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Abstract Rhythmic bursting is the most striking behavior
of cultured cortical networks and may start in the second
week after plating. In this study, we focus on the intervals
between spontaneously occurring bursts, and compare exper-
imentally recorded values with model simulations. In the
models, we use standard neurons and synapses, with phys-
iologically plausible parameters taken from literature. All
networks had a random recurrent architecture with sparsely
connected neurons. The number of neurons varied between
500 and 5,000. We find that network models with homo-
geneous synaptic strengths produce asynchronous spiking
or stable regular bursts. The latter, however, are in a range
not seen in recordings. By increasing the synaptic strength
in a (randomly chosen) subset of neurons, our simulations
show interburst intervals (IBIs) that agree better with in vitro
experiments. In this regime, called weakly synchronized, the
models produce irregular network bursts, which are initi-
ated by neurons with relatively stronger synapses. In some
noise-driven networks, a subthreshold, deterministic, input is
applied to neurons with strong synapses, to mimic pacemaker
network drive. We show that models with such “intrinsically
active neurons” (pacemaker-driven models) tend to gener-
ate IBIs that are determined by the frequency of the fastest
pacemaker and do not resemble experimental data. Alterna-
tively, noise-driven models yield realistic IBIs. Generally, we
found that large-scale noise-driven neuronal network mod-
els required synaptic strengths with a bimodal distribution to
reproduce the experimentally observed IBI range. Our results
imply that the results obtained from small network models
cannot simply be extrapolated to models of more realistic
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size. Synaptic strengths in large-scale neuronal network sim-
ulations need readjustment to a bimodal distribution, whereas
small networks do not require such changes.
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1 Introduction

Biologically inspired artificial neural networks have major
applications in artificial intelligence and signal processing.
However, none of them can achieve the processing power of
the biological original. To bring artificial networks closer to
nature, we need a better understanding of biological neural
networks. Neuronal cultures provide a good basis for that.

The most striking property of spontaneously firing cul-
tures is their regular bursting activity, a burst being defined
as more or less synchronized firing in sets of neurons spread
throughout the whole network. The regularity of bursting
may change gradually with time, typically being stable over
hours (Stegenga et al. 2008). Cultured cortical networks com-
posed of many thousands of neurons show bursting behavior
starting from the end of the first week in vitro. Bursts can
be characterized by both intraburst parameters (burst shape,
maximum firing rate, leading and trailing edge steepness,
etc.) and interburst parameters (statistics, stability of burst
rates) (Van Pelt et al. 2004; Wagenaar et al. 2006). Cul-
tured cortical networks usually show bursting activity at sev-
eral different time scales; for instance, Baker et al. (2006)
measured such bursting behavior in organotypic mega-co-
cultures of neonatal rat cerebral cortex, and distinguished
so-called network bursts, minibursts, and microbursts, based
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on spike clustering analysis. It is necessary to stress that
burst profiles usually have highly variable features in their
leading and trailing slopes (Gritsun et al. 2010), and can be
easily entangled with subsequent bursts. The latter so-called
superbursts are not uncommon in cortical neuronal cultures
(Wagenaar et al. 2006) and may last up to several seconds.

In a previous study (Gritsun et al. 2010) we modeled the
intraburst phenomena, whereas in this study we focus on the
interburst intervals (IBIs). As before, we will compare mod-
els with experimental outcomes.

Only a few studies on cultured cortical networks provide
rough data on ranges and regularity of IBIs, and the data
are mostly acquired from rather short epochs of recordings.
The most extensive study (Wagenaar et al. 2006) observed
clear IBI spans ranging from about 0.1 to 900 s in 30- min
samples. It was noticed that IBIs in individual samples were
narrowly distributed in most recordings, in contrast to Segev
et al. (2002), who suggested that experimental data follow
scale-free (Levy) distributions similar to those of interspike
intervals (ISI) (Segev et al. 2001). In modeling studies by
Giugliano et al. (2004) it was shown that IBIs are irregular
and follow a Poisson point process with a dead time, while
ISIs are usually much more irregular. They also suggested
that cortical networks tend to keep that irregularity of burst-
ing over the entire span of their active lifetime while neuronal
development and synaptic plasticity constantly alter intrin-
sic network features. Consequently, in this study we intend
to clarify the degree of regularity of the data and to find out
which distribution best fits the experimental IBIs.

Much effort has recently been made to explain burst inter-
val dynamics using several network models, e.g., Tsodyks
et al. (1998), Tsodyks et al. (2000), and Wiedemann and
Luthi (2003). Most of these models have networks with up
to 1,000 neurons and with stationary ranges of input param-
eters (Amit and Brunel, 1997; Segev et al. 2001; Giugliano
et al. 2004; French and Gruenstein 2006). Amit and Brunel
(1997) suggested that, in case of a constant number of con-
nections per neuron, a homogeneous network would switch
from synchronous to asynchronous activity by increasing the
number of neurons (to infinity), while others, using analytical
approximations, indicated that activity dynamics would not
change with monotonously (homogeneously) readjusted syn-
aptic weights, e.g., Hansel and Sompolinsky (1996). How-
ever, network size is seen to have a large impact on bursting
patterns in experimental data (Wagenaar et al. 2006).

In previous work we successfully investigated network
models of 5,000 neurons with heterogeneously distributed
synaptic weights (Gritsun et al. 2010). In this study we pro-
ceed with models incorporating 500–5,000 neurons. They
are simulated for 1-h epochs. This enables us to exam-
ine how network size and connection probability influence
synchronization of spiking activity. We apply broader
ranges of connection probabilities, synaptic noise, and other

parameters that can dramatically change during culture
development. All simulated networks have wide (but physio-
logically plausible) ranges of input parameters, thus enabling
the models to work in several operational regimes; for exam-
ple, while changing excitatory synaptic strengths, Giugliano
et al. (2004) described three qualitatively different regimes
including asynchronous, synchronous, and high-rate asyn-
chronous. Here we report on several model regimes. How-
ever, only one could reproduce the experimental ranges
of IBIs while also keeping intraburst parameters within
physiologically plausible ranges. In particular, we focused
on the relationship between the distribution of synaptic
strengths (homogeneous, bimodal) and the resulting oper-
ating regimes. The latter were expected to differ a lot for
large and small networks.

2 Methods

2.1 Cultures and recordings

In our work we use culturing, recording, and other exper-
imental techniques explained in detail by Stegenga et al.
(2008). In brief, cortical neurons were obtained from either
newborn or E18 Wistar rats. The dissociated cells were plated
at concentration of 106 cells/ml and were allowed to adhere
for 2 h. Multi-electrode arrays (MEA) were coated in advance
with polyethyleneimine to increase adhesion. Then, the non-
adhering cells were removed by refreshing the medium, and
600µl R12 medium was added (Romijn et al. 1984). The
resulting monolayer had a density of about 5,000 cells/mm2.
Two-thirds of the medium was changed twice a week for all
cultures; all other conditions were kept constant. The cul-
tures were stored in an incubator at 37◦C at CO2 concentra-
tion of 5% and near 100% humidity. Figure 1 shows a part of
a cultured neuronal network 10 days after plating. Usually,
cultures were almost completely free of aggregation.

We used a MC1060BC setup and MEAs from MultiChan-
nel Systems GmbH. The MEAs had 60 titanium–nitride elec-
trodes in an 8 × 8 square grid. The interelectrode distance
was 100µm, and the diameter of the electrodes was 10µm.
The temperature was controlled at 36◦C, and a CO2 con-
centration of 5% was maintained. Custom-made LabView
(National Instruments, Austin, TX) programs were made to
control data acquisition.

2.2 Simulation model

We used the same network model with a random recurrent
scale-free connection topology as in a previous study that
focused on intraburst characteristics (Gritsun et al. 2010). It
is described by the following set of equations:
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Fig. 1 Microphotograph showing part of a cultured neuronal network
surrounding 4 electrodes (out of 60), 10 days after plating. Electrode
diameter is 10µm

xi (t + dt) =
{

1, if fi (vi , wi j , x j ) ≥ 30 mV
0, otherwise

,

where

fi (vi , wi j , x j ) = vi (t) + Ji +
n∑

j=1

wi j · ei j · x j (t − li j ). (1)

Here, i, j = 1, 2, . . ., n, where n corresponds to the total
number of neurons. xi is the generated spike event (firing
or no-firing) in a receiving neuron i , and x j (t − li j ) is the
state of a transmitting neuron j . The membrane potential is
given by fi , in which Ji matches synaptic noise. The noise
is independent for different neurons i . The nonlinear dynam-
ics vi (t) of the neuronal membrane potential of neuron i are
defined by the Izhikevich model (Izhikevich 2003) with a
simulation step dt = 1 ms. The neuronal input from the net-
work, represented by the summation of postsynaptic pulses
on the right-hand side of Eq. 1 is calculated with ei j = −1 if
j belongs to the inhibitory neuronal pool and 1 otherwise; li j

is the latency between a spike on neuron j and the postsyn-
aptic potential on neuron i , and wi j denotes the correspond-
ing synaptic weight. The percentage of excitatory neurons
in the network was set to R = 80%, as found in experimen-
tal studies, e.g., Toledo-Rodriguez et al. (2003). Values li j

were normally distributed between 1 and Dmax, the latter
varying between 1 and 20 ms according to experimental find-
ings in Muller et al. (1997). The number of connections per
neuron followed a normal distribution between 0 and Kmax,
where Kmax varied up to 1,000 in agreement with several
experimental findings, e.g., Ichikawa et al. (1993). To mimic
synaptic depression and facilitation affecting wi j , we used
a phenomenological short-term plasticity model (Markram
et al. 1998). Together, all wi, j constituted a matrix W which
consisted of values taken from a normal distribution between

0.01 and 9 mV (Gibson and Connors 2003). Resuming, the
just described adjustment of all basic parameters of the net-
work model in experimental physiological ranges enables to
directly relate experiment to simulation.

We studied bursting behavior in two types of network
models. The first one had a normal distribution of all syn-
aptic strengths; its average weight (We) was varied between
0.01 and 9 mV. In the second we chose a random subset of
neurons in which the average synaptic weight to their targets
(Wint) was set higher than We. Neurons from this subset are
further referred to as intense neurons. All other parameters,
as well as the network structure, remained unchanged.

One of the urgent issues and open questions in this field
is the origin of the spontaneous activity. Possible sources are
synaptic noise (Hubbard et al. 1967; Destexhe et al. 2004)
or rhythmic pacemaker currents (Strata et al. 1997). The lat-
ter assumes the presence of intrinsically active cells (Latham
et al. 2000). The former is based upon the probability of
quantal release, randomness of diffusion, and chemical reac-
tion, or on the unpredictability of responses from ion chan-
nels within the synaptic cleft (Mainen and Sejnowski 1995;
Stevens and Zador 1998; Rodriguez-Molina et al. 2007).
Vladimirski et al. (2008) showed that noise-driven, unstruc-
tured networks require large, nonphysiological values of syn-
aptic parameters in order to produce robust network bursts,
while structured networks can use lower values for the same
purpose (Kitano and Fukai 2007). To trigger spontaneous
activity we simulated both network types, i.e., noise- and
pacemaker-driven networks. In the noise-driven networks
each neuron received a Poissonian train of 1-ms pulses with
amplitudes normally distributed between 0 and 6 mV for
excitatory and between 0 and 3 mV for inhibitory neurons.
The same method, validated by Destexhe et al. (2004), was
used in Gritsun et al. (2010). The mean rate and variance were
gradually increased from Fn = 0 to Fn = 1 kHz, as suggested
by Rodriguez-Molina et al. (2007). Similar approaches were
also suggested in other studies, e.g., Nesse et al. (2008). In
the pacemaker-driven simulations we kept all input parame-
ters within the same physiological ranges as before, except
that the noise was set at zero and pacemaker features were
assigned to the intense neurons. We applied two methods to
trigger intrinsic firing in the pacemaker neurons. First, we
set a larger subthreshold current flux in the Izhikevich neu-
ronal model as described in Gritsun et al. (2010). Without
any external input those “pacemakers” could fire either peri-
odic spikes or bursts of spikes with frequencies ranging up to
0.26 Hz. In the second method, referred to as a “pseudo-pace-
maker”-driven networks, instead of changing intrinsic neu-
ronal features, we injected external pacemaker pulses into
the subset of intense neurons. Intrinsic firing in the popula-
tion of pacemakers was modulated by injecting 1-ms pulses.
Injected pulses had the same amplitude per pacemaker
(normally distributed between 0 and 6 mV), but an individual
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constant frequency (Fp). Pacemaker frequencies were chosen
from a certain distribution such that evoked (intrinsic) firings
resulted in biased ISI distributions in the whole pacemaker
population. Individual Fp values were chosen from a gener-
alized extreme value (GEV) distribution. Similar simulation
results were obtained using other common distributions, such
as Gamma or exponential distributions. The GEV distribu-
tion is the limit distribution of properly normalized maxima
of a sequence of independent and identically distributed ran-
dom variables (Coles 2001). The GEV probability density
function is defined as follows:

pGEV(x) = 1

σ
t (x)ξ+1e−t (x), (2)

where

t (x) =
{

e−(x−μ)/σ if ξ = 0(
1 + ξ

x−μ
σ

)−1/ξ
if ξ �= 0

We tried a wide range of the shape (ξ ), scale (σ ), and loca-
tion (μ) parameters to arrange the Fp distributions such
that they had a frequency span from 0 up to 10 Hz, and
their shape varied from about exponential to almost nor-
mal. To obtain adequate pacemaker frequency distributions,
particularly the location parameter (μ) was very important
(i.e., to avoid near-zero frequencies which would reduce
pacemakers to regular neurons). We also used the GEV dis-
tribution to characterize IBI distributions, as described later.
Here we present the results of batch simulations in which the
key parameters (Kmax, We, Wint, Fn, and Fp set) were varied
gradually one by one and the activity patterns were generated
for 1 h.

2.3 Spiking activity: characterization and statistics

The same characterization and statistical analysis were
applied to both experimental and model data. For model
analysis of IBIs we selected spike trains from 60 randomly
chosen simulated neurons in the appropriate excitatory/inhib-
itory ratio (usually 48 excitatory plus 12 inhibitory). This
allowed to compare with the experimental data, as the elec-
trode arrays contain 60 electrodes.

Bursts were identified using a detection algorithm as
described in Stegenga et al. (2008). In short, a network
burst was detected when at least two spikes occurred within
10-ms bins for each active electrode (with spike rate > 0.1 Hz).
Network bursts were characterized as follows: (1) Intraburst
parameters were measured as described in a previous study
(Gritsun et al. 2010); (2) IBIs were calculated as the temporal
distances between peaks of neighboring bursts.

We recorded most of the cultures daily during several
hours. IBI samples were taken from 1-h recordings. For his-
tograms we used the bin size estimation by Scott (1979). This
is given by

h = 3.49 · SD · N−1/3, (3)

where N is the number of IBIs in the sample, and SD is the
IBI standard deviation.

We described IBIs using the median value as well as 16th
and 84th percentiles, in order to show any bias in the dis-
tribution. The latter describe the 68% confidence interval,
similar to ±SD in normally distributed data. This represen-
tation does not always classify the data clearly and can be
improved by adding the burst count distribution (BCD). To
this end, we divided 1-h recordings into bins of 1 min and
counted the number of bursts in each bin. BCDs were eval-
uated with mean and standard deviation, and we used burst
counts mostly for the classification (grouping) of experimen-
tal samples. BCDs can show whether bursts occur regularly,
randomly, or as burst clusters. Finally, under the assump-
tion that IBIs are independent, identically distributed, and
drawn from a particular distribution, we applied the method
of maximum-likelihood estimation to identify the common
distribution that fitted the grouped IBIs, with minimal error
of the estimated parameters.

In addition, we characterized spike clustering regimes
generated by the model using the Fano factor, as a disper-
sion index for spike counts. We divided 1-h recordings into
5-ms bins and counted the number of spikes in each bin.
The Fano factor for spike counts (FFs) (Teich et al. 1984) is
defined as the variance-to-mean ratio:

FFs = σ 2
s /μs. (4)

Taking into account that typical burst widths range upwards
from about 40 ms, this time bin gives us ≥8 data points.
With FFs = 1, spikes follow a Poisson process and so FFs

can be interpreted as the measure of spike asynchrony. Clus-
ters of spikes, or in other words bursts, occur if FFs > 1.
Furthermore, the firing behavior of models can be charac-
terized by the sensitivity of FFs to one of the gradually
changing parameters, in particular the noise frequency Fn.
In this article we present three operational regimes of noise-
driven network models, depending on FFs and its sensitiv-
ity to noise frequency changes. If FFs = 1 and insensitive
to changes of Fn we will speak of asynchronous spiking.
If FFs > 1 and if FFs is highly sensitive to Fn changes, we
will classify the operational regime as weakly synchronized,
or as completely synchronized if FFs is insensitive to Fn

changes.

3 Results

3.1 Statistics of experimental data

The experimental data were collected from 13 cultures,
recorded between 2 and 11 weeks in vitro with a total of
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Fig. 2 Example of experimental data sample acquired from culture #5,
22 DIV. a Spike raster of a complete 1 h sample. Each dot represents
a detected action potential at the indicated electrode. b Zoomed spike
raster of the first minute of a. c To calculate spike counts, the data from
b are binned into 5-ms intervals and summed. If the joint spike count
of any two consecutive bins exceeded two times the number of active

electrodes, these bins were marked as a burst (see Sect. 2.3). Then, we
calculated the length of all intervals between the detected bursts (IBIs).
d shows the IBI distribution. Finally, we counted the number of bursts
in 1- min intervals. e shows the BCD. The histograms in d and e were
calculated from the data in a

206 recorded hours (samples) containing 61,343 bursts. All
recorded samples had FFss ranging from 5 to 70, indicat-
ing weakly or completely synchronized regimes. To begin,
we illustrate the characterization using a typical exam-
ple of bursting activity acquired from one of the cultures.
Bursting behavior is basically represented as spike clusters

throughout all recorded neurons (electrodes). Figure 2a, b
shows spike raster examples of 1 h and 60 s, respectively,
acquired from culture #5 at 22 days in vitro (DIV). One
can notice synchronized firing recorded from most of the
electrodes in Fig. 2b, which is also indicated by the spike
counts shown in Fig. 2c. Bursts seemed to occur in small
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clusters, which gave higher occurrence of short IBIs than
long ones. This in turn led to skewed IBI distributions
(Fig. 2d). The relative burst frequency for this particular
example ranged from 3 to 12 bursts per minute, as shown
in Fig. 2e.

We analyzed IBIs in recordings that lasted from 1 to 27 h in
cultures of different age. In longer recordings (>3 h) of indi-
vidual cultures this analysis showed stable median and 16th
and 84th percentiles values within at least 3 h, and in some
cases this stability was observed during the whole recorded
period.

Next, we pooled all samples and analyzed their overall
distribution to show the data range over all recordings.

The histogram in Fig. 3a corresponds to the relative fre-
quency distribution of the number of IBIs over all recorded
samples. This IBI histogram shows a highly skewed distri-
bution with a median of 4 s and a long tail, scattered up to
several minutes. Using Eq. 2 we obtained the 16th and 84th
percentiles, resulting in a 68% confidence interval between
1.5 and 17.5 s. As the IBI distribution turned out to be a
smooth histogram, it follows that the burst rate had a smooth
distribution ranging from 1 Hz down to near-zero values.

Figure 3b shows the relative distribution of bursts counts,
for all recorded samples. The interval from the global
peak at 1 burst/ min to the leftmost local minimum around
8 bursts/ min reflects long IBIs (the long tail in IBI histogram
in Fig. 3a). This interval is followed by a BCD showing two
local maxima around 13 and 28 bursts/ min, which reveal two

frequency ranges of burst clusters: one around 0.22 Hz and
the second around 0.47 Hz.

Median and percentile ranges of the pooled data showed
much lower values than in individual samples, which typ-
ically had a median spanning from 1.7 to about 35 s and a
68% confidence interval between 1 and 85 s. Such large span
variability hampers critical model validation. Therefore, we
divided all samples into several groups. A few samples (<5%)
with quite large data spans (thus having scarce data points)
were not used further. This grouping helped to obtain an
ample amount of data for more precise estimation of proba-
bility density functions.

The following method was used for grouping. The mean
of the burst counts per minute in 1-h samples was calcu-
lated (Fig. 4a). We divided the samples according to their
burst count mean values as shown in Fig. 4a, where each
color corresponds to a different group. Figure 4b, c shows
IBI (top) and BCD (bottom) histograms, respectively, for
each group. Table 1 summarizes the grouped experimental
data: median and ±percentiles for IBI distributions and mean
(±SD) for BCDs. To find a common distribution fitting all
four groups with minimum error, we tried several distribu-
tions, including Gamma, Gaussian, GEV, exponential, log-
normal (scale-free), etc. The GEV distribution gave the best
fit with the smallest error of the estimated parameters for
all groups (Table 1). IBIs acquired from subsequent samples
(recorded hours) of an individual culture always ended up in
the same group.

Fig. 3 Overview of the
interburst parameters over all
recordings. a IBI distribution.
Bin size was calculated using
Eq. 3. b BCD. We counted the
number of bursts in each 60-s
interval and plotted the
distribution of burst counts
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Fig. 4 Sample grouping of
experimental data according to
burst count means. a In each 1-h
recording sample we counted
the number of bursts per 1- min
interval and calculated the
mean. The histogram shows the
number of samples with the
specified mean burst count.
Then we divided the data into
four groups; each group is
depicted with a different color.
b, c IBI distributions (top) and
BCD histograms (bottom) for
the four groups
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Table 1 Statistics summary for the grouped experimental IBIS and BCDs

General
Group number 1 2 3 4 Total
# Samples 122 45 27 12 206
# Network bursts 9617 12359 20969 18395 61340

Interburst interval statistics
Median 32.3 9 4 2 4.15
Upper/lower percentiles 71.65/13.0 19.6/4.57 6.44/2.53 3.08/1.32 17.41/1.89
μ (95% confidence interval)a 24.2 (0.22) 7.23 (0.05) 3.4 (0.012) 1.72 (0.005)
ξ (95% confidence interval)a 0.35 (0.01) 0.33 (0.008) 0.14 (0.005) 0.2 (0.008)
σ (95 % confidence interval)a 18.43(0.19) 0.33 (0.008) 1.5 (0.009) 0.6 (0.004)

Burst count distribution
Mean 1.4 4.95 13.36 27.3 5.28
Standard deviation 1.1 1.95 2.18 2.48 6.96

a Parameters estimated for a data fit to the GEV distribution, using the method of maximum-likelihood estimates (and 95% confidence intervals for
the parameter estimates)

3.2 Noise-driven simulations; model response to increasing
synaptic noise

3.2.1 Network simulation with homogeneous synaptic
strength distribution

As a basic model check, we examined how the neuro-
nal population responded to the injected noise only, i.e.,
without any synaptic connections (interactions). We found
that the network-wide ISI decreased exponentially with the
average noise frequency, both in the excitatory and in the
inhibitory population (data not shown). After this basic

check, simulations were done where network parameters
were set as described in “Methods.” Figure 5 shows a typ-
ical example of a simulation with physiologically plausi-
ble network parameter values: Kmax = 500, Dmax = 10 ms,
R = 80%, W = 1.5 mV. We kept all model parameters,
except the network size, in a constant range in order to have a
common point of reference. For small networks created with
this setup, parameter ranges were similar to those reported
in literature, e.g., Wiedemann and Luthi (2003), Giugliano
et al. (2004), and Nesse et al. (2008).

By changing the network size from n = 500 to 5,000 and
keeping Kmax constant, the average number of connections
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Fig. 5 Four sensitivity plots of
the Fano factor of spikes (FFs)

in response to gradually
increasing noise frequency (Fn)

for networks of different size n,
in three synchronization
regimes. Dashed curves
correspond to weakly
synchronized case (n = 500,
2,500, and 4,000). Note the
sudden change from
asynchronous to completely
synchronized for n = 5, 000
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(or “average connection probability”) between two randomly
chosen neurons was reduced from 1 to 0.1. This can be under-
stood as follows. The number of unique postsynaptic neurons
to which a presynaptic neuron is connected increases with
the network size, as every presynaptic neuron has more pos-
sible postsynaptic neurons to be connected to. Conversely,
this number of unique neurons is reduced in smaller net-
works, because every presynaptic neuron is more likely to
have multiple connections to the same postsynaptic neuron.

We analyzed network behavior in response to gradually
increasing synaptic noise in batch simulations with a simu-
lated duration of 1 h. We observed three major operational
regimes in these networks.

At low noise frequencies (Fn), networks responded
with asynchronous spikes and their population firing rate
increased proportionally to Fn. This regime is further referred
to as asynchronous spiking and was characterized by FFs = 1
and the absence of network bursts. Thus, spiking behavior of
networks with low noise frequencies could be characterized
as a Poissonian process. With increasing noise frequency all
networks eventually produced activity with ISIs that were
short enough to produce synchronized behavior, which would
then propagate throughout the whole neuronal population.
Relatively small networks with a small number of unique
postsynaptic neurons usually elicited irregular bursts. Burst
frequency increased with higher Fn. A linear increase of Fn

resulted in a sigmoid increase of FFs while the median IBI
reduced exponentially. At relatively high noise frequencies
(Fn ≥ 530 Hz/neuron) this bursting regime reached the satu-
ration point where networks produced high-frequency bursts
in a more regular manner, as expressed by a stable (satu-
rated) FFs. At such high Fn, IBIs reached a stable value of
less than 1 s, while FFs reached a plateau (around 250 for
this specific setup). We differentiated between two regimes
of bursting behavior: weakly synchronized and completely

synchronized regimes, yielding irregular and regular bursts,
respectively.

Small networks in the weakly synchronized regime pro-
duced irregular bursts with IBI distributions similar to the
experimental ones. The range of Fn that yielded weakly syn-
chronized activity with IBIs as in the experimental range
shortened with increasing network size. We found that
large networks (n = 5,000) switched instantly from asyn-
chronous spiking to a completely synchronized regime,
without an intermediate regime of weakly synchronized
activity, as shown in Fig. 5. At Fn ≈ 530 Hz/neuron net-
works abruptly switched from random spiking to highly
(“super”) regular bursts (by increasing Fn only by 1 Hz).
Furthermore, analysis of the intraburst parameters showed
that these simulations produced unnaturally long and robust
bursts with higher maximum firing rate than experimentally
observed.

3.2.2 Network simulation with bimodal distribution
of synaptic strengths

The number of neurons in cultures is much larger than
n = 5,000, but cultures do not exhibit the just observed
“super” regular bursting as the simulations in the previ-
ous section. To find a more realistic bursting activity in
large networks, we analyzed the behavior of models with
n = 5,000 and the same parameters as in the previous sec-
tion, but now with a subpopulation of intense neurons
(nint = 250). Intensity variation means that we gradually
increased the synaptic weights of connections that project
from the intense neurons. Stronger synapses directly increase
network feedback, so these neurons should now need less
injected noise to produce bursting. We set the noise fre-
quency relatively low (to Fn = 220 Hz/neuron). Then, we
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Fig. 6 Sensitivity curve of the
Fano factor of spikes (FFs) to a
changing synaptic strength ratio
of intense and regular neurons
(Wint/We). Networks change
their behavior from
asynchronous spiking (FFs = 1)
to bursting (FFs > 1) around
Wint/We = 65
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gradually increased the average synaptic strength of intense
neurons (Wint) and proportionally reduced the amplitude
of synaptic strength in all other neurons. We extended the
range of Wint to 9 mV, whereas the synaptic strength of reg-
ular neurons (We) ranged from 0.01 to 0.1 mV. Figure 6
shows how the FFs depended on the synaptic strength ratio
(Wint/We).

Network behavior now changed from asynchronous spik-
ing to a weakly synchronized regime around Wint/We = 65.
In this weakly synchronized regime, networks produced sta-
ble random bursting throughout the entire simulation time.
The resulting FFs resembled the experimental range. More-
over, network models in this operational regime showed
lower sensitivity to changing network parameters than net-
works with homogeneous synaptic strengths. In the fol-
lowing example we set the (Wint/We) ratio to 73, while
the network was exposed to synaptic noise with increasing
frequency. Figure 7 shows a typical example of network
activity at a certain noise frequency, as well as the devel-
opment of FFs in response to gradually increasing noise fre-
quency. With a bimodal distribution of synaptic strengths,
bursting appeared irregularly and FFs increased smoothly.
Similar results were obtained with other combinations of
network parameters. Thus, these networks generated a wider
range of synchronization, leading to more realistic patterns
of spiking activity.

Figure 8 shows how the range of IBIs changed during
noise frequency sweeps. IBI now smoothly decreases with
increasing Fn, and it is easy to reproduce all four experimen-
tally found ranges of IBIs. More particularly, comparison of
these values in Fig. 8a with those in Table 1 shows that sim-
ulations with Fn ≈ [225, 255, 295, and 330] Hz resemble the
experimental groups #1 to #4, respectively.

To clarify the origin of bursts in a weakly synchronized
regime we investigated the spikes that preceded a burst. In
most cases the intense neurons fired first, thereby trigger-
ing an avalanche effect of network activity. As one would
expect, networks responded to firing of the intense neurons
because they were able to produce strong excitatory input
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Fig. 7 Example of the Fano factor of spikes (FFs) as a function of the
synaptic noise frequency (Fn) in a network with a bimodal distribution
of synaptic strengths. In this example we set Wint/We = 73. Inset exam-
ple of a spike raster simulated at a noise frequency Fn = 240 Hz/neuron
as indicated by the arrow

to the network through their stronger synapses. We recall
that, with our set of neuronal parameters, noise-evoked spik-
ing activity typically had an exponential ISI distribution. We
note that IBI distributions were proportional to the ISI distri-
butions of noise-evoked action potentials in the subpopula-
tion of intense neurons. Furthermore, the sensitivity curve in
Fig. 8a suggests that the IBI range is inversely proportional
to the injected noise frequency. However, this relationship is
nonlinear: with increasing Fn the average bursting frequency
increases progressively (Fig. 8b). This is due to a higher over-
all neuronal excitability because higher Fn induces higher
average neuronal membrane potential in the whole network
(data not shown).

This network model describes bursting behavior quite
well. Still, several studies suggest the presence of endoge-
nously active cells (Sect. 2). Therefore, we also investigated
pacemaker-driven networks.
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Fig. 8 Sensitivity plots for interburst parameters in response to increas-
ing noise frequency (Fn) in network models with bimodally distributed
synaptic strengths. a IBI median (dashed line) and range (16th–84th
percentiles, bars). Inset example of an IBI histogram at Fn = 290 Hz.
b Burst count mean (dashed line) and standard deviation (bars)

3.3 Pacemaker-driven networks

In this part we briefly describe the activity of two network
models with a small population of intense neurons having
pacemaker features, as described in Sect. 2. This setup was
based on the assumption that intrinsically active neurons
may develop strong synapses through long-term potentiation
processes while initiating activity in neighboring neurons at
early developmental stages of a neuronal culture. While this
hypothesis is yet to be proven experimentally, we achieved
successful simulation results.

In the models where intrinsic (pacemaker) firing was trig-
gered by large current influx, bursts were initiated by the
pacemakers with the fastest oscillations [while discharg-
ing all other (slower) pacemakers during the generated net-
work burst]. Therefore, these simulations only produced
periodic bursts with constant IBIs, which were fully deter-
mined by the frequency of the fastest pacemaker (data not
shown).

In the pseudo-pacemaker-driven model, instead of chang-
ing neuronal features, we injected external pacemaker pulses
into the subset of intense neurons. Thus, even if a pacemaker
was discharged by the previous burst, it could fire again in
response to these external pulses and therefore trigger its own
bursts series. These simulations generated irregular IBIs, as
shown in Fig. 9 for a few typical examples of IBI distributions
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Fig. 9 IBI distributions of experimental data (groups) and simulated
with pseudo-pacemaker-driven networks (sets). The inset shows the
distributions of Fp to obtain the IBI distributions of sets #1 and #3.
Simulation set numbers correspond to sets presented in Table 2

Table 2 Input parameter settings for simulations presented in Fig. 8

Set # 1 2 3 4

Kmax 650 700 650 550

Wpr/We 11 12 10.7 13.5

Nintense 250 100 250 150

ξ 0.2 0.2 0.35 0.35

σ 0.7 0.1 0.1 0.1

μ 2 2.4 2 2.7

The Fp were chosen from the GEV distribution with shape (ξ ), scale
(σ ), and location (μ) parameters as specified in the table. For all sets
n = 5,000, Dmax = 10 ms, R = 80%

that resembled the four groups of the experimental IBIs. In
these simulations, the Fp were chosen from the GEV distri-
butions as shown in Fig. 9 (inset) for sets #1 and 3. Essential
model parameter sets to generate these IBIs are presented in
Table 2.

For all four network model sets, the GEV distribution gave
the best fit to the simulated IBIs. Intraburst parameters were
also verified to be in the experimental range (data not shown).
The basic idea behind simulation of this realistic bursting
behavior was that generated ISIs in a pacemaker population
(set by adjusted intrinsic frequencies) triggered IBIs with
distributions in the physiological range.

4 Discussion

4.1 Experimental data

Spontaneous activity in cultured cortical networks on multi-
electrode arrays has been studied by many experimenters
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(Van Pelt et al. 2004; Eytan and Marom 2006; Wage-
naar et al. 2006; Stegenga et al. 2008). Networks typically
show episodes of highly synchronized spiking, commonly
referred to as network bursting. FFs values in all recorded
samples were above 1 and well below the values gener-
ated by simulations in completely synchronized regimes
(FFs ≈ 250), thus suggesting that cultured cortical networks
operate in a weakly synchronized regime. Bursts are usu-
ally characterized by intra- and interburst parameters. In this
study we focused on interburst parameters. All experimen-
tal recordings showed network bursts with a wide IBI vari-
ability, in agreement with earlier results found by Wagenaar
et al. (2006), also suggesting a weakly synchronized regime.
Segev et al. (2002) showed that experimental IBIs usually fol-
low a scale-free (Levy) distribution. This finding was con-
firmed by the pooled data analysis in this study. However,
individual experimental samples often showed multimodal
distributions of IBIs. Multimodality in acquired data distribu-
tions might reflect a typical characteristic in the recorded fir-
ing patterns (e.g., in “superbursts”). However, experimental
data containing relatively long IBIs (>30 s) always appeared
with multimodal distributions, whereas recordings with
short IBIs usually yielded unimodal histograms. Obviously,
(1-h) recordings with long IBIs yielded distributions based
on fewer data points, suggesting that multimodal IBI distri-
butions may mainly result from a relatively small amount of
data. Most of the individual samples (>95%) showed regu-
lar IBIs, whereas the pooled data were irregular and could
not serve to validate our models. Based on the average burst
frequency, all available recordings were divided into four
representative groups, each showing regular IBIs (similar
to the individual recordings). As a result, even the groups
with ample data points showed smooth histograms. Thus, the
grouped data characterized four ranges of interburst proba-
bilities and were used to validate our models. It should be
emphasized that this grouping was done to enable more crit-
ical model validation, rather than to describe distinct patterns
of network activity which might be related to different phys-
iological conditions. Additional data might have yielded a
different set of groups, but with similar parameter ranges.

In summary, on the basis of FFs range and IBIs we con-
cluded that cultured cortical networks operate in a weakly
synchronized regime. Experimental IBIs, grouped according
to their mean burst counts yielded smooth histograms, which
we described by fitted GEV distributions.

4.2 Simulated data

For this study we simulated spiking activity in networks with
500–5,000 neurons. We evaluated the level of asynchrony
(as defined by the stability of FFs) for various combina-
tions of network size and noise frequency. Only for networks

operating in the weakly synchronized regime did small noise
frequency changes significantly affect FFs, whereas asyn-
chronous and completely synchronized spiking regimes were
insensitive to such changes. We found that only networks in
the weakly synchronized regime could produce IBIs in real-
istic ranges.

Other studies showed that simulated activity in small
networks resembled experimental data (Segev et al. 2001;
Wiedemann and Luthi 2003; Giugliano et al. 2004). Giugliano
et al. (2004) used relatively small networks (n=100–1,000)
with connection probability of 0.3–0.4, and described three
operational regimes, similar to ours. In their study, all
three regimes occurred, and the effective regime was deter-
mined mainly by the set of synaptic weights. However, our
study shows that, in large networks, with lower connection
probability (but realistic in terms of average number of con-
nections per neuron), the transition from a weakly synchro-
nized regime to a completely synchronized one occurs upon
a very small increase of the noise frequency. The main dif-
ference between small and large networks is their difference
in connection probability. With similar Kmax, the probabil-
ity that two randomly chosen neurons are connected to each
other decreases in larger networks. On the one hand, Nesse
et al. (2008) showed that, in fully connected networks of
500 neurons, increased noise could trigger an abrupt change
in network activity from asynchronous to synchronized. On
the other hand, Giugliano et al. (2004) showed that sparse
networks can operate in a more realistic synchronized regime
when the strength of synaptic interactions is adjusted. In
fact, in developing cultured networks, the average number
of synapses as well as the average synaptic strength per neu-
ron increases in the first few weeks, (Ichikawa et al. 1993;
Maeda et al. 1995). A higher connection probability results
in synchronized network activity at lower noise frequen-
cies. This widens the range of noise frequencies that yield
synchronized activity. With lower connection probability,
synchronized activity first occurs at much higher noise fre-
quencies, and then tends to develop into complete synchro-
nization immediately. In relatively large networks of 5,000
neurons, the weakly synchronized regime completely van-
ished. In such models we found either asynchronous spik-
ing or completely synchronized activity, contradictory to the
experimental data. Moreover, these noise-driven networks
with homogeneous synaptic strengths could produce only
regular bursts with IBIs shorter than 1 s (superbursts, Wage-
naar et al. 2006). In a previous study, we found that such
networks also showed unrealistic intraburst characteristics
(Gritsun et al. 2010). Thus, simulated activity of noise-driven
larger networks may not resemble experimental data at all,
considering the fact that most data were recorded from much
larger cultures containing from several thousand to around
half a million neurons, e.g., Wagenaar et al. (2006), Van Pelt
et al. (2004), and Stegenga et al. (2008).
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Experimental studies on cortical networks provide ample
evidence for the existence of a special set of self-firing neu-
rons that precede, or even ignite, network bursts as described
in the “Introduction,” e.g., privileged neurons (Eytan and
Marom 2006), endogenously active neurons (Latham et al.
2000), and leader neurons (Eckmann et al. 2008). Eckmann
et al. suggested three possible scenarios for how the leader
neurons could be excited (Eckmann et al. 2008). In the first
two scenarios, one or several leader neurons are self-excited
or stimulated by low-level noise (in parallel) while exciting a
region around them and randomly igniting network bursts. In
their most likely scenario the subnetwork of the (noise-acti-
vated) leader neurons communicate among themselves while
initiating network bursts. For simulations presented in this
article we adopted two possible scenarios without disproving
either of them (i.e., noise- and pacemaker-driven activity) as
described in “Methods.” However, the distinctive feature of
our model is the bimodal distribution of synaptic strengths
which implies a stronger subnetwork or circuit of intense
neurons with relatively large synaptic outputs to the rest of
the neurons. We showed that a subset of intense neurons
in the network model largely increased the noise frequency
range that yielded a weakly synchronized regime. Moreover,
in recordings we often observed neurons with more or less
continuously ongoing activity (Fig. 2a, b). These neurons pre-
ceded the network bursts always by less than 30 ms (Gritsun
et al. 2010). Intracellular experiments showed that presynap-
tic spikes that precede postsynaptic firing by up to ∼30 ms
lead to long-term potentiation of the connecting synapse
(Bi and Poo 1998; Zhang et al. 1998; Song et al. 2000).
Functional connections between neurons that have a latency
in this range also tend to become strengthened in spontane-
ously active cultured cortical networks (le Feber et al. 2007,
2009). This adds justification to our assumption that neurons
with ongoing activity have relatively strong synapses (intense
neurons). Intense neurons triggered other neurons in a one-to-
many fashion, whereas many regular neurons had to integrate
their output to trigger another neuron. Thus, bursts were far
more likely to be initiated by intense neurons than by reg-
ular ones. This activity triggering mechanism is somewhat
similar to a two-layer synfire chain reaction where synchro-
nous firing of intense neurons elicits synchronous volleys
of spikes in regular neurons (but the synfire model lacks
a realistic latency distribution among the neurons). Con-
versely, in networks with homogeneous synaptic strengths,
any excitatory neuron could initiate a burst (depending on the
average synaptic strength and/or noise frequency), resulting
in a high burst probability. Therefore, by choosing a rela-
tively small population of intense neurons, the bimodal net-
work could generate bursts with a much lower IBI probabil-
ity than the network with homogeneous synaptic strengths.
Amit and Brunel (1997) showed that neurons with normally
distributed input noise generated exponentially distributed

ISIs, which was confirmed in our simulations. Exponentially
distributed ISIs in the set of intense neurons yielded expo-
nentially distributed IBIs in turn, corresponding to weakly
synchronized activity. It should be noted that most simula-
tions with bimodal weights produced bursts with peak fir-
ing rates far below the maximum possible value, as seen in
other experimental studies (Van Pelt et al. 2004; Eytan and
Marom 2006; Wagenaar et al. 2006; Gritsun et al. 2010).
This means that networks did not completely synchronize
during most bursting events, which is also indicative of a
weakly synchronized operational regime. Finally, simulated
intraburst parameters of these “bimodal models” were also
successfully verified to lie within the experimental ranges as
described in Gritsun et al. (2010); this further supports the
validity of these models.

As mentioned above, models with injected Gaussian
noise (noise-driven simulations) usually resulted in IBIs
with exponential distributions. However, most of the exper-
imental groups showed IBI distributions with a unimodal
peaked distribution, thereby reducing qualitatively the valid-
ity of the noise-driven model. To better match the IBI dis-
tribution of recorded data, we therefore replaced injected
synaptic noise with deterministic synaptic input (pseudo-
pacemaker-driven simulations). This yielded IBIs that no
longer followed an exponential distribution. The new IBI dis-
tribution highly depended on the Fp distribution span (ξ, σ )

and location (μ): a narrower span led to more regular IBIs
(a narrower IBI distribution), and the high end of the Fp range
produced very short IBIs. This approach holds the middle
between the random noise-driven and intrinsic pacemaker-
driven network models that we used to validate intraburst
characteristics in a previous study (Gritsun et al. 2010). We
adjusted the distribution of Fp to achieve maximum similarity
between experimental and simulated IBI distributions. These
models showed the best resemblance to the experimental
interburst parameters, including the shape of the IBI distribu-
tion. Although there is some experimental data to support the
concept of endogenously active cells (Latham et al. 2000),
it is as yet unclear whether their firing is stochastic or deter-
ministic. Our results suggest that their firing is deterministic
rather than stochastic.

In a previous study we used network models with intrin-
sic pacemakers. In that approach, intrinsic spikes were
evoked as the result of larger current influx into a neuron.
Such simulations showed good agreement with experimental
intraburst parameters (Gritsun et al. 2010). However, analy-
sis of IBIs showed a poor resemblance to recorded data. The
major drawback was that the networks produced periodic
bursts only at several constant rates. Burst rates were effec-
tively locked to the fastest pacemakers while other, slower
pacemaker neurons were discharged by preceding bursts
and could therefore not initiate bursts themselves. In con-
trast, in network models with pseudo-pacemakers the intense
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neurons received external pacemaker pulses. Now, they could
fire again in spite of being discharged by a previous burst and
thus initiate bursts themselves.

5 Conclusions

We found that experimental activity was always in the weakly
synchronized regime. We showed that the results obtained
from small network models cannot simply be extrapolated to
models of more realistic size, and that larger networks with
homogeneous synaptic strengths cannot operate in a weakly
synchronized regime as commonly found in experimental
recordings. Alternatively, noise-driven network models that
include a set of intense neurons (with stronger connections
to their targets) were able to produce IBIs in the experi-
mental range. Addition of a set of intense neurons to the
model yielded a robust weakly synchronized regime over a
wide range of network parameter values and noise frequen-
cies. Such models reproduced recorded data quite well but
tended to overestimate the incidence of very short IBIs, as a
direct consequence of the applied normally distributed input
noise. Applying more deterministic input, with frequencies
from a certain distribution (pseudo-pacemaker-driven mod-
els), reduced the incidence of very short IBIs and repro-
duced experimental data even better, but the plausibility of
this approach remains to be confirmed. Models with intrinsic
pacemakers showed rather poor performance as they failed to
reproduce the wide ranges of experimentally observed IBIs.
In this study we hypothesized a simple model of “first-to-fire”
(so-called leader) neurons, which do not necessarily have a
different sensitivity to noise, or stronger synaptic inputs, but
require relatively strong synapses (by long-term potentiation)
to their targets. Confirmation of this hypothesis requires more
sophisticated modeling.
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gle-neuron discharge properties and network activity in dissociated
cultures of neocortex. J Neurophysiol 92:977–996

Gritsun TA, le Feber J, Stegenga J, Rutten WLC (2010) Network bursts
in cortical cultures are best simulated using pacemaker neurons and
adaptive synapses. Biol Cybern 102:1–18

Hansel D, Sompolinsky H (1996) Chaos and synchrony in a model
of a hypercolumn in visual cortex. J Comput Neurosci 3:
7–34

Hubbard JI, Stenhouse D, Eccles RM (1967) Origin of synaptic noise.
Science 157:330–331

Ichikawa M, Muramoto K, Kobayashi K, Kawahara M, Kuroda
Y (1993) Formation and maturation of synapses in primary cul-
tures of rat cerebral cortical cells: An electron microscopic study.
Neurosci Res 16:95–103

Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans
Neural Netw 14:1569–1572

Kitano K, Fukai T (2007) Variability v.s. synchronicity of neuronal
activity in local cortical network models with different wiring
topologies. J Comput Neurosci 23:237–250

Latham PE, Richmond BJ, Nirenberg S, Nelson PG (2000) Intrinsic
dynamics in neuronal networks. II. Experiment. J Neurophysiol
83:828–835

le Feber J, Van Pelt J, Rutten WLC (2009) Latency-related development
of functional connections in cultured cortical networks. Biophys J
96:3443–3450

le Feber J, Rutten WLC, Stegenga J, Wolters PS, Ramakers GJA, Pelt
J (2007) Conditional firing probabilities in cultured neuronal net-
works: a stable underlying structure in widely varying spontaneous
activity patterns. J Neural Eng 4:54–67

Maeda E, Robinson HPC, Kawana A (1995) The mechanisms of gen-
eration and propagation of synchronized bursting in developing
networks of cortical neurons. J Neurosci 15:6834–6845

Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocor-
tical neurons. Science 268:1503–1506

Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the
same axon of neocortical pyramidal neurons. Proc Natl Acad Sci
USA 95:5323–5328

Muller TH, Swandulla D, Zeilhofer HU (1997) Synaptic connectiv-
ity in cultured hypothalamic neuronal networks. J Neurophysiol
77:3218–3225

Nesse WH, Borisyuk A, Bressloff PC (2008) Fluctuation-driven rhyth-
mogenesis in an excitatory neuronal network with slow adaptation.
J Comput Neurosci 25:317–333

Rodriguez-Molina VM, Aertsen A, Heck DH (2007) Spike timing and
reliability in cortical pyramidal neurons: effects of EPSC kinet-
ics, input synchronization and background noise on spike timing.
PLoS One 2:e319

123



210 Biol Cybern (2011) 105:197–210

Romijn HJ, Van Huizen F, Wolters PS (1984) Towards an improved
serum-free, chemically defined medium for long-term culturing of
cerebral cortex tissue. Neurosci Biobehav Rev 8:301–334

Scott DW (1979) On optimal and data-based histograms. Biometrika
66:605–610

Segev R, Shapira Y, Benveniste M, Ben-Jacob E (2001) Observations
and modeling of synchronized bursting in two-dimensional neural
networks. Phys Rev 64:011920

Segev R, Benveniste M, Hulata E, Cohen N, Palevski A, Kapon
E, Shapira Y, Ben-Jacob E (2002) Long term behavior of litho-
graphically prepared in vitro neuronal networks. Phys Rev Lett
88:1181021–1181024

Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat Neurosci
3:919–926

Stegenga J, le Feber J, Marani E, Rutten WLC (2008) Analysis of cul-
tured neuronal networks using intra-burst firing characteristics.
IEEE Trans Biomed Eng 55(4):1382–1390

Stevens CF, Zador AM (1998) Input synchrony and the irregular firing
of cortical neurons. Nat Neurosci 1:210–217

Strata F, Atzori M, Molnar M, Ugolini G, Tempia F, Cherubin-
i E (1997) A pacemaker current in dye-coupled hilar interneurons
contributes to the generation of giant GABAergic potentials in
developing hippocampus. J Neurosci 17:1435–1446

Teich MC, Saleh BEA, Perina J (1984) Role of primary excitation sta-
tistics in the generation of antibunched and sub-poisson light.
J Opt Soc Am B 1:366–389

Toledo-Rodriguez M, Gupta A, Wang Y, Wu CZ, Markram H
(2003) Neocortex: basic neuron types. In: Arbib MA (ed)
Handbook of brain theory and neural networks. 2 edn. MIT Press,
Cambridge, pp 719–725

Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with
dynamic synapses. Neural Comput 10:821–835

Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in
recurrent networks with frequency-dependent synapses. J Neuro-
sci 20:RC50

Van Pelt J, Wolters PS, Corner MA, Rutten WLC, Ramakers
GJA (2004) Long-term characterization of firing dynamics of
spontaneous bursts in cultured neural networks. IEEE Trans Bio-
med Eng 51:2051–2062

Vladimirski BB, Tabak J, O’Donovan MJ, Rinzel J (2008) Episodic
activity in a heterogeneous excitatory network, from spiking neu-
rons to mean field. J Comput Neurosci 25:39–63

Wagenaar DA, Pine J, Potter SM (2006) An extremely rich repertoire
of bursting patterns during the development of cortical cultures.
BMC Neurosci 7:11

Wiedemann UA, Luthi A (2003) Timing of network synchronization by
refractory mechanisms. J Neurophysiol 90:3902–3911

Zhang LI, Tao HW, Holt CE, Harris WA, Poo MM (1998) A critical
window for cooperation and competition among developing reti-
notectal synapses. Nature 395:37–44

123


	Experimental analysis and computational modeling of interburst intervals in spontaneous activity of cortical neuronal culture
	Abstract
	1 Introduction
	2 Methods
	2.1 Cultures and recordings
	2.2 Simulation model
	2.3 Spiking activity: characterization and statistics

	3 Results
	3.1 Statistics of experimental data
	3.2 Noise-driven simulations; model response to increasing synaptic noise
	3.2.1 Network simulation with homogeneous synaptic strength distribution
	3.2.2 Network simulation with bimodal distribution  of synaptic strengths

	3.3 Pacemaker-driven networks

	4 Discussion
	4.1 Experimental data
	4.2 Simulated data

	5 Conclusions
	Acknowledgements
	References


