
(� − �e) = �̇ = h(�e + η).

Using Taylor’s expansion and noting that h(�e) = 0 one
gets

η̇ = ηh′(�e) + O(η2),

where O(η2) gathers quadratically small terms in η. The gra-
dient

h′(�e) = d

d�
h|�=�e = −4K cos(2�e) (29)

denotes the attractor strength of �e. If h′(�e) �= 0, the
approximation can be written as

η̇ = ηh′(�e). (30)

It can be seen from (30) that the perturbationη grows expo-
nentially, i.e., the equilibrium �e is unstable if h′(�e) > 0
and decays, i.e., �e is stable if h′(�e) < 0. The stability
analysis can be visualized by investigating the dynamics of
the vector field on the abscissa as shown in Fig. 10, where
the solid and open dots represent the stable and unstable
equilibrium points, respectively. Two stable and two unsta-
ble equilibrium points exist per period of �. The attractor
strength h′(�e) given by (29) depends not only on the cou-
pling gain K but also on the frequency detuning �ω, which
shifts �e. Growing/decaying values of �ω move the stable
equilibrium points in the positive/negative direction along
the abscissa; i.e., the model explains a positive/negative shift
of the steady-state phase difference by a positive/negative
frequency detuning among the dyad.

Note The stable equilibrium points around � = 0, π have
the same attractor strength and therefore equal stability prop-
erties due to the 2π -periodicity of (29). The model struc-
ture is chosen, since the analysis of the data gathered in our
experimental paradigm does not provide clear evidence for
attractor switches or different attractor strengths in our goal-
directed task. The extended Kuramoto model can be modified

to address different attractor strengths, yielding the phase dif-
ference dynamics

�̇ = �ω − 2K sin(2�) − 2K0 sin(�)

with an additional sine term and coupling parameter K0,
which is obviously the HKB model structure extended for dif-
ferent eigenfrequencies (Haken et al. 1985; Fuchs and Kelso
1994).

4.2.4 Natural frequencies of the oscillators

Investigation of the relation between the frequency detun-
ing �ω and the equilibrium frequency ωe of the coupled
oscillators in the extended Kuramoto model allows us to
derive the natural frequencies ωi , which describe the uncou-
pled oscillators. In equilibrium, we can write

�̇ = θ̇1 − θ̇2 = 0,

which is satisfied for the frequency

ωe = θ̇1 = θ̇2. (31)

The frequency ωe is the common frequency during syn-
chronized regimes and can be determined through measure-
ment. Plugging (31) into the model equations (25), (26) and
applying (23) yields

ω1,2 = ωe ± 1

2
�ω.

Thus, ωe is the mean of ω1 and ω2, which is a com-
mon property of the Kuramoto model. The natural fre-
quency ωi predict agent i’s individually preferred cycle fre-
quency, which is assumed to be a constant parameter within
the joint action context. When modeling human motor behav-
ior, the individual cycle frequencies predicted by the model
have to be interpreted carefully; it is known for example that
working speeds differ when humans perform a motor task
alone and jointly with others (see e.g., Vesper et al. 2009).

4.3 Parameter identification

In the following, the requirements and technique to obtain
the parameter values (�ω, K ) of the model structure and the
results of the parameter identification are presented.

4.3.1 Observation of the natural response dynamics

A general requirement for a successful parameter identifica-
tion is the perturbation of the system and the observation of
the system’s response, which can be achieved either by an
externally applied excitation or by an initial perturbation of
the system from its equilibrium. The latter provokes the sys-
tem’s natural response dynamics; e.g., when a pendulum is
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pulled back from its equilibrium state and released in a dif-
ferent initial state, its natural frequency can be determined
by measuring the frequency it swings at. Since any exter-
nally applied excitations such as enforcing frequencies or
an imposed frequency detuning (Schmidt et al. 1998) could
hinder natural HHI, we decided not to actively control the
interaction of the partners during our experiment, rather to
observe it. Thus, the experiment can be classified as pas-
sive, which includes that parameters of the system cannot
be changed and only bivariate data are available (see also
Pikovsky et al. 2001). With our experimental design, the idea
is to trigger different initial phase differences �0 = �(t =
0) (c.f. Fig. 8). The dyad’s natural response to the applied start
off conditions in the experiment serves then for the identifi-
cation of the parameter sets.

Note If the frequency detuning �ω within the interact-
ing system is known, e.g., the eigenfrequencies of oscil-
latory mechanical systems can be controlled, the coupling
strength K could be alternatively identified from the phase
difference �e during equilibrium �̇ = 0 observed for differ-
ent values of �ω via the regression method of Schmidt et al.
(1998).

4.3.2 Estimation of the model parameters

The model structure which is given by the nonlinear dynam-
ical equation (24) and the time series of the phase differ-
ence �(t) enables an estimation of the parameters (�ω, K )

for each trial. The estimation problem is solved with the iter-
ative prediction-error minimization method (PEM), which
minimizes an error objective function depending on the sim-
ulated model output and the time series data (Ljung 1999).
A so-called gray box model which implements (24) is fed
into the PEM-algorithm of MATLAB’s System Identifica-
tion Toolbox and the initial state of the model is estimated
jointly with the parameter set to achieve best fitting. Both the
time series data of the analytically derived phase difference
and the simulated model output after the parameter estima-
tion are illustrated for a representative trial in Fig. 11. The
dynamics of the trial investigated here are judged to be sta-
ble according to (28), hence the simulated phase difference
converges to the attractor point close to π . Possible reasons
for the oscillatory phase fluctuations (c.f. Fig. 11) present in
most of the trials are discussed in Sect. 5.

4.3.3 Results of the parameter estimation

For comparison, the model parameters estimated for phase
difference time series acquired with the state-space, spectral
and hybrid methods are summarized in Table 1. Since the
transformation of motion trajectories to phases is not unique
but based on certain assumptions as introduced in Sect. 3.2,
the applied method affects the modeling results and makes
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Fig. 11 Comparison of the phase differences �(t) analytically derived
with the spectral method and simulated with the parameterized model.
The parameters [rad s−1] of the trial are �ω = −0.49 and K = 0.41
at an RMSE=0.23.

it part of the modeling approach. More than two-thirds of
the trials yield parameter sets with stable point attractors
of the resulting dynamical system according to the stability
criterion (28). Thus, it can be stated that the synchroniza-
tion effects visible in Figs. 6 and 7 are reproduced by stable
parameter sets in a majority of the trials.

For statistical analysis of the obtained results, one-way
repeated measures ANOVAs with the within-subject factor
method (spectral, hybrid, state-space) were performed. In
order to compare the methods, data were averaged over start
off conditions. Greenhouse–Geisser correction was applied
when the sphericity criterion was not met. The influence
of the unstable parameter sets on the overall coupling gain
is rather small; if only the trials are considered, in which
the partners synchronize according to (28), the coupling
gain (denoted with |Ks | in Table 1) is not much higher
than |K |. In both cases, a significant main effect between
methods is observed, |K |: F(2, 18) = 3.87, p < .05, |Ks |:
F(2, 18) = 3.88, p < .05. Contrasts show that the spectral
method results in the smallest coupling gain on average com-
pared to both the hybrid, |K |: F(1, 9) = 8.37, p < .05, |Ks |:
F(1, 9) = 6.09, p < .05, and the state-space method |K |:
F(1, 9) = 7.15, p < .05, |Ks |: F(1, 9) = 7.50, p < .05,
with the latter not being different from each other. This illus-
trates that the commonly detected synchronization effects are
explained by a non-zero coupling term, though no instruc-
tions are given which actively modulate the interaction in the
experiment.

A mean �ω close to zero indicates a rather balanced fre-
quency detuning over all dyads. No significant differences
between methods are found, p > .6. However, a small nega-
tive component of �ω points to the trend that the individual
cycle frequency preferred by person 2 is on average slightly
higher than person 1’s frequency. The considerably high
SD �ω leads to the conclusion that the frequency detuning
predicted by the model is an individually varying parameter.
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Table 1 Estimated model parameters, RMSE assessing model fit, and number of trials Nstable with stable parameter sets

Method Mean |K | SD |K | Mean |Ks | Mean �ω SD �ω Mean RMSE Nstable

State-space 0.29 0.14 0.34 −0.08 0.19 0.41 218

Spectral 0.20 0.05 0.24 −0.06 0.14 0.26 223

Hybrid 0.29 0.11 0.33 −0.09 0.15 0.59 202

Means are taken over Nvalid = 294 trials. SDs are taken over dyads. The results [rad s−1] are presented separately for the state-space, spectral, and
hybrid methods

Table 2 Results of the trial-wise regression

Method Condition Median R2 Nvalid Np<.001

State-space Zero-cycle 0.313 98 98

Quarter-cycle 0.994 97 97

Half-cycle 0.996 99 99

Spectral Zero-cycle 0.350 98 97

Quarter-cycle 0.971 97 96

Half-cycle 0.998 99 99

Hybrid Zero-cycle 0.223 98 98

Quarter-cycle 0.904 97 97

Half-cycle 0.995 99 99

R2 represents the percentage of the variance explained by the
model, Nvalid is the number of valid trials which were included into
analysis for the respective condition and Np<.001 list how many times
the model fit is above chance (at p < 0.001)

4.3.4 Evaluation of the model fit

For comparison of the root-mean-square-error of model pre-
diction and measurement (RMSE in Table 1) a one-way
repeated measures ANOVA with the within-subject fac-
tor method (spectral, hybrid, state-space) was performed.
Degrees of freedom were corrected with the Greenhouse–
Geisser method. Here, highly significant differences between
methods are observed, F(1.1, 9.7) = 28.37, p < .001. Best
model fit is achieved by the combination of the extended
Kuramoto model and the spectral method. It differs sig-
nificantly from the RMSE obtained with the state-space
method, F(1, 9) = 167.47, p < .001, or the hybrid method,
F(1, 9) = 38.53, p < .001. Furthermore, RMSE is lower
with the state-space than with the hybrid approach, F(1, 9) =
11.20, p < .01. This is due to the filtering property of the
Hilbert transform, as the frequency at the maximum of the
power spectrum determines the instantaneous frequency and
phase, respectively. Both the state-space and hybrid methods
are applied without any filtering technique and thus yield a
higher phase variability than the spectral method, which is
not explained by the model.

In addition, the model’s goodness of fit in combination
with the three phase estimation methods is assessed with

the R-square metric (R2), which allows for an estimation of
how much variance of the data (in %) are explained by the
respective model. The median values of the trial-wise R2

are summarized in Table 2. In order to find out how often
the variance of the data is explained above chance level, the
significance of each trial’s model fit is tested by calculating
the F-ratio. The numbers of significant fits are reported in
Table 2.

5 Discussion

Both the results from data analysis and model synthesis pro-
vide evidence for and characterize the emerging synchro-
nization of movements. Treating human dyadic interaction
in a repetitive, goal-directed task as a synchronization prob-
lem with the phase difference of coupled oscillators as the
collective seems to be a valid approach. Its implications are
discussed in the following.

5.1 Performance comparison of the phase transformations

Three different methods on the calculation of instantaneous
phases from experimental movement data are evaluated in
this study. Their performance is assessed by (1) looking at
the synchronization index, which penalizes the phase var-
iability and (2) the RMSE, which accounts for the residu-
als after model identification. When comparing the values
of the synchronization index and the RMSE-based model
fit, both measures yield similar performance trends between
the methods on phase transformation. This similarity can be
explained by the following fact: the proposed model struc-
ture replicates the dominant process of phase convergence
only, and therefore in the model residuals any additional
variance of the collective becomes directly visible, which
affects both the RMSE and the synchronization index in the
same way. Best performance results are achieved when the
phases are generated by the spectral method. While it is a
powerful tool when it comes to off-line analysis, the spec-
tral method is less suitable for on-line application, since a
short-time implementation of the Hilbert transform would
be required, at the cost of signal delay. For movement tasks
comprised by a quasi-harmonic action sequence, where a
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state-space can be defined and its state variables can be mea-
sured, the state-space method is a good alternative, which
can be also deployed on-line. The concept of the hybrid
method is superior to both the state-space and the spectral
methods, if the phase of arbitrary complex, non-harmonic
primitive sequences is to be estimated on-line. When applied
to the experimental dataset, the performance of the hybrid
method is inferior to the state-space and the spectral meth-
ods in its current implementation. It has to be remarked that
task knowledge is encoded by the mathematical representa-
tions (8) and their transitions induced by the segmentation.
Both are not unique but affect the resulting performance of
the approach. There are other representations than the min-
imum jerk model introduced as an approximation of the
movement primitives in our experiment: e.g., for perfect
harmonic movements, results equivalent to the state-space
method could be obtained when the action sequence is seg-
mented into two movement primitives, each represented by
a trigonometric function. Enhancing the segmentation of the
action sequence by predictive parameterizations as well as
improving the primitives’ mathematical representations by
estimation techniques with subsequent evaluations of the
hybrid method in complex movement tasks is a promising
way to extend the power of the coordination model.

5.2 Interpretation of the model residuals

The extended Kuramoto model predicts only the dominant
component of the collective’s dynamics by a first-order non-
linear dynamical system. The median R2 under condition
zero-cycle is remarkably low regardless of the method. Since
the measured phase difference remains constantly close to the
attractor � = 0 for most of the zero-cycle trials, the explan-
atory power of the extended Kuramoto model in these trials
does not exceed much that of the pure mean value of the
measured phase difference. Potential additional information
content might be present in the model residuals. Through a
spectral analysis of the residuals, oscillatory components at
frequencies close to the participants’ cycle frequencies (M =
0.73 Hz over all trials) can be discovered in many of the tri-
als (c.f. Fig. 11), which is in line with the observations made
by Schmidt et al. (1993) during pendulum swinging. These
oscillations can be explained by the following reasons.

First and foremost, the observed phase fluctuations can
be artifacts of the phase estimation. The instantaneous phase
of arbitrary oscillatory time series such as human movement
trajectories can be uniquely determined only over cycles for a
discrete event in the cycle, while the evolution within cycles
strongly depends on the reconstruction method. Neither the
movement trajectories of the individuals are purely harmonic
nor the phase estimation techniques achieve perfect harmonic
phases. Thus, the state-space plots are not perfectly circular
but slightly distorted, see Fig. 4. Even if we assume equally

distorted state-space plots for both partners, the phase differ-
ence �(t) will oscillate at multiples of the cycle frequency for
�(t) �= 0. In their note on coordination models, Fuchs and
Kelso (1994) show that these phase fluctuations can be repro-
duced by the original HKB model comprised by non-har-
monic oscillators. Within our modeling approach, this effect
can be accounted for by further development of the phase
estimation techniques with better harmonicity, which is also
a prerequisite if more complex goal-directed tasks should be
addressed.

Second, the coupling strength between the agents might
not be constant over time but rather include components
depending on the individual phase. This assumption is
backed by the workspace topology of the experimental task
investigated here. Since simultaneous visual attention to
one’s own and the opponent’s movement is easier when get-
ting close to the target area and the partner’s workspace
respectively, it might effect a stronger coupling strength. The
integrative role of the visual perception of relative phase has
been shown by Wilson et al. (2005); it affects the stability of
coordination.

5.3 Interpretation of the modeling results

In most of the trials, participants fall into rhythmic patterns
to synchronize. This shows that joint behavior is emerg-
ing although the partner’s individual goal was to precisely
hit the targets. Since experimental results might be strongly
task-dependent, we put special emphasis on the design of
the task paradigm. The experimental setting is natural in the
sense of bearing similarity to repetitive, goal-oriented action
tasks. People are not instructed to synchronize, but only get
an instruction required for the individual task performance,
which allowed natural interaction to emerge. Besides the
start off condition, we did not introduce any control vari-
ables that artificially modulate the flow of interaction. This
should allow an interpretation of the results in the light of
natural HHI.

As a result of the system identification, values of the
parameter set (�ω, K ) are found per trial. Within our mod-
eling approach, the parameters are assumed to be time-
invariant on a short-time scale, i.e., over the course of one
experimental trial. The parameter sets averaged over trials
can be treated as behavioral features of the dyads. However,
accidental as well as deliberate parameter variations might
be present due to both environmental influences and intrinsic
changes of human behavior.

The frequency detuning �ω expresses shifts of the equi-
librium points to which the collective is attracted. It can serve
as a measure of discrepancy regarding the agents’ individu-
ally desired cycle frequency in the joint action task. Further-
more, hypothetical natural frequencies of the agents can be
determined. Their meaning might extend to the self-organi-
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zation of leader and follower roles during movement coor-
dination, which deserves further investigation in the light of
role behavior among the agents.

The coupling gain K quantifies a dyad’s weighing of two
potentially competing goals: just being precise to fulfill the
instructed goal versus being synchronized with the partner
as an additional, voluntary goal. Non-zero mean values of K
averaged over all trials indicate emerging interaction between
the partners which leads to the observed patterns of synchro-
nization. The regression model employed by Schmidt et al.
(1998) to measure coupling strength and the extended Ku-
ramoto model proposed in this article are locally identical,
hence the resulting coupling from both task paradigms can be
related to each other. The overall mean3 of 2 |K | (0.52 rad ·
s−1) in Table 1 is about one-third of the mean value (1.70 rad·
s−1) reported by Schmidt et al. (1998) for the local model
coupling strength of (intentional) interpersonal coordination.
Since in their experiments, the participants were instructed
to swing pendulums either in in-phase or anti-phase relation,
a coupling stronger than in our setting could be expected.

6 Conclusion

In this article, we present a step-wise approach to a model
of inter-human movement coordination. Motion trajectories
were recorded in a novel HHI-experiment which successfully
integrates repetitive and goal-directed action. Synchroniza-
tion is found to be an essential principle of human movement
coordination during goal-directed action. The human dyads
which participated in our study synchronized their move-
ments. Governed by a dynamical process they fell into in-
phase as well as anti-phase relations for most of the trials.
The emerging relations are successfully replicated by the
attractor dynamics of coupled phase oscillators inspired by
the Kuramoto model, which is an oscillator model described
by the evolution of its phases. Three different methods on
transforming the movement trajectories into instantaneous
phases are investigated; closest fitting between experimen-
tal data and the model is achieved by the spectral method,
which is well-suited only for the off-line analysis of sim-
ple repetitive actions. While the state-space method extends
the phase estimation to on-line application, the concept of a
novel hybrid method is introduced, which allows to derive
instantaneous phases for arbitrary complex action sequences.
Using a technique that does not influence natural HHI, system
identification is performed to estimate the model parameters,
which are the coupling strength and the frequency detuning
among the dyad. Stable attractor points resulting from the

3 Values of K have to be doubled for comparison, since K refers to the
single agent’s unilateral coupling in our work.

identified model match the relations observed in the experi-
mental data.

The presented approach based on coupled phase dynamics
facilitates the modeling of the partners’ interactive behavior
even when they are engaged in heterogeneous action tasks.
The identified model can be readily used to generate the
actions of a robotic agent on-line. In a follow-up study, we
will deploy the model to an anthropomorphic robot, in order
to answer the question: Does a model of inter-human move-
ment coordination enhance human–robot interaction?

Acknowledgments The authors would like to thank Lars Kreutz for
his support in setting up and conducting the experiment. This study was
supported in part within the DFG excellence initiative research cluster
Cognition for Technical Systems—CoTeSys (www.cotesys.org).

Experiment

Participants

In total, 20 people (13 male, 7 female) participated in the
experiment forming 10 dyads. They were between 18 and
28 years old (M = 23.5). All were right handed, had normal
or corrected-to-normal vision and were naïve as to the pur-
pose of the experiment. For participation, they were paid 8¤
per hour.

Experimental Setup

Participants were sitting face to face at a round table on which
four circles were marked in two different colors, see Fig. 12.
Each color was assigned to one person who was equipped
with a marking pen of equal type and size in the respective
color. Participants had to hold the pens in their right hands
forming a fist around them with the thumb pointing upwards.
With this it was achieved that the pen was always in a orthog-
onal relation to the table surface. We encouraged participants
to sit in an upright position and instructed them to put the left
hand on their lap. To reduce tapping sound, pieces of felt
were attached to the pen tips.

During task performance, participants’ hand movements
were captured with an infrared 3D-motion tracking system
(PTI VisualEyez II VZ4000) at a sampling rate of 30 Hz for
acoustical signal triggering and at a sampling rate of 200 Hz
for data analysis. LED markers used for motion capturing
were attached to the top end of the pen and to the partici-
pants’ basis thumb joint. Both participants had to wear a pair
of stereophones (SONY MDR-XD200) used to present an
individual acoustic trigger signal. For being able to review
task performance later, hand movements were additionally
recorded by a video camera.

123

www.cotesys.org


258 Biol Cybern (2012) 106:241–259

Fig. 12 Experimental setup with dimensions. Two agents denoted as
person 1 and person 2 performed identical motor tasks while sitting in
chairs and facing each other. The task was to alternately tap on two
assigned dots (start and target, diameter 8 mm) with a pen in hand. The
dots were marked on a round table and each one was surrounded by a
white area (diameter 60 mm).

Procedure and Design

The experiment started with capturing the individual cali-
bration positions for each dyad. For this purpose, partici-
pants had to put their pen to their individual start and target
point one time, respectively. The written instruction included
a description of the task which was to alternately tap the indi-
vidual start and target point with the pen tip. Furthermore,
participants were asked to carry the pen from one point to
the other. Sliding the pen over the table was not allowed. No
instructions were given regarding speed in order to provoke
natural behavior.

At the beginning of each trial, participants were asked to
rest in their respective start position and instructed to start
executing the task as soon as they heard the acoustical start
signal (high-pitched tone) through their phones. Simulta-
neously with the start signal, motion capturing started. The
stop signal (low-pitched tone) was presented automatically
after both participants had performed at least ten cycles each.
At the same time, motion capturing stopped and participants
had to move their pen back to the start point.

Three start off conditions were applied which provoked
differing spatial relations: (1) the start signals for both par-
ticipants were presented simultaneously (zero-cycle), (2) the
start signal for the second person was presented when the first
person has already made half the distance between the start
and the target point for the first time (quarter-cycle), (3) the
start signal for the second person was presented when the first
person had reached the target point for the first time (half-
cycle). Six sets each consisting of six trials were performed
which led to a total of 36 trials. Start off conditions were
kept constant within sets which led to a total of 12 trials per
condition. In the conditions quarter-cycle and half-cycle, the
delay of the start signal for the second person was calculated

on-line from the movement data of the first person. Being
first person was randomly assigned to person 1 or person 2
and counterbalanced in each set. The first trial in each set
was excluded from analysis.
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