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Abstract Waves are common in cortical networks and may
be important for carrying information about a stimulus from
one local circuit to another. In a recent study of visually
evoked waves in rat cortex, compression and reflection of
waves are observed as the activation passes from visual areas
V1 to V2. The authors of this study apply bicuculline (BMI)
and demonstrate that the reflection disappears. They con-
clude that inhibition plays a major role in compression and
reflection. We present several models for propagating waves
in heterogeneous media and show that the velocity and thus
compression depends weakly on inhibition. We propose that
the main site of action of BMI with respect to wave propaga-
tion is on the threshold for firing which we suggest is related
to action on potassium channels. We combine numerical and
analytic methods to explore both compression and reflection
in an excitable system with synaptic coupling.

Keywords Waves · Cortex · Spiking network · Reflection

1 Introduction

There has been a great deal of recent interest in spatio-tem-
poral activity in neural systems with particular attention to
the mammalian cerebral cortex. This activity is observed
using multiple electrodes, non-invasive imaging, and using
direct imaging of the brain with or without voltage/calcium
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sensitive dyes in both intact and in brain-slice preparations.
One of the most commonly observed types of activity takes
the form of propagating waves (reviewed in Wu et al. 2007).
In general, a wave is defined as an activity profile which is
invariant under some combinations of translations or rota-
tions in time and space. While a variety of two-dimensional
waves, such as spiral and target waves have been seen (Shus-
terman and Troy 2008), most of the waves observed in vivo
and in slices are effectively one-dimensional waves. As such,
there are several classes of propagating one-dimensional
waves observed in neural systems: (1) pulses; (2) fronts; and
(3) wave trains. Wave trains occur rhythmically (Ermentrout
and Kleinfeld 2001) and are usually a sign of underlying
oscillatory activity. In contrast, pulses and fronts are “one
shot” waves that travel across the tissue when evoked by
some experimental stimulus. With pulse waves, the tissue
returns to its original state while a front represents a change
in states. True fronts are uncommon since almost all neural
systems eventually return to their resting states. The classic
neural example of a pulse is the propagating action poten-
tial of the Hodgkin–Huxley, Fitzhugh–Nagumo, and other
reaction-diffusion models. Pulse and front waves in cortical
networks are generally believed to be due to synaptic inter-
actions since they disappear when synaptic conductances are
blocked. There have been many theoretical advances in our
understanding of synaptically generated waves; Coombes
(2005) provides a relatively recent review of the theoretical
work. Both firing rate and spiking networks (such as con-
ductance-based models or integrate-and-fire type models)
exhibit propagating waves (Bressloff 2000; Ermentrout and
McLeod 1991; Golomb and Ermentrout 2001, 2002; Osan
et al. 2002; Pinto and Ermentrout 2001; Prat et al. 2005).
Pulse waves typically arise when the underlying medium is
excitable. That is, brief perturbations decay to rest but larger
perturbations result in an amplification of activity followed
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by a decay to rest. Front waves are usually associated with
bistable media.

The cortex is not a homogeneous medium. Thus, there
has been a good deal of recent interest in wave propagation
in the presence of heterogeneities. Bressloff et al. (2003),
Kilpatrick and Bressloff (2010), and Hutt and Atay (2006)
have used a variety of methods to study propagation of neural
waves in heterogeneous media. For rapidly varying media,
Prat et al. (2005) have used homogenization methods to esti-
mate mean velocity. More relevant to the present paper is that
heterogeneities produces change in the velocity of waves and
result in propagation failure. The issue of propagation and
failure in rate models has been addressed in numerous mod-
els (Bressloff 2001; Coombes and Laing 2011; Kilpatrick
et al. 2008). In a recent paper, Xu et al. (2008) studied the
propagation of spontaneous and evoked activity as it travels
across visual cortical areas in the rat. These experimentalists
were particularly interested in mechanisms by which activity
propagated from one area (V1) to another area (V2) in the
cortex. They looked at waves that spontaneously occurred
during the experiment as well as those evoked by a drifting
grating presented to the animal. They found two phenomena
as waves crossed from V1 into V2. First, when the waves
were evoked by stimuli, there was compression of the wave
as it entered V2 and on many occasions, secondary activity
was reflected back into V1. In contrast, waves that occurred
spontaneously show no compression or reflection. By com-
pression, these authors mean that during a snapshot in time,
the width of the activated area (as determined by voltage-
sensitive dyes) is thinner in V2 than it is in V1. Xu et al.
pharmacologically manipulate the cortical region by adding
bicuculline (BMI) which (among other things) blocks GABA
A (inhibitory) receptors and thus effectively reduces inhibi-
tion. Another effect of BMI is that it also blocks calcium
activated potassium channels which can set the threshold for
excitatory pyramidal neurons.

Reflected waves are often found in heterogenous tissue.
In Ermentrout and Rinzel (1996), reflected waves were com-
puted and analyzed geometrically in an inhomogeneous reac-
tion-diffusion model of an excitable medium. They found that
reflected waves were quite easy to obtain in certain types of
excitable media but far more difficult in others. Specifically,
in Rinzel and Ermentrout (1998) they suggested that there
are at least two distinctive types of excitable media which
are characterized by how they transition from rest to repet-
itive firing. In Class II excitability, the local medium has a
single equilibrium point and as current (or some other param-
eter) is increased, the system becomes oscillatory through a
Hopf bifurcation. Class I excitability is characterized by a
saddle-node invariant circle bifurcation and thus has three
equilibria in the excitable regime. Only the rest state is sta-
ble. A crucial aspect of class I excitability is the existence
of a saddle point and its associated stable manifold (SM).

Stimuli that cross this manifold result in a spike. An impor-
tant consequence of the existence of the saddle point is that
the spike can be produced with an arbitrarily long latency.
The idea in Ermentrout and Rinzel (1996) is to exploit this
latency as follows. Consider a wave propagating from A to B
where the medium in B is less excitable than that in A. As the
wave enters B, there could be a long latency to fire since it is
less excitable. If the latency is long enough, then the medium
in A will have recovered sufficiently to be re-excited when
B fires. This results in a reflected wave.

We hypothesize that wave compression is nothing more
than a slowing down of the wave and thus are interested
in how the velocity of waves depends on various parame-
ters. In Golomb and Ermentrout (2001, 2002), they explored
velocity dependence in integrate-and-fire models which were
restricted to spike only once. In contrast, in this paper, we
consider first a firing rate model with excitatory and inhib-
itory neurons. We examine several different types of heter-
ogeneity and whether or not these can result in reflections.
We also study how velocity depends on the degree of inhi-
bition and, in agreement with recent data, Pinto et al. (2005)
show that there is only weak dependence of the velocity on
the degree of inhibition. We also discuss why this should be
so. Thus, we suggest that the effects seen in Xu et al. (2008)
are due, not to changes in inhibition, but, rather, to modula-
tion of the excitability of the medium through alteration of
potassium channels. Next, we consider a simplified model
for reflection and compression that arises as a normal form
near a bifurcation of the population model. This allows us
to better explore parameter space. We close with some sim-
ple analytic calculations that give a range of parameters for
reflection to occur in a discrete chain.

2 Model

We use a firing rate model based on a combination of the
Pinto–Ermentrout (disinhibited cortex) model and the Wil-
son–Cowan equations

∂ue(x, t)

∂t
= −ue(x, t) + f (aee(x)Ke(x) · ue(x, t) (1)

−aie(x)Ki(x) · ui(x, t)

− ga(x)z(x, t) − θe(x))

τi
∂ui(x, t)

∂t
= −ui(x, t) + f (aei(x)Ke(x) · ue(x, t)

− aii(x)Ki(x) · ui(x, t) − θi(x))

τa
∂z(x, t)

∂t
= −z(x, t) + ue(x, t)

where

Ke,i(x) · ue,i(x, t) :=
L∫

0

Ke,i(x − y)ue,i(y, t) dy,
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Fig. 1 Wave propagation in
Eq. 1 in the homogeneous
domain (a); and with the
excitatory threshold increased in
the right half of the domain by b
30% ; c 51.8%; d 55%.
(Parameters are
σe = 4, σi = 2, aee = 20, aie =
13, ga = 2, θe = 4, aei =
25, aii = 6, θi = 13, τi =
2, τz = 20, xa = 150, xb = 1.)
The wave is initiated at t = 50
by stimulating the first six
excitatory cells for 5 time units
and with amplitude 3. Gray
scale shows the magnitude of
the excitatory activity, which
lies between 0 (black) and 1
(white). The same convention
holds in all the figures of waves
in the full system of equations
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and f (u) = 1/(1 + exp(−u)) · ue, ui are the activities of the
excitatory and inhibitory populations, z is the adaptation for
the excitatory populations. a jk is the space-dependent con-
nection strengths and θ j is the space-dependent thresholds.
The adaptation, ga(x) is also space-dependent. We typically
use

Ke,i(x) = 1

2σe,i
exp(−|x |/σe,i)

as the coupling function. The functions a jk(x), ga(x), and
θ j (x) are generally of the form

r(x) = r0

(
1 + r1

1 + exp(−(x − xa)/xb)

)
.

The parameter r0 is the baseline value, r1 is the fractional
change as x increases past xa, the border between the two
regions of excitability, and xb controls the sharpness of the
border. Numerical solutions to these equations are found
by discretizing the network into 301 units for each of the
ue, ui, z. Simulations were done using XPPAUT. Values
for the parameters are given in the caption of Fig. 1.

In order to better understand the mechanisms and dynam-
ics that underly reflected waves, we will often use a sim-

plified model that is the normal form for the dynamics of a
saddle-node on an infinite cycle; the theta model which has
the following form

φ′
i = 1 − cos φi − (1 + cos(φi))a0(1 + a1 H(x − xa)) (2)

such that if φi = q < π, then φi±1 = 2 tan−1(tan(φi±1) +
g) and if φi = π,then φi is reset to −π. Coupling is only
via nearest neighbors. H(x) is the Heaviside step function.
Parameters a0, a1 determine the degree of excitability of the
medium on either side of the border. In the following, we will
justify this simplification.

3 Results

The Wilson–Cowan equations have been used successfully as
a model for the spatio-temporal dynamics of cortex for many
years. Each local cortical area contains a population of excit-
atory cells and a population of inhibitory cells. Under nor-
mal circumstances, the activity of the network is controlled
by the feedback inhibition. However, in slice preparations
(and in pathological situations), the inhibition is reduced
and this leads to a dramatic increase in activity. Even in the
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disinhibited network, the activity eventually settles down.
This is due to a number of biophysical mechanisms which
include spike frequency adaptation of the excitatory neurons,
synaptic depression of the excitatory connections or build
up of extracellular potassium. The Pinto–Ermentrout model
was proposed as a simple recurrent network of excitatory
cells coupled with a local negative feedback that was meant
to mimic spike frequency adaptation. Thus, in this article,
we use a combined model which has both spatially extended
inhibition and localized spike frequency adaptation in the
excitatory population. Equation 1 represents the combined
spatio-temporal model.

Xu et al. found compression and reflection of evoked
waves in visual cortex as the waves go from V1 to V2.
They suggested that the mechanism for these phenomena
was a change in the local circuit parameters as the wave pro-
gresses across the V1–V2 border. Thus, in this article, we
will incorporate heterogeneities in several parameters in the
model equations. There are four parameters which we allow
to vary in space: aee, the excitatory–excitatory strength, θe,
the threshold of the excitatory cells, ga, the strength of the
spike-frequency adaptation, and aie, the strength of the inhib-
itory to excitatory connections. Additionally, the parameters
to the inhibitory neurons could also be allowed to vary, but,
we do not do so in this paper. (See the results below for further
justification.)

3.1 Waves in an inhomogeneous medium

We begin by showing some examples of wave propagation in
the full model in which half the domain has normal values of
the parameters and the other half has altered values. Figure
1 shows a typical set of simulations in which we excite a
small number of excitatory cells and then plot the excitation
as a function of space and time. We let the medium come to
rest for 50 time units and then apply a brief (5 time units)
stimulus to the first six excitatory cells. This initiates a wave
of activity as seen in panel a. The velocity is uniform, as
would be expected in a homogeneous excitable medium. In
Fig. 1b, we increase the threshold of the excitatory cells, θe

by 30%. This causes two clear effects. First, the wave slows
down considerably, and second, the wave is compressed in
both space and time. This result is consistent with the behav-
ior observed in Xu et al. (2008) as evoked waves move from
one part of the visual cortex to another. A further increase in
the threshold to 51.8%, leads to the interesting phenomena
of a reflected wave as seen in Fig. 1c. Here, the primary wave
runs into the less excitable medium and after a pause, excites
it. The lengthy pause before the right side is excited pro-
vides enough time for the left side to recover and thus be re-
excited enough to produce a reflected traveling wave. There
are two points worth mentioning. First the reflected wave
has a slightly lower velocity than the primary wave because

it is traveling into a region where the adaptation still lingers.
Secondly, the wave that goes to the right has a fine periodic
structure to it that is associated with the reduced velocity
and higher threshold for excitation. This periodicity is not
due to the discretization of the equations, but, rather, due
to an instability of the smooth wave. Such waves are called
“breathers” and have been found in stimulus locked travel-
ing pulses (Folias and Bressloff 2005) and in single pulse
waves (Golomb and Ermentrout 2002). If the difference in
thresholds is large enough, then, propagation is blocked as
shown in Fig. 1d. Thus, reflected waves appear in the bound-
ary between transmission of the wave and block.

In Fig. 1, we changed the threshold of the excitatory cells
at the midpoint of the medium. We could change other param-
eters as well. Figure 2a, b shows the effect of decreasing
the recurrent excitatory–excitatory connection strength, aee

in the right half of the medium. As was the case with the
threshold change, there is compression for modest decreases
in excitation and reflection for a limited range of excitation
decrease. Like the change in threshold, the chance in recur-
rent excitation leads to a latency in firing of the right side of
the medium which provides enough time for the left side to
recover and produce a wave. Figure 2c, d shows the effects
of increased aie the inhibitory to excitatory strength and ga

the strength of the adaptation. Neither of these changes have
an appreciable effect on the velocity, and because there is
no change in velocity, there can be no change in latency and
thus, no reflected waves. We can easily understand why this
should be so. Changes in the strength of inhibition to excit-
atory cells or change in adaptation affect only the feedback
to the excitatory cells. The key to wave propagation is the
ability of the medium to excite neighboring areas and, for
a resting network, all that matters is the strength of excita-
tion and the threshold which must be crossed. By the time
that inhibition or adaptation take hold, the “horse is out of
the barn.” This observation is sufficient to also eliminate any
change of the inhibitory network, such as, θi, aii, or aei as a
mechanism for compression and or reflected waves; the main
determinants of the wave velocity and latency of excitation
are the strength of the excitatory–excitatory connections and
the excitatory threshold.

Xu et al. pharmacologically manipulated their brain slice
by adding bicuculline (BMI) which, among other things,
blocks inhibition. They found that they could get rid of some
of the compression and that the reflected waves disappeared.
Figure 3 shows that a small change in the feedback inhibi-
tion can stop reflected waves. However, too much block of
inhibition leads to run away excitation and the entire network
undergoes synchronous slow oscillations (analogous to sei-
zure behavior) with the period determined by the adaptation.
BMI is not a simple drug and also has effects on potassium
channels. The channels are partly responsible for setting the
threshold of excitability of the neurons. Thus, we postulate
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Fig. 2 Wave propagation in
Eq. 1 with different types of
inhomogeneities. a aee, the
excitatory–excitatory
connection strength is decreased
by 25% leading to compression;
b decrease of aee by 33.49%
leads to a reflected wave; c
increase of aie, the inhibitory to
excitatory strength by 200%
have no appreciable effect on
the velocity; d increase in the
strength of adaptation by 400%
has no appreciable effect on
velocity (parameters are as in
Fig. 1)
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Fig. 3 Partial block of
inhibition removes the reflected
waves. a Reflected wave of
Fig. 1c; b reduction of aie from
13 to 12 leaves compression but
no reflection
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that another mechanism for the effects seen by BMI are to
lower the threshold of excitation. This effect could compen-
sate for the higher threshold that we impose in Fig. 1 for the
right half of the neural medium.

3.2 Quantifying the dependence on parameters

The simulations shown above illustrate how changing the
degree of excitability of the medium can have a large effect

on the properties of waves. For example, changes in θe, aee

seem to affect the velocity, the width, and the magnitude
of waves, while changes in the inhibitory feedback, aie, ga

change the width and magnitude but have little effect on the
velocity. In this section, we quantify these features as the four
parameters aee, θe, aie, and ga vary. Figures 4, 5, and 6 show
three measurable quantities, velocity, width, and intensity, as
a function of the four parameters. As expected from the sim-
ulations of the last section, the velocity depends strongly
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Fig. 4 Velocity of the waves as
a function of the parameters in
the model. a aee, the
excitatory–excitatory coupling
strength; b the threshold for
excitation, θe; c aie, the
inhibitory to excitatory coupling
strength; d the strength of spike
frequency adaptation, gad.
Velocity is measured by
determining the time at which
cells 100 and 200 cross the
u = 0.25 line for the first time
then dividing the time difference
into 100
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Fig. 5 Width of the waves as a
function of the parameters in the
model. a aee, the
excitatory–excitatory coupling
strength; b the threshold for
excitation, θe; c aie, the
inhibitory to excitatory coupling
strength; d the strength of spike
frequency adaptation, gad.

Width is measured by
determining the time at which
cell 100 crosses u = 0.25 from
below and then from above

 0

 5

 10

 15

 20

 10  12  14  16  18  20  22  24  26  28

 0

 5

 10

 15

 20

 3.8  4  4.2  4.4  4.6  4.8  5  5.2  5.4  5.6

 0

 5

 10

 15

 20

 0  2  4  6  8  10

 0

 5

 10

 15

 20

 13  14  15  16  17  18  19  20  21  22

w
id

th

w
id

th
w

id
th

w
id

th

ee

ie ada g

a θe

 A  B

C D

on the threshold and the strength of excitatory–excitatory
connections, but is almost independent of the recurrent inhi-
bition and spike frequency adaptation. Plots a and c are com-
pletely consistent with the quantitative analysis of wave in
cortical slices (Pinto et al. 2005), Fig. 6a. In this article, the

authors found that the velocity was nearly independent of
the concentration of picrotoxin (PTX), a blocker of inhibi-
tory neurotransmission, but very strongly dependent on the
concentration of DNQX, a blocker of synaptic excitation. In
contrast, Fig. 5 shows that the width of the excitation depends
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Fig. 6 Intensity of the waves as
a function of the parameters in
the model. a aee, the
excitatory–excitatory coupling
strength; b the threshold for
excitation, θe; c aie, the
inhibitory to excitatory coupling
strength; d the strength of spike
frequency adaptation, gad.

Intensity is the maximum value
of u for cell 100
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strongly on both the recurrent inhibition and the recurrent
excitation, but not on the threshold or the adaptation. We
suspect that the weak dependence on adaptation is due to
the fairly strong inhibition that is the default for our model.
The strong dependence on inhibition is expected since the
inhibition is the primary means of bringing the medium back
to rest. Pinto et al. (2005) also measured the width of the
experimental waves and found a similar strong dependence
on both the excitatory and the inhibitory synaptic strength.
Finally, we see that the intensity depends moderately on the
synaptic excitation and inhibition. The experimental results
in Pinto et al. (2005) show a decrease in intensity as syn-
aptic excitation is reduced, but very little effect of synaptic
inhibition.

The reason that the velocity is nearly independent of the
synaptic inhibition and the adaptation is that, as noted above,
what matters for propagation is the initial front of excitation
which is independent of the delayed negative feedback. Pinto
and Ermentrout (2001) exploited this idea and used singular
perturbation to construct traveling waves in a network with
just excitation and adaptation. Velocity in this article was
completely determined by the excitation and threshold since
the negative feedback was very slow.

The dependence of the width on synaptic excitation is
not surprising since this excitation is required to get the
wave started. The dependence on the inhibition should be
reasonably clear, since inhibition (and the weaker, in this
model, adaptation) is the primary way in which the network

is returned to rest. For example, if we artificially slow down
the inhibition, the width increases proportionally.

The intensity or amplitude would be less dependent on
the inhibition if we slowed the inhibition down since slow
negative feedback does not become important until the cells
have made their transition to the excited state, which, is, up
to saturation, dependent on the recurrent excitation.

3.3 Simplified models for reflection and compression

We now turn our attention to the mechanisms for reflection
and compression of waves. We believe that compression is
nothing more than a visible signal of reduced velocity in the
medium and some modest change in the width of the waves.
To better understand the underlying dynamics of reflection,
we first look at the space-clamped system:

due

dt
= −ue + f (aeeue − aieui − gaz − θe) (3)

τi
dui

dt
= −ui + f (aeiue − aiiui − θi)

τa
dz

dt
= −z + u.

Since the primary variable that we altered to obtain reflected
waves is the excitatory threshold, θe, we will treat that as a
bifurcation parameter. Figure 7a shows the behavior of the
system as a function of the parameter θe. For θe larger than
3.83 (shown by the arrow in the figure), the only stable state is
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Fig. 7 Bifurcation diagram for
the space-clamped system (3) as
the threshold, θe varies. a One
parameter diagram. Stable
equilibria (SEQ) (maxima and
minima of u are shown) are in
red and unstable (UEQ) in
black. Filled green circles are
stable periodic orbits (SPO) and
hollow blue circles are unstable
periodic orbits (UPO). The
saddle-node infinite cycle
(SNIC) is shown. b, c Two
parameter diagram with ga as
the other parameter. Red curves
represent fold bifurcations and
black are curves of Hopf
bifurcations (HB). The right
figure is just an expanded view
of the left. Filled circles
represent Takens–Bogdanov
(TB) points
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the resting equilibrium (bottom right, labeled SEQ). For very
low threshold, there is a stable excited state (red curve at the
top left, SEQ) which becomes unstable via a Hopf bifurcation
and a nearby fold bifurcation. The periodic branch of solu-
tions emerging from the Hopf point is unstable (labeled UPO)
but “turns around” to form a large amplitude branch of peri-
odic orbits (solid green circles, SPO). This branch persists as
θe increases until it hits the saddle-node point at θe ≈ 0.383,

a saddle-node infinite cycle (SNIC) bifurcation. Figure 7b, c
shows that the fold point persists as ga changes but that the
lower branch can lose stability at a Hopf bifurcation for ga

large enough. The filled circle shows that the transition from
a fold to a Hopf on the lower branch occurs via a Takens–
Bogdanov bifurcation where the branch of Hopf bifurcations
(HB) hits the branch of folds.

The main point of the bifurcation analysis is to show that
underlying the excitability of the waves is a SNIC bifurca-
tion. The SNIC is a well-studied system and has a very simple
reduced representation called the “theta model” (Ermentrout
and Kopell 1986). It is possible to formally reduce the full
model, Eq. 1 to a scalar integro-differential equation model
if we assume that the system is poised near the SNIC bifur-
cation. Rather than do this explicitly, we will just write down
two equivalent versions of the dynamics near the onset of the
bifurcation. Near the saddle-node, the dynamics is charac-
terized by the very simple quadratic differential equation

dv

dt
= v2 + b.

For b = −a2 < 0, the system has two equilibrium points,
v = −a, a stable rest state, and v = a, an unstable equilib-
rium. Initial conditions such that v(0) > a, will rapidly grow
to infinity in a finite amount of time, in which case we say
that system has fired. When v hits +∞, it is reset to −∞,

where it returns to −a, the resting state. If we allow a to be
space-dependent, and assume spatially decaying coupling,
we obtain

∂v(x, t)

∂t
=v(x, t)2−a(x)2+

∞∫

−∞
K (x−y)P(v(y, t)) dy,

(4)

where K (x) is an effective coupling kernel (a combination
of Ke and Ki) and P(v) is a measure of the excitation. For
example, P may be close to zero except for values of v near
q where a < q ≤ ∞. We call q the spike threshold. If
K (x) ≥ 0, then, we expect that if a group of neurons is
excited past v = a, then, they will cross v = q and provide
enough excitation to move a cell at v = −a past v = +a and
thus create a wave of excitation. For the purposes of numer-
ical simulation, it is easier to convert Eq. 4 to a theta model
by making the transformation, v(x, t) = tan φ(x, t)/2.

123



Biol Cybern (2011) 105:253–268 261

Fig. 8 Numerical solution to
the theta model, Eq. 5 for
K (x) =
2.5 exp(−|x |/10), P(φ) =
exp(−120(1 − cos(φ − 2))),

and a(x)2 = 0.05 for x < 150
and a a(x)2 = 0.1 for x ≥ 150;
b a(x)2 = 0, 3 for x ≥ 150; and
c a(x)2 = 0.3 for x ≥ 150
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(As θe,i are thresholds for the full model, we use φ here
instead of the traditional θ.) With this transformation, Eq. 4
becomes

∂φ(x, t)

∂t
= (1 − cos φ(x, t)) + (1 + cos φ(x, t))

[
−a(x)2

+
∞∫

−∞
K (x − y)P(φ(y, t)) dy

⎤
⎦ . (5)

We are now free to define P , however, we like. Osan et al.
(2002) proved that there were traveling wave solutions to (5)
when P represented a time-dependent synapse. They also
showed that if the spike threshold, v = q is set to the natu-
ral value of q = ∞ (corresponding to φ = π ), the medium
will always recover enough so that successive neurons firing
will induce neurons that have already fired to fire again. Thus
means that the network will never come to rest. The reason
for this pathology is setting the spike threshold exactly at +∞

makes the recovery period too short. Thus, we will always
let q ∈ (a,∞).

Figure 8 shows a space–time plot for a numerical sim-
ulation of (5) with the functions K (x), P(φ) given in the
caption. As with the full three variable model, we get com-
pression (a slowing down) of the wave as the threshold a
increases. If this threshold is too large, then block occurs as
illustrated in Fig. 8b. Finally, for an intermediate value for
threshold, there is a reflected wave (panel c).

3.3.1 Phase plane analysis of reflected waves

Ermentrout and Rinzel (1996) presented a simple phase-
plane analysis of a pair of diffusively coupled phase mod-
els and showed that reflected waves could be explained by
proving that there was an unstable periodic solution. Dif-
fusive or gap junctional coupling acts for all values of the
oscillator, while pulse coupling as we have here is active
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Fig. 9 Phase plane for Eq. 6, a
simple two oscillator model for
reflected waves.
P(φ) = exp(−120(1 − cos(φ −
2))), g = 4, a1 = 0.02 and a2
varies. Plots show the nullclines
(φ1 nullcline in red and φ2
nullcline in green) and the
unstable manifolds of the saddle
point shown by the red filled
circle. Blue filled circles show
the stable fixed points. a 1:1,
normal propagation, a2 = 0.06;
b 3:2 cycle a2 = 0.075; c 2:1,
reflected wave, a2 = 0.095; d
block, a2 = 0.11
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only in a limited range of active phases. Thus, the mecha-
nisms for reflected waves in this model and the model pre-
sented in Ermentrout and Rinzel (1996) may be different. For
completeness, we offer a simple phase plane analysis for the
pulse-coupled system:

φ̇1 = 1 − cos φ1 + (1 + cos φ1)[−a1 + g P(φ2)] (6)

φ̇2 = 1 − cos φ2 + (1 + cos φ2)[−a2 + g P(φ1)]
where a1 = 0.02 and a2 > a1 varies. P(φ) is as defined
above. We start each neuron at its rest point and then initial-
ize φ1 to be slightly above threshold. This causes φ1 to “fire”
and then induce φ2 to fire.

Figure 9 shows the phase plane for this system. The thresh-
old for firing of φ1 is determined by a saddle point which is
shown in the figure by the large red circle. Trajectories that
start near this point are rapidly attracted to the unstable man-
ifold for the saddle so this is what we plot as the parameter a2

varies. Large a2 means that φ2 is very inexcitable and requires
a large kick to stimulate it. Each panel shows the nullclines;
the wide (tall) rectangular plots are the φ2 (φ1) nullclines
in green (orange). Blue filled circles show the stable fixed
points. Panel a (a2 = .06) shows a case in which each neu-
ron fires once. This is the analogue of successful propagation
of the wave through the medium. Panel d (a2 = 0.11) shows
an example of block in which only φ1 completes a firing
cycle. We can see what has happened. Since the initial value
of φ2 (which is the resting state of φ2) is lower for larger val-
ues of a2, the unstable manifold starts out nearly along this

rest state (since P(φ1) is essentially zero until φ1 gets large
enough). Once φ1 does get large enough, φ2 can escape from
the rest state and starts to increase. If it moves upward enough
as in panel a, it can escape and increase by 2π (that is, “fire”).
In panel d, we see that by the time φ1 has moved out of the
region where P(φ1) is nonzero, φ2 has not increased enough
and is trapped by its nullcline and collapses back to rest. We
also see that in panel a, φ2 increased fast enough so that φ1

crosses into its nullcline (tall orange rectangle) and returns
to a rest state, However, in panel c (a2 = 0.095), while φ2

escapes its nullcline, it does so just barely, and thus φ1 has
increased quite a bit before φ2 starts its rapid rise. Thus, φ1

escapes the trap of its nullcline and can then fire again before
coming to rest when φ2 is caught by its (green) nullcline.
Thus, φ2 has completed one cycle but φ1 has completed two;
this is the analogue of a reflected wave. Further decreases
in a2 allow φ2 to escape its nullcline and fire again. Panel
b shows an example where φ2 fires twice and φ1 fires three
times. As we change a2 either φ1 gets trapped by its (orange)
nullcline and there is m:m echo (each neuron fires m times)
or φ2 gets caught by its (green) nullcline and there is m +1:m
echo (φ1 fires m + 1 times and φ2 fires m times).

3.3.2 Nearest neighbor with map

As our final analysis of reflected waves in a synaptically con-
nected network, we consider a discrete space model with only
nearest neighbor coupling:
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Fig. 10 Waves in a chain of theta neurons with nearest-neighbor con-
nectivity. There are 200 units in the chain; α j = 0.25 for 1 ≥ j < 100
and α j = 0.25+c for 100 ≤ j ≤ 200. φT = 2, g = 1.3. a Compressed
wave, c = 0.14 ; b wave block, c = 0.18; c reflected wave, c = 0.16;
d reflected wave with noise added to the medium, c = 0.16

φ′
j = 1 − cos(φ j ) − α j (1 + cos(φ j )).

Coupling is through nearest neighbors and takes the follow-
ing form (see Hoppensteadt and Izhikevich 1997): when φ j

crosses φT , then φ j±1 are set to

2 arctan
[
tan(φ j±1/2) + g

]
where g is the coupling strength. The parameters, α j deter-
mine the degree of excitability; larger values ofα j correspond
to less excitable media. In the simple chain model, we set α j

to be a2 for j = 1, . . . , N/2 and to be b2 = a2 + c for
N ≥ j > N/2. The parameter c describes the heterogeneity.
Figure 10 shows the results of a numerical simulation of the
chain. If c is small enough, a single wave propagates through
but slows down once the less excitable medium is reached.
This corresponds to compression of the waves and is shown
in panel a. In Fig 10b, c is too large and the medium fails
to become excited on the right. If c is an intermediate value,
then, there is a reflected wave as shown in Fig. 10c. Panel
d shows that the reflected waves are robust in the presence
of noise. Thus, the chain behaves in a way very similar to
our previous models. We proceed to obtain bounds on c for
which we can expect to find reflected waves. In order to facil-
itate the analysis, we consider the untransformed theta model
which is the quadratic integrate and fire model with infinite
reset:

V ′
j = V 2

j − a2
j + g

[
δ(t − t j−1) + δ(t − t j+1)

]
(7)

where Vj is the “voltage”, t j are the times that the j th unit
crosses 0 < q ≤ ∞. We call Vj = q the synaptic thresh-
old since when this is crossed, communication between the
two cells occurs. The theta model is defined in such a way
that Vj = tan(φ j/2), so that q = tan(φT /2). We see that
a j = √

α j with regard to the simulations in Fig. 10. We
work on the bi-infinite chain, −∞ < j < ∞ with a j = a
for j < 0 and a j = b for j ≥ 0. Thus, the medium changes
its excitability at j = 0. Since the coupling is limited to the
nearest neighbor, all that matters is when an adjacent cell
fires. As Vj = −a j is a stable rest state, we assume the net-
work is initially at rest and induce a wave by exciting a single
unit. We will always assume the following strict requirement:
g − a j < q. This condition is required as it guarantees that a
stimulus will not cause a cell to immediately cross the syn-
aptic threshold. Were this the case, then propagation speed
would be infinite, a nonphysical situation. (Such a scenario
could be rectified by incorporating a delay in the coupling.)
We consider two adjacent units with a j = a, b, respec-
tively; we could have b = a. As our focus is on reflected
waves and compression, we will have b ≥ a in general. We
will also call these adjacent units a and b, respectively. Since
we have manipulated the excitability in our simulations, we
do the same thing here and treat b as our main parameter.
(With regard to the simulations in Fig. 10, b = √

α + c and
a = √

α.) At t = 0 unit a fires, that is Va = q and since unit
b is at rest it will be instantly incremented to Vb = −b + g.

If −b + g < b, then unit b fails to fire and we obtain prop-
agation failure. Thus, the maximum value that b can take is
g/2, that is, to assure propagation, b < g/2. The velocity of
the wave is simply the inverse of the time it takes to get from
−b + g to synaptic threshold, q, that is

τbq :=
q∫

−b+g

dx

x2 − b2 = 1

2b
ln

g(q − b)

(q + b)(g − 2b)
.

Since q > b and g > 2b, this time is finite and positive. We
can define τaq analogously. τbq is a monotonically increas-
ing function of b. This follows since τbq is the time it takes
to go from V = −b + g to V = q where V ′ = V 2 − b2.

By assumption −b + g > b so V ′ > 0. Let V ′
1 = V 2

1 − b2
1

and V ′
1 = V 2

2 − b2
2 b1 < b2, with V1(0) = g − b1 and

V2(0) = g − b2. Suppose b1 < b2. Then V ′
1 > V ′

2 and
V1(0) > V2(0). Thus, V1(t) > V2(t), so that V1 will cross q
first and thus, τbq is monotonically increasing with b. From
this, we immediately see compression of the wave since the
waves to the right are slower than those to the left when a < b.

What is needed to get or prevent reflection? Once unit a has
fired, it will evolve back toward rest by first blowing up to
+∞ and then moving from −∞ toward, −a. When unit b
fires, unit a will be incremented by an amount g. This will
induce unit a to fire only if Va(t) + g > a and otherwise,
unit a will not fire. The latter case means we get regular
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Fig. 11 Range of excitability, b
of the right half of the medium
as a function of synaptic
threshold such that there will be
reflected waves. Above the
horizontal lines leads to block
and below the curved lines leads
to normal propagation. Region
denoted RW leads to reflected
waves or more complex
dynamics. a Effects of the
coupling strength, g; (a = 0.5).
b Effects of the excitability of
the left side, a (g = 1.3)
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propagation and the medium fires a single wave with com-
pression on the right. We define

τa,max :=
∞∫

q

dx

x2−a2 +
a−g∫

−∞

dx

x2 − a2 = 1

2a
ln

g(q + a)

(q−a)(g−2a)
.

This expression is the maximum amount of time allowed
between the time that unit a crosses synaptic threshold, q
and unit b crosses q in order to guarantee that unit a does
not again fire. Thus, we will get regular propagation and no
re-excitation of the medium if b < g/2 and τbq < τa,max:

1

2a
ln

g(q + a)

(q − a)(g − 2a)
>

1

2b
ln

g(q − b)

(q + b)(g − 2b)
. (8)

Since cells to the left of unit a (which is on the border of the
excitability change) have recovered even more if unit a fires
again, then we will always get a wave propagating to the left,
a reflected wave. Let us examine Eq. 8 in more detail. Let
b = a; that is to assume a perfectly homogeneous medium.
Does this inequality hold? If not, then there will not even be
a legitimate traveling wave that generates only one bout of
excitation. Our model is symmetric about V = 0, so that the
time it takes to go from g − a to q is exactly the same as the
amount of time it takes to go from −q to a − g. Similarly,
the amount of time to go from −∞ to −q is the same as to
go from q to +∞. Thus,

τa,max = 2

∞∫

q

+τaq .

This guarantees that as long as q < ∞, there can be a reg-
ular traveling wave in a homogeneous medium. If q → ∞,

then τa,max = τaq < τbq if b > a, even the smallest inho-
mogeneity will induce re-excitation and pathological firing.
It is for this reason that in both the theta model with con-
tinuous coupling simulated earlier, and the present model,
that we require the synaptic threshold to be finite (or, in the
theta model, to be less than π ). Equation 8 provides a way
to estimate boundaries for which there is repeated activity.

Given, for example, a, q, g, we can find a range for b such
that there will be reflected waves. Reflected waves, or, more
precisely, waves which re-excite the left-hand side at least
one time, occur when bmin < b < g/2 where bmin is defined
by τa,max = τbminq . We have already shown that as long as
q < ∞, τa,max > τaq and we know that τbq ≥ τaq with
equality for b = a and τbq is a monotonically increasing
function of b that approaches +∞ as b ↑ g/2. Thus, there is
a unique root, bmin, to τbq = τa,max with a < bmin < g/2.

Reflected waves will occur for b in some range greater than
a and less than g/2 for all finite values of q. We can apply
these calculations to Fig. 10 where g = 1.3, a = √

α = 0.5,
and q = tan 1 ≈ 1.5574. We find that τa,max ≈ 2.13196
and, numerically solving for bmin, we get bmin ≈ 0.63137.

In terms α and c, we expect to get reflected waves for
b2

min − α < c < g2/4 − α which leads to 0.1486 < c <

0.1725. Figure 10 confirms these bounds.
Figure 11 shows the ranges of excitability, b such that there

will be reflected waves as the synaptic threshold, φT (or alter-
natively, q = tan(φT /2)) varies. Reflected activity will occur
for b between the upper horizontal line and the lower curved
line. Above the horizontal line, there is wave block and below
it, there is normal propagation. In the left panel, we show
how the coupling strength alters the window of excitability.
In general, the stronger the coupling, the larger the window.
Note that as φT approaches π, the window extends from g/2
to a. As we saw above, it is impossible to get normal waves
passing through the medium without reflection of q = +∞
or φT − π. The right-hand figure shows a similar plot where
the excitability of the left-hand medium is increased (a goes
from 0.5 to 0.25). Again, the window is wider; it is much eas-
ier to get reflected waves when the medium is very excitable
(recall a = 0 is the transition to spontaneously oscillatory
activity). So far, we have shown that if b is too large there
will be wave failure, for b small enough, there will be nor-
mal propagation but with compression, and for intermediate
values of b, re-excitation is possible. Re-excitation, however,
does not imply that the waves are as depicted in Fig. 10c, d.
To guarantee exactly one reflected wave, we need to make
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Fig. 12 Complex reflected
waves. a, b Space–time plots
(top) and φ80(t) (solid) and
φ120(t) (dashed) (bottom)
a = 0.5, q = tan(1), g =
1.3, b = √

.25 + c. a
c = 0.148635; b
c = 0.1486382. c Map
establishing the existence of an
unstable periodic orbit for the
heterogeneous medium
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sure that the right-hand side does not get re-ignited, once
the left-hand side initiates a reflected wave. Near the lower
value, bmin, Va just barely makes it past a so that it can take
a long time for the left-hand side to initiate a reflected wave.
This means that the right-hand side gets closer to rest so
that when the reflected wave is initiated, a new wave could
occur on the right. Thus, we expect that there should be a
complex sequence of waves near b = bmin. This phenomena
was seen and explained in Ermentrout and Rinzel (1996) for
gap-junction coupled excitable systems.

Figure 12a, b shows two examples of complex reflected
waves producing two reflected waves and two waves back
into the right-hand medium. As the parameter c (which is
the increase in excitability) changes, more and more com-
plex waves appear to emerge. A suggested mechanism for
this complexity was given in Ermentrout and Rinzel (1996)

in which the authors suggested the existence of an unsta-
ble periodic orbit which alternately produces waves ema-
nating from the middle of the medium. In that paper, the
authors considered a diffusively coupled medium with het-
erogeneities and then looked at a simple pair of coupled cells.
Using phase-plane techniques, they proved the existence of
an unstable periodic orbit. If initial data are close to this peri-
odic orbit, then a number of transient circuits are made before
returning to rest. These transients correspond to reflected
waves in the full system. More recently, Cytrynbaum and
Lewis (2009) numerically showed that there was an unstable
periodic orbit in a one-dimensional homogeneous diffusively
coupled excitable medium. With carefully tuned initial data,
they are able to evoke a transient set of pulses emitted from
the middle of the medium. In our situation, we cannot con-
trol the initial data as the medium is excited by a stimulus at
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one end. However, if the unstable periodic orbit persists for
the heterogeneous medium (and it will if the heterogeneity is
not too big), then we can manipulate how close the incoming
externally evoked wave gets to the unstable periodic orbit and
thus create reflected waves such as those seen in Fig. 12a, b.
The simple diffusively coupled two-cell model in Ermentrout
and Rinzel (1996) required qualitative phase plane methods
for analysis since explicit solutions were not available. How-
ever, in our pulse-coupled system, it is quite straight forward
to find an unstable periodic orbit for the two-cell system.
Rather than show this for the heterogeneous system, we show
an unstable periodic orbit for the homogeneous system as
the calculation is very easy. Since the orbit is unstable, it is
structurally stable so that if the parameters are changed, the
unstable periodic orbit will persist up to a point. This means
it also exists for the heterogeneous medium. Thus, consider
the two-cell model, dVj/dt = V 2

j − a2 for j = 1, 2. Sup-
pose V1 = q and V2 = u < −a.V2 will be incremented to
u + g < q.V1 will go to +∞, be reset to −∞ and gradually
tend toward −a. In the meantime, V2 will increase until it
reaches q. At this point, V1 = u′ and we are exactly in the
reverse situation that we started with. The map from u to
u′ is our Poincare map and fixed points will correspond to
periodic orbits. Using the formulae above, we see that

q∫

g+u

dx

x2 − a2 =
∞∫

q

dx

x2 − a2 +
u′∫

−∞

dx

x2 − a2 . (9)

That is, the time from V2 to go from u + g to q is the time
it takes from V1 to go from q to ∞ and −∞ to u′. As these
integrals can be easily evaluated, we can write an exact map
for u′ as a function of u:

u′ = M(u) := − (a2 + q2)(u + g) − 2qa2

a2 + q2 − 2q(g + u)
.

Before analyzing this map, we remark that if the medium is
heterogeneous, the maps will not be so simple since we will
not be able to get rid of the logarithms; little insight will be
gained. This map is not valid for all u. Indeed, it is predi-
cated on several assumptions: u < −a and q > u + g > a.

Fixed points of the map are solutions to a quadratic equation,
u = M(u); the relevant fixed point is

u0 = − 1

2q

(
gq − (a2 + q2) +

√
(a2 − q2)2 + q2g2

)

and the derivative of the map at u0 is

M ′(u0) = −
(

q2 − a2

−gq + √
(a2 − q2)2 + q2g2

)2

.

Neither of these expressions are particularly enlightening,
however, we can approximate them for large q (since we do
want q large enough) as
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Fig. 13 Exotic waves in Eq. 1. As it is easier to get exotic waves when
there is no adaptation, we set ga = 0 and to compensate, set aie = 15.

For these simulations, we increase the threshold of the excitatory cells
by different percentages for each panel and also increase the inhibitory
threshold by 50%. a 2:2 waves (41.5%); b 3:2 waves (41.04%); c 3:3
waves (41.2%)

u0 ∼ −g

2
+ a2 − g2/4

q
+ . . .

M ′(u0) ∼ −1 − 2g

q
+ . . . .

Since g > 0, this implies that M ′(u0) < −1 so that the fixed
point is unstable and thus there is an unstable periodic orbit
for q large enough. For the choice of parameters in the fig-
ures, g = 1.3, q = tan(1), a = 0.5, we find u0 = −0.745
and M ′(u0) = −5.27, thus there is an unstable periodic orbit.
The map is illustrated for these values in Fig. 12c. While this
calculation does not prove the existence of an unstable peri-
odic orbit for the full chain, it provides an argument as to
why such an orbit should exist.

3.3.3 Complex waves in the full model

The arguments above for both the discrete chain and the pair
of coupled neurons argue that the possibility of complex pat-
terns of activation should occur generically for a heteroge-
neous medium. Thus, we go back to the full model, Eq. 1 and
see if we can find any complex waves by adjusting, say, the
threshold in the right-hand side of the medium. In Fig. 13,
we illustrate several examples of complex reflected waves
in the full Eq. 1. Here, in order to make it easier to find
the waves, we have removed the spike frequency adaptation
and also increased the threshold for inhibition in the right
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half of the medium. These waves can be found in our “stan-
dard” model, but require adjusting parameters to many deci-
mal places rather than just three in the present case. As these
waves occur in very narrow parameter regimes, it is not likely
that they would be readily observed.

4 Discussion and conclusion

The main result of this article is to show that compression
and reflection of waves in homogeneous cortical networks
could be simply due to a loss of excitability of the medium
into which the wave travels. Indeed, too little excitability pre-
vents propagation altogether. Simple and complex reflected
waves occur in the boundary between normal propagation
and block. We have shown how the velocity of waves depends
on several parameters, notably, the threshold for the excit-
atory waves, the strength of excitatory–excitatory conduc-
tances, the degree of spike frequency adaptation, and the
amount of feedback inhibition. The latter two are impor-
tant factors in preventing run-away excitation of the network.
However, they have little effect on the intrinsic excitability
of the medium due to the fact that they only come into play
after the excitatory cells become active. As the adaptation
and the inhibition are important in controlling activity, they
have a major effect on the width of the wave. That is, the
inhibition controls both the spatial extent of the region of
excitation and how long it persists. Our simulations are con-
sistent with the experimental measurements of Pinto et al.
(2005) which showed little dependence of the velocity on
the inhibition but a strong dependence on the wave duration.
We also propose that keeping the threshold low on the right
half of the medium would reduce the compression and elim-
inate the reflected waves. This hypothesis could be tested
by using more specific drugs such as gabazine (for blocking
inhibition) or a specific potassium channel blocker. That is,
we would predict that gabazine would not have a big effect
on compression and reflection, but the potassium channel
blocker would.

In this study, we focus on the dynamics of type I neu-
rons. Previous studies found it difficult to get reflection in a
network of type II neurons, see for instance Ermentrout and
Rinzel (1996). We have also tried to get reflection in type II
networks for this system, but we were not successful. In a
recent paper, Ozeki et al. (2009) suggested that, in V1, the
nullclines intersect in the middle branch of the excitatory
nullcline. This fixed point is stabilized from strong recurrent
inhibition. In our system, it can also be stabilized, but only if
the inhibition is very fast compared to the excitation. How-
ever, if the inhibition is very fast, waves are prevented. One
can thus regard our requirement for type I excitability as a
prediction about the state of the cortex.

In order to explain reflected waves, we first studied a sim-
ple two-dimensional model and used the geometry of the
nullclines to show how small changes in the differences of
excitability could lead to block and a variety of reflected
waves. Then we introduced a simple model of excitability
with pulse coupling based on the normal form near a saddle-
node on an infinite cycle. With this simple model, we were
able to derive conditions for reflected waves and show that
there exists an instable periodic orbit that forms the core of the
reflected waves. Our theoretical results are similar in flavor
(but different in implementation) from results on diffusive
coupling of excitable systems with heterogeneity (Rinzel and
Ermentrout 1998). Similarly, Cytrynbaum and Lewis (2009)
used very clever numerical methods to find an unstable peri-
odic orbit in a homogeneous diffusively coupled excitable
medium. These unstable periodic orbits are the organizing
centers for reflected waves; heterogeneity allows the trajec-
tory of the wave to get close to the SM of the periodic orbit
and thus produce repetitive activity that returns to rest after
several cycles.

Xu et al. (2008) suggest that the reason for compression
and reflection is due to a change in inhibition as the wave pro-
gresses from V1 to V2. They make this argument based on the
fact that reflected waves disappear in the presence of bicu-
culline which reduces inhibition. We found that reduction
of inhibition could also remove reflected waves (see Fig. 3).
However, the reduction in our simulations was very small. We
would argue that since the regime in parameter for reflected
waves is fairly small, it does not take much to push the sys-
tem out of the regime where reflected waves are possible. We
have shown that the amount of inhibition does not contribute
that much to the excitability of the medium and thus has little
effect on the velocity (compression) and therefore on reflec-
tion. Instead, we find that manipulations of the threshold and
the recurrent excitation lead to the most robust compression
and reflection. Xu et al. (2008) did not find reflected waves
when they were spontaneously generated. We can offer sev-
eral hypotheses. During spontaneous activity, the network
my be overall more excitable so that the differences in the
excitability between the two visual areas is not enough to cre-
ate reflected waves. Another possibility is that the thalamic
involvement in evoked waves somehow alters the thresholds
through possibly feedforward inhibition.

Finally, in this article, we only consider wave travel-
ing between two homogeneous media, where the transition
between them can be represented by a step function (switch of
parameters). The abrupt switch was motivated by the idea that
the waves move across different brain regions and that these
borders are where the reflections occur. In reality, there are
heterogeneities even within regions and these could also alter
the ability of waves to propagate and influence the degree of
reflection and compression. The general analysis of hetero-
geneities remains an active area of research.
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