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Abstract Based on recent findings, astrocytes, a subtype
of glial cells, dynamically regulate the synaptic transmis-
sion of neuronal networks. In this research, a biologically
inspired neuronal network model is constructed by connect-
ing two Morris-Lecar neuron models. In this minimal net-
work model, neuron–astrocyte interactions are considered in
a functional-based procedure. Utilizing the developed model
and according to the theoretical analysis carried out in the
article, it is confirmed that, the astrocyte increases the thresh-
old value of synchronization and provides appropriate feed-
back control in regulating the neural activities. Therefore,
the healthy astrocyte has the potential to desynchronize the
synchrony between two coupled neurons. Next, we investi-
gate malfunction of the astrocyte in the regulatory feedback
loop. Mathematically, we verify that pathologic astrocyte
is no longer able to increase the synchronization threshold
and therefore, it cannot compensate excessive increase in the
excitation level. The main reason behind this is the fact that
healthy astrocyte can optimally increase the input current
of the individual neurons, while the so-called pathological
astrocyte is unable to modify correctly the amount of this
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current. Consequently, disruptions of the signaling function
of astrocyte initiate the hypersynchronous firing of neurons.
In other words, reduction in neuron–astrocyte cross-talk will
lead to synchronized firing of neurons. Therefore, our results
propose that the astrocyte could have a key role in stabilizing
neural activity.
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modeling · Mathematical analysis

1 Introduction

Synchronization is a well-known phenomenon of collective
dynamics of interacting oscillators. In normal brain func-
tion, synchronization within and between neural populations
is an important mechanism for neural signaling and informa-
tion processing (Hauptmann et al. 2005; Luo et al. 2009). In
recent years, synchronization has been extensively studied
in different contexts by several researchers. Labouriau and
Rodrigues presented a mathematical proof that synchroniza-
tion in partially coupled Hodgkin-Huxley neuronal model
with different parameters is a global behavior when the
coupling is strong enough, that is, synchronization will
occur regardless of the initial conditions (Rodrigues 1996;
Labourian and Rodrigues 2003). Wang and colleagues
applied analytical methods to study the synchronization of
coupled equations of Morris-Lecar model. They investi-
gated that the dynamical behavior of the coupled Morris-
Lecar models changes as the input current changes (Wang
et al. 2008). Several attempts have been made to under-
stand when synchronization of neurons coupled via diffusive
coupling, that is via gap junctions, occurs (Velazquez et al.
2003; Mancilla et al. 2007; Ermentrout and Wechselberger
2009). Steur and collaborators also studied synchronization

123



154 Biol Cybern (2011) 105:153–166

in networks of neuronal oscillators which are interconnected
through gap junctions. They presented sufficient conditions
for synchronization in these networks using the theory of
semi-passive and passive systems (Steur et al. 2009).

On the other hand, there is increasing evidence that an
improved understanding of the synchronization process can
be achieved through analysis of bidirectional interactions
between astrocytes and neuronal cells (De Keyser et al. 2008;
Amiri et al. 2010). Astrocytes are the most abundant type
of glial cells and are connected together by gap junctions
forming a large functional syncytium. They control the con-
tent of extracellular fluid and electrolyte homeostasis, regu-
late neurotransmitter release, and control synapse formation
(Nedergaard et al. 2003). Although astrocytes cannot gen-
erate action potentials, they respond to neuronal activities
with an elevation of their intracellular calcium levels. In this
way, not only astrocytes can sense neuronal transmission,
but also their calcium elevation leads to the release of glio-
transmitters such as glutamate or Adenosine Triphosphate
(ATP) which can regulate and control the synaptic strengths
of neighboring neurons (Hertz and Zielke 2004; Perea and
Araque 2005). This fact leads to the concept of the “tripartite
synapse” (Araque et al. 1999; Haydon and Araque 2002;
Fellin et al. 2006) in which the astrocyte, a third active ele-
ment of the synapse, “listens and responds” to the synapse
(Newman 2003; Halassa et al. 2009). In light of these find-
ings, one can conclude that the amount of information trans-
mitted across the synapse is modulated by the astrocytic
mechanisms.

Concerning important aspects of neuron–astrocyte inter-
actions, few computational models are developed to analyze
the relationship between neurons and astrocytes. Nadkarni
and Jung proposed a “dressed neuron” model and provided
a mathematical framework for the synaptic interactions
between neurons and astrocytes in the tripartite synapse
(Nadkarni and Jung 2004, 2007; Nadkarni et al. 2008). A gen-
eralized and non-dimensional model for the tripartite synapse
is proposed by Postnov et al. (2007). Recently, this model
was modified in order to be applied to a spatially extended
neuron–astrocyte network (Postnov et al. 2009). A minimal
model consisting of a pyramidal neuron, an interneuron, and
an astrocyte was modeled and simulated by Garbo (2009).
He investigated the effect of ATP and the interneuron in the
overall neural activity. The release of ATP by the astrocyte
influences neural dynamics by modulating firing activity of
pyramidal neurons and interneurons. ATP leads to an increase
in inhibition by promoting spike generation in the interneu-
rons (Garbo et al. 2007).

In the present study, a pair of biologically inspired neuro-
nal models is coupled considering neuron–astrocyte inter-
actions. We apply a functional approach and exploit the
available information from the current literature. Thereby,
as a first step, a simple two-neuron network is constructed

by connecting two Morris-Lecar neural models. Next, the
coupled neuronal models are analyzed mathematically to
determine under what conditions two neurons get synchro-
nized. Then, the two-neuron network is extended to include
also the fundamental functions of astrocyte in regulation of
neuronal dynamics, and is used to provide insights into the
role of astrocyte in the neural synchrony. Our mathematical
analysis and numerical simulations show that the feedback
mechanism, organized by astrocytes, can stabilize normal
asynchronous behavior among neurons in spite of being sub-
jected to an abnormal increase in the strength of the excit-
atory coupling between two neurons. However, reduction in
these feedback actions of astrocytes can produce hypersyn-
chronized oscillations. Indeed, the primary reason for this
excessive synchronous firing of neurons is the inability of
the astrocyte to compensate for the changes in the level of
the excitatory coupling.

The rest of the article is organized as follows: In Sect. 2,
the dynamic models of the Morris-Lecar neuron, the astro-
cyte model and coupled neurons with presence and absence
of astrocyte are explained. The mathematical analyses of syn-
chronization are discussed in Sect. 3. In this section, we put
forward conditions which will result in synchrony of two
coupled neurons, and will investigate mathematically the
role played by the astrocyte in neural synchrony. Section 4
presents the results of some numerical simulations to shows
the correctness of the theoretical deductions. Finally, Sect. 5
concludes the article.

2 Dynamic models of neuron and astrocyte

In this section, we first present the dynamic model of the
modified Morris-Lecar (M-L) neuron, two coupled M-L neu-
ron and then mathematical description of the astrocyte and
its interaction with two coupled M-L neuron are explained.
The modified M-L equations model the flow of potassium
and calcium ions and are a three-dimensional description of
neuronal spike dynamics. For the astrocyte, a generalized
mathematical model which is recently introduced is utilized.

2.1 Neuron model

We use a modified version of the well-known M-L equation
as a basic model for each neuron (Morris and Lecar 1981). It
includes the contribution of internal ionic fast activity Ca2+,

delayed K+, and passive leak currents. In the dimensionless
form, the dynamics of the membrane potential, v j , for a neu-
ron j is as follows (Volman et al. 2007):

C
dv j (t)

dt
= −ḡCa m∞

(
v j (t)

) (
v j (t) − vCa

)

−ḡKw j (t)
(
v j (t) − vK

) − ḡL
(
v j (t) − vL

) + i j (t) (1)
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dw j (t)

dt
= φ[w∞

(
v j (t)

) − w j (t)]
/
τw(v j (t)) (2)

i j (t) = iconst
j (t) + inoise

j (t) + i slow
j (t) (3)

di slow
j (t)

dt
= ε j (v

∗ − v j (t) − α j i
slow
j (t)) (4)

where w j is an auxiliary variable and is the fraction of open
K+ channels. The channel conductances ḡCa, ḡK, and ḡL for
the Ca2+, K+ and leak currents are constants. The functions
m∞

(
v j (t)

)
, w∞

(
v j (t)

)
and τw

(
v j (t)

)
control the dynam-

ics of the ion channels and are defined by the following
equations:

m∞
(
v j (t)

) = 0.5

[
1 + tanh

(
v j (t) − v̂1

v̂2

)]
(5)

w∞
(
v j (t)

) = 0.5

[
1 + tanh

(
v j (t) − v̂3

v̂4

)]
(6)

τw

(
v j (t)

) = 1

cosh
(

v j (t)−v̂3
2v̂4

) (7)

i j (t)is the applied current to the j th neuron. It consists
of a constant background current (iconst

j ), a slowly vary-

ing current (i slow
j ) which has been proposed by Rinzel and

Ermentrout (1989) as a source of bursting behavior in the
individual neurons and a noisy current (inoise

j with amplitude
Dn and correlation τn) to model the inevitable noise present
in real systems (Popovych et al. 2006). ε j and α j control the
bursting behavior of the j th neuron. It should be mentioned
that i j (t) displays a dynamical behavior due to the presence
of i slow

j .

2.2 Two coupled Morris-Lecar neurons

The set of Eqs. 1–7 can be written in the following compact
form:

dv j

dt
= F(v j , w j , i j ) (8)

dw j

dt
= G(v j , w j ) (9)

where

F(v j , w j , i j ) = −ḡCam∞(v j (t))(v j (t) − vCa) −
ḡKw j (t)(v j (t) − vK) − ḡL(v j (t) − vL) + i j (t) (10)

G(v j , w j ) = φ
(
w∞(v j (t) − w j (t)

)/
τw(v j (t)) (11)

Next, we create a minimal biologically inspired neuronal net-
work model which is consisted of two coupled M-L neurons.
The individual neurons are coupled through so called “gap
junctions”. The mathematical descriptions of two coupled
neurons are as follows:

dv1
dt = F(v1, w1, i1)

dv2
dt = F(v2, w2, i2)

+gse(v2 − v1) +gsi (v1 − v2)
dw1
dt = G(v1, w1)

dw2
dt = G(v2, w2)

(12)

where gse(gsi) is the maximal conductance for excitatory
(inhibitory) gap junctional-based synapses which are posi-
tive numbers referred as coupling constants throughout the
article. We used gse to change the excitation level. Increase
in gse leads to enhancement of the coupling strength between
neurons and thereby influences the neural synchrony.

2.3 Astrocyte model

During the last decade, basic research in biology confirmed
that glial cells are not only thought to be important for met-
abolic maintenance and support of the nervous system, but
also they are active players in neuronal activity and infor-
mation processing (Araque et al. 1999; Haydon and Araque
2002; Fellin et al. 2006). The most abundant type of glial
cells are star-shaped astrocytes. They have a large number
of receptors that are used to get information about synaptic
activity. Although astrocytes do not have adequate voltage-
gated sodium channels to exhibit electrical excitability, they
are excitable with respect to intracellular calcium (Fellin and
Carmignoto 2004; Voltarra and Steinhäuser 2004). Increas-
ing the intracellular calcium levels in astrocytes initiates the
release of glutamate, ATP, and other neuroactive substances
that are capable, by a feedback mechanism, of modulating
synaptic strengths between nearby neurons (Newman 2003;
Silchenko and Tass 2008).

At the cellular level, the main mechanisms underlying the
tripartite synapse are as follows: neurotransmitters such as
glutamate, released from presynaptic neuron during its acti-
vation, are bound to the metabotropic glutamate receptors
(mGluR) of the astrocytes adjacent to synaptic terminals.
This triggers the production of the second messenger, inosi-
tol (1,4,5)-trisphosphate (IP3) and release of calcium (Ca2+)

into astrocyte cytoplasm from endoplasmic reticulum (ER).
These calcium elevations propagate into nearby astrocytes as
intercellular calcium waves with the passage of second mes-
sengers through gap junctions (Hung and Colicos 2008). As
a consequence of the increased intracellular Ca2+ concen-
tration, the astrocyte releases gliotransmitters, such as glu-
tamate and ATP into the extracellular space and thereby can
regulate pre- and postsynaptic neurons (Araque et al. 1999;
Haydon and Araque 2002; Newman 2003; Fellin et al. 2006;
Halassa et al. 2009). The aforementioned processes are sum-
marized in Fig. 1.

To model the dynamics of the intracellular Ca2+ waves
produced by astrocytes, a recently introduced dynamic model
of the astrocyte is used (Postnov et al. 2007, 2009). This
is a generalized and simplified mathematical model for a
small neuron–astrocyte ensemble which considers the main
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Fig. 1 The main pathways for neuron–astrocyte interactions: (1)
Release of glutamate from the presynaptic neuron activates astrocytic
receptors and (2) induces an increase in intracellular Ca2+ levels. (3)
The release of glutamate from astrocyte activates presynaptic receptors

and regulates neurotransmitter release, while (4) activation of postsyn-
aptic receptors directly depolarizes neurons. (5) Stimulation of astrocyte
elicits also the release of ATP which, in turn, inhibits nearby neurons
(Newman 2003)

pathways of neuron–astrocyte interactions. Consequently,
this model will be useful to study the main types of astrocyte
response and the resulting dynamical patterns which allow
us to predict their changes with varying control parameters.
These parameters will be introduced later in this section.
This model is explained with the following set of equations
(Postnov et al. 2009):

τc
dc

dt
= −c − c4 f (c, ce) + (r + β Sm) (13)

εc τc
dce

dt
= f (c, ce) (14)

f (c, ce) = c1
c2

1 + c2 −
(

c2
e

1 + c2
e

) (
c4

c4
2 + c4

)

− c3 ce (15)

τSm

dSm

dt
= (

1 + tanh
[
SSm (z − hSm )

]) × (1 − Sm) − Sm

dSm

(16)

τGm

dGm

dt
=(

1+tanh
[
SGm (c − hGm )

])×(1 − Gm) − Gm

dGm

(17)

where c is the calcium concentration in the astrocyte cyto-
plasm. ce denotes the calcium concentration within the endo-
plasmic reticulum. The parameters εc and τc together define
the characteristic time for calcium oscillations. The calcium

influx from the extracellular space is sensitive to the produc-
tion of secondary messenger Sm(IP3), which is controlled by
the factor β. The initial state of the calcium oscillation is con-
trolled by the parameter r. The calcium exchange between
the cytoplasm and the endoplasmic reticulum is defined by
the nonlinear function f (c, ce). We set the control parame-
ters r, β, τc, τSm , τGm , sSm , sGm , hSm , hGm , dSm , dGm to the
values listed in the Table 1 that are taken from (Postnov
et al. 2009; Chakravarthy et al. 2007; Popovych et al. 2006).
Increase of calcium concentration in the cytoplasm causes
release of astrocyte mediator Gm. The interaction between
astrocyte and neurons is denoted with the parameter z that
shows the synaptic activity of the two coupled neurons.

2.4 Astrocyte interactions with two coupled Morris-Lecar
neurons

To have a physiologically inspired network and in order to
clarify astrocyte-dependent regulation of neural activities,
the initial minimal network model of two-neuron is extended
and astrocyte is incorporated into the network. Although for
the sake of mathematical simplicity, the two neurons are
coupled through a so-called “gap-junction,” the interaction
between each neuron and the astrocyte is modeled through
a chemical synapse in order to form the tripartite synapse.

Table 1 Parameter values used in the simulations

c1 0.13 c2 0.9 c3 0.004 c4 1/εc r 0.02
β 1 τSm 10 hSm 0.015 dSm 0.071 τc 2
sSm 100 a 2 εc 0.01 Dn 10−5 τn 5
ḡCa 1 ḡK 2 ḡL 0.5 φ 1.107 v̂2 0.15
v̂4 0.145 v∗ −0.217 σs 0.02 βs 0.05 θs 0.2
vCa 1 vK −0.7 vL −0.5 v̂1 −0.01 v̂3 0.1
αi 0.0001 gsi 0.0051 C 1 iconst

j 0.02 ε j 0.002
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In other words, the synaptic interactions are modeled as sug-
gested by Terman et al. (2002). In this model, depending
on the membrane potential, action potential spreading from
the neuron causes neurotransmitter release. Concentration of
the neurotransmitter in the synaptic cleft is modeled by the
following equation:

[T ] j = 1

1 + exp
(−(v j (t) − θs)/σs

) j = 1, 2 (18)

where θs and σs are half-activation voltage and steepness of
the sigmoid function, respectively. The input of an astrocyte
(z) is concentration of the neurotransmitter ([T ] j ) released
by activated neuron, and it triggers the IP3 production (see
Eq. 16). It is defined as:

z = a
2∑

j=1

[T ] j (19)

where a > 0 is an amplifying parameter. The output of the
astrocyte is

iast
j = λ j · Gm j = 1, 2 (20)

This value is applied to each individual neuron, separately.
Based on numerous physiological findings, astrocytes release
ATP that has direct excitatory effects on interneurons through
activation of metabotropic P2Y1 receptors and thereby pro-
duces a depolarization leading to action potential initiation
(Bowser and Khakh 2004; Fellin et al. 2006). On the other
hand, astrocytes decrease excitability of the pyramidal neu-
ron due to the interaction of ATP with different puriner-
gic receptors. Consequently, synaptic saturation is prevented
(Koizumi et al. 2003; Postnov et al. 2009). This biological
fact is modeled by considering positive (negative) sign for
excitatory (inhibitory) effects. In this way, to implement the
interaction of astrocytes with neighboring neurons “+iast”
and “−iast” is added to Eq. 12. Therefore, the complete
expressions of the current for the neurons are:

i1(t) = iconst
1 (t) + i slow

1 (t) + inoise
1 (t) + iast

1 (t)

i2(t) = iconst
2 (t) + i slow

2 (t) + inoise
2 (t) − iast

2 (t)
(21)

where iast
j = λ j ·Gm and λ j > 0. Consequently, the coupled

M-L model (12) is modified as follows by integrating the
outputs of astrocyte:

dv1
dt = F(v1, w1, i1 − iast

1 ) dv2
dt = F(v2, w2, i2 − iast

2 )

+gse(v2 − v1) + iast
1 +gsi (v1 − v2) + iast

2
dw1
dt = G(v1, w1)

dw2
dt = G(v2, w2)

(22)

3 Mathematical analysis of synchronization

To clarify the results of this section, first a brief introduction
to the concept of synchronization is presented. Consider the

general case of two coupled first order differential equations
depending on some parameters i ∈ �q :

ẋ1 = f (x1, x2, i1) (23)

ẋ2 = f (x1, x2, i2) (24)

where x1 and x2 belong to �n . If x1(t) = x2(t) for all t,
perfect synchronization occurs. For asymmetric initial con-
ditions, that is x1(0) �= x2(0), the equality holds asymp-
totically. For asymmetric systems with i1 �= i2, perfect
synchrony is not expected. A solution (x1(t), x2(t)) is syn-
chronized if x1(t) and x2(t)remain close to each other in
the future that is |x1(t) − x2(t)| ≤ s(t)ξ |i1 − i2| , where
s(t) ≥ 0 is a continuous function with limt→∞ s(t) = 0 and
ξ is a constant (Labourian and Rodrigues 2003).

Then, in the following, a Theorem will be provided. This
theorem, in its turn, is a summary of two theorems, one
(named Theorem 2) proved by Labourian and Rodrigues
(2003) and another theorem (again named Theorem 2) proved
by Wang et al. (2008). These researches have mainly focused
on the synchronization problems. As an alternative, we devel-
oped a Theorem to examine the desynchronization problem.
In other words, we utilize this theorem not only to study the
synchronization of two coupled neurons in the presence or
absence of the astrocyte, but also to investigate the role of
astrocyte in desynchronizing the synchronous behavior of
two coupled neurons.

According to this theorem, if coupling between two neu-
rons is strong enough, the two coupled neurons can be
synchronized regardless of the initial conditions and the
parameter values.

Theorem Consider the two coupled M-L equations (12) with
parameters i1, i2. It is supposed that the initial conditions
w1(0), w2(0) ∈ [0, 1] and |(v1(0), v2(0))| ≤ R where

R =
(√

2 + 2

√
g̃

ḡL
+ 1

2

) (
vCa + IM

ḡL

)
(25)

g̃ = ḡL + ḡK + ḡCa (26)

IM = max
t

|i1(t), i2(t)| (27)

and maxima are taken over the parameter values for the two
equations. Let coupling constants satisfy |gse − gsi| <

ḡL
C ,

then there exist positive constants g0, γ, A, B and a positive
function γg of g = gse + gsi such that if

gse + gsi > g0 (28)

where

g0 = C

(
L1 + γ + L2 N1

γ 2 + 1

)
− ḡL (29)

then, all solutions (v1(t), w1(t), v2(t), w2(t)) of the cou-
pled M-L equations (12) satisfy the following inequalities
for t ≥ 0:
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|v1(t) − v2(t)| ≤ e−(γ−γg)t
[(

1 + L2 N1

η

)
|v1(0) − v2(0)| + L2 |w1(0) − w2(0)|

]

+A |i1 − i2|
|w1(t) − w2(t)|

≤ e−(γ−γg)t
[

N1

η
|v1(0) − v2(0)| + |w1(0) − w2(0)|

]

+B |i1 − i2|
(30)

where

η = gse + gsi + ḡL (31)

L1 = 2RḡCa

C
(32)

L2 = 2RḡK

C
(33)

and N1 is the Lipschitz constant of the function G; that is for
|v2| ≤ R

|G(v1, w2) − G(v2, w2)| ≤ N1 |v1 − v2| (34)

and the constant γ satisfies 0 < γ ≤ φ
τw(v)

for |v1| ≤ R. To
have γ − γg > 0, γg is selected as:

γg = L2 N1

γ (η − γ − L1)
(35)

This theorem implies that if the coupling constants are suffi-
ciently large (i.e., gse + gsi > g0), providing the initial con-
ditions w1(0), w2(0) ∈ [0, 1] and |(v1(0), v2(0))| ≤ R, then
|v1(t) − v2(t)| and |w1(t) − w2(t)| exponentially decrease
and finally are bounded by A |i1 − i2| and B |i1 − i2| ,
respectively. In other words, considering the definition of
synchronization mentioned in the beginning of this section,
when coupling constants are sufficiently large, then the dif-
ference between the solutions of (12) get synchronized with
an error proportional to |i1 − i2| .

According to this Theorem, after selecting appropriate initial
conditions and when g = (gse + gsi) > g0, the two neurons
get synchronized. Thus, g0 is a threshold for synchronization
of two coupled neurons. Now, let us examine how the pres-
ence of astrocyte can influence the threshold value g0. We
consider different parameters used in definition of g0 (see
Eq. 29). It is clear that C, gL, γ and N1 are constants and
adding astrocyte does not change the value of these param-
eters. However, according to Eqs. 25 and 26, L1 and L2are
proportional to R and based on (25), R is a function of IM .

Eq. 19 indicates that astrocyte (iast
j ) alters i1(t) and i2(t), and

consequently changes IM (see Eq. 23). Now, two different
cases may be considered:

3.1 A. Astrocyte increases the value of IM . In other words,
IM,ast > IM where IM,ast is the value of IM in the
presence of astrocyte

In this case, considering Eq. 25, first R is increased and then
based on Eqs. 25 and 26, L1 and L2, and subsequently the
value of g0 are increased. If we call the threshold of synchro-
nization when astrocyte exists in the network as g0,ast, then
g0,ast > g0 meaning that the astrocyte enhances the thresh-
old value of synchronization. Therefore, we expect that the
new synchronization condition in the presence of astrocytes
becomes:

g = (gse + gsi) > g0,ast (36)

Now assume that the two coupled neurons oscillate in the
synchronized regime (i.e., g0 ≤ g). Then, we continue our
analysis by considering two different conditions:

3.1.1 A.1 g ≤ g0,ast

This implies that the synchronization condition (30) is not
satisfied, that is the coupling constant between neurons does
not exceed the new synchronization threshold created by
astrocyte. Hence, we expect the astrocyte to have the poten-
tial to desynchronize the synchrony between two coupled
neurons.

3.1.2 A.2 g > g0,ast

Since the coupling between two neurons is so strong that
is still greater than the new synchronization threshold, we
expect that the two coupled neurons remain synchronized
and astrocyte is not able to break their synchrony. In short,
we claim that the astrocyte is capable of removing the neu-
ral synchrony only when the new synchronization threshold
(g0,ast) is greater than the coupling strength between neurons
(g).

3.2 B. Astrocyte decreases or does not change the value of
IM namely IM,ast ≤ IM

In this situation g0,ast < g0 and since g0 ≤ g, we have
g0,ast ≤ g. Consequently, the coupled neurons continue to
remain synchronized.

In the next section, Eqs. 1–7 and 12–22 are used for numer-
ical simulations to verify the obtained theoretical deductions
of this section.

4 Simulation results

In this section, the simulation results are presented to explore
the role of astrocytes in normal and pathological conditions.
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Figure 2 shows the effect of increased interaction between
neurons. It should be mentioned that in this case, no astrocyte
is present in the network model. We used gse to change the
coupling strength between neurons and thereby influencing
the neural synchrony (Chakravarthy et al. 2007). Figure 2
clearly shows that increasing gse at t =2000 s from 0.001 to
0.05 (top panel) leads neurons to get synchronized. This is
illustrated in the middle panel by the obvious synchronized
oscillations of the membrane potentials. Therefore, changing
gse alters the behavior of the coupled models significantly
since the astrocytic functions, which are essential for the
normal brain function, are not modeled. The bottom panel
illustrates the synchronization index. To calculate the syn-
chronization index, we follow the procedure implemented
by Tass and colleagues (2007). We define the phase ϕ j of
neuron j by the standard interpolation (Pinsky and Rinzel
1995):

ϕ j = 2π
t − tk

tk+1 − tk
(37)

where t ∈ [tk, tk+1], and tk is the onset time of the kth burst of
the j th neuron. In this way, it is possible to assess the extent of
in-phase synchronization of neurons with the standard order
parameter:

�(t) ei�(t) = 1

N

N∑

j=1

eiϕ j (t) (38)

where �(t) is the mean phase and �(t) is the time-dependent
synchronization index. It is clear that 0 ≤ �(t) ≤ 1 holds for
all times t. �(t) = 0 corresponds to complete absence of in-
phase synchronization and perfect in-phase synchronization
is characterized by �(t) = 1.

Next, we consider the more realistic situation in which
the role of astrocyte in regulation of synaptic transmis-
sions is considered. In this case, synaptic properties are
tuned through release or/and uptake of neurotransmitters
and ions and stable ongoing activity in the neuronal cir-
cuit is maintained. Results of simulations are shown in
Fig. 3. Similar to Fig. 2, the top panel shows the increase
of coupling level, gse, and the middle panel demonstrates
the membrane potential of the coupled neurons. In this sim-
ulation, it is assumed that the astrocyte begins to interact
with the coupled neurons at t = 7000 s. It is obvious that
the astrocyte modifies the synaptic currents by providing
appropriate feedback actions. Consequently, runaway exci-
tation is compensated and normal asynchronous behavior is
again resumed quickly. For the simulations shown in Fig. 3,
λ1 = 0.15 and λ2 = 0.23. In line with these simula-
tions, recent studies about communications between astro-
cytes and neurons reveal that glutamate release from single
astrocyte may control the excitability of several neighbor-
ing cells simultaneously (Silchenko and Tass 2008). Indeed,
physiological evidence suggests that astrocytes can act as
local controllers of the synaptic function (Araque et al. 1999;

Fig. 2 The effect of varying coupling strength gse in the two coupled M-L neurons. Increasing the gse (top panel), the neurons are becoming
synchronized. This can be observed from simultaneous firing of neurons (middle panel). The bottom panel illustrates the synchronization index
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Fig. 3 The effect of varying coupling strength gse in two coupled neu-
rons in which the interaction of astrocyte with the individual neurons
is included for t > 7000 s. In spite of increasing gse (top panel), the
neurons are not synchronized any more (middle panel) for t > 7000 s.

In this case, astrocyte provides balanced excitation and inhibition to
coordinate synaptic interactions. The bottom panel illustrates the syn-
chronization index. It is apparent that the concurrent firing of neurons
is disturbed by feedback from astrocyte

Haydon and Araque 2002; Voltarra and Steinhäuser 2004;
Fellin et al. 2006).

In this case, the output of astrocyte to individual neurons
is shown in Fig. 4a (top and bottom panels). For 0 < t <

7000 s, no astrocyte exists in the model and therefore, the
output is zero for this time interval. However, for the interval
t > 7000 s, astrocyte produces appropriate control signal to
desynchronize the two coupled neurons. Figure 4b (top and
bottom panels) illustrates the total input current (19) of the
individual neurons. It is apparent that the amplitude of oscil-
lations for the time interval of t > 7000 s is greater than that
of 0 < t < 7000 s. Thus, in the presence of healthy astro-
cyte, the peak value of i1 and i2 namely IM,ast is increased;
in other words IM,ast > IM . In this way, the astrocyte is
able to desynchronize the two coupled neurons by applying
appropriate feedback. This is in agreement with the math-
ematical analysis performed in the Sect. 3.1.1 A.1 and our
claims.

In addition to the role of normal astrocytes in control
of neuronal excitability and synaptic transmission, they can

contribute to some of the disorders of the nervous system
(Seifert et al. 2010). In this research, role of a pathological
astrocyte is also studied, that is, when it is not able to properly
perform its normal role in the neuronal network. One way to
simulate pathological astrocyte is simply to reduce the capa-
bility of astrocyte in regulating synaptic transmission. This
corresponds to a deficit in astrocyte function and reduction
of gliotransmitter release and/or decrease of neurotransmitter
uptake. This fact is replicated in our simulations by decreas-
ing the numerical values of λ1 from 0.15 to 0.08 and λ2 from
0.23 to 0.05. The results of simulation under new conditions
are shown in Fig. 5. These simulations imply that although
astrocyte tend to desynchronize the two coupled neurons (in
the time interval 7000 < t < 11200 s), due to pathology in its
feedback structure (reduction of λ1 and λ2) astrocyte is not
able to fulfill its function and consequently hypersynchroni-
zation appears (the time interval 11200 < t < 12500 s).
For the simulations that are shown in Fig. 5, the output
of the astrocyte and the total current (19) for the individ-
ual neurons are illustrated in Fig. 6a, b, respectively. For
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Fig. 4 a The output of
astrocyte applied to individual
neurons. b The total current (19)
sketched for each neuron. This
figure clearly demonstrates that
after incorporating the astrocyte
in the network (t > 7000 s), the
oscillation amplitude of i1 and
i2 is increased

0 < t < 7000 s, no astrocyte exists in the model and there-
fore, the output is zero for this interval. However, for the
time interval 7000 < t < 11200 s, astrocyte creates a control
signal (Fig. 6a) with an attempt to desynchronize the two cou-
pled neurons. As the bottom panel of Fig. 5 shows, the syn-
chronization index decreases for this time interval. Moreover,

considering the Fig. 6b, IM,ast > IM and based on the math-
ematical analysis carried out in the Sect. 3.1.1 A.1, the asyn-
chronous oscillations of the coupled neurons are expected.
In the time interval 11200 < t < 12500 s, more interest-
ing phenomena are observed. Despite the initial success of
astrocyte in disturbing the synchrony between two neurons,
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Fig. 5 The effect of altering coupling strength gse (top panel) in the two
coupled neurons with pathological astrocytes. The middle panel shows
the membrane potentials of the two neurons. Due to infection of astro-

cyte, despite the initial success in disturbing the synchrony between two
neurons, synchronized oscillations finally emerged. The bottom panel
displays the synchronization index

synchronized oscillations finally emerged. This occurs as a
result of the incremental coupling strength between neurons
(g) becomes greater than the new synchronization thresh-
old (g0,ast), that is g > g0,ast. Hence, the two coupled
neurons get synchronized and astrocyte is not able to pre-
serve the asynchronous behavior. Such observations are also
expected based on the theoretical analysis carried out in the
Sect. 3.1.2 A.2. It is interesting to draw attention to Fig. 6b
(top and bottom panels) for this time interval. It is appar-
ent that the peak value of total current (19) namely IM,ast

is reduced and this agrees with the mathematical analysis
conducted in the Sect. 3.2 B. In this way, astrocyte cannot
regulate and/or compensate excessive increase in the syn-
aptic strengths through release of gliotransmitters and/or
uptake of neurotransmitters to break the synchronization
and this leads to the emergence of synchronous oscilla-
tions.

Finally, we consider a more realistic and physiological
case where the astrocyte interacts with the coupled neu-
rons for all the duration of the simulation that is the astro-

cyte is present all times from the beginning of the simula-
tions. Results are shown in Fig. 7a, b for the healthy and
pathological astrocyte, respectively. As can be observed,
in the case of healthy astrocyte the asynchronous activity
between neurons is maintained in spite of being subjected
to the increase of coupling level. On the other hand, when
the astrocytes are considered to be pathological and for the
same level of interaction, the coupled neurons finally get
synchronized. It is interesting to compare Fig. 7 with Fig. 2.
Figure 2 shows the results for the behavior of the coupled
neurons in the absence of the astrocytes. A pathologic astro-
cyte is able to preserve asynchronous behavior until 10000 s,
whereas when there is no astrocyte to supervise the neu-
ronal connections, the synchronous behavior begins around
3000 s. Therefore, we can conclude that variations in the cou-
pling between neurons and astrocyte lead to the emergence
of synchronous/ asynchronous patterns in neural responses.
That is, astrocyte actively contributes in the information
processing mechanisms which are carried out primarily by
neurons.
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Fig. 6 a The output of
pathological astrocyte applied to
the individual neurons. b The
total current (19) sketched for
each neuron. This figure clearly
demonstrates that for
7000 < t < 11200 s, the
oscillation amplitude of i1 and
i2 is increased however for
11200 < t < 12500 s, the
amplitude of oscillations are
decreased

5 Conclusions

Bidirectional communication between neurons and astro-
cytes are necessary for normal functioning of the nervous sys-
tem during signal processing (Newman 2003; Halassa et al.
2009). Recent experimental findings show that astrocytes are
involved in the hypersynchronous firing of neurons (Pereira

Jr and Furlan 2009). Hence, it is essential to develop models
which consider neuron–astrocyte interactions.

In one of our previous works (Amiri et al. 2010), we
discussed neural synchronization in the context of epilepsy.
In that study, the thalamocortical neural population model
(TCM) originally proposed by Suffczynski and colleagues
(2004) was extended by integrating the functional role of
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Fig. 7 The effect of varying
coupling strength gse in the
behavior of the two coupled
neurons. In this case, the
astrocyte is present all the time
and its interactions with
individual neurons are included
from the beginning of the
simulations. a For healthy
astrocyte, in spite of increasing
gse, the asynchronous behavior
of neurons continues. b The
pathological astrocyte is not
able to preserve the
asynchronous activities of the
neurons and ultimately they
become synchronized

astrocytes in the regulation of synaptic transmission and the
model was called modified TCM or MTCM. The TCM and
MTCM were constructed in a macroscopic level and con-
sider the basic components involved in absence seizures.
They describe the electrophysiology of cortical and thalamic
neural populations while the explicit behavior of the indi-

vidual neurons is not simulated. The thalamic module con-
sists of reticular thalamic and thalamocortical subpopula-
tions, and the cortical module consists of pyramidal cell and
interneuron subpopulations. The output of both models is the
mean membrane potential of the pyramidal cells and simu-
lates experimental recordings of the local field potentials.

123



Biol Cybern (2011) 105:153–166 165

In the MTCM, astrocytes dynamically regulate the synap-
tic strengths between pyramidal and interneuron subpopula-
tions. This modified model helps us to understand one of the
basic functional mechanisms that can cause epileptic seizure.

On the other hand, in the present research a biologically
inspired neuronal network model was developed by con-
necting two M-L neural models and one astrocyte dynamic
model. It should be mentioned that, Di Garbo (2009) has also
considered a minimal network model consisting of a pyrami-
dal neuron, an interneuron, and an astrocyte. The main focus
of his study was to investigate the dynamical properties of the
model describing calcium dynamics in the astrocyte. Never-
theless, he did not investigate the effect of neuron–astrocyte
interactions on the neuronal synchronization. Whereas in this
research, we focused on the synchronization question both
from mathematical and numerical perspectives with empha-
sizing on the role of astrocyte in controlling synchronization
level through regulation of synaptic transmissions. In this
way, using a minimal model and based on the mathematical
analysis and the results of the numerical simulations reported
in the article, we demonstrated that the astrocyte is able to
change the threshold value of transition from synchrony to
asynchrony.

It should be emphasized that desynchronization is also
important for specific kinds of neural processing (Ackert et al.
2006). In other words, variations in the degree of synchrony,
shifting from synchrony to asynchrony or vice versa, can be
interpreted as signals for neural information processing. This
suggests a novel mechanism by which cell groups can encode
specific information (Benda et al. 2006). In other words, the
function of astrocyte, when changing the synchronization
level between two coupled neurons, can be considered as a
mechanism to encode information. Therefore, variation in
the strength of neuron–astrocyte interactions can be used as
an important signal for the next level of information process-
ing besides variations in the neuron–neuron interactions in
the brain. This is a current topic of interest in neuroscience to
discover the putative role of astrocytes for stabilizing neural
activity.

Although in this article, we focused on the role of astrocyte
in synchronization of two coupled neurons and explain the
potential of the approach, this is an interesting point to con-
sider a neuronal population model and construct a network
which integrates the role of astrocytes in the synaptic trans-
mission as well as in the regulation of neuronal dynamic.
This procedure will help us to understand how astrocytes
affect the dynamics of synchronization from a network-level
point of view, which in turn will bring to light some impor-
tant aspects of neuron–astrocyte interactions. Finally, it will
be interesting to model the direct neuronal interactions via
the synaptic release mechanism especially given the fact that
they are anyway computing something similar to neurotrans-
mitter release. In this way, it is possible to examine if the

basic mechanism would survive even without gap-junction
coupling. This presents new opportunities for further inves-
tigation of the model and pertinent applications including
involvement of astrocytes in brain disorders such as epilepsy.
These issues will be addressed in future study.
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