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Abstract In this article, we analyse under which conditions
an abstract model of connectivity could actually be embed-
ded geometrically in a mammalian brain. To this end, we
adopt and extend a method from circuit design called Rent’s
Rule to the highly branching structure of cortical connec-
tions. Adding on recent approaches, we introduce the concept
of a limiting Rent characteristic that captures the geometri-
cal constraints of a cortical substrate on connectivity. We
derive this limit for the mammalian neocortex, finding that it
is independent of the species qualitatively as well as quantita-
tively. In consequence, this method can be used as a universal
descriptor for the geometrical restrictions of cortical connec-
tivity. We investigate two widely used generic network mod-
els: uniform random and localized connectivity, and show
how they are constrained by the limiting Rent characteristic.
Finally, we discuss consequences of these restrictions on the
development of cortex-size models.

Keywords Neural networks · Rent’s Rule ·
Network connectivity · Multi-point nets · Network analysis

1 Introduction

The development of realistic models for the brain’s connec-
tivity is hindered by the difficulty of acquiring reliable, wide-
spread connection data. Whole-brain imaging techniques,
such as fMRI, have shed light into the global structure,
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revealing projections between cortical areas (Young et al.
1995), and these so-called brain networks have been studied
extensively (Sporns and Kötter 2004; Bassett and Bullmore
2006). However, on the detailed level of single neurons, con-
nectivity data are sparse, as only few connections or cells
can be reconstructed simultaneously (Young et al. 1995), or
only general statistics are accessible (Braitenberg and Schüz
1998). Still, various studies have used the available data in an
attempt to construct biologically realistic models of connec-
tivity (Mehring et al. 2003; Häusler et al. 2009; Kremkow
et al. 2007). However, given the sparse measurement data,
alternative methods have to be found for further constraining
these models.

In this article, we derive constraints on connectivity in
neural networks arising from the geometry of the neocortex.
To this end, we make use of an estimation method for circuit
design known as Rent’s Rule (Landman and Russo 1971;
Christie and Stroobandt 2000). This approach describes the
relationship between the size of a network part and its con-
nections to the remainder of the network, two measures
that are strongly connected to geometrical properties (Bas-
sett et al. 2010; Hagen et al. 1994). This relationship has
been mainly used for pre-placement area prediction in inte-
grated circuits (Stroobandt and Kurdahi 1998; Christie and
Stroobandt 2000; Lanzerotti et al. 2004).

In contrast, there exist only some initial attempts to apply
Rent’s Rule to neural networks (Beiu et al. 2009; Partzsch
and Schüffny 2009) and to the connectivity of brain networks
(Bassett et al. 2010). In all these cases, mainly a comparison
of exponents of the extracted scaling laws is done to check
whether candidate models are compatible with the biological
substrate.

In this article, we extend the above studies in two direc-
tions. First, instead of considering Rent exponents, which are
a measure of dimensionality only (Bassett et al. 2010), we
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make use of the whole scaling curve, which respects changes
in scaling on different connectivity levels. We introduce an
upper limit on this so-called Rent characteristic, calculated
from a simple geometrical model of the grey matter. This
limit is directly related to biological parameters, and it turns
out to be invariant in terms of scaling between different brain
sizes (Changizi 2007). Thus, it can be used to constrain con-
nectivity models not only qualitatively, but also quantita-
tively. Second, we use hyper-graphs in the description of
networks (Karypis and Kumar 2000) in contrast to con-
ventional graphs used in previous studies. While the lat-
ter is appropriate for digital circuits, fan-in of which is
small and can be accounted for by additional approxima-
tions (Stroobandt and Kurdahi 1998), it does not capture
the highly branching connectivity of axons and dendrites.
We derive Rent characteristics for two generic connectivity
models, uniform random (Brunel 2000; Newman 2003) and
localized (Mehring et al. 2003), and calculate limits on net-
work size and connection density for these by comparing
with the limiting Rent characteristic.

The remainder of this article is organized as follows:
Sect. 2 introduces Rent’s Rule and the Rent characteristic. In
Sect. 3, the limiting Rent characteristic of the grey matter is
calculated. Section 4 derives Rent characteristics for uniform
random and locally connected networks and relates them to
the limiting Rent characteristic. Finally, Sect. 5 discusses
consequences of these results.

2 Rent’s Rule

Rent’s Rule describes an empirical relationship between
the size of a (sub-)network and its number of connections
with the surround (Landman and Russo 1971; Christie and
Stroobandt 2000). These two quantities are often connected
approximately by a power law:

T (G) = T · Gr . (1)

where G represents the number of basic elements in the
(sub-)network, and T is the number of connections over the
sub-network boundary. When applied to neural networks,
G corresponds to the number of neurons, and T reflects
the number of external neuron-to-neuron connections. The
parameters T and r are called Rent parameters, with T cor-
responding to the number of connections per basic element
and r determining the scaling of T with the sub-network
size. Consequently, the so-called Rent exponent r can be
regarded as a measure of connection complexity (Christie
and Stroobandt 2000; Partzsch and Schüffny 2009).

Rent’s Rule can also be related to geometrical properties:
Assuming constant element density, the size of the network,
G, is proportional to the volume occupied by the network.
Similarly, if the cross section of a connection is constant, the

(maximum) number of connections over the network bound-
ary, T , is proportional to the surface area of the network’s
volume. For a 2D space, e.g. taking a square with side length
d, it follows that G grows quadratically (G ∼ d2), but T only
linearly (T ∼ d) with d, resulting in T ∼ G1/2. Thus, the
inherent Rent exponent is r = 1/2. A similar argument leads
to r = 2/3 for a three-dimensional (3D) space (Hagen et al.
1994), or r = 1 − 1/D for a D-dimensional space (Bassett
et al. 2010).

Initial formulations of Rent’s Rule counted the connec-
tions of a network to the outside world; most commonly,
however, the relationship is used to characterize the connec-
tivity inside a network, with r then being called the inner
Rent exponent (Christie and Stroobandt 2000). Therefore,
the network is divided into partitions by a partitioning algo-
rithm that minimizes the number of connections between
partitions. Recursively applying this algorithm, a sequence of
complete partitionings, i.e. sets of partitions that cover each
basic element exactly once, is generated (Hagen et al. 1994).
Naturally, the number of partitions K increases thereby. For
each partitioning of the sequence, the mean partition size
(N/K ) and the mean number of connections (per partition)
over partition boundaries can be extracted, as illustrated in
Fig. 1a, resulting in a discrete, empirical function Tchar(G).
This relationship is called Rent characteristic henceforth. As
an example, Fig. 1c shows the expected Rent characteristic
for a uniform random graph in logarithmic scale. Because
Rent’s Rule results in a straight line in a log–log plot, the Rent
parameters may be extracted by a linear fit to the Rent charac-
teristic. In doing so, the data points for the largest partitions
are commonly excluded, because they often show an adapta-
tion to the outside connections of the complete network, dif-
fering from the inner connectivity (Hagen et al. 1994; Christie
and Stroobandt 2000; Partzsch and Schüffny 2009).

Differing from the above definition of the number of pins
T , the original study by E. F. Rent summed all pins of basic
elements in a partition instead of counting only those that
connect to outside the partition (Lanzerotti et al. 2004). This
definition of T was used in Beiu et al. (2009) to extract Rent
parameters for the mammalian neocortex from the power-
law scaling of white-to-grey matter volume. However, by
definition, these results characterize the total number of con-
nections in the brain, not their distribution inside the brain
network, which we are interested here. In relation to the defi-
nition of T introduced above, the power law extracted by the
original interpretation describes the scaling of the parameter
T with network size N (i.e. brain size).

In a previous article, we have already used Rent’s Rule
as defined in conjunction with Eq. 1 for characterizing neu-
ral networks (Partzsch and Schüffny 2009). However, count-
ing each neuron-to-neuron connection separately as applied
there does not reflect an efficient implementation: Instead
of dividing connections at the sender and wiring them to
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Fig. 1 Illustration of the different definitions of the Rent characteris-
tic: a normal graph definition, counting each (incoming) neuron-to-neu-
ron connection separately; b hyper-graph definition, counting only one

connection per sending neuron; c corresponding Rent characteristics
for a uniform random graph (Newman 2003) with N = 1000 neurons
and connection probability p = 0.1

each receiving neuron separately, connections from the same
sender neuron can be transmitted via one wire to a partition
and then distributed locally inside the partition. For inte-
grated circuits, the fan-out of an element’s output is small,
so that it can be approximately accounted for in calculations
using a fan-out distribution (Stroobandt and Kurdahi 1998).
In contrast, neural networks exhibit connections with a huge
fan-out. This has to be accounted for during partitioning the
network and when calculating the Rent characteristic. The
above mentioned efficient implementation can be modelled
by a hyper-graph, which is a graph (hyper-)edges of which
can connect more than two nodes. In our case, one sender
neuron with all neurons receiving connections from it form
one hyper-edge. This edge is counting only once per parti-
tion in the Rent characteristic, as illustrated in Fig. 1b. Special
partitioning algorithms, such as HMetis (Karypis and Kumar
2000), have been developed for this kind of graphs.

The Rent characteristic derived for hyper-graphs has very
different properties compared to the formulation for normal
graphs. In a network with N neurons, each partition can have
a maximum of N hyper-edges. Thus, the Rent characteristic
saturates at N , as demonstrated by the dashed line in Fig. 1c.
As a consequence, the power law of Rent’s Rule is restricted
to a relatively small region. Therefore, the whole Rent char-
acteristic has to be taken into account instead of the Rent
parameters only. Still, the starting point (T ) and the slope of
the Rent characteristic (r ) determine at which partition size
saturation is reached.

With the hyper-graph definition, the relation to geometry
can be further developed. If a network is to be embedded into
a certain geometrical substrate, then it must not exceed the
connection density of the substrate. This is a constraint for the
network that can be expressed with the Rent characteristic:
From the dimensionality of the substrate, a Rent exponent
rsub can be derived as described above, and the neuron and
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Fig. 2 Illustration of the limiting Rent characteristic of a substrate: a
network can be embedded in a certain substrate only if its Rent char-
acteristic stays below the limit of the substrate (compatible network);
otherwise, this is not feasible (exceeding network)

connection densities determine the number of connections
T sub that can be routed to a single element. The power law
resulting from these two Rent parameters can be regarded
as the limiting Rent characteristic of the substrate: It deter-
mines the maximum number of connections that can enter a
partition of a certain size without exceeding the substrate’s
maximum connection density. Thus, the Rent characteris-
tic derived from an optimally partitioned network must not
exceed the limiting Rent characteristic at any partition size
to allow the network to be embedded in the substrate, as
illustrated in Fig. 2. Please note that this is a necessary con-
dition, but does not guarantee the feasibility of embedding.
If a network cannot be embedded in a certain substrate, then
its elements may be moved apart to have more space for rout-
ing. This was already found to be unavoidable when scaling
up a network with too high Rent exponent for a substrate
(Donath 1979; Hagen et al. 1994). Effectively, this decreases
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the element density, which corresponds to an increase of
T sub, thus shifting the limiting Rent characteristic upwards.

In the next section, we adopt this approach to cortical
networks, calculating a limiting Rent characteristic for the
neocortex from a simple geometrical model.

3 Rent’s Rule and biological scaling laws

The mammalian neocortex consists of a folded sheet at the
outside, called grey matter, that hosts neuron bodies, den-
drites and axons, and an inner volume, called white matter,
that almost exclusively contains myelinated axons, i.e. long-
range connections (Abeles 1991). Because the geometrical
shape of the white matter is difficult to capture and crucially
depends on the species, we restrict ourselves to the grey mat-
ter henceforth. Consequences of this simplification are dis-
cussed in Sect. 5.

For our analysis, we assume that the grey matter is a pla-
nar sheet with height hc. For an arbitrarily shaped cut-out of
this sheet, we can determine the number of neurons G in it
and the maximum number of connections (pins) T from the
surrounding matter. The volume of the cut-out, V , is propor-
tional to the number of neurons in it:

G = ρN · V , (2)

with ρN denoting the mean density of neurons. The maxi-
mum pin count of the cut-out can be determined by relating
its surface area A to the minimum cross-sectional area of a
pin, AT :

T = ηA · A

AT
. (3)

In this equation, ηA denotes the utilization of the surface area
by the pins, accounting for possible empty space in between.
We assume a pin to be an axon with diameter da entering the
partition, so that we use AT = 1/4 ·πd2

a . As mentioned, Eqs.
(2) and (3) hold for an arbitrarily shaped volume. We want to
determine the minimum number of pins T for a cut-out with
G neurons to arrive at the maximally constraining Rent char-
acteristic achievable by our approach. Consequently, we use
shapes that have minimal surface area for a given volume.

For large volumes, the shape is restricted by the height
of the cortical sheet. Considering that connections may not
enter from outside the sheet, we choose a circular cylinder
with cortex height and varying radius r in this case, such that
pins only exist on the lateral area of the cylinder. Thus, its
volume Vc and pin area Ac are given as:

Vc = πhc · r2 , Ac = 2πhc · r . (4)
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Fig. 3 Limiting Rent characteristic for the human neocortex as cal-
culated in Eqs. (5) and (7). Parameters are taken from measurements:
ρN = 44.0 × 106 cm−3, hc = 2.69 mm (Pakkenberg and Gundersen
1997) and d = 0.6 μm (estimated minimum from Fig.1 in Harrison et
al. 2002)

Combining these expressions with Eqs. (2) and (3) results in
the Rent characteristic for this case:

Tc(Gc) = 8ηA

d2
a

·
(

hc

π · ρN

)1/2

· G1/2
c = T c · G1/2

c . (5)

As a consequence of the restricted sheet height and pins enter-
ing only at the lateral area, the Rent exponent is the same as
for a 2D substrate, confirming the intuitional notion of the
cortical sheet being essentially 2D.

For small volumes, the cortical sheet does not impose
restrictions on the shape and on the pin direction. In this
case, a sphere is the shape with minimum surface area Ao for
a given volume Vo, defined by its diameter d:

Vo = 1

6
π · d3 , Ao = π · d2 . (6)

Inserting these expressions in Eqs. (2) and (3) results in the
Rent characteristic:

To(Go) = 4ηA

d2
a

·
(

6

π · ρN

)2/3

· G2/3
o = T o · G2/3

o . (7)

This expression is valid until the sphere reaches cortex height,
corresponding to Go < 1/6 · πρN h3

c . As expected, the Rent
exponent is the same as for a 3D substrate.

Figure 3 shows the limiting Rent characteristic for param-
eters of the human neocortex. For the calculations, we have
assumed a complete utilization of the surface area by incom-
ing axons, setting ηA = 1. As expected from the above
derivation, the increase of axon count with partition size
corresponds to a 3D substrate locally, but switches to a 2D
substrate at approx. 105 neurons in the partition. The inter-
section point of the two regions can be calculated from Eqs.
(5) and (7):

G is = 4

81
π · h3

c · ρN . (8)
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Because the number of axons T is derived from maximally
utilizing the boundary area of the partitions volume, realis-
tic models must not exceed the limiting Rent characteristic
at any partition size, as introduced in Sect. 2. An exception
to this general constraint has to be considered at the local
scale because of the extension of a neuron’s dendrites: The
employed hyper-graph definition of Rent’s Rule models the
extension of the axons, but assumes neurons to be points.
In the derivation of the limiting Rent characteristic, these
points were placed in a sphere or cylinder. However, owing
to the extension of the dendrites, single neurons and small
groups of neurons may occupy a much wider space than mod-
elled by the corresponding sphere or cylinder. Effectively, the
surrounding shape of the partition is changed, increasing the
surface area of that partition while keeping its volume con-
stant. In consequence, more axons could enter that partition
than the maximum predicted by the limiting Rent characteris-
tic. For estimating an upper limit, it could be assumed that the
total volume of a single neuron is occupied by a conjunction
of cylinders (i.e. dendritic branches) with minimum diameter
(d = 0.6 μm). The resulting total cylinder length would be
∼80 mm in this case, allowing for T = 5.4·105 axons to con-
nect to the neuron, which by a factor 64 exceeds the one calcu-
lated by the limiting Rent characteristic. However, this is an
overestimate, because dendrites vary in diameter, the soma
was not taken into account, and the neuron’s volume was
calculated directly from the density of neurons, which does
not take the spacing between neurons into account. Further-
more, because dendrites only spread over a rather restricted
area (Young et al. 1995), their effect is bounded to small
partitions and can be expected to gradually diminish when
increasing the partition size. Overall, the extension of the
2D part of the limiting Rent characteristic may be taken as a
rough estimate.

Nevertheless, even a model that exploits this exception,
exceeding the limiting axon count at small partitions, has to
conform to the limiting Rent characteristic at a more global
scale. Thus, it would have to compensate its high local con-
nection count with a low Rent exponent. In contrast, a model
with a high Rent exponent could fit into the limiting Rent
characteristic if it had a low number of synapses per neuron,
shifting its Rent characteristic sufficiently down. However,
this would correspond to few local and many long-range syn-
aptic connections, which would be costly from a metabolic
point of view (Chklovskii 2004). Thus, it may be argued that
the brain grows connections as locally as possible to main-
tain its function, which corresponds to exploiting the limiting
Rent characteristic at small to medium partition sizes.

The limiting Rent characteristic imposes constraints on the
scaling of connectivity. Thus, it is interesting to compare it to
well-known scaling relationships found in the brain (Brait-
enberg 2001; Changizi 2007). As a fundamental difference,
these relationships concern the scaling between species,

i.e. for different number of neurons N in the whole brain
network, whereas the limiting Rent characteristic constrains
the scaling with the number of neurons G in a partition of a
single network with fixed size N . Consequently, the param-
eters of the limiting Rent characteristic are dependent on
the brain scaling relationships. The scaling of the relevant
parameters da , hc and ρN is given by Changizi (2007) as
da ∼ N 1/6, hc ∼ N 1/6 and Vgrey ∼ N 3/2, which corre-
sponds to ρN ∼ N−1/2. This results in the parameters T c

and T o scaling as:

T c ∼ h1/2
c

d2
a ·ρ1/2

N

∼ N 1/12

N 1/3·N−1/4 → T c ∼ const(N )

T o ∼ 1
d2

a ·ρ2/3
N

∼ 1
N 1/3·N−1/3 → T o ∼ const(N ) . (9)

Together with the constant Rent exponents (cf. Eqs. (5) and
(7)) it follows that the limiting Rent characteristic is approxi-
mately constant over brain size, i.e. the scaling dependencies
of neuron density, grey matter height and axon diameter with
respect to the number of neurons cancel out in the limiting
Rent characteristic. Notably, it thus constitutes a constraint on
connectivity that is mainly invariant of the species, expressed
in the number of neurons N . This somewhat confirms the
statement by Changizi that the brain scaling relationships are
mainly following from physical constraints (Changizi 2007,
Fig.1). While Changizi motivated this via similar behavioural
complexity over brain size, our analysis shows that already
on the connectivity level a remarkable invariance is present
between species.

With the species-invariant limiting Rent characteristic,
candidate models for connectivity in biological neural net-
works can be assessed quantitatively, as described in the
following.

4 Rent characteristic of neural network models

In this section, we analytically derive the Rent characteristic
for two generic network models: uniform random networks
and locally coupled networks.

Uniform random networks are a common model for study-
ing properties of a connection structure (Newman 2003) and
neural network behaviour (Brunel 2000). In such a network,
each possible connection between neurons exists with con-
stant probability p. A similar uniformity assumption, called
Peter’s rule, is used for reconstructing cortical connectiv-
ity from single connection measurements, stating that syn-
aptic connections are evenly distributed over the neurons
in a cortical layer (Binzegger et al. 2004). Based on such
measurements, extended uniform models consist of several
neuron types or layers with connection probabilities varying
between layers and neuron types, but being constant oth-
erwise (Häusler et al. 2009; Kremkow et al. 2007). In the
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Fig. 4 Rent characteristic of uniform random graphs

following, we restrict ourselves to the case were p is constant
throughout the network. The expected number of connections
(hyper-edges) T entering a partition with G neurons can be
calculated from the number of neurons outside the partition,
(N − G), and the probability that an outside neuron does
not have a connection to one of the neurons in the partition,
(1 − p)G , resulting in

T =(N−G) ·
(

1−(1−p)G
)

≈ N ·
(

1−(1−p)G
)

(10)

The approximation on the right-hand side is valid as long
as the partition size G does not approach the network size
N . We use this approximation for the following calculations,
because its condition is met for the investigated cases.

Figure 4 shows the Rent characteristic of different uniform
random graphs. As can be expected from Eq. (10), it increases
with r = 1 from the starting point T = N · p and saturates
at T → N . Thus, the starting point of the Rent characteristic
is equal to the expected number of synapses per neuron. As
evident from Fig. 4, the approximation of Eq. (10) is only
deviating from the exact solution in the saturation region
of the Rent characteristic; the critical area where the curve
enters saturation is not affected.

Because the Rent characteristic of uniform random graphs
has a Rent exponent greater than those of the limiting Rent
characteristic of the neocortex derived in Sect. 3, it will
exceed the derived limit for sufficiently large network sizes
and connection probabilities. This limit can be quantified, as
is shown in the following.

The maximum size of a uniform random graph is reached
if its Rent characteristic equals the limiting Rent characteris-
tic at some partition size, but does not intersect it. Then, at the
critical point, the limiting Rent characteristic is the tangent of
the random graph’s Rent characteristic. In consequence, the
slope of the Rent characteristic in Eq. (10), i.e. the local Rent
exponent, is equal to the slope of the limiting Rent character-
istic, which is either r = 1/2 or r = 2/3. This slope can be
calculated in the double-logarithmic domain from Eq.(10):

r = d(log(T ))

d(log(G))
= − log(1 − p) · (1 − p)G · G

1 − (1 − p)G
. (11)

With the substitution z = (1 − p)G , this results in

r = − z log(z)

1 − z
. (12)

This equation can be solved numerically for z, resulting in
z(r = 1/2) = 0.285 and z(r = 2/3) = 0.466. With back-
substitution, the location of the critical point (i.e. the potential
tangent) for a random graph with size N can be derived:

G tang = log(z(r))

log(1 − p)
, Ttang = N · (1 − z(r)) . (13)

Finally, the maximum network size Nlim of a random graph
fitting in the limiting Rent characteristic is calculated by
equalling Ttang with Eqs. (5) and (7) (i.e. Tc or To, in the
following named as Tx ):

Ttang = Tx = T x · Grx
tang

→ Nlim = T x
1−z(rx )

·
(

log(z(r))
log(1−p)

)rx
. (14)

Figure 5a shows the limit network size with respect to
the connection probability. As can be seen, the 3D part of
the limiting Rent characteristic is more restrictive for small,
dense random graphs, whereas the 2D part constrains sparse,
large-size networks. Fully connected networks (p = 1) are
restricted to N ≤ 1.5 · 104 neurons. While increasing the
network size at constant connection probability leads to a rel-
atively early arrival at the maximum network size (vertical
shift in Fig. 5a), holding the expected number of synapses
per neuron constant by an adapted connection probability
increases the valid range of uniform random graphs (com-
pare dotted line in Fig. 5a). For a realistic 1000 synapses per
neuron, the network size is restricted to approx. N ≤ 107

neurons. This is also validated by comparing the random
graph’s and the limiting Rent characteristic, as shown in Fig.
5b: While for a network size of N = 106 the Rent character-
istic stays completely inside the valid model area (case A),
it violates the geometrical constraints for N = 108 (case B).

As an alternative to uniform random networks, locally
coupled networks have been proposed as a generic model for
the connectivity in biological neural networks (Mehring et al.
2003). These networks are based on findings that the relative
frequency of connections between certain cortical neurons
decreases with the distance of their soma (Hellwig 2000).
To derive a Rent characteristic for this type of connectiv-
ity, we adopt the approach in Mehring et al. (2003), plac-
ing (point) neurons uniformly at random on a 2D sheet with
density ρ. The connection probability p is varied with the
distance d between neurons as a Gaussian function:

p(d) = e− d2

2σ2 , (15)
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Fig. 5 Scaling limit of uniform random graphs: a limit network size
Nlim with respect to the connection probability p for the two parts
(2D/3D) of the limiting Rent characteristic; the dotted line represents
scaling of a random graph with 1000 synapses per neuron (expected
value); b limiting Rent characteristic compared with a fitting and a non-
fitting Rent characteristic of a random graph, denoted as A and B in
plot (a)

where σ determines the extension of the local connectivity.
To derive a Rent characteristic for this type of network, the
neurons in a Rent partition have to be located in the 2D sheet.
Therefore, we choose a quadratical region with side length
a for simplicity. With the diminishing probability of long-
distance connections, practically no connections are made to
this region from outside an area with width k ·σ , with a suffi-
ciently large k, e.g. k = 4. Thus, as a worst-case estimate, we
assume that all neurons inside this surrounding region form
a connection to at least one of the neurons in the partition
region. From this assumption, the number of axons to the
partition, T , can be calculated from the area of the surround-
ing region:

A = 4 · a · kσ + π(kσ)2 → T = ρ · A . (16)

In this equation, any boundary effects have been neglected,
i.e. infinite network size is assumed. The extension of the

Gaussian, σ , and the neuron density, ρ, together determine
the expected number of synapses per neuron, S: S = 2πσ 2·ρ.
Combining this relation with Eq. (16) results in:

T = k(2S)1/2 · G1/2 + 1

2
k2 · S . (17)

This Rent characteristic is split into two terms: a term with
r = 1/2 and a term independent of the partition size. Fur-
thermore, the solution is only dependent on the number of
synapses per neuron S, but not on the number of neurons N .
This is due to the derivation approach, assuming infinite net-
work size. Consequences of finite network size on the Rent
characteristic are discussed at the end of this section.

Owing to the small Rent exponent and the additional con-
stant term, the limiting Rent characteristic is constraining
the locally connected network’s Rent characteristic at small
partition sizes G, but not at large partitions as for uniform
random graphs. However, for small partitions, the limiting
Rent characteristic may be too restrictive, because the exten-
sion of the dendritic trees, increasing the surface area of indi-
vidual neurons and small neuron groups, is not taken into
account (also cf. Sect. 3). Thus, the actual number of connec-
tions to small partitions may be bigger than the Rent limit, as
long as this limit is not violated at larger partitions. At which
point these two regions cross over depends on the extension
of the dendritic tree and is left open to debate here. A further
approximation that has to be taken into account for small
partitions is the worst-case estimate that all neurons in the
boundary region send to at least one of the neurons in the par-
tition. The smaller the number of neurons in the partition, the
higher is the probability of a neuron in the surround to be not
sending to the partition: Pnoconn = (1 − p)G . Thus, the cal-
culated Rent characteristic is a clear overestimate especially
for small partitions.

From the two reasons outlined above, one may allow
the local network’s Rent characteristic to exceed the lim-
iting Rent characteristic up to a maximum partition size
G lim. As the Rent characteristic in Eq. (17) is only depen-
dent on the number of synapses per neuron, equalling
this relation with the limits defined by Eqs. (5) and (7)
results in a maximum allowed synapse count per neuron,
Smax:

Smax = 2

k2 · G ·
(√

1 + T x · G(rx −1) − 1

)2

≈ 2

k2 · T x · Grx . (18)

Figure 6a shows this relation. As can be seen from
the solid/dashed lines, the right-hand-side approximation is
valid over the whole plotted range. Comparing the value
Smax(G lim = 1) = 2 · 103 with the allowed number
of synapses per neuron in the limiting Rent characteristic
(T = 1.5 · 104), one finds a discrepancy of almost an order
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Fig. 6 Constraining of locally connected networks by the limiting Rent
characteristic: a maximum expected number of synapses per neuron
with respect to the maximum partition size for which the limiting char-
acteristic is exceeded (dashed line: approximation at the right side of
Eq. (18)); b limiting Rent characteristic with the two cases (A and B)
marked in a

of magnitude. This is due to the worst-case estimate used in
the derivation of the Rent characteristic for the locally con-
nected networks, showing the strong impact of this simplify-
ing assumption. However, as discussed above, this deviation
is expected to rapidly diminish for bigger partitions.

The Rent characteristics plotted in Fig. 6b are for infinite
network size. If the network size is finite, then two regions
may be separated: for small networks, almost full connec-
tivity is reached, because all neurons are nearby. Then, the
Rent characteristic is saturated (T ≈ N ) over almost the
entire range of partition sizes. In contrast, for larger net-
works, the Rent characteristic does not reach saturation at
all. This T staying significantly below the maximum possi-
ble value, N—even for big partition sizes—can be regarded
as an indicator of specific or localized connectivity, because
even large, global partitions do only receive connections
from a (small) fraction of the remaining neurons in the
network.

5 Discussion

Based on the Rent’s Rule analysis method from circuit
design, we have derived an abstract representation of the geo-
metrical constraints in the mammalian neocortex that con-
nectivity models can be tested against. This limiting Rent
characteristic was used to constrain two generic connectiv-
ity models, uniform random (Newman 2003) and localized
(Mehring et al. 2003) networks. It is clear that both are only
abstract models of the cortical connectivity. For example,
they neglect the patchy structure of axons (Braitenberg and
Schüz 1998), and they do not distinguish between short-range
connections staying in the grey matter and long-range con-
nections passing through the white matter (Schüz et al. 2006).
Furthermore, they represent two poles of possible connectiv-
ity models: while localized connectivity completely ignores
long-range connections, uniform random connectivity disre-
gards any locality of connections. It is thus not surprising
that the limiting Rent characteristic constrains the localized
connectivity on a local scale (i.e. for partitions of a few neu-
rons), while it restricts uniform random connectivity on the
global network scale.

From these results, it could be argued that a combination
of uniform random and localized connectivity is a reason-
ably realistic generic connectivity model for the neocortex.
In this context, the small-world topology by Watts and Stro-
gatz (1998), replacing a low percentage of localized connec-
tions with uniform random connections may be a candidate
model. Indeed, it is argued that the brain exhibits the thereby
generated small-world property (Changizi 2007). The Rent
characteristic of such a network would be a combination of
that for localized connectivity (Fig. 6b) at small partitions and
that for uniform random connectivity (Fig. 5b) at big parti-
tions. Consequently, it would exploit the limiting Rent char-
acteristic both at small and at global-scale partitions, but not
in an intermediate region. However, this would partly con-
flict with the wiring cost discussion in Sect. 3 (cf. Chklovskii
2004), arguing for exploitation at partition sizes from small
to medium. As an alternative model, populations of neu-
rons could be uniformly connected internally, but projections
between populations would be distance dependent, exhibit-
ing some form of locality. With such a configuration, almost
the whole limiting Rent characteristic could be exploited,
especially at intermediate partition sizes. Such a hierarchical
organization also has to be consistent with total connection
counts in the neocortex (Beiu et al. 2009).

When investigating candidate connectivity models, it has
to be taken into account that the derived limiting Rent char-
acteristic is based on a model of the grey matter, i.e. the
cortical sheet, only. Therefore, it does not take into account
the long-range connections passing through the white matter.
Although the white matter is also geometrically constrained,
it is difficult to calculate a limiting Rent characteristic
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including it, because its highly irregular structure due to
the folding of the cortex would have to be accounted for.
Still, these long-range connections are bound to specific neu-
ron types (Abeles 1991) and could be excluded in a Rent’s
Rule analysis, so that the remainder of a connectivity model
could be tested more confidently against the limiting Rent
characteristic.

Despite its restriction to the grey matter, the limiting Rent
characteristic seems to capture a fundamental constraint on
connectivity in the cortex. This is illustrated by the fact that it
is approximately invariant to the mammalian species. In other
words, properties of mammalian cortices (neuron density,
axon diameter, grey matter thickness) are scaled between spe-
cies such that a constant connection complexity is achieved,
as expressed in the limiting Rent characteristic. This explains
and supports the conjecture in Changizi (2007) that scaling
laws are caused by anatomical constraints, not by differences
in operation or intelligence.

The constancy of the limiting Rent characteristic, stating
that also the maximum number of connections to a single neu-
ron is constant over species, seems to conflict with the scaling
of the number of synapses per neuron, S, that was found to
be dependent on the number of neurons, N , as S ∼ N 1/2

(Changizi 2007). However, as discussed in Sect. 3, the limit-
ing Rent characteristic is too restrictive on the level of single
neurons, because it neglects the extension of the dendrites.
Furthermore, on a more global scale, it ignores the connec-
tions through the white matter, as discussed above. Interest-
ingly, Beiu et al. (2009) estimated from the relative growth
of white matter to grey matter volume that the number of
connections in the cortex scales as ∼N 1.23, corresponding to
S∼N 0.23. Because they essentially counted the connections
in the white matter, their result corresponds to long-range
connections. The difference in the scalings between Changizi
(2007) and Beiu et al. (2009) thus suggests that short-range
connectivity increases more rapidly than long-range connec-
tivity in larger brains, which confirms the conclusions of Beiu
et al.

A more in-depth analysis of a connectivity model with
the limiting Rent characteristic would also have to take
into account the conclusion by Stepanyants and Chklovskii
(2005) that the number of actual synaptic connections is a
factor 3–10 lower than the number of possible contact points
(potential synaptic connections in the terminology of Stepa-
nyants and Chklovskii (2005)). Owing to its geometric ori-
gin, the limiting Rent characteristic constrains the poten-
tial connectivity, while a model represents the actual syn-
aptic connectivity. Furthermore, the analysis would have to
regard routing congestion effects, e.g. taking into account
route-through wires, which asks for additional connection
reserves. Thus, in practice, the Rent characteristic of a real-
istic network model has to stay well below the limiting Rent
characteristic.

The results of this article are also promising for large-
scale hardware realizations of biologically realistic neural
networks (see, e.g. Schemmel et al. (2010)): Because the sil-
icon substrate is 2D, its connectivity is scaling with a Rent
exponent of r = 1/2. This matches the Rent exponent of the
limiting Rent characteristic for large partitions. Extrapolat-
ing this curve to small partitions, a relative connection den-
sity of ≈ 105 per neuron can be found (cf. Fig. 3). Thus, a
hardware system supporting such a connection density could
in principle implement biologically realistic network models
irrespective of the network size.
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