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Abstract We have suggested that the mirror-neuron system
might be usefully understood as implementing Bayes-opti-
mal perception of actions emitted by oneself or others. To
substantiate this claim, we present neuronal simulations that
show the same representations can prescribe motor behav-
ior and encode motor intentions during action—observation.
These simulations are based on the free-energy formulation
of active inference, which is formally related to predictive
coding. In this scheme, (generalised) states of the world are
represented as trajectories. When these states include motor
trajectories they implicitly entail intentions (future motor
states). Optimizing the representation of these intentions
enables predictive coding in a prospective sense. Crucially,
the same generative models used to make predictions can
be deployed to predict the actions of self or others by sim-
ply changing the bias or precision (i.e. attention) afforded
to proprioceptive signals. We illustrate these points using
simulations of handwriting to illustrate neuronally plausible
generation and recognition of itinerant (wandering) motor
trajectories. We then use the same simulations to produce
synthetic electrophysiological responses to violations of
intentional expectations. Our results affirm that a Bayes-
optimal approach provides a principled framework, which
accommodates current thinking about the mirror-neuron sys-
tem. Furthermore, it endorses the general formulation of
action as active inference.
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1 Introduction

An exciting electrophysiological discovery is the existence
of mirror neurons that respond to emitting and observing
the same motor act (Di Pellegrino et al. 1992; Rizzolatti
and Craighero 2004). Recently, we suggested that the rep-
resentations encoded by these neurons are consistent with
hierarchical Bayesian inference about states of the world gen-
erating sensory signals (Kilner et al. 2007a,b): See Grafton
and Hamilton (2007) and Tani et al. (2004), who also con-
sider action observation in terms of hierarchical inference. In
these treatments, mirror neurons represent motor intentions
(goals) and generate predictions about the proprioceptive and
exteroceptive (e.g. visual) consequences of action, irrespec-
tive of agency (self or other). Casting mirror neurons in this
representational role may explain why they appear to pos-
sess the properties of motor and sensory units in different
contexts. This is because the content of the representation
(action) is the same in different contexts (agency). Crucially,
the idea that neurons represent the causes of sensory input
also underlies predictive coding and active inference. In pre-
dictive coding, neuronal representations are used to make
predictions, which are optimised during perception by mini-
mizing prediction error. In active inference, action tries to
fulfill these predictions by minimizing sensory (e.g. pro-
prioceptive) prediction error. This enables intended move-
ments (goal directed acts) to be prescribed by predictions,
which action is enslaved to fulfill. This account of action sug-
gests that mirror neurons are mandated in any Bayes-optimal
agent that acts upon its world. We try to illustrate this, using
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simulations of optimal behavior that reproduce the basic
empirical phenomenology of the mirror-neuron system.

Humans can infer the intentions of others through obser-
vation of their actions (Gallese and Goldman 1998; Frith and
Frith 1999; Grafton and Hamilton 2007), where action com-
prises a sequence of acts or movements with a specific goal.
Little is known about the neural mechanisms underlying this
ability to ‘mind read’, but a likely candidate is the mirror-neu-
ron system (Rizzolatti and Craighero 2004). Mirror neurons
discharge not only during action execution but also during
action—observation. Their participation in action execution
and observation suggests that these neurons are a possible
substrate for action understanding. Mirror neurons were first
discovered in the premotor area, F5, of the macaque monkey
(Di Pellegrino et al. 1992; Gallese et al. 1996; Rizzolatti et al.
2001; Umilta et al. 2001) and were identified subsequently
in an area of inferior parietal lobule, area PF (Fogassi et al.
2005).

The premise of this article is that mirror neurons emerge
naturally in any agent that acts on its environment to avoid
surprising events. We have discussed the imperative of min-
imizing surprise in terms of a free-energy principle (Fris-
ton et al. 2006; Friston 2009). The underlying motivation
is that adaptive agents maintain low entropy equilibria with
their environment. Here, entropy is the average surprise of
sensory signals, under the agent’s model of how those sig-
nals were generated. Another perspective on this imperative
comes from the fact that surprise is mathematically the same
as the negative log-evidence for an agent’s model. This means
the agent is trying to maximise the evidence for its model
of its world by minimizing surprise. Under some simplify-
ing assumptions, surprise reduces to the difference between
the model’s predictions and the sensations sampled (i.e. pre-
diction error). In this formulation, action corresponds to
selecting sensory samples that conform to predictions, while
perception involves optimizing predictions by updating pos-
terior (conditional) beliefs about the state of the world gener-
ating sensory signals. Both result in a reduction of prediction
error (see Friston 2009 for a heuristic summary). The result-
ing scheme is called active inference (Friston et al. 2009,
2010a), which, in the absence of action, is formally equiva-
lent to evidence accumulation in predictive coding (Mumford
1992; Rao and Ballard 1998).

Active inference provides a slightly different perspective
on the brain and its neuronal representations, when com-
pared to conventional views of the motor system. Under
active inference, there are no distinct sensory or motor rep-
resentations, because proprioceptive predictions are suffi-
cient to furnish motor control signals. This obviates the
need for motor representations per se: High-level represen-
tations encode beliefs about the state of the world that gener-
ate both proprioceptive and exteroceptive predictions. Motor
control and action emerge only at the lowest levels of the
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hierarchy, as suppression of proprioceptive prediction error;
for example, by classical motor reflex arcs. In this scheme,
complex sequences of behavior can be prescribed by propri-
oceptive predictions, which peripheral motor systems try to
fulfill. This means that the central nervous system is con-
cerned solely with perceptual inference about the hidden
states of the world causing sensory data. The primary motor
cortex is no more or less a motor cortical area than striate
(visual) cortex. The only difference between the motor cor-
tex and visual cortex is that one predicts retinotopic input,
while the other predicts proprioceptive input from the motor
plant (see Friston et al. 2010a for discussion). In this picture
of the brain, neurons represent both cause and consequence:
They encode conditional expectations about hidden states in
the world causing sensory data, while at the same time caus-
ing those states vicariously through action. In a similar way,
they report the consequences of action because they are con-
ditioned on its sensory sequelae. In short, active inference
induces a circular causality that destroys conventional dis-
tinctions between sensory (consequence) and motor (cause)
representations. This means that optimizing representations
corresponds to perception or intention, i.e. forming percepts
or intents. It is this bilateral view of neuronal representations
we exploit in the theoretical treatment of the mirror-neuron
system below.

A key aspect of the free-energy formulation is that hid-
den states and causes in the world are represented in terms
of their generalised motion (Friston 2008). In this context, a
generalised state corresponds to a trajectory or path through
state-space that contains the variables responsible for gener-
ating sensory data. Neuronal representations of generalised
states pertain not just to an instant in time but to a trajec-
tory that encodes future states. This means that the implicit
predictive coding is predictive in an anticipatory or general-
ised sense. This is only true of generalised predictive coding:
Usually, the ‘predictive’ in predictive coding is not about
what will happen but about predicting current sensations,
given their causes. However, in generalised predictive coding,
prediction can be used in both its concurrent and anticipatory
sense. The trajectories one might presume are represented by
the brain are itinerant or wandering. Obvious examples here
are those encoding locomotion, speech, reading and writing.
A useful concept here is the notion of a stable heteroclin-
ic channel. This simply means a path through state-space
that visits a succession of (unstable) fixed points. Hetero-
clinic channels and their associated itinerant dynamics are
easy to specify in generative models and have been used to
model the recognition of speech and song (e.g. Afraimovich
et al. 2008; Rabinovich et al. 2008; Kiebel et al. 2009a,b).
Conceptually, they can be thought of as encoding dynami-
cal movement ‘primitives’ (Ijspeert et al. 2002; Schaal et al.
2007; Namikawa and Tani 2010) or perceptual and motor
‘schema’ (Jeannerod et al. 1995; Arbib 2008). In this article,
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we will use itinerant dynamics to both generate and recognise
handwriting. During action these dynamics play the role of
prior expectations that are fulfilled by action to render them
posterior beliefs about what actually happened. In action—
observation, these priors correspond to dynamical templates
for recognizing complicated and itinerant sensory trajecto-
ries. In what follows, we will exploit both perspectives using
the same neuronal instantiation of itinerant dynamics to gen-
erate action and then recognise the same action executed
by another agent. The only difference between these two
scenarios is whether the proprioceptive signals generated by
action are sensed by the agent. It is this simple change of con-
text (agency) that enables the same inferential machinery to
generate and recognise the perceptual correlates of itinerant
(sequential) behaviour.

This article comprises four sections. In Sect. 2, we briefly
reprise the free-energy formulation of active inference to
place what follows in a general setting and illustrate that
action—observation rests on exactly the same principles
underlying perceptual inference, learning and attention. In
Sect. 3, we describe a generative model based on Lotka—
Volterra dynamics (Afraimovich et al. 2008) that generate
handwriting. We use this model to illustrate the basic proper-
ties of active inference and how prior expectations can induce
realistic motor behavior. This section is based on the princi-
ples established by Sect. 2. Our focus will be on the interpre-
tation of posterior or conditional expectations about hidden
states of the world (the trajectory of joint angles in a synthetic
arm) as intended movements, which action fulfils. In the
Sect. 4, we take the same model and make one simple change:
We retain the visual input caused by action but ‘switch off”
proprioceptive input. This simulates action—observation and
appeals to the same contextual gating we have used previ-
ously to model attention (Friston 2009; Feldman and Friston
2010). In this context, the observed movement is exactly the
same as the self-generated movement. However, because the
agent does not distinguish between perceptions and inten-
tions, it still predicts and perceives the movement trajectory.
In other words, it infers the trajectory intended by the (other)
agent; provided the other agent behaves like the observer.
The final section illustrates the implicit capacity to encode
the intentions of others by reversing the movement during
the course of the predicted sequence. We then examine the
agent’s conditional representations for evidence that this vio-
lation has been detected. To do this, we look at the prediction
errors and associate these with synthetic event related poten-
tials of the sort observed electrophysiologically. We conclude
with a brief discussion of this formulation of action—obser-
vation for the mirror-neuron system and motor control in
general. The purpose of this paper is to provide proof of prin-
ciple that active inference can account for both action and its
understanding. We therefore focus on motivating the under-
lying scheme from basic principles and providing worked

examples. However, we include an Appendix for people who
want to implement and extend the simulations themselves.

2 Free-energy and active inference

In this section, we review briefly the free-energy principle
and how it translates into action and perception. We have
covered this material in previous publications (Friston et al.
2006; Friston 2008, 2009; Friston et al. 2009, 2010a,b). It is
reprised here intuitively to describe the formulism on which
later simulations are based.

The free-energy formalism for the brain has three basic
ingredients. We start with the free-energy principle per se,
which says that adaptive agents minimise a free-energy
bound on surprise (or the negative log evidence for their
model of the world). The free-energy is induced by some-
thing called a recognition density, encoded by the conditional
expectations of hidden states causing sensory data (hence-
forth, expected states). Under the assumption that agents
minimise free-energy (and implicitly surprise) using gra-
dient descent, we end up with a set of differential equa-
tions describing how action and neuronal representations
of expected states change with time. The second ingredi-
ent is the agent’s model of how sensory data are generated
(Gregory 1968, 1980; Dayan et al. 1995). This model is nec-
essary to specify what is surprising. We use a very general
dynamical model with a hierarchical form that we assume is
used by the brain. The third ingredient is how the brain imple-
ments the free-energy principle. This involves substituting
the particular form of the generative model into the differen-
tial equations describing action and perception. The resulting
scheme, when formulated in terms of prediction errors, cor-
responds to predictive coding (cf., Mumford 1992; Rao and
Ballard 1998; Friston 2008). The scheme is essentially a set
of differential equations describing the activity of two pop-
ulations of cells in the brain (encoding expected states and
prediction error, respectively). This generalised predictive
coding is used in the simulations of subsequent sections. Fur-
thermore, it is exactly the same scheme used in previous illus-
trations of perceptual inference (Kiebel et al. 2009a), percep-
tual learning (Friston 2008), reinforcement learning (Friston
et al. 2009), active inference (Friston et al. 2010a) and atten-
tional processing (Feldman and Friston 2010). The quantities
and variables used below are summarised in Table 1.

2.1 Action and perception from basic principles

The starting point for the free-energy principle is that biolog-
ical systems (e.g. agents) resist a natural tendency to disor-
der; under which fluctuations in their states cause the entropy
(dispersion) of their ensemble density to increase with time.
Probabilistically, this means that agents must minimise the
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Table 1 Generic variables and quantities in the free-energy formation of active inference, under the Laplace assumption (i.e. generalised predictive

coding)

Variable Description

meM Generative model or agent: In the free-energy formulation, each agent or system is taken to be a model of the
environment in which it is immersed. m € M corresponds to the form (e.g. degrees of freedom) of a model
entailed by an agent, which is used to predict sensory signals.

acv Action: These variables are states of the world that correspond to the movement or configuration of an agent

SH=s®s ®s"®---€8
L(S|m) = —1n p(5|m)

H(S|m) x fdtﬁ(E(z)lm)

GG, ) =—1InpG, Olm)

FG.q) = GG 0 + S In|Guul
> L(5|m)

S@G,q) = [dtF S, q)

> H(S|m)

q(@) =N, 0)
9 ={u, ¢, a}

O ={u, ¢}

u = {x, v}

¢ ={0,v}
0CeoC?V
yCcoC?d

xt)=xDV@x?g...
CucC?v

v(t) = v @ @@ ..
Cucv

FEV O @ )

FEO D O g)

PRCE0)
R

n(t:,v) — R(l:,v) ® I(l:,v) exp(y(’i'”))
Mty = U g y@.x) exp(y("f"))

RV
RGN

Flv) — §G=1) _ f(i,v)
3@x) — pr@® _ f'(i,X)

g — v gE.v)
g0 = [16x) gG.x)

(i.e. its effectors).

Sensory signals: These generalised sensory signals or samples comprise the sensory states, their velocity,
acceleration and temporal derivatives to high order. In other words, they correspond to the trajectory of an
agent’s sensations.

Surprise: This is a scalar function of sensory samples and reports the improbability of sampling some sig-
nals, under a generative model of how those signals were caused. It is sometimes called (sensory) suprisal or
self-information. In statistics it is known as the negative log-evidence for the model.

Entropy: Sensory entropy is, under ergodic assumptions, proportional to the long-term time average of surprise.

Gibbs energy: This is the negative log of the density specified by the generative model; namely, surprise about
the joint occurrence of sensory samples and their causes.

Free-energy: This is a scalar function of sensory samples and a recognition density, which upper bounds sur-
prise. It is called free-energy because it is the expected Gibbs energy minus the entropy of the recognition
density. Under a Gaussian (Laplace) assumption about the form of the recognition density, free-energy reduces
to the simple function of Gibbs energy shown.

Free-action: This is a scalar functional of sensory samples and a recognition density, which upper bounds the
entropy of sensory signals. It is the time or path integral of free-energy.

Recognition density: This is also know as a proposal density and becomes (approximates) the conditional den-
sity over hidden causes of sensory samples, when free-energy is minimised. Under the Laplace assumption, it
is specified by its conditional expectation and covariance.

True (bold) and hidden (italics) causes: These quantities cause sensory signals. The true quantities exist in
the environment and the hidden homologues are those assumed by the generative model of that environment.
Both are partitioned into time-dependent variables and time-invariant parameters.

Hidden parameters: These are the parameters of the mappings (e.g. equations of motion) that constitute the
deterministic part of a generative model.

Log-precisions: These parameters control the precision (inverse variance) of fluctuations that constitute the
random part of a generative model.

Hidden states: These hidden variables encode the hierarchical states in a generative model of dynamics in the
world.

Hidden causes: These hidden variables link different levels of a hierarchical generative model.

Deterministic mappings: These are equations at the ith level of a hierarchical generative model that map
from states at one level to another and map hidden states to their motion within each level. They specify the
deterministic part of a generative model.

Random fluctuations: These are random fluctuations on the hidden causes and motion of hidden states. Gaussian
assumptions about these fluctuations furnish the probabilistic part of a generative model.

Precision matrices: These are the inverse covariances among (generalised) random fluctuations on the hidden
causes and motion of hidden states.

Roughness matrices: These are the inverses of the matrices encoding serial correlations among (generalised)
random fluctuations on the hidden causes and motion of hidden states.

Prediction errors: These are the prediction errors on the hidden causes and motion of hidden states evaluated
at their current conditional expectation.

Precision-weighted prediction errors: These are the prediction errors weighted by their respective precisions.

See main text for details

@ Springer



Biol Cybern (2011) 104:137-160

141

entropy of their states and, implicitly, their sensory sam-
ples of the world. More formally, any agent or model, m,
must minimise the average uncertainty (entropy) about its
generalised sensory states, § = s ®s' ®s" ®--- € S (P
means concatenation). Generalised states (designated by the
tilde) comprise the states per se and their generalised motion
(velocity, acceleration, jerk, etc). Generalised motion is (in
principle) of infinite order; however, it can be truncated to a
low order (four in this paper); because the precision of high
order motion is very small. This is covered in detail in Friston
(2008). The average uncertainty about generalised states is

H(S|m) = —/p(§|m)lnp(§|m)d§o</dt£(s(t)|m) €))]

Under ergodic assumptions, this is proportional to the
long-term average of surprise, also known as negative
log-evidence, L(S|m) = —In p(5|m). Essentially, sensory
entropy accumulates negative log-evidence over time. Min-
imising sensory entropy therefore corresponds to maximiz-
ing the accumulated log-evidence for the agent’s model of
the world. Although, sensory entropy cannot be minimised
directly, we can create an upper bound S(5, g) > H(S|m)
that can be minimised. This bound is a function of a time-
dependent recognition density ¢ (¢}) on the causes (i.e.
environmental states and parameters) of sensory signals. The
requisite bound is the path-integral of free-energy 7, which
is created simply by adding a non-negative function of the
recognition density to surprise:

F =L+ D(g®I|p®5, m))
—(G)y —H @
L = —1np(§|m)

G =—1Inp(s, % m)
H=—(ng®),

This function is a Kullback—Leibler divergence D(:||-) and
is greater than zero, with equality when g (J) = p(P|s, m)
is the true conditional density. This means that minimizing
free-energy, by changing the recognition density, makes it
an approximate posterior or conditional density on sensory
causes. This is Bayes-optimal perception. The free-energy
can be evaluated easily because it is a function of the recog-
nition density and a generative model entailed by m: Eq. 2
expresses free-energy in terms of H, the negentropy of g ()
and an energy G = —In p(§, 9|m) expected under g (¥}).
This expected (Gibbs) energy rests on a probabilistic gen-
erative model; p(s, ¥ |m). If we assume that the recognition
density g(¢) = N (i, C) is Gaussian (known as the Laplace
assumption), we can express free-energy in terms of the con-
ditional mean or expectation of the recognition density fi(z),
where omitting constants

1
F($(a), p) =G5, 1) + 3 In |Gl 3)

Here, the conditional precision (inverse covariance) is C -1 =
P = Gjji- Crucially, this means the free-energy is a function
of the expected states and sensory samples, which depend on
how they are sampled by action. The action a(¢) and expec-
ted states fi(7) that minimise free-energy are the solutions to
the following differential equations

i=~F,

. _ 4)
iw=Dp—Fz

In short, the free-energy principle prescribes optimal action
and perception. Here D is a derivative matrix operator with
identity matrices above the leading diagonal, such that Dji =
w @ u” @ ---. Here and throughout, we assume all gradi-
ents (denoted by subscripts) are evaluated at the mean. The
stationary solution of Eq. 4 ensures that when free-energy is
minimised the expected motion of the states is the motion
of the expected states; that is 7; = 0 = [L = Djr. The
recognition dynamics in Eq. 4 can be regarded as a gradient
descent in a frame of reference that moves with the expected
motion of the states (cf., surfing a wave). More general for-
mulations of Eq. 4 make a distinction between time-varying
environmental states ¥ C ¥ and time-invariant parameters
¢ C ¥ (see Friston et al. 2010a,b). In this article, we will
assume that only the states are unknown or hidden from the
agent and ignore the learning of ¢ C ¢

Action can only reduce free-energy by changing sensory
signals. This changes the first (log-likelihood) part of Gibb’s
energy G = — In p(§|9, m) —In p(J|m) that depends on sen-
sations. This means that action will sample sensory signals
that are most likely under the recognition density (i.e. sam-
pling selectively what one expects to experience). In other
words, agents must necessarily (if implicitly) make infer-
ences about the causes of their sensations and sample signals
that are consistent with those inferences.

2.2 Summary

In summary, we have derived action and perception dynam-
ics for expected states (in generalised coordinates of motion)
that cause sensory samples. The solutions to these equa-
tions minimise free-energy and therefore minimise surpris-
ing sensations or, equivalently, maximise the evidence for
an agent’s model of the world. This corresponds to active
inference, where predictions guide active sampling of sen-
sory data. Active inference rests on the notion that “per-
ception and behavior can interact synergistically, via the
environment” to optimise behavior (Verschure et al. 2003)
and is an example of self-referenced learning (Porr and
Worgotter 2003; Worgotter and Porr 2005). The precise form
of active inference depends on the energy at each point in
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time G = — In p(§, ¥|m) that rests on a particular generative
model. In what follows, we review dynamic models of the
world.

2.3 Hierarchical dynamic models

We now introduce a general model based on the models dis-
cussed in Friston (2008). We will assume that sensory data
are modeled with a special case of

s= V0%, 0,0)+ 0V 0V ~ N0, 2V (x, v, y))

(%)
¥= % 0,0 +0® 0™ ~ N0, =W (x, v, ¥))

The nonlinear functions f“ : u € v, x represent the deter-
ministic part of the model and are parameterised by 6 C ¢.
The variables v C u are referred to as hidden causes, while
hidden states x C u meditate the influence of the causes on
sensory data and endow the model with memory. Equation 5
is just a state-space model, where the first (sensory map-
ping) function maps from hidden variables to sensory data
and the second represents equations of motion for hidden
states (where the hidden causes can be regarded as exoge-
nous inputs). We assume the random fluctuations w™ are
analytic, such that the covariance of the generalised fluctu-
ations @™ is well defined. These fluctuations represent the
stochastic part of the model. This model allows for state-
dependent changes in the amplitude of random fluctuations
and introduces a distinction between the effect of states on
the flow and dispersion of sensory trajectories. Under local
linearity assumptions, the generalised motion of the sensory
response and hidden states can be expressed compactly as

5= f(v) )

Di = f0 450 ©
where the generalised predictions are
f(u) — f(u)
Fu) = (0 0
= ) 1y 0 (7

(u)
f// —

Equation 5 means that Gaussian assumptions about the fluc-
tuations specify a generative model in terms of a likelihood
and empirical priors on the motion of hidden states

pGIx, 0, 0,m)=N (f(u)’ i(v))

o ®)
pDi|x, 0, 9.m) =N (fm, gm)

These probability densities are encoded by their covari-
ances £ or precisions (inverse covariances) 0w .=
[(x, v, y®) with precision parameters y C ¢ that control
the amplitude and smoothness of the random fluctuations.
Generally, the covariances factorise: ¥ = V® @ »®)
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into a covariance among different fluctuations and a matrix of
correlations V) over different orders of motion that encodes
their smoothness. Given this generative model we can now
write down the energy as a function of the conditional means,
which has a simple quadratic form (ignoring constants)

G=g"+g®
gW = 1lzT @z _ %ln s

2
g(x) — %g(x)Tﬁ(X)g(x) _ %m |1:[(x)| 9)
0 5 JF(U)
30 — D[L(x) _ J?(x)

Here, the auxiliary variables % : u € v, x are prediction
errors for sensory data and motion of the hidden states. We
next consider hierarchical forms of this model. These are just
special cases of Eq. 6, in which we make certain conditional
independencies explicit. Although, the examples in the next
section are not hierarchical, we briefly consider hierarchi-
cal forms here, because they provide an important empirical
Bayesian perspective on inference that may be exploited by
the brain. Furthermore, they provide a nice link to the con-
nectionist scheme of Tani et al. (2004). Hierarchical dynamic
models have the following form

5 = f(]’v)(x(l), D) 0) + oY
+ = f(l.x) (x(l)’ v(l)’ 0) + w1

. (10)
=D = G0 (O D gy 4 i)
0 = fE0 O 4O gy 4 0

As above, f (@u) .y e v, x are nonlinear functions, the
random terms ") : u € v, x are conditionally indepen-
dent and enter each level of the hierarchy. They play the
role of sensory noise at the first level and induce random
fluctuations in the states at higher levels. The hidden causes
v=0D @®v® @ ... link levels, whereas the hidden states
x=xD@x® @ ... link dynamics over time. In hierarchi-
cal form, the output of one level acts as an input to the next.
This input can enter nonlinearly to produce quite complicated
generalised convolutions with deep (hierarchical) structure.
Crucially, when these top-down inputs act as control param-
eters for the hidden states in the level below, they correspond
to ‘parametric biases’ in the connectionist scheme of Tani
et al. (2004). Hierarchical structure appears in the energy as
empirical priors G©*) : u € x, v where, ignoring constants
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g

Z gt 4 Z g
i i

Gl = LT f{G0zG) _ Ly o)

2
g(i,x) — %g(i,x)Tﬁ(i,x)é(i,x) _ %11‘1 |1:[(i,x)| (1 1)

g0 = =D _ Fv)

g6 = pg® _ fin)

2.4 Summary

In summary, these models are as complicated as one could
imagine; they comprise hidden causes and states, whose
dynamics can be coupled with arbitrary (analytic) nonlinear
functions. Furthermore, these states can be subject to random
fluctuations with state-dependent changes in amplitude and
arbitrary (analytic) autocorrelation functions. A key aspect
is their hierarchical form, which induces empirical priors on
the causes. In the next section, we look at the recognition
dynamics entailed by this form of generative model, with a
particular focus on how recognition might be implemented
in the brain.

2.5 Action and perception under hierarchical dynamic
models

If we now write down the recognition dynamics (Eq. 4) using
precision-weighted prediction errors &%) = [1E0z0H)
from Eq. 11, one can see the hierarchical message-passing
entailed by this scheme (ignoring the derivatives of the energy
curvature):

ﬂ(i,v) — 'D/:L(i'v) + fé,vg(i,v) + fil,xé:(i,x) _ é_.(iJrl,v)
ﬂ(i,x) — Dﬂ<i’x) + f;z,vg__(i,v) + f;é,xé_.(i,x) _ DTE(i’x)

g0 = G050 — [ ('a(if],v) _ f(i,v)) (12)

g0 — fE0g6E0 — f60) (Dﬁ(i,x) _ f(i,x))

For simplicity, we have assumed the amplitude of the ran-
dom fluctuations does not depend on the states and can
be parameterised in terms of log-precisions y %) : u €
v, x, where the precision of the generalised fluctuations is
160 = RGM @ [0 exp(y 1)) Here, R%™ is the inverse
of the correlation matrix V @-*) above and 7% is the identity
matrix.

It is difficult to overstate the generality and importance
of Eq. 12: It grandfathers nearly every known statistical
scheme, under parametric assumptions about noise. These
range from ordinary least squares to advanced variational
deconvolution schemes (see Friston 2008). Equation 12
is generalised predictive coding and follows simply from
the generalised gradient decent in Eq. 4, where the free-
energy gradients reduce to linear mixtures of prediction

errors. This simplicity rests on Gaussian assumptions about
the random fluctuations and the form of the recognition
density.

Equation 12 shows how recognition dynamics can be
implemented by relatively simple message-passing between
(neuronal) states encoding conditional expectations and pre-
diction errors. The motion of conditional expectations is
driven in a linear fashion by prediction error, while prediction
error is a nonlinear function of conditional expectations. In
neural network terms, Eq. 12 says that error-units encoding
(precision-weighted) prediction error receive messages from
the state-units encoding conditional expectations in the same
level and the level above. Conversely, state-units are driven
by error-units in the same level and the level below. Crucially,
perception requires only the (precision-weighted) prediction
error from the lower level £®?) and the level in question
g0 gl+10) These constitute bottom-up and lateral mes-
sages that drive the conditional expectations 1% towards
a better prediction. These top-down and lateral predictions
correspond to £+ This is the essence of recurrent message-
passing between hierarchical levels to optimise free-energy
or suppress prediction error (see Friston 2008 for a more
detailed discussion).

Equation 12 also tells us that the precisions modulate the
responses of the error-units to their presynaptic inputs. This
translates into synaptic gain control in principal cells (super-
ficial pyramidal cells; Mumford 1992) elaborating prediction
errors and fits comfortably with modulatory bias effects that
have been associated with attention (Desimone and Duncan
1995; Schroeder et al. 2001; Salinas and Sejnowski 2001;
Fries et al. 2008; see Feldman and Friston 2010). We will
use precisions later to contextualise recognition under action
or observation.

Since action can only affect the free-energy by changing
sensory data, it can only affect sensory prediction error. From
Eq. 4, we have

a = _gl(lv)g(v)
éc(zv) — fi(v) ZD_j(f)Z(X))j_l a(x) (13)
J

The second equality expresses the change in prediction error
with action in terms of the effect of action on successively
higher order motions of the hidden states. In biologically
plausible instances of this scheme, the partial derivatives in
Eq. 13 would have to be computed on the basis of a map-
ping from action to sensory consequences, which is usually
quite simple, e.g. activating an intrafusal muscle fiber elic-
its stretch receptor activity in the corresponding spindle (see
Friston et al. 2010a for discussion).
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2.6 Summary

In summary, we have derived equations for the dynamics
of action and perception using a free-energy formulation of
adaptive (Bayes-optimal) exchange with the world and a gen-
erative model that is both generic and biologically plausible.
In what follows, we will use Eqs. 12 and 13 to simulate neu-
ronal responses under action and observation. A technical
treatment of the material in section will be found in Friston
et al. (2010b), which provides the details of the scheme used
to integrate (solve) Eq. 12 to produce the simulations in the
next section.

3 Simulations: action

In this section, we describe a generative model of handwrit-
ing and then use the generalised predictive coding scheme
of the previous section to simulate neuronal dynamics and
behavior. To create these simulations, all we have to do is
specify the equations of the generative model and the preci-
sion of random fluctuations. Action and perception are then
prescribed by Egs. 12 and 13, which simulate neuronal and
behavioral responses respectively. Our agent was equipped a
simple (one-level) dynamical model of its sensorium based
on a Lotka—Volterra model of itinerant dynamics. The partic-
ular form of this model has been discussed previously as the
basis of putative speech decoding (Kiebel et al. 2009b). Here,
it is used to model a stable heteroclinic channel (Rabinovich
et al. 2008) encoding successive locations to which the agent
expects its two-jointed arm to be attracted. The resulting tra-
jectory was contrived to simulate synthetic handwriting.

A stable heteroclinic channel is a particular form of (sta-
ble) itinerant trajectory or orbit that revisits a sequence of
(unstable) fixed points. In our model, there are two sets of
hidden states. The first set « = [ay, ..., a]] C x corre-
sponds to the state-space of a Lotka—Volterra system. This
is an abstract (attractor) state-space, in which a series of
attracting points are visited in succession. The second set
{x1, x2, x{, x5} C x corresponds to the (angular) positions
and velocities of the two joints in (two dimensional) phys-
ical space. The dynamics of both sets are coupled through
the agent’s prior expectation that the arm will be drawn to
a particular location, £*(«) specified by the attractor states.
This is implemented simply by placing a (virtual) elastic band
between the tip of the arm and the attracting location in physi-
cal space. The hidden states basically draw the arm’s extrem-
ity (finger) to a succession of locations to produce an orbit or
trajectory, under classical Newtonian mechanics. We chose
the locations so that the resulting trajectory looked like hand-
writing. These hidden states generate both proprioceptive
and visual (extroceptive) sensory data: The proprioceptive
data are the angular positions and velocities of the two joints
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{x1, x2, x{, x5}, while the visual information was the location
of the arm in Cartesian space {{1, £1+£2}, where £>(x1, x2) is
the displacement of the finger from the location of the second
joint £1(x1) (see Fig. 1 and Table 2). Crucially, because this
generative model generates two (proprioceptive and visual)
sensory modalities, solutions to the equations of the previous
section (i.e. perception) implement Bayes-optimal multisen-
sory integration. However, because action is also trying to
reduce prediction errors, it will move the arm to reproduce
the expected trajectory (under the constraints of the motor
plant). In other words, the arm will trace out a trajectory
prescribed by the itinerant priors. This closes the loop, pro-
ducing autonomous self-generated sequences of behavior of
the sort described below. Note that the real world does not
contain any attracting locations or elastic bands: The only
causes of observed movement are the self-fulfilling expec-
tations encoded by the itinerant dynamics of the generative
model. In short, hidden attractor states essentially entail the
intended movement trajectory, because they generate predic-
tions that action fulfils. This means expected states encode
conditional percepts (concepts) about latent abstract states
(that do not exist in the absence of action), which play the
role of intentions. We now describe the model formally. In
this model, there is only one hierarchical level, and we can
drop the hierarchical superscripts.

3.1 The generative model

The model used in this section concerns a two-joint arm.
When simulating active inference, it is important to distin-
guish between the agent’s generative model and the actual
dynamics generating sensory data. To make this distinction
clear, we will use bold for true equations and states, while
those of the generative model will be written in italics. Propri-
oceptive input corresponds to the angular position and veloc-
ity of both joints, while the visual input corresponds to the
location of the extremities of both parts of the arm.

O = fO ! (14)

£1(x) + £2(x)

We ignore the complexities of inference on retinotopically
mapped visual input and assume the agent has direct access
to locations of the arm in visual space. The kinetics of the
arm conforms to Newtonian laws, under which action forces
the angular position of each joint. Both joints have an equi-
librium position at 90°; with inertia m; € 8, 4 and viscosity
ki € 4,2, giving the following equations of motion
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hidden physical states

visual input

proprioception

Fig. 1 This schematic details the simulated mirror neuron system and
the motor plant that it controls (left and right, respectively). The right
panel depicts the functional architecture of the supposed neural cir-
cuits underlying active inference. The filled ellipses represent predic-
tion error-units (neurons or populations), while the white ellipses denote
state-units encoding conditional expectations about hidden states of the
world. Here, they are divided into abstract attractor states (that supports
stable heteroclinic orbits) and physical states of the arm (angular posi-
tions and velocities of the two joints). Filled arrows are forward con-
nections conveying prediction errors and black arrows are backward
connections mediating predictions. Motor commands are emitted by

/1

X
X1 X/z
X = i,zl £ = | (avi-ba-5)—ax)) (15)
/ m
b & (@+v2— 5 (2= F)—12x'2)
my

However, the agent’s empirical priors on this motion have
a very different form. Its generative model assumes the fin-
ger is pulled to a (goal) location £*(«(r)) € N2 by a force
¢(x,a) € M2, which implements the virtual elastic band
above (1¢ is a column vector of ones):

/
2 (¢Tzzﬂozl—)iz(xl—l>—mx’>
X = xi f(x) = 2 r1n61 2 1
x5 @ 0t~ {5 (2 —F) ko))
m3
L« Ao () — %O{ + 1g
[cos(x1)
) =] .
1) | sin(x1) }
[ —cos(—x2 — x1) 0-—1
12 =1 . = 1
20 = | sin(xz — x1) } 0 [1 0 (16)

1
dx,a) = 5(5* — 0 — )

5(") _ ﬁ(v>(§_ /7-(\'))
é«(.\) _ l:l“)(,Dl[l(x) 7]7‘(«\’))
ﬁ(x) =Dﬂ(x) +J;.(V)§(V) +J7‘_(X)é:(X) —DTf"‘)

the black units in the ventral horn of the spinal cord. Note that these just
receive prediction errors about proprioceptive states. These, in turn, are
the difference between sensed proprioceptive input from the two joints
and descending predictions from optimised representations in the motor
cortex. The two jointed arm has a state space that is characterised by
two angles, which control the position of the finger that will be used for
writing in subsequent figures. The equations correspond to the expres-
sions in the main text and represent a gradient decent on free-energy.
They have been simplified here by omitting the hierarchical subscript
and dynamics on hidden causes (which are not called on in this model)

£*(a) = Ls(a)

1
olei) = T3 o

2a;
s(o) =

Z] eZaj

Heuristically, these equations of motion mean that the agent
thinks that changes in its world are caused by the dynam-
ics of hidden states &« = Ao (a) — %cx + 1 + ©@ in an
abstract (conceptual) space. These dynamics conform to an
attractor, which ensures points in attractor space are revisited
in sequence and that only one attractor-state is active at any
time. The currently active state selects a location £*(«) in
the physical (Cartesian) space of the agent’s world, which
exerts a force ¢ (x, @) on the agent’s finger. The first four
equations of motion in Eq. 16 pertain to the resulting motion
of the agent’s arm in Cartesian space, while the last equation
mediates the attractor dynamics driving these movements.
More formally, the (Lotka—Volterra) form of the equations
of motion for the hidden attractor states ensures that only one
has a high value at any one time and imposes a particular
sequence on the underlying states. Lotka—Volterra dynamics
basically induce competition among states that no state can
win. One can see this intuitively by noting that when any
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Table 2 Variables and quantities specific to the writing example of
active inference (see main text for details)

Variable Description

Hidden attractor states: A vector of hidden
states that specify the current location
towards which the agent expects its arm to
be pulled.

a(t) eR® C x

xi(t) eRNCx

xX/(t) eRCx Hidden effector states: Hidden states that

specify the angular position and velocity of
the i-th joint in a two-jointed arm.
21(x1) € M2

£r(x1. x2) € N2 Joint locations: Locations of the end of the

two arm parts in Cartesian space. These are
functions of the angular positions of the
joints.

Attracting location: The location towards
which the arm is drawn. This is specified by
the hidden attractor states.

Newtonian force: This is the angular force on
the joints exerted by the attracting location.

25 (a(r)) € K2

o (x, o) € R2

A e RO*® c 0 Antractor parameters: A matrix of parameters
that govern the (sequential Lotka—Volterra)
dynamics of the hidden attractor states.

LeN2*®co Cartesian parameters: A matrix of

parameters that specify the attracting
locations associated with each hidden
attractor state.

state’s value is high, the negative effect on its motion can
now longer be offset by the upper bounded function o («).
The resulting winnerless competition rests on the (logistic)
function o (v), while the sequence order is determined by the
elements of the matrix

1
0 -1 -1 -1

3 1
-3 0 -1 -1
A=|-1 -3 0 -1 (17)
-1 -1 =30

Each attractor state has an associated location in Cartesian
space, which draws the arm towards it using classical New-
tonian mechanics. The attracting location is specified by a
mapping £*(a) = Ls(a) from attractor space @ € R° to
Cartesian space £ € )%, which weights the locations L C 6:

L=|:1 1.1 1.0 1 14 0.9}

1 1.2 04 1 09 1.0 (18)

with a softmax function s (o) of the attractor states. The loca-
tion parameters were specified by hand but could, in princi-
ple, be learnt as described in Friston et al. (2009, 2010a).
The inertia and viscosity of the arm were chosen some-
what arbitrarily to reproduce realistic writing movements
over 256 time bins, each corresponding to roughly 8 ms (i.e. a
second). Unless stated otherwise, we used a log-precision of
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four for sensory noise and eight for fluctuations in the motion
of hidden states.

Movement is caused by action, which is trying to min-
imise sensory prediction error. A subtle but important con-
straint in these simulations was that action only had access to
proprioceptive prediction error. In other words, action only
minimised the difference between the expected and sensed
angular location and velocity of the joints. This is important
because it resolves a potential problem with active inference;
namely that action or command signals need to know how
they affect sensory input to minimise prediction error. The
argument here is that the mapping from action to its proprio-
ceptive consequences is sufficiently simple that it can be rel-
egated (by evolution) to peripheral motor systems (perhaps
even the spinal cord). In this example, complicated (hand-
writing) behavior is prescribed just by proprioceptive (gen-
eralised joint position) prediction errors. Here the mapping
between action (changing the generalised joint position) and
proprioceptive input is very simple. However, this does not
mean that visual information (prediction errors) cannot affect
action. Visual information is crucial when optimizing condi-
tional beliefs (expected states) that prescribe predictions in
both proprioceptive and visual modalities. This means that
visual input can influence action vicariously, through high
level (intentional) representations that predict a (unimodal)
proprioceptive component (Fig. 1). See also Todorov et al.
(2005). In short, although the perception or intention of the
agent integrates proprioceptive and visual information in a
Bayes-optimal fashion, action is driven just by proprioceptive
prediction errors. This will become important in the next sec-
tion, where we remove proprioceptive input but retain visual
stimulation to simulate action observation.

Figure 2 shows the results of integrating the active infer-
ence scheme of the previous section using the generative
model above. The top right panel shows the hidden states;
here the attractor states embodying Lotka—Volterra dynam-
ics (the hidden joint states are smaller in amplitude). These
generate predictions about the position of the joints (upper
left panel) and consequent prediction errors that drive action.
Action is shown on the lower right and displays intermittent
forces that move the joint positions to produce a motor trajec-
tory. This trajectory is shown on the lower left as a function
of Cartesian location traced over time. This trajectory or orbit
is translated as a function of time to reproduce the implicit
handwriting. Although this is a pleasingly simple way of sim-
ulating an extremely complicated motor trajectory, it should
be noted that this agent has a very limited repertoire of behav-
iors; it can only reproduce this sequence of graphemes, and
will do so ad infinitum. Having said this, any exogenous per-
turbations or random forces on the arm have very little effect
on the accuracy of its behavior; because action automatically
compensates for unpredicted excursions from its trajectory
(see Friston et al. 2009).
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Fig. 2 This figure shows the results of simulated action (writing),
under active inference, in terms of conditional expectations about hid-
den states of the world (b), consequent predictions about sensory input
(a) and the ensuing behavior (c) that is caused by action (d). The autono-
mous dynamics that underlie this behavior rest upon the expected hidden
states that follow Lotka—Volterra dynamics: these are the six (arbitrarily)
colored lines in b. The hidden physical states have smaller amplitudes
and map directly on to the predicted proprioceptive and visual signals
(a). The visual locations of the two joints are shown as blue and green
lines, above the predicted joint positions and angular velocities that
fluctuate around zero. The dotted lines correspond to prediction error,

To highlight the fact that the hidden attractor states antic-
ipate the physical motor trajectory, we plotted the expected
and true locations of the finger. Figure 3 shows how condi-
tional expectations about hidden states of the world antedate
and effectively prescribe subsequent behavior. The upper
panel shows the intended location of the finger. This is
a nonlinear function €*(u®) of the attractor states (the
states shown in Fig. 2). The subsequent location of the
finger is shown as a solid blue line and roughly repro-
duces the desired position, with a lag of about 80ms.
This lag can be seen clearly if we look at the cross-cor-
relation function between the intended and attained posi-
tions shown on the lower left. One can see that the peak

hidden states

-8
50 100 150 200 250
time
rturbation an ion
Dos perturbation and actio

which shows small fluctuations about the prediction. Action tries to
suppress this error by ‘matching’ expected changes in angular velocity
through exerting forces on the joints. These forces are shown in blue
and green in d. The dotted line corresponds to exogenous forces, which
were omitted in this example. The subsequent movement of the arm is
traced out in c; this trajectory has been plotted in a moving frame of
reference so that it looks like synthetic handwriting (e.g. a succession
of ‘j” and ‘a’ letters). The straight lines in ¢ denote the final position of
the two jointed arm and the hand icon shows the final position of its
extremity. (Color figure online)

correlation occurs at about ten time bins or 80ms prior to
a zero lag. These dynamics reinforce the notion that con-
ditional beliefs (expected states) constitute an intentional
representation.

Empirically, the correlation between movements and their
internal representations would suggest detectable coherence
between muscle and cerebral activity. The time-courses in
Fig. 2 suggest this coherence would predominate in the theta
(4-10Hz) range. Interestingly, Jerbi et al. (2007) found sig-
nificant phase-locking between slow (2-5Hz) oscillatory
activity in the contralateral primary motor cortex and hand
speed. They also reported “long-range task-related coupling
between primary motor cortex and multiple brain regions
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Fig. 3 This figure illustrates how conditional expectations about hid-
den states of the world antedate and effectively prescribe subsequent
behavior. a shows the intended position of the arms extremity. This is
a nonlinear function of the attractor states (the expected states shown
in Fig. 2). The subsequent position of the finger is shown as a solid
line and roughly reproduces the expected position, with a lag of about
80ms. This lag can be seen more clearly in the cross-correlation func-
tion between the intended and attained positions shown in b. One can
see that the peak correlation occurs at about 10time bins or 80 ms prior

in the same frequency band.” (Jerbi et al. 2007). Evidence
for localised oscillations or coherence during writing (or
writing observation) is sparse; however, Butz et al. (2006)
were able to show that “coherence between cortical sources
and muscles appeared primarily in the frequency of writ-
ing movements (3—7Hz), while coherence between cere-
bral sources occurred primarily around 10Hz (8-13Hz)”.
Interestingly, they found coupling between ipsilateral cer-
ebellum and the contralateral posterior parietal cortex (in
normal subjects). This sort of finding may point to the
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to a zero lag. Exactly the same results are shown in ¢ but here for action—
observation (see Fig. 5). Crucially, the perceived attractor states (a per-
ceptual representation of intention) are still expressed some 50-60 ms
before the subsequent trajectory or position is evident. Interestingly,
there is a small shift in the phase relationship between the cross-corre-
lation function under action (dotted line) and action observation (solid
line). In other words, there is a slight (approximately 8 ms) delay under
observation compared to action, in the cross-correlation between rep-
resentations of intention and motor trajectories

specific neuronal systems (e.g. cerebellum and posterior pari-
etal cortex) that sustain itinerant dynamics encoding complex
motor behavior. Note there are dense connections between
the ventral premotor and intraparietal cortex (Luppino et al.
1999).

In fact, it was relatively easy to reproduce (roughly) the
findings of Butz et al. (2006), using the simulated responses
in Fig. 2. The upper panel of Fig. 4 shows the activity of pre-
diction error units (red—attractor states; blue—visual input)
and the angular position of a joint (green). These can be



Biol Cybern (2011) 104:137-160

149

Fig. 4 a The activity of

central and peripheral responses

prediction error units (red A
attractor states, blue visual

input) and the angular position 0.03
of the first joint (green). These
can be regarded as proxies for
central and peripheral
electrophysiological responses;
b shows the coherence between 0.01
the central (sum of errors on red
attractor states) and peripheral
(green arm movement)
responses, while ¢ shows the
equivalent coherence between -0.01
the two populations of (central

red and blue) error-units. The

main result here is that central to -0.02
peripheral coherence lies
predominantly in the theta range
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regarded as proxies for central and peripheral electrophys-
iological responses. This is because the main contribution
to electroencephalographic (EEG) measures is thought to
come from superficial pyramidal cells, and it is these that
are believed to elaborate prediction error (Mumford 1992;
Friston 2008). The lower left panel shows the coherence
between the central (sum of errors on attractor states) and
peripheral (arm movement) responses, while the lower right
panel shows the equivalent coherence between the two pop-
ulations of (central) error-units. The main result here is that
central to peripheral coherence lies predominantly in the theta
range (grey region) and reflects the quasiperiodic motion of
the motor system, while the coherence between central mea-
sures lies predominately above the range (in the alpha range).
This agrees qualitatively with the empirical results of Butz
et al. (2000).

frequency (Hz)

3.2 Summary

In this section, we have covered the functional archi-
tecture of a generative model whose autonomous (itiner-
ant) expectations prescribe complicated motor sequences
through active inference. This rests upon itinerant dynam-
ics (stable heteroclinic channels) that can be regarded as
a formal prior on abstract causes in the world. These are
translated into physical movements through classical New-
tonian mechanics, which correspond to the physical states
of the model. Action tries to fulfill predictions about pro-
prioceptive inputs and is enslaved by autonomous predic-
tions, producing realistic behavior. These trajectories are
both caused by neuronal representations of abstract (attrac-
tor) states and cause those states in the sense that they
are conditional expectations. Closing the loop in this way
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ensures a synchrony between internal expectations and
external outcomes. Crucially, this synchrony entails a con-
sistent lag between anticipated and observed movements,
which highlights the prospective nature of generalised pre-
dictive coding. In short, active inference suggests a bio-
logical implementation of motor control that; (i) makes
testable predictions about behavioral and neurophysiologi-
cal responses; (ii) provides simple solutions to complex
motor control problems, by enslaving action to percep-
tion; and (iii) is consistent with the known organization
of the mirror-neuron system. In the next section, we will
make a simple change which means that movements are no
longer caused by the agent. However, we will see that the
conditional expectations about attractor states are relatively
unaffected, which means that they still anticipate observed
movements.

4 Simulations: action—observation

In this section, we repeat the simulations of the previous
section but with one small but important change. Basically,
we reproduced the same movements as above but the pro-
prioceptive consequences of action were removed, so that
the agent could see but not feel the arm moving. From the
agent’s perspective, this is like seeing an arm that looks like
its own arm but does not generate proprioceptive input (i.e.
the arm of another agent). However, the agent still expects
the arm to move with a particular itinerant structure and will
try to predict the trajectory with its generative model. In this
instance, the hidden states still represent itinerant dynamics
(intentions) that govern the motor trajectory but these states
do not produce (precise) proprioceptive prediction errors and
therefore do not result in action. Crucially, the perceptual rep-
resentation still retains its anticipatory or prospective aspect
and can therefore be taken as a perceptual representation of
intention, not of self, but of another. We will see below that
this representation is almost exactly the same under action—
observation as it is during action.

Practically speaking, to perform these simulations, we
simply recorded the forces produced by action in the previ-
ous simulation and replayed them as exogenous forces (hid-
den causes v(¢) in Eq. 15) to move the arm in the current
simulations. This change in context (agency) was modeled
by down-weighting the precision of proprioceptive signals.
This reduction appeals to exactly the same mechanism that
we have used to model attention, in terms of perceptual gain
(Feldman and Friston 2010). In this setting, reducing the
precision of proprioceptive prediction errors precludes them
from having any influence on perceptual inference (i.e. the
agent cannot feel changes in its joints). Furthermore, action
is not compelled to reduce these prediction errors because
they have no (or trivial) precision. In these simulations, we
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reduced the log-precision of proprioceptive prediction errors
from eight to minus eight.

The results of these simulations are shown in Fig. 5 using
the same format as Fig. 2. The key thing to take from these
results is that there is very little difference in terms of the
inferred hidden states (upper right panel) or predictions and
their errors (upper left panel). Furthermore, there is no dif-
ference in the actual movement (lower left panel). Having
said this, there is small but important difference in inference
at the onset of movement: Comparison with Fig. 2 shows
that the hidden states take about 400 ms (50 time bins) before
‘catching up’ with the equivalent trajectory under action. This
means it takes a little time before the perceptual dynamics
become entrained by the sensory input that they are trying to
predict (note these simulations used the same initial condi-
tions)

The largest difference between Figs. 2 and 5 is in terms of
action (sold lines) and the exogenous forces (dotted lines).
Here, action has collapsed to zero and has been replaced
by exogenous forces on the agent’s joints. These forces
(hidden causes) correspond to the action of another agent
that is perceived by the agent we are simulating. If one
returns to Fig. 3 (lower right panel), one can see that the
cross-correlation function, between the expected and the true
or attained position, has retained its phase-lag and antici-
pates the intended movement of the other agent (although
there is a slight shift in lag in comparison to action—dotted
line). These simulations are consistent with motor activation
prior to observation of a predicted movement (Kilner et al.
2004). This is the key behavior that we wanted to demon-
strate; namely, that exactly the same neuronal representa-
tion can serve as a prescription for self-generated action,
while, in another context, it encodes a perceptual repre-
sentation of the intentions of another. The only thing that
changes here is the context in which the inference is made.
In these simulations, this contextual change was modeled
by simply reducing the precision of proprioceptive errors.
We have previously discussed this modulation of proprio-
ceptive precision in terms of selectively enabling or disabling
particular motor trajectories, which may be a potential tar-
get for the pathophysiology of Parkinson’s disease (Friston
et al. 2009). Here, we use it to encode a change in con-
text implicit in observing ones own arm, relative to observ-
ing another’s. The connection with formal mechanisms of
attentional gain (Feldman and Friston 2010) is interesting
here, because it means that we could regard this contextual
manipulation as an attentional bias to exteroceptive signals
(caused by others) relative to interoceptive signals (caused
by oneself).

In terms of writing, “humans are able to recognise hand-
written texts accurately despite the extreme variability of
scripts from one writer to another. This skill has been sug-
gested to rely on the observer’s own knowledge about implicit
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Fig. 5 This shows exactly the same results as Fig. 2. However, in this
simulation we used the forces from the action simulation to move the
arm exogenously. Furthermore, we directed the agent’s attention away
from proprioceptive inputs, by decreasing their precision to trivial val-
ues (a log precision of minus eight). From the agent’s point of view, it
therefore sees exactly the same movements but in the absence of pro-
prioceptive information. In other words, the sensory inputs produced
by watching the movements of another agent. Because we initialised

motor rules involved in writing” (Longcamp et al. 2006).
Using magnetoencephalography (MEG), Longcamp et al.
(2006) observed that 20-Hz oscillations were more sup-
pressed after visual presentation of handwritten than printed
letters, “indicating stronger excitation of the motor cortex to
handwritten scripts”. This fits comfortably with the func-
tional anatomy of active inference: The motor cortex is
populated with multimodal neurons that respond to visual,
somatosensory and auditory cues in peri-personal space
(Graziano 1999; see also Graziano 2006). It is the ‘activa-
tion’ of these sorts of units that one would associate with
the proprioceptive predictions in our model (see Fig. 1).
Note that these predictions are still generated under action—
observation; however, the precision (gain) of the ensuing pre-
diction errors is insufficient to elicit motor acts.

hidden states
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the expected attractor states to zero, sensory information has to entrain
the hidden states so that they predict and model observed motor tra-
jectories. The ensuing perceptual inference, under this simulated action
observation, is almost indistinguishable from the inferred states of the
world during action, once the movement trajectory and its temporal
phase have been inferred correctly. Note that in these simulations the
action is zero, while the exogenous perturbations are the same as the
action in Fig. 2

4.1 Place-cells and oscillations

It is interesting to think about the attractor states as repre-
senting trajectories through abstract representational spaces
(cf., the activity of place cells; O’Keefe 1999; Tsodyks 1999;
Burgess et al. 2007). Figure 6 illustrates the sensory or per-
ceptual correlates of units representing expected attractor
states. The left hand panels show the activity of one (the
fourth) hidden state unit under action, while the right pan-
els show exactly the same unit under action—observation.
The top rows show the trajectories in visual space, in terms
of horizontal and vertical displacements (grey lines). The
dots correspond to the time bins in which the activity of the
hidden state unit exceeded an amplitude threshold of two
arbitrary units. They key thing to take from these results
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is that the activity of this unit is very specific to a limited
part of Cartesian space and, crucially, a particular trajec-
tory through this space. The analogy here is between direc-
tionally selective place-cells of the sort studied in hippo-
campal recordings (Battaglia et al. 2004): In tasks involving
goal-directed, stereotyped trajectories, the spatially selective
activity of hippocampal cells depends on the animal’s direc-
tion of motion. Battaglia et al. (2004) were able to show “that
sensory cues can change the directional properties of CAl
pyramidal cells, inducing bidirectionality in a significant pro-
portion of place cells. For a majority of these bidirectional
place cells, place field centers in the two directions of motion
were displaced relative to one another, as would be the case
if the cells were representing a position in space 5-10cm
ahead of the rat”. This anticipatory aspect is reminiscent of
the behavior of simulated responses shown in Fig. 3. A further
interesting connection with hippocampal dynamics is the
prevalence of theta rhythms during action (Dragoi and
Buzsédki 2006): “Driven either by external landmarks or by
internal dynamics, hippocampal neurons form sequences of
cell assemblies. The coordinated firing of these active cells
is organised by the prominent “theta” oscillations in the local
field potential (LFP): place cells discharge at progressively
earlier theta phases as the rat crosses the respective place
field (phase precession)” (Geisler et al. 2010). Quantita-
tively, the dynamics of the hidden state-units in Fig. 2 (upper
left panel) show quasiperiodic oscillations in the (low) theta
range. The notion that quasiperiodic oscillations may reflect
stable heteroclinic channels is implicit in many treatments
of episodic memory and spatial navigation, which “require
temporal encoding of the relationships between events or
locations” (Dragoi and Buzsaki 2006), and may be usefully
pursued in the context of active inference under itinerant
priors.

4.2 Conserved selectivity under action and observation

Notice that the same ‘place’ and ‘directional’ selectivity is
seen under action and observation (Fig. 6 right and left col-
umns). Direction selectivity can be seen more clearly in the
lower panels, in which the same data are displayed but in a
moving frame of reference (to simulate writing). They key
thing to note here is that this unit responds preferentially
when, and only, when the motor trajectory produces a down-
stroke, but not an up-stroke. There is an interesting dissoci-
ation in the firing of this unit under action and action—obser-
vation: during observation the unit only starts responding to
down-strokes after it has been observed once. This reflects
the finite amount of time required for visual information to
entrain the perceptual dynamics and establish veridical pre-
dictions (see Fig. 5).

Figure 7 illustrates the correlations between the represen-
tations of hidden states under action and observation. The
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upper panel shows the cross-correlation (at zero lag) between
all ten hidden state units. The first four correspond to the posi-
tions and velocities of the joint angles, while the subsequent
six encode the attractor dynamics that represent trajectories
during writing. The important thing here is that the leading
diagonal of correlations is nearly one, while the off diagonal
terms are distributed about zero. This means that the stimu-
lus (visual) evoked responses of these units are highly corre-
lated between action and observation and would be inferred,
empirically, to be representing the same thing. To provide
a simpler perspective on these correlations, the lower left
panel plots the response of a single hidden state unit (the same
depicted in Fig. 6) under observation and action, respectively,
to show the high degree of correlation. Note that these corre-
lations rest upon the fact that the same motion is expressed
during action and action observation. The cross-correlation
function is shown on the lower right. Interestingly, there is a
slight phase-shift, suggesting that, under action, the activity
of this unit occurs slightly earlier (about 4-8 ms). We would
expect this, given that this unit is effectively a consequence
of motion in the visual field under observation, as opposed
to a cause under action.

4.3 Summary

In summary, we have used exactly the same simulation as in
the previous section to show that the same neuronal infra-
structure can predict and perceive motor trajectories that
are caused by another agency. Empirically, this means that
if we were able to measure the activity of units encod-
ing expected states, we would see responses of the same
neurons under action and action—observation. We simulated
this empirical observation by looking at the cross-correla-
tion function between the last attractor state unit from the
simulations of this section and the previous section; namely
under action—observation and action. Although these traces
are not identical, they have a profound correlation which
is expressed maximally around zero lag. This is despite
the fact that in the first simulation the states caused behav-
ior (whereas in the second simulation they were caused by
behavior). In Sect.6 we repeat the simulations of this sec-
tion but introduce a deliberate violation of the exogenous
forces to see if we could simulate an (intentional) violation
response.

5 Simulations: violation-related responses

Here, we repeated the above simulation but reversed the exog-
enous forces moving the joints halfway through the executed
movement. This produces a physically plausible movement
but not one the agent can infer (perceive). We hoped to see
an exuberant expression of prediction error following this
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Fig. 6 These results illustrate the sensory or perceptual correlates of
units representing expected hidden states. The left hand panels (a, c)
show the activity of one (the fourth attractor) hidden state-unit under
action, while the right panels (b, d) show exactly the same unit under
action—observation. The top rows (a, b) show the trajectory in Cartesian
(visual) space in terms of horizontal and vertical position (grey lines).
The dots correspond to the time bins during which the activity of the
state-unit exceeded an amplitude threshold of two arbitrary units. They
key thing to take from these results is that the activity of this unit is

perturbation. This is important because it demonstrates the
agent has precise predictions about what was going to happen
and was able to register the violations of these predictions.
In other words, if the agent was simply inferring the current
state of the world, there should be no increase in prediction
error at the point of deviation from its prior expectations.
To relate these simulations to empirical electrophysiology,
we assume that the sources of prediction errors are superfi-
cial pyramidal cells that send projections to higher cortical
levels.

Figure 8 shows simulated responses to violations of the
expected trajectory (intention). The top panels show the stim-
uli presented to the agent, as in Fig. 5. The bottom panels
show the synthetic electrophysiological responses that would
be observed if we recorded cells reporting (proprioceptive)
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very specific to a limited part of visual space and, crucially, a particular
trajectory through this space. Notice that the same selectivity is shown
almost identically under action and observation. The implicit direction
selectivity can be seen more clearly in the lower panels (¢, d), in which
the same data are displayed but in a moving frame of reference to sim-
ulate writing. They key thing to note here is that this unit responds
preferentially when, and only when, the motor trajectory produces a
down-stroke, but not an up-stroke

prediction errors about the joints (middle row) or about the
motion of hidden states (lower row). We can associate these
with local field potentials or event related potentials (ERPs).
The left column show the stimuli and prediction errors under
canonical or expected movements, whereas the right col-
umn shows the same results under violation. This violation
was modeled by simply reversing the exogenous forces half-
way through the trajectory. The lower panels show increased
production of prediction error for both proprioceptive and
hidden-state error-units following a violation of expecta-
tions. In both cases, it can be seen that there are early phasic
and delayed components at about 100 and 400 ms respec-
tively for some units (highlighted with bold). These results
may correspond to the electrophysiological violation or sur-
prise responses seen electrophysiologically in other contexts

@ Springer



154

Biol Cybern (2011) 104:137-160

correlations

hidden units (action)

B correlations

o

hidden unit (action)
500D

'
[e)]

-6 -4 -2 0 2 4

hidden unit (observation)

Fig. 7 This figure illustrates the correlations between representations
of hidden states under action and observation. a The cross-correlation
(at zero lag) between all ten hidden state-units. The first four correspond
to the positions and velocities of the joint angles, while the subsequent
six encode the attractor dynamics that represent movement trajectories
during writing. The key thing to note here is that the leading diagonal
of correlations is nearly one, while the off-diagonal terms are distrib-
uted about zero. This means that the stimulus (visual) input-dependent

(e.g. the N1, Mangun and Hillyard 1991; the mismatch neg-
ativity, Nédtdnen et al. (2001) and the P3, Donchin and Coles
(1988)). A ubiquitous late positive component it the P3b
with a parietal (posterior) distribution seen in oddball par-
adigms and is thought to represent a context-updating opera-
tion (Donchin and Coles 1988; Friedman et al. 2001; Gémez
et al. 2008).

We are currently characterizing empirical responses to
violations in the context of action—observation (Kilner et al.,
— in preparation). Although, we were not able to find any
electrophysiological studies in the literature, Buccino et al.
(2007) used fMRI to assess brain responses when the actions
of others do or do not reflect their intentions: “volunteers were
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responses of these units are highly correlated under action and obser-
vation; and would be inferred, by an experimenter, to be representing
the same thing. To provide a simpler illustration of these correlations,
b plots the response of a single hidden state unit (the same depicted
in the previous figure) under observation and action, respectively. The
cross-correlation function is shown in c. Interestingly, there is a slight
phase shift suggesting that under action the activity of this unit occurs
slightly later (about 4-8 ms)

presented with video-clips showing actions that did reflect
the intention of the agent (intended actions) and actions
that did not (non-intended actions). Observation of both
types of actions activated a common set of areas includ-
ing the inferior parietal lobule, the lateral premotor cortex
and mesial premotor areas. The contrast non-intended ver-
sus intended actions showed activation in the right temp-
oro-parietal junction, left supramarginal gyrus, and mesial
prefrontal cortex”. The authors conclude “that our capac-
ity to understand non intended actions is based on the acti-
vation of areas signaling unexpected events in spatial and
temporal domains, in addition to the activity of the mir-
ror neuron system”. From the perspective of our model,



Biol Cybern (2011) 104:137-160

155

A 0

0.5

observation

-0.5 0 0.5 1 15

proprioceptive error

prediction error

-0.02

-0.04
-400

-200 0 200 400 600

E error on hidden states
0.02

0.015

0.01

0.005

0

prediction error

-0.005

-0.01

-0.015
-400

-200 0 200
time (ms)

400 600

Fig. 8 This figure shows simulated electrophysiological responses to
violations of expected movements. The top panels (a, b) show the stim-
uli presented to the agent as in Fig. 5. The lower panels show the syn-
thetic electrophysiological responses of units reporting prediction error
(c, d proprioceptive errors; e, f errors on the motion of hidden states).
The left panels (a, ¢, ) show the stimuli and prediction errors under
canonical or expected movements, whereas the right panels (b, d, f)
show the same results with a violation. This violation was modeled by

the greater expression of prediction error under violation
(i.e. non-intended action) would suggest fMRI activation (as
opposed to deactivation) in those areas reporting prediction
errors on biological motion and proprioception. These would
probably involve the parietal and temporal cortex (as reported
in Buccino et al. 2007).
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simply reversing the exogenous forces halfway through the writing. The
exuberant production of prediction error is shown in d and e. It can be
seen here that there is an early phasic and delayed components at about
100 and 400 ms for at least one proprioceptive and hidden state error-
unit (sold lines). In ¢ and d, errors on the angular positions are show in
blue and green, while errors on angular velocities are in red and cyan.
All errors on hidden states are shown in red in e and f. (Color figure
online)

5.1 Summary

In this section, we simulated violation responses in terms of
synthetic ERPs. These responses speak to an empirical han-
dle on action—observation responses, particularly in relation
to how they rest upon encoding the intentions (anticipated
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trajectory) of motor movements. Crucially, these responses
should be observed in exactly the same neuronal populations
responsible for generating predictions that drive the same
behavior during action. Although a simple set of simulations,
they address a potentially important empirical approach to the
study of mirror-neuron system.

6 Discussion

In this article, we have tried to show that the mirror-neuron
system is entirely consistent and understandable in the con-
text of (Bayes-optimal) active inference under the free-
energy principle. Put simply, under this formulation, the brain
does not represent intended motor acts or the perceptual con-
sequences of those acts separately; the constructs represented
in the brain are both intentional and perceptual: They are
amodal inferences about the states of the world generating
sensory data that have both sensory and motor correlates,
depending upon the context in which they are made. The
predictions generated by these representations are modal-
ity-specific, prescribing both exteroceptive (e.g. visual) and
interoceptive (e.g. proprioception) predictions, which action
fulfils. The functional segregation of motor and sensory cor-
tex could be regarded as a hierarchical decomposition, in the
brain’s model of its world, which provides predictions that
are primarily sensory (e.g. visual cortex) or proprioceptive
(motor and premotor cortex). If true, this means that high
level representations can be used to furnish predictions in
either visual or proprioceptive modalities, depending upon
the context in which those predictions are called upon.

Theideas in this article can be regarded as a generic Bayes-
ian (free-energy) perspective on the connectionist scheme
introduced by Tani (2003); see also Tani et al. (2004) and
Weber et al. (2006). Using robotic experiments, Tani et al.
(2004) show that multiple behavioral schemata can be learned
by recurrent neural networks in a distributed and hierarchical
manner. Hierarchical (parametric) biases in the network play
an essential role in both generating and recognizing behav-
ioral patterns. “They act as a mirror system by means of self-
organizing adequate memory structures”. We have pursued
the same basic idea; that hierarchical generative models of
the (interoceptive and exteroceptive) sequelae of action can
be used to generate and recognise action and exploit this idea
to understand what mirror neurons may encode.

The simulations in this article suggest that in the context
of self-agency, proprioceptive predictions are afforded a high
bias or precision, whereas when observing another this bias
is suppressed (gated). Exactly the same sort of bias has
been proposed for action selection by fronto-striatal loops
(e.g. Bogacz and Gurney 2007; Frank et al. 2007; Hazy
et al. 2007). Interestingly these proposals call upon classical
neuromodulators (like dopamine and noradrenalin), whose
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role in modulating synaptic efficacy is exactly what would
be required to implement expected precision in generalised
predictive coding (see Eq. 12 and Friston 2008). Formally
related mechanisms proposed for attention (e.g. Reynolds
and Heeger 2009; Friston 2008; Feldman and Friston 2010)
may also depend on modulatory neurotransmission (Clark
et al. 1989; Coull 1998; Dalley et al. 2001; Davidson and
Marrocco 2000; Hasselmo and Giocomo 2006; Herrero et al.
2008) and indeed the basal forebrain (Voytko et al. 1994).
This means that we can use the same generative model, under
action or observation, by selectively attending to visual or
proprioceptive information (depending upon whether visual
movement is caused by ourselves or others). The only differ-
ence, from the point of view of inference, is that movements
caused by others do not have proprioceptive components.
This provides a simple but mechanistic account of mirror
neuron responses in the context of Bayes-optimal inference.
Note that the gating of the proprioceptive prediction errors
does not imply that the primary and secondary somatosen-
sory areas are quiescent during action observation. Rather,
that any observed activity in these areas should be suppressed
relative to higher somatosensory processing. This is precisely
what has been observed. In a meta-analysis of activations in
primary and secondary somatosensory cortices during obser-
vation of touching actions: Keysers et al. (2010) report that
areas OP1 and OP4 that constitute the secondary somatosen-
sory area are consistently found to be active when observing
actions. Areas BA1 and BA2—of the primary somatosensory
cortex are sometimes found to be active—whereas area BA3
of the primary somatosensory cortex has never been shown
to be active during observation of an action. Area BA3 is
the primary area for somatosensory input where as BA1 and
BA2 receive their inputs from BA3.

6.1 Active inference and motor control

There have been several accounts of forward and inverse
models in action—observation in the motor control litera-
ture (Wolpert et al. 2003; Flanagan et al. 2003; Miall 2003;
Keysers and Perrett 2004): “Skilled motor behavior relies on
the brain learning both to control the body and predict the
consequences of this control. Prediction turns motor com-
mands into expected sensory consequences, whereas control
turns desired consequences into motor commands. To cap-
ture this symmetry, the neural processes underlying predic-
tion and control are termed the forward and inverse internal
models, respectively” (Flanagan et al. 2003). Forward and
inverse models (e.g. Wolpert et al. 1995) have been discussed
in relation to imitation: The logic here is that the inverse
model (mapping from sensory consequences to motor com-
mands) can be used as a recognition model to infer the cause
of an observed action. Once the cause is inferred the action
can then be imitated. Although these proposals for forward-
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inverse models in imitation and social interactions (Wolpert
etal. 2003) are exciting; they are formally very different from
active inference and related connectionist schemes (Tani et al.
2004; Friston et al. 2010a). In active inference (and predictive
coding), there are no inverse models or controllers; a gen-
erative model mapping from intention (cause) to sensation
(consequence) is inverted by suppressing prediction error. If
this suppression calls on action, then the intention is the gen-
erated action. If not, the intention (of another) is recognised.
The implicit inversion depends on self-organizing, reciprocal
exchange of signals among hierarchical levels of the brain’s
generative model (see Fig. 1 and Tani et al. 2004). Crucially,
active inference does not invoke any ‘desired consequences’,
its rests only on experience-dependent learning and infer-
ence: Experience induces prior expectations, which guide
perceptual inference and action:

Although our focus has been on the implications of active
inference for the mirror-neuron system and vice versa, the
approach taken in this work also has implications for conven-
tional theories of motor control. In conventional approaches,
one usually starts with some desired states or end points of
the control process and uses an inverse model to compute
the optimal control signals. These control signals are some-
times finessed with corrections based upon a forward model
(mapping from the control signals to expected sensory sig-
nals). This is a more complicated architecture than that used
in active inference, where predictions control movement and
obviate the need for an explicit control signal. This simpli-
fies things greatly and resolves a series of issues in the motor
control literature, which we have not emphasised in this arti-
cle. For example, the problem of how to control a motor plant
with many degrees of freedom becomes rather trivial. Here, it
was solved by an invisible elastic band connecting the finger
to the desired location. The ensuing scheme is a formal exten-
sion of the equilibrium point hypothesis that suggests “action
and perception are accomplished in a common spatial frame
of reference” (Feldman 2009). We generalise equilibrium
points to cover trajectories through the use of generalised
motion (generalised predictive coding). From the perspec-
tive of inferring the motor intentions of others, generalised
predictive coding has an interesting implication. It suggests
that an agent will only be able to predict (in the generalised or
anticipatory sense) the trajectories or intentions of another,
if the observed agent has the same sort of motor apparatus.
In short, one should be much better at inferring the intended
behavior of con-specifics, because the exteroceptive predic-
tions are based on a veridical model of the other’s motor
plant. This is not to say that we cannot predict the behavior
of other creatures; however, it is unlikely that the neurons
involved will show mirror neuron like properties, because
they cannot predict our own proprioceptive inputs. This may
provide an interesting empirical prediction; in that one would
expect fewer violation responses when observing the same

biological motion subtended by agents that do and do not
look like ourselves (cf., Miura et al. 2010).

6.2 Functional anatomy

In describing these simulations, we have portrayed itinerant
(attractor) dynamics as encoding motor intentions (antici-
pated or expected motor trajectories), while considering their
role during action—observation as consequent on their role in
specifying behavior. However, from a neurodevelopmental
perspective the converse may be true. In other words, the
form and structure of these neural attractor networks may be
optimised during experience-dependent learning by watch-
ing other con-specifics (cf., Lee et al. 2010; see also Del
Giudice et al. 2009). By subsequently attending to proprio-
ceptive inputs one can see how learning to act through imita-
tion could exploit the amodal role of high-order (intentional)
representations. Clearly, this rests upon representations that
predict the visual consequences of movement (of others):
Neurons in the superior temporal sulcus (STS), respond
selectively to biological movement (Grossman et al. 2000),
both in monkeys (Oram and Perrett 1994) and humans (Alli-
son et al. 2000). These neurons are not mirror neurons
because they do not discharge during action execution. Nev-
ertheless, they are often considered part of the mirror-neuron
system (Keysers and Perrett 2004). Although mirror neurons
were first discovered in macaque monkeys, using single-cell
recordings, there is evidence for a homologous system in
humans: Functional magnetic resonance imaging and posi-
tron emission tomography studies demonstrate that areas of
frontal cortex, inferior parietal lobule (and posterior parietal
cortex) and STS are active during action—observation (e.g.
Decety et al. 1997; Grezes et al. 2001; Hamilton and Grafton
2006).

We have deliberately tried to keep our simulations as sim-
ple as possible to highlight the underlying ideas. There are
many things that one could nuance to make these simulations
more realistic; for example, using a hierarchy of stable het-
eroclinic channels (cf., Tani et al. 2004; Kiebel et al. 2009b)
and providing explicit contextual cues about whether one
was observing ones own body or another’s. However, the
basic results would not change and, even under this simple
model, there is an easy mapping to known neurobiology. For
example, we could associate the dynamics encoding itinerant
motor sequences with prefrontal neurons (e.g. F5 in mon-
keys or Broca’s area in man). Many people have noted that
the same form of itinerant trajectories used to predict com-
plex motor sequences may also be involved in the prediction
of speech (see Arbib 2010; Borghi et al. 2010). The hid-
den states subtending biological motion may correspond to
neuronal populations in V5 complex and superior temporal
sulcus (Allison et al. 2000; Takahashi et al. 2008), while
low level proprioceptive and visual predictions could be
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associated with the activity of units in the motor cortex and
early visual system respectively. The distributed anatomical
arrangement of these representations speaks to a mirror-neu-
ron system that implicates both executive systems and corti-
cal systems involved in the processing of biological motion,
which we have previously discussed in relation to mirror-
neuron responses and inference about the intention of others
(Kilner et al. 2007a,b). In conclusion, we hope to have sub-
stantiated previous conjectures about the mirror-neuron sys-
tem in the context of Bayesian inference, using simulations
to disclose some operational and mechanistic details.
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7 Appendix (software note)

This article has focused on the heuristics and basic equa-
tions that underlie active inference. However, we anticipate
that people may want to reproduce and extend the simu-
lations presented in this paper. In principle, this is fairly
straightforward because active inference just entails integrat-
ing (solving) Eq. 4. The particular form of Eq. 4 rests on the
free-energy gradients, which are specified completely by the
generative model (specified as the equations of motion and
Gaussian priors on the parameters of those equations). The
numerics underlying the integration of Eq. 4 are described in
Friston et al. 2010a (Eq. A3.2) and the form of the gradients
can be found in Feldman and Friston (2010): See Appendix
1: Integrating the recognition dynamics (generalised filter-
ing); using exactly the same notion as in this article. A more
technical account can be found in Friston et al. (2010b) that
describes recognition dynamics in terms of generalised fil-
tering. Active inference can be regarded as supplementing
generalised filtering (recognition dynamics) with the action
dynamics in Eq. 13.

For people who want to reproduce the simulations and see
how they work at a technical level, we recommend that they
start with the Matlab code used in this article: All the requi-
site routines are available as part of the SPM software (aca-
demic freeware released under a GNU license; http://www.
fil.ion.ucl.ac.uk/spm). In particular, the graphics in this paper
can be reproduced from a graphical user interface (GUI) in
the DEM toolbox that is invoked by typing DEM_demo
at the Matlab prompt. When the GUI appears, depress the
action observation button. The GUI provides the option to
run or view/edit routines that serve as a pseudo-code specifi-
cation of the ideas in the main text. DEM stands for dynamic
expectation maximization, which is a variant of generalised
filtering that uses a mean-field approximation (see Friston

@ Springer

et al. 2010b for details). The GUI and the scripts are anno-
tated in a way that should help clarify how the simulations
are assembled.

It may seem strange to bundle simulation routines with
a data analysis package; however, there are several rea-
sons for doing this. (i) Active inference (as implement in
spm_ADEM.m) uses exactly the same architecture and sub-
routines as the equivalent DEM and generalised filtering
schemes that omit action (spm_DEM.m and spm_LAP.m,
respectively). These schemes are used routinely to analyze
empirical time-series as part of the analysis software. This
highlights the fact that active inference appeals to exactly
the same fundaments of evidence-based model optimization
(and variational techniques) as state-of-the-art Bayesian fil-
tering for empirical data. (ii) Because the neurobiological
simulation and data analysis routines call on the same num-
erics and sub-functions it is easier to bundle them together.
This has the advantage that improvements to the code (and
debugging) are seen by both application domains. One of
the reasons we encourage people to start with this code is
that it has been tested extensively through worldwide dis-
semination in the neuroimaging community. (iii) We have
established a protocol within SPM, where people can create
links to their own SPM compatible toolboxes, which is a nice
way to disseminate ideas and developments. This may prove
useful for people interested in the computational aspects of
active inference in the future. (iv) Finally, the simulations are
themselves used as part of data analysis; where recognition
dynamics are used to explain evoked electromagnetic brain
signals (see spm_dcm_dem.m).
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