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Abstract Hill-type parameter values measured in experi-
ments on single muscles show large across-muscle variation.
Using individual-muscle specific values instead of the more
standard approach of across-muscle means might therefore
improve muscle model performance. We show here that using
mean values increased simulation normalized RMS error in
all tested motor nerve stimulation paradigms in both isotonic
and isometric conditions, doubling mean simulation error
from 9 to 18% (different at p < 0.0001). These data suggest
muscle-specific measurement of Hill-type model parameters
is necessary in work requiring highly accurate muscle model
construction. Maximum muscle force (Fmax) showed large
(fourfold) across-muscle variation. To test the role of Fmax

in model performance we compared the errors of models
using mean Fmax and muscle-specific values for the other
model parameters, and models using muscle-specific Fmax

values and mean values for the other model parameters. Using
muscle-specific Fmax values did not improve model perfor-
mance compared to using mean values for all parameters, but
using muscle-specific values for all parameters but Fmax did
(to an error of 14%, different from muscle-specific, mean
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all parameters, and mean only Fmax errors at p ≤ 0.014).
Significantly improving model performance thus required
muscle-specific values for at least a subset of parameters
other than Fmax, and best performance required muscle-spe-
cific values for this subset and Fmax. Detailed consideration
of model performance suggested that remaining model error
likely stemmed from activation of both fast and slow motor
neurons in our experiments and inadequate specification of
model activation dynamics.

Keywords Carausius morosus · Stick insect · Invertebrate

List of symbols

a, b Terms in low pass filter (Eqs. 1, 2)
A, B Terms in FV equations (Eqs. 11, 13)
Aact Maximum amplitude of force–length curves

(Eqs. 5, 8, 9)
act Muscle activation (Eqs. 1, 3, 10–14)
cneg, cpos Curvatures of Hill hyperbola for shortening

(Eq. 11) and lengthening (Eq. 13) contractions,
respectively

curvω Curvature of hyperbola relating ω and act
(Eq. 10)

filter Decay amplitude per time step in low pass filter
(Eqs. 2–4)

FL Active force at different muscle lengths
(force–length curve) (Eqs. 5, 8, 14)

FP Steady-state passive force (parallel spring)
(Eqs. 7, 14)

FSE Series elastic spring force (Eq. 6)
FV FL at different contraction velocities

(force–velocity curve) (Eqs. 11, 13, 14)
k1, k2 Passive steady-state force–length curve

constants (Eq. 7)
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k3 Proportionality constant in quadratic
force equation (Eq. 6)

LCE Contractile element length (which
equals parallel elastic length)
(Eqs. 7, 8, 14)

LM Muscle length (Eq. 5)
LSE Series elastic element length (Eq. 6)
n Simulation time step number (Eqs. 1, 3)
scaling Scaling factor in low pass filter (Eq. 3)
tconst Time constant in seconds of low pass

filter (Eq. 4)
v Velocity of muscle length change

(Eqs. 11, 13, 14)
vmax neg, vmax pos Maximum velocity of muscle length

change for shortening (Eqs.11, 12) and
lengthening (Eq. 13) contractions,
respectively

vmax (act = 1) vmax pos at an activation of 1 (Eq. 12)
ω “Length” frequency of force–length curves

(Eqs. 5, 8–10)
x Stimulation input level in low pass

filter (Eqs. 1, 3)

1 Introduction

Muscles transform motor neuron firing into force and move-
ment, and hence play a central role in the production of
behavior. Many models predicting muscle force and length
changes in response to motor neuron activity have therefore
been developed. These models require describing multiple
properties (e.g., series and parallel passive elasticities, force–
length, and force–velocity curves), many of which depend on
multiple parameters. The values of all these parameters are
typically not measured simultaneously in experiments on sin-
gle muscles. Instead one or a few parameters are measured
in experiments on muscles from several individual animals,
another set of parameters from muscles from other individ-
uals, etc., and these across-animal data are then averaged to
obtain mean values for each parameter. This approach has
a potential difficulty because of the large number of these
parameters and because we have shown that most of them
show large across-individual variation and assort indepen-
dently (Blümel et al. 2012a,b). In any individual muscle it is
therefore unlikely that the values of all these parameters will
be near the population means (see Langlois and Roggmann
1990; Golowasch et al. 2002, for discussions of this concern
using human beauty and neuron membrane conductances as
examples). Simulations using mean values would thus likely
represent only a small minority of real muscles.

Testing whether this issue causes significant error requires
measuring all a muscle’s defining parameters in single exper-
iments. We developed techniques to achieve this goal with

the stick insect (Carausius morosus) extensor tibiae muscle
(Blümel et al. 2012a). We show here that muscle-specific
models reproduce muscle responses to tonic and physiolog-
ical motor neuron driving approximately 50% more accu-
rately than models using across-individual mean parameter
values. The maximum force the muscles can produce (Fmax)

showed wide across-muscle variation, is easy to measure, and
would be expected to be strongly affected by life history. We
therefore tested if using muscle-specific Fmax values would
improve simulation performance above using all parame-
ter means. However, muscle-specific Fmax simulations were
no more accurate than all-mean simulations. Most accurate
modeling of extensor (and hence possibly other) muscles
therefore requires muscle-individual measurement of Fmax

and at least a subset of the other muscle-defining parameters.

2 Materials and methods

2.1 Experiment and simulation conditions

We performed experiments and simulations in isometric
and isotonic conditions. The extensor muscle motor nerve
(nl3) was stimulated with four constant frequency pulse
trains (40, 60, 80, and 100 Hz, each for 1 s) or a series of
pulses delivered in the same patterns as fast extensor tibiae
motor neuron firing during stick insect sideways stepping
(physiological stimulation; for detailed experimental meth-
ods see Blümel et al. 2012a). Three physiological patterns,
all recorded from the same animal (see Fig. 2A in Hooper
et al. 2006), were applied. Physiological pattern 1 consisted
of a single step, pattern 2 of two sequential steps, and pattern
3 of three sequential steps. Isotonic measurements and simu-
lations were conducted only with physiological stimulations.
Our data set therefore contains three stimulation paradigms:
isometric contractions with fixed frequency stimulations, iso-
metric contractions with physiological stimulation, and iso-
tonic contractions with physiological stimulation. Data from
only nine muscles (not ten as in Blümel et al. 2012a,b) are
presented here because the contractions of one of the mus-
cles were too weak to shorten against the 40 mN counterforce
used in our isotonic contractions.

2.2 General approach

Performing muscle simulations required adding activation
and mechanical simulation modules (Sects. 2.3, 2.4) to our
Hill-type model (Blümel et al. 2012a) (see Fig. 2). The acti-
vation module converted discrete spike patterns into a con-
tinuous activation level. The mechanical module modeled
how the contractile element and series and parallel spring
components responded to changes in activation and external
force. The Hill model predicted muscle force from activa-
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tion level and contractile and spring component length and
velocity (for a review see Winters 1990).

2.3 Activation module

In Blümel et al. (2012a,b) the values of the parameters in
the equations defining muscle activation were measured at
steady-state levels of muscle contraction. This work thus
did not describe how muscle activation changes over time in
response to motor neuron input. We wanted here to compare
muscle contraction and simulation output across time. It was
therefore necessary to model how muscle activation changes
with time in response to motor neuron activity. Multiple mod-
els of muscle activation exist, perhaps most prominent those
of Zajac (1989) and Hatze (1977, 1978), many of which are
quite complex (e.g., Zakotnik et al. 2006). Complex activa-
tion is powerful, but also tends to subsume Hill-model com-
ponents. Because our Hill-model is well-defined and based
on experimental data, we wanted to maintain it in its full
form and keep it distinctly separate from the model’s acti-
vation component. We therefore wanted to model activation
responses to motor neuron input as simply as possible.

Low pass filtering reproduces many aspects of stick insect
muscle isometric responses to motor neuron input (Hooper
et al. 2007). We therefore modeled activation with a sin-
gle-pole, first-order low-pass filter. The standard recursion
equation (Smith 1997) for such a filter is

act[n] = a · x[n] + b · act[n − 1] (1)

where n is model present time step, act[n] is muscle present
activation, x[n] is present stimulation input level (a value of
1 during a motor neuron spike, 0 otherwise), act[n − 1] is
muscle activation one time step before the present, and a and
b are recursion coefficients. In a low-pass filter a and b can
be replaced by two equations with a single parameter (here
called filter)

a = 1 − f ilter
b = f ilter

(2)

where filter sets the decay amplitude per time step and varies
between zero and one. The other component of the activa-
tion module was a scaling factor (scaling) that multiplied the
input x[n] by a constant. The complete activation equation
was thus

act[n] = (1 − f ilter) · (scaling · x[n])
+ f ilter · act[n − 1] (3)

The time constant of the filter described by Eq. 3 depends
on time step duration because filter is the amount of decay
that occurs each time step, and the number of time steps that
occur per second depends on time step duration. The follow-
ing equation can be used to convert the filter values presented

Fig. 1 Model components and arrangement. The model consisted of
parallel contractile (CE), elastic (PE), and damping (DP) elements in
series with an elastic element (SE). The line between the parallel ele-
ments and the SE element is labeled ‘D’. In the text SE length is abbre-
viated ‘LSE’ and the lengths of the parallel elements (all of which must
be always equal) ‘LCE’

here (see Fig. 4a) to time constants that are independent of
simulation time step duration:

tconst = −�t/ln( f ilter) (4)

where tconst is the time constant (the duration in which the
output signal will decay by 1/e) in seconds and �t is time
step duration, 0.001 s in all simulations used here.

2.4 Mechanical simulation

Calculating muscle force and length changes requires choos-
ing a particular arrangement of model components. We chose
here a standard arrangement consisting of a contractile ele-
ment (CE) in parallel with an elastic element (PE), with both
elements in series with another elastic element (SE) (Fig. 1).
In Blümel et al. (2012a,b) we presented a set of equations and
parameter values that describe various real muscle properties.
These measurements were purposefully chosen to be model
independent, and in particular were generally expressed in
terms of total muscle length (LM). Correctly implementing
the model in Fig. 1 required recasting some of these equa-
tions, and re-doing some of the fitting procedures, in terms
of model element lengths (LCE, LPE, LSE) instead of LM.

For instance, the activation force–length equation used in
Blümel et al. (2012a,b) is

FL = Aact ·
[

1 + sin
(
ω · LM − (

π
2 + 2.7 · ω

))
2

]
.

(5)

This equation is adequate for the data in Blümel et al.
(2012a,b), because in these experiments the measurements
were made at steady-state (by which time whatever internal
component changes the applied activation induced had been
completed) and because the goal of these experiments was
only to characterize the muscles sufficiently to make across-
individual comparisons. For the muscle model in Fig. 1, how-
ever, this equation is inadequate. For instance, consider the
situation in which LM is discontinuously changed to a new
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value at a constant activation level. In the instant following
this change only LSE, not LCE, has changed, and therefore FL

(the force due to the contractile element) has not changed.
However, if LM were used in Eq. 5, it would give a new
FL value. Furthermore, the new FSE slowly causes LCE, and
thus FL, to change (see below). However, if LM were used
in Eq. 5, FL would incorrectly remain constant. To correctly
model contractile element force in dynamic conditions it is
therefore necessary to use LCE, not LM, in Eq. 5 (see also
Zajac 1989).

This recasting was achieved by using the equation that
relates series elastic element force and length,

FSE = k3 · L2
SE. (6)

As explained in Blümel et al. (2012a), because the k3 values
were determined from changes in muscle length, their values
are already independent of LM (it is for this reason that LSE,
not LM, is used in Eq. 6 here and was used in this equation
in Blümel et al. 2012a). Because we know each muscle’s k3

value, and because in the model in Fig. 1 muscle output (mea-
sured) force equals FSE, we can use muscle force to calculate
LSE at all times. Since in the model in Fig. 1 parallel element
length always equals contractile element length (in all equa-
tions here we abbreviate both these lengths with LCE), and
LCE equals LM minus LSE, we can also therefore at all times
calculate LCE.

We used this knowledge of LCE and the data and fitting
procedures described in Blümel et al. (2012a) to re-deter-
mine the values of the parameters in the Blümel et al. (2012a)
equations when expressed in terms of LCE. The first of these
equations gives the force of the parallel passive element

FP = k1 · ek2 LCE . (7)

Table 1 k1, k2, and curvω values recalculated in terms of contractile
element length instead of total muscle length as was done in Blümel
et al. (2012b)

Muscle k1 (µN) k2 (mm−1) curvω

A 1.53 4.87 4.37

B 4.37 4.23 3.65

C 0.71 5.58 4.69

D 4.77 4.30 6.93

E 2.80 4.49 4.70

F 4.06 4.50 6.17

G 1.04 5.27 6.56

H 0.43 6.18 5.49

I 3.90 4.19 4.36

Fold-variation 11.1 1.5 1.9

This recalculation did not substantially alter the fold variations of these
parameters and thus does not affect the conclusions of Blümel et al.
(2012b)

Recalculating k1 and k2 using LCE instead of LM in all cases
reduced k1 and increased k2. The k1 decreases could be as
large as 19% and the k2 increases as large as 3.3% (Table 1).
However, these changes either only little (k1, from 12.9 to
11.1) or did not (k2) change the across-muscle fold-variation
of these parameters, and thus do not alter the conclusions of
that work. In the ranges of LCE used here these parameter
changes would produce a maximum change in FP of 0.2%,
and FP was always less than 2% of active force. The correc-
tion for LCE in Eq. 6 thus made a negligible difference in
model performance.

The next equations describe CE force as a function of
muscle activation (act), LCE, and contraction velocity (v):

FL = Aact ·
[

1 + sin
(
ω · LCE − (

π
2 + 2.7 · ω

))
2

]

(8)

where

Aact = 15 · e−1.06.ω (9)

and

ω = 2.5 + 1

(curvω · (act + 0.05))2 (10)

FV =
(

e−e−A·(act−B)
)

· cpos · (
1 + cpos

)
(
v/vmax pos

) + cpos
− cpos

(shortening contractions) (11)

where

vmax pos = vmax(act=1) · e−act/0.3 (12)

FV = cneg · (
1 + cneg

)
(
v/vmax neg

) + cneg
− cneg −

(
1 − e−e−A·(act−B)

)
(lengthening contractions)

(13)

In these equations the measurement of only the curvω param-
eter depended on muscle length and thus had to be re-done.
This parameter increased somewhat (Table 1) in all muscles,
but this change did not change the across-muscle fold-var-
iation of this parameter. The conclusions of Blümel et al.
(2012b) are therefore again not altered by these model-spe-
cific recalculations. In contrast to FP, these changes made
substantial (up to 18%) changes in FL, supporting our deci-
sion to recast these equations, and re-determine their param-
eter values, in terms of LCE.

In the model in Fig. 1 measured muscle force always
equals FSE and, because the CE and PE elements are in par-
allel, FSE always equals and is opposite to the sum of FCE

and FP. It is therefore necessary to know how FCE and FP

vary with component length, activation, and velocity. The FP
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Eq. 7 is straightforward. The CE is more complex, generating
force as a function of v, act, and LCE. The FL (Eqs. 8–10) and
FV (Eqs. 11–13) equations interact to give CE force because
the FL equations give CE force at zero v (the maximum force
the muscle can produce at that act and LCE), and the FV equa-
tions give the percentage of this maximum force produced
at other v. Multiplying FL by FV therefore gives CE force
at all v, act, and LCE. Total muscle force opposing FSE thus
equals

FL(act, LCE) · FV(v) + FP(LCE) (14)

FSE and the force given by Eq. 14 act on the line labeled D
dividing the right and left halves of the model. This line
moves, and hence LSE and LCE change, whenever these
forces are unequal. These movements were calculated using
F = ma (with m = 0.2 mg, the estimated mass of an exten-
sor muscle) to calculate D’s acceleration.

A potential confusion may arise from the parameters in
Eqs. 11 and 13 being determined in experiments measuring
the velocity of total muscle shortening, whereas the v in the
model refers to D line velocity. However, the experimental
measurements were taken after the initial, rapid movements
were over. LSE would be constant under these conditions, and
thus these experiments were measuring D line velocities.

Another model component that had to be added to pre-
vent rapid D line oscillations was a damping element in
parallel with CE and PE. These oscillations occurred on
the order of model time steps and arose because, in the
absence of damping, even very small D line force imbalances
caused extremely rapid D line movement. Because muscles
do not resist compression, the damping constant was smaller
(0.0015 s/mm) when LCE shortened than when it lengthened
(0.045 s/mm).

A final issue that had to be dealt with was that the Aurora
dual-mode lever system functions as a servo mechanism in
which the user inputs a set muscle length and threshold lever
force. If muscle force is less than this threshold, muscle
length is maintained at the set muscle length (i.e., the Aurora
measures the muscle force and delivers not the threshold
force, but instead only enough force to keep the muscle at
the set length). If muscle force exceeds the threshold, then the
Aurora delivers the threshold force to the muscle and allows
the muscle to shorten until muscle force equals threshold
force. In order to match simulation and experimental con-
ditions, the same constraints were applied to the isotonic
simulations.

2.5 Error measurement

Model performance was quantified by calculating the
NRMSD of the force or position traces between simula-
tion result and experimental data. In all cases forces were
calculated by multiplying normalized force (the intermedi-

a

b

c

d

e

Fig. 2 Model flowchart. Action potentials (a) were first converted into
pulses of unit amplitude and 1 ms duration (b). This pulse sequence
was fed into an activation dynamics module (c) which converted it
into a continuous muscle activation value controlled by two parame-
ters, scaling (S) and filter (F), that controlled activation amplitude and
dynamics, respectively. Muscle activation, the Hill-type equations, and
the mechanical model worked together to produce, depending on the
experimental condition being modeled, isometric or isotonic contrac-
tions (d, e). For isotonic contractions experimental counterforce was
normalized to each muscle’s Fmax, and thus simulation and experimen-
tal movements could at this stage be directly compared. For isometric
contractions the simulation’s normalized force output was multiplied
by each muscle’s Fmax to allow comparison to experimental data
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ate model output, see Fig. 2) by either mean Fmax (for the
all-mean and Fmax-mean cases) or muscle-specific Fmax (for
muscle-specific and Fmax-specific cases) (see Sect. 3 for def-
inition of these cases). Error is expressed as percent in all
figures and tables. Error bars in Figs. 5 and 6 are standard
deviations; means were compared with either repeated mea-
sures ANOVA or matched Student’s t test in Kaleidagraph
(Synergy Software, Reading, PA).

2.6 Computational methods

Calculations were performed in GnuOctave on Linux (Ub-
untu 9.04, Kernel 2.6.28-15-generic, Intel Core2 T5600).
Parameters were optimized using the leasqr routine of
the optim package (version 1.0.12). Numerical integration
was implemented using second order “improved Euler” as
described in Boug (2001) and a Runge-Kutta type 2 correc-
tion. NRMSD values were calculated with custom code.

3 Results

3.1 Model summary

Testing whether using muscle-specific parameter values sig-
nificantly reduced muscle simulation error required a mus-
cle model (Figs. 1, 2; see Sect. 2 for detailed explanation).
We first used threshold detection to transform neural spik-
ing input (Fig. 2a) into 1 ms duration impulses of amplitude
1 (Fig. 2b). Each impulse induced a change in muscle acti-
vation that was controlled by two parameters, scaling (S),
which determined activation per impulse amplitude and fil-
ter (F), which determined how quickly activation decayed
(Fig. 2c) (different filter values were used for isotonic and
isometric contractions, see Sect. 3.4). Contractile element
force changed with activation and, in conjunction with the
model’s Hill-type (Fig. 2d) and mechanical (Fig. 2e) mod-
ules, generated forces at, and movements of, the D line in
Fig. 1. In isometric contractions these movements stretched
the series elastic spring and fed back to the Hill-type mod-
ule. Since the model worked with forces normalized to Fmax,
the maximum force the muscle produced at rest length, sim-
ulation output was then multiplied by Fmax to compare it
to muscle data. In isotonic contractions D line movements
resulted in changes in total muscle length if the isometric
force was greater than the counter force, where counter force
was normalized to Fmax.

3.2 Muscle model configurations

We tested the effects of across-muscle parameter averaging
in four model configurations (Fig. 3). In the first (a) muscle
activation dynamics, Hill parameters, and Fmax were all sim-

a

b

c

d

Fig. 3 Overview of simulation configurations. Simulations were run
with: a muscle-specific values for activation dynamics, Hill parameters,
and Fmax, b across-muscle means of all these model components, c mean
values for activation dynamics and Hill parameters but muscle-specific
Fmax values, and d muscle-specific values for activation dynamics and
Hill parameters but the across-muscle mean Fmax value

ulated using muscle-specific values. In the second (b) across-
muscle mean values (with separate filter means for isotonic
and isometric contractions; see Sect. 3.4) were used for all
model components. The third and fourth cases investigated
the importance of Fmax by using mean values for muscle
activation dynamics and Hill parameters and muscle-specific
Fmax values (c) or muscle-specific values for muscle activa-
tion dynamics and Hill parameters and the across-muscle
Fmax mean (d).

3.3 Activation dynamic terms did not depend on
stimulation frequency

Because they are not part of the standard Hill-type mus-
cle description, the activation dynamic terms filter and
scaling were not measured in our prior work (Blümel
et al. 2012a,b). We therefore determined the values of
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a b

Fig. 4 Filter and scaling did not depend on stimulation frequency.
Filter and scaling were optimized to tonic stimulations at multiple fre-
quencies (40, 60, 80, and 100 Hz; all isometric contractions). a No
systematic dependence of filter on frequency was present. b scaling

plotted over same four stimulation frequencies. Across-muscle varia-
tion was greater than for the filter parameter, but again no systematic
dependence on stimulation frequency was present. Key identifies from
which muscle the data are from and applies to both panels

these parameters here as described in this and the next
section. The first step was to determine if the param-
eters depended on stimulation frequency, as has been
observed in the locust (Zakotnik 2006; Zakotnik et al. 2006).
This possibility was tested by optimizing filter and scaling at
each of the four fixed frequency (40, 60, 80, and 100 Hz) stim-
ulations applied to the muscles (see Sect. 2.1). Filter values
ranged from 0.984 to 0.994 and did not consistently vary with
stimulation frequency (Fig. 4a). Scaling had much greater
across-muscle variation than filter (1% for filter vs. 40% for
scaling) (Fig. 4) but again did not consistently vary with
stimulation frequency. In the simulations we therefore used
the across-frequency means of each muscle’s filter and scal-
ing parameter data, with muscle-specific or across-muscle
means being used depending on which case in Fig. 3 was
being investigated.

3.4 Activation dynamics differed in isometric and isotonic
contractions

The observation that filter and scaling did not depend on spike
frequency in fixed-frequency isometric contractions did not
prove that these parameters would not have different values
in physiological isometric contractions or in isotonic contrac-
tions. To examine this issue we fit filter and scaling in all stim-
ulation and contraction conditions in all muscles (Fig. 5; this
figure thus contains the fit values in Fig. 4—the ‘isometric:
fixed frq’ data—and the fits to isometric and isotonic contrac-
tions in response to physiological motor nerve stimulations).
Fits of the filter parameter showed only small stimulation
condition and inter-muscle variation (range 0.973–0.994, a
2% change) (Fig. 5a). Most of this variation appeared to be
not due to across-muscle variation in isometric values, but
instead to filter being less in isotonic contractions. Statistical

comparisons (bar graphs, right) confirmed this impression.
There was no difference between the mean filter values of the
fixed frequency (bar 1) and physiological (bar 2) stimulation
isometric contractions (both means 0.99; p = 0.65, paired
Student’s t test). The mean filter values of the physiological
isometric (bar 2) and isotonic (bar 4) contractions, however,
did differ (respective means 0.99 ± 0.002; 0.98 ± 0.004;
p = 0.0006, paired Student’s t test). Isometric simulations
were therefore modeled with the mean of all the isometric
filter values (0.99, bar 3) and isotonic simulations with the
mean of the isotonic (only physiological stimulations) filter
values.

Scaling showed much greater stimulation condition and
inter-muscle variation (range 2.6–6.5, 2.5-fold) (Fig. 5b).
Most of this variation was again because of scaling being
smallest in isotonic conditions (3.4±0.22, bar 4). This mean
differed from the mean under isometric physiological con-
ditions (4.5 ± 0.37, bar 2; p < 0.0001, paired Student’s t
test), and was therefore used in all isotonic simulations. scal-
ing was also consistently smaller (p = 0.0004, paired Stu-
dent’s t test) in physiological (bar 2) than fixed frequency
(5.33 ± 0.4, bar 1) isometric contractions. However, the
lack of dependence of scaling on spike frequency in the
fixed frequency stimulations (Fig. 4b) meant that we could
not incorporate this difference into the modeling parametri-
cally, and we were unwilling to use different scaling values
simply on the basis of the stimulation pattern being fixed-
frequency versus physiological. We therefore modeled all
isometric simulations using the mean of the fixed-frequency
and physiological isometric scaling values, 4.91 ± 0.57
(bar 3).

Measuring these activation dynamics parameters raised
the question of whether they correlated with across-muscle
changes of the other muscle-describing parameters, a major
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a

b

Fig. 5 The activation dynamics parameters filter (a) and scaling (b)
showed greatest differences as a function of whether the contractions
were isometric or isotonic. Figure construction is identical in both pan-
els. In the individual muscle portion of the panels (columns labeled A–I)
blue circles denote parameter values calculated from fixed (tonic) motor
nerve stimulations under isometric conditions, red circles parameter
values calculated from physiological motor nerve stimulations under
isometric conditions, and black cross’s parameter values calculated
from physiological motor nerve stimulations under isotonic conditions.
The lines (blue, red, and black) connect each paradigm’s mean parame-
ter values across muscles. The green line connects the means of the two
isometric conditions. In the averaged portion of the panels (right) each
bar shows all-muscle means with the following code: 1 fixed (tonic)
motor nerve stimulations under isometric conditions, 2 physiological
motor nerve stimulations under isometric conditions, 3 all isometric
conditions, 4 all isotonic conditions. In both portions error bars are
standard deviations. Statistical comparisons are reported in Sect. 3.4.
(Color figure online)

Fig. 6 Error (NRMSD, in percent) comparison of using different
combinations of muscle-specific and mean parameter values. The
muscle-specific models (first bars in each group) were best both when
all contraction types were averaged together (group of bars labeled
‘Both’) and when isometric and isotonic contractions were averaged
individually. Using either mean values for all model parameters (sec-
ond bars in each group) or Fmax muscle-specific and mean Hill values
(third bars in each group) approximately doubled simulation errors.
Using mean Fmax and muscle-specific Hill values (fourth bar in each
group) gave intermediate errors. Error bars are standard deviations.
Lines and asterisks under bars in each group show statistical com-
parisons, with vertical lines showing which mean is being compared to
the others and triple asterisks being p < 0.001, double asterisks being
0.001 ≤ p < 0.01, single asterisk being (0.01 ≤ p < 0.05), and open
circles being p ≥ 0.05 in a repeated measures ANOVA

part of Blümel et al. (2012b). Repeating this analysis showed
that the two parameters did not significantly co-vary with
each other or any other parameter.

3.5 Model performance with muscle-specific parameter
values

With muscle-specific parameter values simulation NRMSD
error ranged from 5.4% (muscle F, isometric contractions) to
17.3% (muscle C, isotonic contractions), with an all-condi-
tion and all-muscle mean of 8.7±1.4% (first column, ‘Both’
data in Fig. 6; Table 2). Isometric and isotonic contraction
mean errors (first columns, ‘Isometric’ and ‘Isotonic’ data in
Fig. 6; Table 2) did not differ (p = 0.13, unpaired Student’s
t test assuming unequal variance).

Table 2 Simulation performance of all muscles

Condition A B C D E F G H I Mean

IM and IT 9.8 10.7 10.0 7.6 8.7 6.3 7.6 9.3 8.0 8.7 ± 5.1

IM 11.0 11.1 6.9 5.5 8.9 5.4 6.7 9.2 8.3 8.1 ± 4.9

IT 7.0 10.0 17.3 12.6 8.3 8.5 9.7 9.5 7.3 10.0 ± 5.5

The first row shows the mean error of all conditions (isometric and isotonic), the second the mean error of only the isometric simulations, and the
third the mean error of only the isotonic simulations. All errors are expressed as normalized root mean square deviations (NRMSD) in percent. The
last column shows the overall mean of each row
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a

b

c

Fig. 7 Simulation results of a muscle (E) with a mean error close to the
across-muscle mean error (‘mean’ column, row 1, Table 2). a Experi-
mental data and simulation output of isometric contractions in response
to fixed-frequency motor nerve stimulations at 40, 60, 80, and 100 Hz.
b Experimental data and simulation output of isometric contractions
in response to motor nerve stimulations with physiological stimulation
pattern 2. c Experimental data and simulation output of isotonic con-
tractions in response to motor nerve stimulations with physiological
stimulation pattern 2. In all panels black lines are experimental data
and red lines simulation output. (Color figure online)

To provide a visual impression of how well simulations
with this level of error reproduced the experimental data,
Fig. 7 shows simulations for muscle E, whose isometric
and isotonic errors were nearest the all muscle mean val-
ues (Table 2). Panel a compares simulations (red) and exper-
imental data (black) of the four fixed-frequency isometric

contractions. The real contractions were characterized by
an initial rapid force increase whose slope increased with
increasing motor nerve stimulation frequency, a later slow
increase that continued throughout the stimulation, and an
exponential force decline at stimulation end. The simulations
well reproduced the rapid initial rise for the high frequency
stimulations but not for the 40 Hz case, in which a trade-off
occurred with a too-fast rise starting too late in the motor
neuron burst. The amplitude of the lowest frequency simu-
lation was too large throughout most of the contraction and
the amplitudes of the other frequency simulations were too
small. None of the simulations reproduced the late slow force
increase of the real data. The time courses of the exponential
relaxations at stimulation end were well reproduced. Panels b
and c show isometric and isotonic responses to physiological
stimulation pattern 2. In both cases the rise and fall phases of
the contractions were well reproduced, with the primary error
source being inaccurate simulation amplitudes. The isotonic
(Panel c) simulations shown here also had a late, small, tran-
sient shortening not present in the real muscle that was an
artifact of the muscle model’s internal damping and was, of
all the muscles simulated, largest for the muscle (E) shown
here.

Examination of the simulations for the other muscles
showed that the error sources in all muscles were similar.
In particular, in no cases could the model reproduce the late
slow components of the fixed frequency contractions. Diffi-
culties reproducing the rise phase of the 40 Hz contractions
were also common. The remaining errors were typically due
to a failure to reproduce contraction amplitudes, although
which stimulation conditions had incorrect amplitudes var-
ied from muscle to muscle.

3.6 Comparison to performance with across-muscle means

We investigated the effects of using muscle-specific ver-
sus mean parameter values in four configurations (Fig. 3):
all parameters muscle-specific, all parameters mean, Fmax

muscle-specific and Hill parameters mean, and Fmax mean
and Hill parameters muscle-specific. We present these data
both as mean errors of the combined isometric and isotonic
simulations (group of bars labeled ‘Both’ in Fig. 6) and as
mean errors of only the isometric or only the isotonic simu-
lations (groups of bars labeled ‘Isometric’ and ‘Isotonic’ in
Fig. 6).

Using muscle-specific parameter values always produced
the smallest mean errors (first bars in each group, Fig. 6).
Using across-muscle mean values (second bars in each
group) approximately doubled simulation error both in the
all-contraction comparisons and when isometric and iso-
tonic contractions were analyzed separately (in all cases the
increase was significant at p < 0.001, repeated measures
ANOVA). Using muscle-specific Fmax values and mean Hill
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Fig. 8 Exemplary contractions showing how error increased in each
combination of muscle-specific and mean parameter values used in the
simulations, and the effects of changing these combinations. This figure
shows 12 isometric contractions, each induced by physiological simula-
tion pattern 1. Each column shows one of the four model configurations.
The first row shows the best performing contraction of each condition,
the second the contraction closest to the mean error of all muscles, and

the third the worst performing simulation. Comparing the plots in each
column thus shows how much variation there is inside a single model
configuration. Comparing the plots across a row shows how the different
configurations vary in the same performance class (best, mean, worst).
In all panels black lines are experimental data and red lines simulation
output. (Color figure online)

parameter values (third bars in each group) did not change
simulation error. Using mean Fmax values and muscle-spe-
cific Hill parameter values (fourth bars in each group)
decreased simulation error in all cases, although, depend-
ing on the comparison being made, these decreases were
not always significant. These decreased errors were, how-
ever, still always larger than the errors using muscle-specific
values for all parameters, with this difference being signif-
icant in both the all-contraction and isometric contraction
comparisons.

The data in Fig. 6 are from 360 simulations (10 motor
nerve stimulation conditions per muscle times 4 combina-
tions of parameter values times 9 muscles). It is clearly
impossible to show all these data. We instead show exam-

ples only of the simulations with least, closest-to-mean, and
greatest error (rows, Fig. 8) for each combination of parame-
ter values (all parameter values muscle-specific, all parame-
ter values averaged, Fmax muscle-specific and Hill parameter
values averaged, and Fmax values averaged and Hill param-
eters muscle-specific, columns 1–4, respectively, Fig. 8), all
of isometric contractions induced by the single-step phys-
iological stimulation pattern 1. The traces in each column
therefore illustrate how model performance can vary within
a particular combination of muscle-specific and mean param-
eter values. The traces in each row, alternatively, show the
effects of changing which combination is being used. The
selected muscle and its error are noted in the upper right
corner of each plot.
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A first important point to make about these plots is the
large diversity of contractions that the different muscles pro-
duced in response to the identical motor nerve stimulations
(see also Fig. 1 in Blümel et al. 2012a; Hooper et al. 2006).
This great across-muscle variation formed a large part of the
motivation to attempt muscle-specific descriptions and mod-
eling, as any single muscle model (which any model made
from averaged data must be) would of course always pro-
duce identical output for identical input, and thus could not
reproduce this inter-muscle variability.

Increasing error in the muscle-specific models was pri-
marily due to an increasing overestimation of force. In the
second column the simulations all had identical parameter
values, and thus model output was identical in all plots. The
overall shape of the model output reasonably well reproduced
the three step nature of the muscle contractions, with an ini-
tial large first peak following by two steps of sequentially
decreasing amplitude. Error arose because of the variability
in force production across muscles. Using muscle-specific
Fmax and mean Hill parameter values (column 3) or vice
versa (column 4) again reproduced relatively well the over-
all shape of the real contractions, with error again increasing
primarily because of errors in overall force levels.

4 Discussion

4.1 Summary of data presented here

We built a muscle model and used stick insect extensor mus-
cle data to determine the values of the model’s activation
dynamic parameters. These parameters, at least in isomet-
ric contractions, did not depend on stimulation frequency,
but did differ in isometric and isotonic contractions. We then
showed that simulations using muscle-specific parameters
had approximately half the error (8.7 vs. 18.1%) of simula-
tions using either across-muscle mean parameter values or
muscle-specific Fmax values with across-muscle mean Hill-
type parameter values, and that using across-muscle Fmax

values with muscle-specific Hill-type parameter values gave
intermediate errors (13.7%). These data indicate that most
accurate modeling of stick insect extensor muscle contrac-
tions requires using muscle-specific parameter values.

4.2 Which parameters must be muscle-specific for low
simulation error?

It is unfortunate that using muscle-specific Fmax values with
across-muscle mean Hill-type parameter values did not result
in low-error simulations, as Fmax is particularly simple to
measure. Our data should not, however, be interpreted to
mean that it is necessary to use muscle-specific values for
all model parameters. The analysis presented here is suf-

ficient only to state that Fmax and at least some subset of
the other parameters must be muscle-specific for accurate
modeling. This issue could be examined for all parame-
ters by sequentially running the simulations using in each
run the mean value for one parameter and muscle-spe-
cific values for the rest (exactly analogous to the analy-
sis we performed with Fmax). We did not perform these
analyses on the model’s other 10 parameters because (1)
once one begins to measure some of the Hill-type param-
eters it is not much additional work to measure them all,
(2) the large variations present in all the Hill-type param-
eters and lack of correlated changes among them sug-
gests that they may all contribute to simulation perfor-
mance, and (3) sufficient error remains in the model (see
next section) that analysis on this level of detail seemed
premature.

4.3 Use of different activation dynamic values in isometric
versus isotonic contractions

A notable characteristic of the model is that it works equally
well at simulating isometric and isotonic contractions (the
difference between the two errors in Table 2 is not signifi-
cant, p = 0.13, Student’s t test assuming unequal variance).
Simulations run using the isometric filter and scaling val-
ues in the isotonic contraction simulations, isotonic values
in the isometric simulations, or mean values in both contrac-
tion types always resulted in substantial error increases (data
not shown). As such, at least in stick insect extensor mus-
cles, measuring activation dynamics separately for isometric
and isotonic contractions is essential to construct accurate
muscle models. We do not suggest detailed hypotheses for
why these values should differ in the two contraction types.
However, differences at the level of the actomyosin might
be assumed not to play a major role, as the model’s F–L
and F–V equations should function equally well whether
the muscles are shortening or not. An alternative source that
could play a major role is the very large titin-like proteins
present in muscles, whose lengths might change differently in
shortening (isotonic) versus fixed-length (isometric) contrac-
tions, and thus alter contraction characteristics in the two con-
traction types. An additional source may stem from muscles
being fixed-volume entities, and thus their diameter having
to change when their length changes. Such changes in gross
muscle shape might also result in changes in contraction char-
acteristics in fixed-length versus shortening contractions.

4.4 Sources of remaining error

The large numbers of muscles, stimulation types, and con-
tractions conditions performed in this work allowed us to
perform detailed error comparisons. Because of their clear
superiority, we performed these detailed comparisons on only
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the muscle-specific simulations. This work showed that the
mean errors reported in Table 2 are skewed by the presence of
a long tail with high errors (e.g., the 18.7% error simulation in
Fig. 8, column 1, row 3). The effect of this tail is shown by the
median error across all stimulations being only 6.9%. This
work also showed that all muscles were equally well simu-
lated (i.e., there were no significant differences between the
errors across muscles in any row in Table 2).

Examination of the different stimulation conditions sho-
wed that the isotonic simulations using physiological stimu-
lation pattern 1 had significantly greater error than any other
condition except for the isometric 40 Hz simulations, and
that the isometric 40 Hz simulations had greater error than
the 80 and 100 Hz isometric simulations, the isometric simu-
lation of physiological stimulation pattern 3, and the isotonic
simulation of physiological stimulation pattern 2 (repeated
measures ANOVA). Physiological stimulation pattern 1 had
a much lower mean spike frequency in the motor neuron burst
(76±53 Hz) than patterns 2 (187±69) and 3 (128±76) (all
different from one another at p < 0.0065 or better, ANOVA).
Taken together, these data suggest that the model is less accu-
rate at low-frequency simulations.

Two lines of evidence suggest that much of this error is
due to our very simple activation dynamics. First, when the
simulations are run with each stimulation condition’s indi-
vidual best filter and scaling values (the data points in Fig. 5)
simulation error drops to a mean of only 5±0.6%. We could
not take advantage of these stimulation condition differences
in filter and scaling values because we could not find (Fig. 4)
any parametric explanation for their variation. Nonetheless,
this great improvement in model performance suggests that
this variation underlies close to half the simulation’s present
errors. Second, examination of the 40 and 60 Hz fixed fre-
quency stimulations show in some muscles clear changes in
contraction force amplitude early in the stimulation that may
be due to facilitation or similar history-dependent effects. Our
data are insufficient to model these changes, but an obvious
first step in improving this aspect of the model would be
a detailed examination of filter and scaling dependence on
spike history.

The second clear systematic source of error was the failure
of the model to reproduce the late, slow force increase that
continues throughout motor nerve stimulation in the isomet-
ric fixed-frequency contractions (Fig. 7a). Model rise dynam-
ics result primarily from the dynamics of the low-pass acti-
vation filter used here (Sect. 2.4). This filter has only a single
time constant, and thus can only produce contractions with
a single time constant. It consequently cannot reproduce the
multiple time constants contained in the initial rapid and sub-
sequent slow rise seen in the real contractions. The extensor
muscle is innervated by two excitatory motor neurons, one of
which primarily activates fast-contracting muscle fibers and
the other of which primarily slow-contracting fibers, and in

our stimulations both motor axons were activated. The late,
slow contraction thus likely arose from activation of extensor
slow muscle fibers. In the stick insect it is difficult to activate
these motor axons separately, and hence we were unable to
perform this work using only one muscle fiber type. In the
locust, alternatively, these motor axons are carried in differ-
ent nerves (Campbell 1961). Repetition of the work reported
here in locust would thus allow testing of our approach with-
out this confounding factor.

4.5 General relevance

Given the great improvement in model performance shown
here for the stick insect extensor muscles, these data sug-
gest that using the methods presented here and in Blümel
et al. (2012a,b) to construct individual muscle-specific mod-
els may be also advantageous in other systems. An important
point in this context is that dynamic simulations have become
an increasingly important tool both for testing motor control
hypotheses and for developing new ones (Pearson et al. 2006;
Grillner 2003; Siebert et al. 2008). For both goals it is crucial
to be able to separate the roles of neural control and mus-
cle properties in the generation of behavior (Ekeberg et al.
2004; Ekeberg and Pearson 2005; von Twickel et al. 2011).
For example, during stance phase in walking, load sensory
input increases stance motor neuron activity (i.e., ‘reinforces’
the simultaneously occurring centrally driven stance motor
neuron activity). However, leg velocity changes as stance
progresses (e.g., leg velocity is lowest at stance beginning).
Muscle force–velocity curves are such that, at a given acti-
vation level, muscles develop more force at lower velocities.
Thus, the increase in muscle activation from the load sen-
sory feedback, if unaltered as stance proceeds, would induce
smaller and smaller increases in muscle force as leg veloc-
ity increases (Bässler 1988; Pearson and Collins 1993; for
reviews see, Clarac et al. 2000; Büschges et al. 2008). Neu-
ral and muscle based mechanisms in load-induced reinforce-
ment therefore presumably change in a complicated manner
throughout stance. Highly accurate muscle modeling is likely
important in resolving this and similar situations in which
neural and muscle mechanisms interact.

More generally, our data provide another example of
the great individual-to-individual variation present in nat-
ural populations, and the importance of taking this variation
into account when examining biological phenomena (see, for
instance, Golowasch et al. 2002; Hooper et al. 2006; Lan-
glois and Roggmann 1990; Prinz et al. 2004). In retrospect
the failure of averaging implied by this and the present work
is not surprising-in a system with ten independently assorting
parameters, even if for each parameter 50% of the population
had the mean value, only 0.510 = 0.1% of the population’s
individuals would have mean values for all ten. This does not
mean that all parameter combinations are necessarily pres-
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ent in a population, as combinations that have too deleterious
an effect would either fail during development or early life
or be prevented by the evolution of appropriate genetic reg-
ulation. Nonetheless, it is clear that muscles and effectors
show great across-population variation (e.g., human height
and strength variation). This variability is presumably evo-
lutionarily acceptable because the great inherent flexibility
of nervous systems and their ability to learn allow them to
make compensatory changes in their outputs so as to maintain
functional behaviors.

This ability to compensate suggests that nervous sys-
tems and their effectors may be able to show particularly
large across-individual variation and still maintain accept-
able function. If so, the data we present here, and those of
the other workers noted above showing similar large varia-
tion, suggest that averaging may be particularly inappropriate
in neuroscience and biomechanics. Modern techniques and
computer resources make the sort of individual-specific mea-
surements and modeling presented here and in Blümel et al.
(2012a,b) increasingly possible. The great across-individual
variability seemingly present in these systems suggests that
such individual-specific approaches may be required to fully
understand how nervous systems generate behavior.
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