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Abstract In this article, we describe a new computational
model of switching between path-planning and cue-guided
navigation strategies. It is based on three main assumptions:
(i) the strategies are mediated by separate memory systems
that learn independently and in parallel; (ii) the learning algo-
rithms are different in the two memory systems—the cue-
guided strategy uses a temporal-difference (TD) learning rule
to approach a visible goal, whereas the path-planning strat-
egy relies on a place-cell-based graph-search algorithm to
learn the location of a hidden goal; (iii) a strategy selec-
tion mechanism uses TD-learning rule to choose the most
successful strategy based on past experience. We propose
a novel criterion for strategy selection based on the direc-
tions of goal-oriented movements suggested by the different
strategies. We show that the selection criterion based on this
“common currency” is capable of choosing the best among
TD-learning and planning strategies and can be used to solve
navigational tasks in continuous state and action spaces. The
model has been successfully applied to reproduce rat behav-
ior in two water-maze tasks in which the two strategies were
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shown to interact. The model was used to analyze competi-
tive and cooperative interactions between different strategies
during these tasks as well as relative influence of different
types of sensory cues.
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1 Introduction

An increasing number of behavioral research studies focus
on the capacity of animals to switch between different navi-
gation strategies when it is required by the environmental cir-
cumstances (see Franz and Mallot 2000; White 2004; Arleo
and Rondi-Reig 2007; Khamassi 2007, for reviews). The
majority of these articles explore the interactions between
response- and place-based strategies (Packard and McGaugh
1996; Devan and White 1999; Roberts and Pearce 1999;
Gibson and Shettleworth 2005; Rich and Shapiro 2009).
Response-based strategies are thought to learn associa-
tions between sensory cues and actions linked with reward,
whereas place-based strategies use a form of spatial represen-
tation to store the goal position and plan a path to it. Exper-
imental evidence in support of such a separation between
navigational strategies comes from lesion’s studies that gave
rise to the theory of parallel memory systems in the brain
of the rat (Packard et al. 1989; McDonald and White 1993;
Devan and White 1999; Kim and Baxter 2001; White and
McDonald 2002; White 2004; Burgess 2008). According
to this theory, the dorsolateral striatum (DLS) is involved
in the control of response-based strategies by means of a
slow and inflexible “trial and error” learning, whereas place-
based strategies are mediated by the hippocampus (Hc) and
other neural structures to which it projects, such as prefrontal
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cortex (PFC) (Mizumori 2008; Jankowski et al. 2009; White
2009). Learning in the Hc-dependent pathway is considered
to be rapid and flexible (Granon and Poucet 1995; Yin and
Knowlton 2004; Grahn et al. 2008).

The existence of two (or more) parallel memory systems
mediating different behavioral strategies raises a question
of when one or other strategy takes control over behavior.
Experimental evidence suggests that different memory sys-
tems favor separate sets of sensory cues: DLS-mediated sys-
tem mostly uses proximal cues (e.g., visible platform in the
Morris Water Maze, or intra-maze landmark signaling the
platform position), whereas Hc-mediated system encodes
configurations of distal cues (like extra-maze landmarks and
environmental boundaries) (McDonald et al. 2004; Hartley
and Burgess 2005; Doeller and Burgess 2008; Doeller et al.
2008; Leising and Blaisdell 2009; Blaisdell 2009; Pearce
2009). Distal cues and environmental boundaries can be used
to form a spatial representation encoded in the activities of
location selective neurons (termed “Place Cells”) residing in
the Hc (O’Keefe and Dostrovsky 1971; O’Keefe and Nadel
1978; Redish 1999; Save and Poucet 2000; Kelly and Gibson
2007). The question raised by these studies is how different
types of sensory cues influence ongoing behavior, including
strategy selection.

Interactions between multiple navigation strategies when
two or more of them can be used at the same time is often
analyzed in terms of competition and cooperation. Compe-
tition between two memory systems (and hence, the corre-
sponding strategies) is demonstrated when a lesion of one
of the systems entails an improvement of the learning of the
other, while cooperation implies that such a lesion leads to
the impairment of the other system’s performance (Kim and
Baxter 2001; Gold 2004). In the spatial domain, competition
or cooperation between navigational strategies are respec-
tively observed when one of the strategies perturbs (Packard
and McGaugh 1992; Pearce et al. 1998; Chang and Gold
2003; Canal et al. 2005) or facilitates (McDonald and White
1994; Hamilton et al. 2004; Voermans et al. 2004) the other
one for reaching the goal. The analysis of switching between
place- and response-based strategies suggests that they can
interact both across and within experimental trials (Pearce
et al. 1998; Devan and White 1999). Moreover, depending
on the training protocol, the strategies can be switched imme-
diately after the appearance or disappearance of relevant sen-
sory cues (Devan and White 1999), or learned progressively
across trials to prefer one type of cues over another (Pearce
et al. 1998). In summary, although these and other behavioral
and lesion’s studies provide valuable information concerning
the influence of sensory cues on behavior and the types of
interactions between strategies, the mechanism of the strat-
egy selection is not clear.

In this article, we propose a bio-inspired computational
model of selection between response- and place-based strat-

egies applied for navigation in continuous space. This model
is based on three key assumptions. The first one is that these
strategies are mediated by separate memory systems that
can learn independently and in parallel (as in the compu-
tational models of, e.g., Guazzelli et al. 1998; Girard et al.
2005; Chavarriaga et al. 2005; Daw et al. 2005). The sec-
ond assumption is that learning algorithms within the two
memory systems are of different types: while response-based
strategy relies on a slow and stereotyped “trial-and-error”
learning implemented as a temporal-difference (TD) learn-
ing procedure, learning in the place-based strategy is fast and
flexible and is based on a graph-search algorithm for finding
a goal (as in Guazzelli et al. 1998; Girard et al. 2005; Daw
et al. 2005). The third assumption is that the selection mecha-
nism is not fixed but continuously updates its estimates of the
relative “goodness” of different strategies (as in Chavarriaga
et al. 2005; Daw et al. 2005). The novelty of our approach
is in the proposed “common currency” allowing the compar-
ison of strategies that use different learning algorithms for
reaching the goal. This common currency is defined as the
direction of the goal-oriented movement proposed by each
strategy. We show below that the selection criterion based
on this common currency, is capable of choosing the best
among TD-learning and planning strategies and can be used
to solve navigational tasks in continuous state and action
spaces.

We use our model to reproduce and analyze rat behav-
ior in two experimental protocols in which response- and
place-based strategies were shown to interact with each other
(Pearce et al. 1998; Devan and White 1999) with the aim of
answering the following questions: (i) what is the mecha-
nism of strategy selection that can result in competition and
cooperation between strategies across and within experimen-
tal trials? (ii) What is the possible selection criterion, i.e.,
how can the performance of different strategies (with poten-
tially different learning mechanisms) be compared so that
the best strategy is chosen to take control over behavior? and
(iii) How different types of sensory cues influence strategy
selection? The rest of the article is structured as follows: Sec-
tion 2 describes the model of strategy selection; Sections 3
and 4 describe the results of computer simulations aimed at
reproducing animal data; in Sect. 5, we discuss the results of
this study in relation to the previous questions and to other
available experimental and theoretical studies; Finally, we
conclude in Sect. 6 with the outlook on future study.

2 The model

In the model of navigation under this study, response- and
place-based strategies are implemented by two “experts”,
referred to as Taxon expert and Planning expert in this arti-
cle. They represent DLS and Hc–PFC memory systems,
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Fig. 1 Model overview (see text for details). LC Landmark Cells, PC
Place Cells, PG Planning Graph, T Taxon expert, P Planning expert, E
Exploration expert. Φ∗ is the direction of the next movement resulting
from the selection process

respectively. During navigation, these experts propose a
direction for the next movement according to either visual
input (Taxon expert) or the estimated location (Planning
expert). In addition, the third, Exploration expert,
proposes a direction of movement randomly chosen between
0 and 2π . The actual movement, performed by the simulated
rat (henceforth referred to as “animat”), is determined by
the selection module (the gating network) which selects one
of the experts to take control over behavior on the basis of
previous performance (Fig. 1).

2.1 Taxon expert

The Taxon expert implements response-based strategy in the
model. In particular, we consider two kinds of response-
based strategies: approaching a visible target (sometimes
referred as “beacon learning”) and approaching a hidden
target marked by a landmark located on a certain distance
from it (i.e., “guidance” in terms of O’Keefe and Nadel
(1978)). Information about the landmark (or the visible tar-
get) is encoded by the activities of NLC Landmark Cells (see
Table 1 for parameter values) which code the presence or the
absence of the landmark in a particular direction φLC

i = 2π i
NLC

.
The activity of LC i is given by:

rLC
i = exp

(
− ΔΦi

2(σLC/ΔR→L)2

)
, (1)

where ΔΦi = ΦL −φLC
i is the angular distance between the

direction of the landmark ΦL and the cell’s preferred direc-
tion, and ΔR→L is the distance from the animat to the land-

mark in centimeters (see in, e.g., Brown and Sharp (1995),
Touretzky and Redish (1996), for similar modeling of sensory
input). The width of the Gaussian centered at the landmark
direction increases as the animat approaches the landmark,
expressing the fact that the landmark image takes up a larger
part of the view field if the animat is close to the landmark.

In the model of our study, the Taxon expert can work in
either allocentric or egocentric directional reference frames.
The allocentric reference frame is fixed with respect to distal
(room) cues and is assumed to be supported by the head direc-
tion network involving the anterodorsal nucleus of thalamus
(Taube et al. 1990). In this reference frame, the
direction to the landmark ΦL is given with respect to the
zero direction that is defined at the first entry to the environ-
ment (see Fig. 2) and remains fixed thereafter. In the second,
egocentric reference frame, ΦL is given relative to the zero
direction that coincides with the current gaze direction of the
animat.

The motor response of the Taxon expert to the landmark
stimulus is encoded by NAC = 36 Action Cells (AC), so that
each AC i receives input from all LCs and codes for move-
ment direction φT

i = 2π i
NAC

in the corresponding reference
frame. Its activity represents the value of moving in the cor-
responding direction and is computed as follows (note that
superscript T in the following text denotes Taxon expert and
not matrix transposition):

aT
i (t) =

NLC∑
j=1

rLC
j (t)wT

i j (t). (2)

The activity in the AC population is interpreted as a popula-
tion code for the continuous direction ΦT of the next move-
ment of the animat, proposed by the Taxon expert (Strösslin
et al. 2005; Chavarriaga et al. 2005):

ΦT(t) = arctan

( ∑
i aT

i (t) sin(φT
i )∑

i aT
i (t) cos(φT

i )

)
. (3)

Learning of the weights is performed by the TD-based
Q-learning algorithm (Sutton and Barto 1998). We consider
the activity aT

i (t) of an AC i to be the Q-value of the corre-
sponding state–action pair, giving rise to the following for-
mula for the weight update (Strösslin et al. 2005; Chavarriaga
et al. 2005):

ΔwT
i j = ηδT(t)eT

i j . (4)

where η is the learning rate, δT(t) is the reward prediction
error, and eT

i j is the eligibility trace. The reward-prediction
error is defined as the difference between the current and pre-
vious estimates of the discounted future reward (Sutton and
Barto 1998):

δT(t) = R(t + 1) + γ max
a

aT
i (t + 1) − aT(t), (5)
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Table 1 Parameters of the
experts

1 Set to give sufficient detailed
representation; 2 adapted from
Chavarriaga et al. (2005);
3 hand-tuned; 4 set to give a
sufficient overlap between place
fields

Name Value Description

Taxon expert and gating network

N LC
1 100 Number of Landmark Cells

σLC
1 27.5◦ Normalized landmark width

N T 2
AC 36 Number of action cells

σT 2 22.5◦ Standard deviation of the generalization profile

η3 0.001 Learning rate

λ2 0.76 Eligibility trace decay factor

γ 2 0.8 Future reward discount factor

ξ2 0.01 / 0.05 Learning rate of the gating network (depending on the experiment)

Planning expert

θPC 3 0.3 Activity threshold for place-cells node linking

θP 3 0.3 Activity threshold for node creation

α3 0.7 Decay factor of the goal value

N PC
4 1681 Number of simulated Place Cells

σ PC
4 10 cm Place field size

Fig. 2 Internal representation of the landmark (black dot) in the ego-
centric (top) and allocentric (bottom) spatial reference frames. In the
egocentric reference frame, the landmark seen by the animat oriented
toward north (marked by light grey) or toward south (marked by dark
grey) will be represented by highly active Landmark Cells at egocentric
directions ΦL = π/2 (i.e., on the left side relative to the animat’s head
direction) and ΦL = 3π/2 (i.e., on the right side), respectively (see
Eq. 1). In the allocentric reference frame, the landmark will be repre-
sented by highly active cells at the allocentric direction ΦL = π/2 in
both cases, since the landmark is located in the western direction from
the animat (here, the north direction was chosen as the zero direction of
the allocentric reference frame). F front, L left, B back, R right; N north,
W west, S south, E east

where R(t) is the reward delivered at time t , 0 < γ < 1
is the future reward discounting factor, and aT(t) is the
Q-value of the action performed at time t , estimated by the
Taxon expert. The eligibility trace eT

i j in Eq. 4 speeds up
learning by remembering the state–action pairs experienced
in the past:

eT
i j (t + 1) = rLC

j (t)ri (t) + λeT
i j (t), (6)

where λ < 1 is the eligibility trace decay rate, rLC
j (t) is given

by Eq. 1 and rAC
i is given by:

rAC
i (t) = − exp

(
φT

i − ΦT(t)

2σT2

)
. (7)

This term represents the activity of action cells in the gener-
alization phase (Strösslin et al. 2005) and allows the actions
which are close to the actually performed action ΦT (Eq. 3)
to update their weights in the same direction. The use of a
generalization phase for action learning, together with the
use of Eq. 3 for action selection results in the ability of the
Taxon expert to work in a continuous action space (Strösslin
et al. 2005).

We note that the learning algorithm described above does
not depend on the spatial reference frame (i.e., allocentric or
egocentric, see Fig. 2) that is used. The information about
the reference frame is implicitly encoded by the landmark
information. However, the learned behavior of the animat in
some tasks can be different, depending on what reference
frame is used as illustrated in the results (Sect. 3.2.5).

The calculation of the reward-prediction error (Eq. 5) and
the corresponding weight update (Eq. 4) are performed on
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each time step independently from the identity of the expert
(i.e., Taxon, Planning or Exploration) that generated the last
action. Moreover, reward signal R(t) is shared between all
the experts at each time step. Therefore, goal-oriented actions
performed under the control of, e.g., the Planning expert, help
the Taxon expert to adjust its weights. This way, the coop-
eration between strategies is implemented in the model, in
addition to the competition between strategies, governed by
the selection network (see Sect. 2.3 below for the competitive
selection algorithm).

2.2 Planning expert

The Planning expert uses a simple graph-search algorithm to
find the shortest path to the goal (Martinet et al. 2008). Dur-
ing an unrewarded map building phase, the Planning expert
builds a graph-like representation of space based on the activ-
ities of simulated Place Cells. During a reward-based goal
planning phase, this representation is used to plan and exe-
cute goal-directed path. Since extra-maze cues are stable in
the experiments that we will simulate, we use a simple model
of Place Cells as described later (see Arleo and Gerstner
2000; Sheynikhovich et al. 2009 for more detailed models of
Place Cells that integrate information from distal cues and
path integration). The population of Place Cells in our model
is created before the learning is started, and the activity of
place cell j is given by

rPC
j = exp

(
−Δ2

A→ j

2σ 2
PC

)
, (8)

where ΔA→ j is the distance between the animat and the cen-
ter of firing field of place cell j (i.e., place field), and σPC is
the width of the place field. Place field centers are distributed
uniformly in the environment.

Given the Place Cells activity, the Planning Graph is built
during unrewarded movements by the following algorithm.
When a new node Ni is created, it is connected to place cell
j with connection weights wP

i j :

wP
i j = rPC

j H
(

rPC
j − θPC

)
, (9)

where H(x) = 1 if x > 0, H(x) = 0 otherwise. The activity
rP

i of node i is then computed by

rP
i =

∑
j

rPC
j wP

i j . (10)

A new node is added on each time step unless at least
one existing node is active above threshold θP. The over-
lap between PCs, threshold values θPC, and θP have been
chosen to guarantee that, when the condition for the creation
of a new node is met (i.e., no node activity above θP), there
is always at least one PC, whose activity is above θPC. Thus,

any newly created graph node has at least one connection
weight to the PCs that is non-zero.

A link between nodes Ni and N j stores the allocentric
direction of movement required to pass from one node to the
other:

ΦP(t) = ̂−→x −−−→
Ni N j , (11)

where x is the zero angle of the allocentric reference frame.
This link is created only when the animat travels between
two nodes, with no intermediary node having already been
present. This means that when a new node is created, it is
already connected to the node previously visited by the ani-
mat. Therefore, a node i will be connected to the node j if
and only if there is no node k such that

̂−−−→
Ni N j

−−−→
Ni Nk < ε and ‖−−−→

Ni Nk‖ < ‖−−−→
Ni N j‖, (12)

where ε is dependent on the moving and rotation speeds of
the animat. This insures that graph nodes are only connected
to their closest neighbors.

Given the Planning Graph, the optimal path to the goal is
determined by the activation–diffusion mechanism (Burnod
1991; Hasselmo 2005), based on the Dijkstra’s algorithm
for finding the shortest path between two nodes in a graph
(Dijkstra 1959). More specifically, during goal planning, the
Planning expert first determines its location using a position
value and then calculates the direction toward the goal using
goal value. The position value corresponds to the activity
rP

i of the node (Eq. 10). The goal value Gi = 0 when no
goal position is known. In this case, the strategy proposes
a random movement direction among the different possible
actions from the current node. In contrast, when the goal
position is found (using the actions generated by any expert),
the goal value of the closest (goal) node is set to Gi∗ = 1, and
is propagated to all the adjacent nodes, decreased by a decay
factor α < 1. The goal value Gi of a node i of distance n from
the goal node (measured as the number of nodes between the
goal node and the node i) is given by Gi = αn . The next
movement direction is given by the link to the adjacent node
with the highest goal value.

2.3 Strategy selection

During goal learning, the model has to select out of the three
experts, Taxon, Planning, and Exploration experts (T, P, and
E, respectively), which one takes control over behavior, i.e.,
chooses the next action. The gating network learns to select
experts on the basis of the “common currency” defined as the
direction of movement proposed by each expert. After learn-
ing, the expert that proposes directions of movements that are
closest to the true direction to the goal is considered the best
at each time step. We use only three experts at present, but
the selection network can work with any number of experts
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Fig. 3 Gating network. The inputs of the Taxon and Planning experts
(LC and PG) are linked to the units in the gating network. The gating
values gk are weighted sums of the input values r j with weights zk

j . One
of the three experts is selected according to a winner-take-all scheme

as long as they provide a direction of movement toward the
goal as their output.

In the present model, the gating network consists of three
units k ∈ {T, P, E}, each corresponding to a separate expert.
The activity gk of the unit k is called “gating value” of the
corresponding expert. The input to the units in the gating net-
work is provided by the activities of the LC population and
the nodes of the Planning Graph (Fig. 3). The gating values
gk are calculated as

gk(t) =
NLC∑
j=1

zk
j (t)r

LC
j (t) +

NLC+NP∑
j=NLC+1

zk
j (t)r

P
j (t), (13)

where zk
j is the connection weight between the unit k of the

gating network and input unit j of the experts. As described
in the previous sections, at each time step experts propose
candidate directions Φk of the next movement. The gating
values are used to choose the next movement direction Φ∗
to be taken by the animat using a winner-take-all scheme:

φk(t); k = argmaxi (g
i (t)) (14)

Similar to the learning in the Taxon expert, the connec-
tion weights for the Taxon and Planning gating values are
randomly initialized between 0 and 0.01 and adjusted using
a Q-learning algorithm. The weight update in this case is
given by

Δzk
j = ξGδG(t)ek

j (t), (15)

where ξG is the learning rate of the gating network, and δG(t)
is the reward-prediction error:

δG(t) = R(t + 1) + γ max
k

(
gk(t + 1)

)
− gk∗

(t), (16)

Here, R(t) is the reward delivered at time t , γ is the future
reward discount factor of the gating network, and gk∗

is the
gating value of the expert, chosen at time step t (i.e., the time
step that corresponds to the direction of movement in Eq. 14).

As for the Taxon strategy, the eligibility trace ek
j of expert

k allows the gating network to reinforce the experts selected
in the past:

ek
j (t + 1) = Ψ (Φ∗(t) − Φk(t))rk

j (t) + λek
j (t), (17)

where λ is the eligibility trace decay factor. The term
Ψ (Φ∗(t)−Φk(t)) can be considered as a discrete version of
the action generalization in the Taxon expert, where

Ψ (x) = exp(−x2) − exp(−π/2). (18)

This term insures that the closer the orientation is from the
selected one, the higher the corresponding strategy will be
reinforced (Ψ (x) is maximum when x = 0). In contrast, two
strategies that proposed two opposite orientations will have
opposite reinforcements. The selection between experts is
performed at each time step, unless the Exploration expert is
chosen, in which case the chosen orientation is taken during
three subsequent time steps. This was done to avoid the ani-
mat being stuck in a particular location due to random weight
initialization. Since exploration actions are pseudo-random,
their weight will decrease with learning relative to the weight
associated with strategies that direct the animat toward the
goal (since the gating network assigns higher weights to strat-
egies that maximize reward). This situation does not change
when the weights start to converge, since exploration strat-
egy will not predict rewards better at the end of training; its
actions remain always pseudo-random.

3 Simulation I: Experiment of Pearce et al. (1998)

In this experiment, two groups of rats (Control and Hippo-
campal-lesioned) learned to find the location of a hidden plat-
form in a circular water maze. A visible landmark was located
in the pool at a certain distance and allocentric direction from
the platform. At the start of an experimental session, the plat-
form and the landmark were moved to one of eight predefined
locations in the pool (Fig. 4a), and remained fixed for four tri-
als, after which a new session started. The principal observed
results of this experiment (see Fig. 3 in their article) con-
sisted in the observations that (i) both the lesioned and intact
rats learned to swim to the hidden platforms at the end of
training, and (ii) escape latencies of Hc-lesioned rats were
significantly shorter than Control rats in the first trials of
intermediate sessions, while they were significantly longer
than Control rats in the last trials of each session. From
these results, the authors concluded that the intact rats used
two competing navigation strategies to locate the goal: a
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Fig. 4 a Experimental setup of
Pearce et al. (1998). Mean
escape latencies of simulated
rats across sessions. b Control
versus Taxon group. c Planning
versus Taxon group. Solid, and
dotted lines correspond,
respectively to first-trial and
last-trial latencies

(a)

(b) (c)

Hc-dependent strategy that remembered the goal location
with respect to distal extra-maze cues; and a Hc-independent
strategy (termed “heading vector strategy” by the authors)
that remembered the allocentric direction from the landmark
to the goal.

3.1 Simulation procedure and data analysis

The simulated water maze, rat, and landmark were repre-
sented by circles of 200, 15, and 20 cm in diameter, respec-
tively. The reward location of 10 cm in diameter was always
located 20 cm south from the landmark. At the start of a
session, the platform and the associated landmark were ran-
domly moved to one of the eight positions, as shown in
Fig. 4a. At the beginning of each trial, the animat was placed
in one of the four cardinal positions near the wall, with a ran-
dom initial orientation. The starting locations were pseudo-
randomly avoiding two consecutive trials with the same start
location. The moving speed of the animat was set to 18 cm/s,
with a simulation time step corresponding to 1/3 s. If the

animat was not able to reach the platform in 200 s, it was
automatically guided to it along a direct path to the target,
similarly to the real rats in this experiment. Reaching the
goal was rewarded by R = 1, and wall hits were punished
by R = −0.5 (see Eq. 5 and 16).

The intact rats were simulated by a full model (Con-
trol group), including Taxon, Planning, and Exploration
experts. Two lesion groups were simulated: animats in the
Taxon group used only Taxon and Exploration experts,
while animats in the Planning group used only Planning and
Exploration experts. The Taxon group corresponded to the
Hc-lesioned animals of the original experiment. The allocen-
tric version of the Taxon version was used in this simulation
(see Sect. 5.3.2).

In all simulations now being discussed, the results were
averaged over 100 animats (noise in the system was due to the
random initialization of weights and random choice of start-
ing position). Both across and within sessions, performance
of Control, Taxon and Planning groups were statistically
assessed by comparison of their mean escape latencies—the
number of time steps per trial—in the first and the fourth trials
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of a session, using signed-rank Wilcoxon test for matched-
paired samples. Between-group comparison was performed
using a Mann–Whitney test for non-matched-paired samples.
Animat behavior was characterized by three measures: Goal
occupancy rate of a goal location, defined as the number
of times the animat visited a rewarded zone, divided by the
total trajectory length; Goal selection rate of an expert, calcu-
lated as the number of times this particular expert was chosen
within a square zone of 0.4 m2 around the goal, divided by
the total number of times the animat visited this zone; Trial
selection rate of an expert, defined as the number of times
the expert was selected over the total length of the trajectory.

The competitive interaction between strategies was esti-
matedby thenegativecorrelation (Pearson’sproduct-moment
coefficient)of theirselectionrates x and y calculatedasρx,y =
σxy
σx σy

, where σxy is the covariance, and σx , σy are the standard
deviations of the selection rates x and y, respectively.

3.2 Simulation results

3.2.1 Learning across and within sessions

Both the simulated Control and Taxon groups were able to
learn the location of a hidden platform, as shown by the
decrease of their escape latencies (Fig. 4b; P < 0.001 for all
groups). Moreover, in contrast to the Taxon group, animats in
the Control group decreased significantly their escape laten-
cieswithinall thesessions(Control-1vs.Control-4 inFig.4b).

A comparison of two simulated lesion groups (Taxon and
Planning groups) shows that the Taxon expert was responsi-
ble for decreasing escape latencies across sessions, while the
place-based expert was responsible for learning within ses-
sions (Fig. 4c). Moreover, the Control group found the plat-
form more quickly in the fourth trials (dotted line in Fig. 4b)
than both the Taxon and Planning groups (dotted lines in
Fig. 4c), suggesting that the two strategies cooperated dur-
ing learning. This was also assessed by their current goal
occupancy rate that increases in fourth trials (Fig. 5a).

Similar to real rats, simulated Control group had greater
escape latencies than Taxon group in the first trials (Fig. 4b).
Pearce et al. (1998) suggest that this might be explained by
the preferential use of the Hc-based strategy at the end of
a session, so that, at the beginning of a new session (when
the platform has moved to a new location), this strategy led
the animal to the previous (thus wrong) platform location.
In order to check whether this is the case in our model, we
calculated goal occupancy rates near previous and current
goal locations for simulated Control and Taxon groups. The
results show that indeed, the Control group had a significant
bias toward the previous goal location on first trials (Fig. 5b,
first trials), while this bias disappeared after the Planning
expert had learned the new goal location (Fig. 5b, fourth

(a) (b)

Fig. 5 Occupancy rates for a the current and b previous goal loca-
tions for simulated Taxon and Control groups. *** and * correspond
respectively to significance levels P < 0.001 and P < 0.05

trials). The reason for this is that the Planning expert of our
model was not able to notice that platform and landmark
have been moved to a new location at the start of a session,
in contrast to the Taxon expert.

Thus, the overall performance of the model in this task
is consistent with that reported by Pearce et al. (1998). The
advantage of the modeling approach applied here is that we
can go further in our analysis of behavior and explore the
interactions between behavioral strategies within experimen-
tal trials. Such an analysis is usually hard to perform in ani-
mal experiments like that of Pearce et al. (but is possible
for simpler tasks, like e.g., Hamilton et al. 2004). Such a
complementary analysis allows us to get insights into (i) the
importance of different types of sensory cues for different
strategies and (ii) competitive and cooperative interactions
between trials across and within experimental sessions.

3.2.2 Influence of sensory cues

In order to analyze the importance of landmark versus spatial
cues on learning, we compared the synaptic weights between
the connections from Landmark Cells (that encode the land-
mark) and nodes of Planning Graph (that encode location)
to the units of the gating network, which encode the two
strategies in the model. The observed increase in the aver-
age weights for all connections suggests that all types of
cues played a role in the selection process (Fig. 6). However,
weights from Landmark Cells to both the Taxon and Plan-
ning gating units grew significantly faster with learning, than
those from Planning Graph nodes (P < 0.01, see caption of
Fig. 6). These results suggest that, in our model, the landmark
exerted progressively stronger influence on strategy selection
than spatial cues, which is consistent with the fact that this
task could be solved only by paying attention to the landmark.
Nevertheless, the spatial cues were also learned, although
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Fig. 6 Evolution of the average synaptic weights between inputs of
the gating network and gating units of different strategies. Thick lines
represent straight links (LC → Taxon, PG → Planning). Dotted lines
represent cross links (LC → Planning, PG → Taxon). A linear regres-
sion test on these slopes indicates that LC → Taxon weights grow 5.4
times faster than PG → Taxon weights. Accordingly, LC → Planning
weights grow 2.3 times faster than PG → Planning weights

with a smaller rate, and so could influence selection when
Planning expert becomes more efficient.

3.2.3 Competition between strategies across experimental
sessions

Next, we analyzed the competitive interaction between
experts in the Control group across training sessions by com-
parison of their goal and trial selection rates. Pearce et al.
(1998) suggest that, at the beginning of each session, the
place-based strategy was in competition with the heading-
vector strategy, the latter being the winner of the competi-
tion by the end of training. We checked whether our model
is consistent with this hypothesis.

At the start of a new session, the Planning expert was not
able to detect the change in the platform location and hence its
goal selection rate did not change significantly from earlier
to later sessions (Fig. 7a, first trials). Accordingly, the first
trial selection rate of the Planning strategy did not change
significantly across sessions (Fig. 7b). In contrast, the Taxon
expert learned to track the changes in landmark position, as
suggested by the progressive increase of its trial selection
rate across experimental sessions (Fig. 7b, first trials), and
by the significant increase in its goal selection rate in the
later sessions relative to earlier sessions (Fig. 7c). The com-
petitive interaction between the Taxon and Planning experts
is illustrated by the typical trajectory of the simulated animal
at the beginning of a session (Fig. 8a). The Planning expert
led the animat toward the previous platform location, while
the Taxon expert led it toward the current one.

(a) (b)

(c) (d)

Fig. 7 a Selection rates of the Planning expert near the current goal
location, across and within sessions. b Strategy selection rates across
sessions in first trials. c Taxon strategy selection rate near the current
goal location. d Strategy selection rate across the sessions in fourth tri-
als. *** and * correspond respectively to significance levels P < 0.001
and P < 0.05

Interestingly, the decrease in the trial selection rate of the
Exploration expert was almost opposite in magnitude to the
increase in the Taxon selection rate (correlation coefficient
r = −0.96). This result suggests that the preferential use
of the Taxon strategy at the end of training corresponds to
a decrease in exploratory behavior, rather than a decrease in
place-based strategy (Fig. 7b).

3.2.4 Cooperation between strategies within a session

As shown above, the competitive interactions between Taxon
and Planning strategies were due to the fact that these two
strategies encoded different goal locations at the start of a ses-
sion. However, this situation changed by the end of session
when both strategies had learned the true goal location. In
both early and late sessions, the Planning expert was selected
significantly more often near the current goal location in
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(a) (b)

(c) (d)

Fig. 8 Control group a example of typical trajectories in last sessions
of the first trial, b example of typical trajectory in the last sessions of
the fourth trials and the associated navigational maps around the goal
location of c Taxon and d Planning strategies

fourth trials than in first trials (Fig. 7a), whereas Taxon expert
was selected near the current goal location as much often in
fourth trials as in first trials in both early and late sessions
(Fig. 7c). The increase in Planning selection rate near goal,
without provoking a decrease of the Taxon selection rate, and
superior performance of Control group over other groups in
the fourth trials (Fig. 5a) suggests a cooperative interaction
between both experts. Such a cooperative interaction is illus-
trated by a typical trajectory in the fourth trial (Fig. 8b).
Here, both strategies led to the correct goal location and the
choice of a particular strategy depended on the accuracy of
the corresponding expert at different locations along the tra-
jectory. Examples of navigational maps of the two experts
near the goal location are shown in Fig. 8c, d. In these maps,
arrows corresponding to the learned directions of movement
for each sample location (Taxon expert) or for each spatial
node (Planning expert), show that the Taxon expert points
southward the landmark, and the Planning expert toward the
platform location.

3.2.5 Allocentric Taxon strategy as a heading-vector
navigation

In the simulation shown above, we used an allocentric version
of the Taxon expert to reproduce the rat behavior attributed

Fig. 9 A correspondence between the allocentric Taxon strategy in
the model and the heading-vector strategy (Pearce et al. 1998). The plot
shows the mean escape latency to find the platform hidden in the same
location relative to the landmark as during training (same location), or in
the location opposite to it (opposite location). Contrary to the egocentric
Taxon expert, the allocentric Taxon expert had difficulty in finding the
platform in the opposite location, since it “remembers” the allocentric
direction from the landmark to the hidden goal

by Pearce et al. (1998) to heading-vector navigation. They
defined the heading-vector strategy as follows: rats “might
use a heading vector that specifies the direction and distance
of the goal from a single landmark.” Here, we show that the
allocentric Taxon expert suits well this definition.

In order to demonstrate that the allocentric taxon strat-
egy in the model is similar to the “heading-vector” strat-
egy observed in rats, we performed behavioral test similar
to that used in the original experiment. After training the
Taxon group in 11 sessions of the main experiment, the land-
mark was placed at the center of the pool. In the case of
half the number of the animats in the simulated Taxon group,
the platform was located south of the landmark and at the
same distance as before, while for the other half, the platform
was located north of the landmark. We compared the perfor-
mance of the allocentric and egocentric versions of the Taxon
expert in the model. Similar to the Hc-lesioned animals, ani-
mats with allocentric Taxon expert for which the platform
was located north of the landmark took significantly longer
to locate the platform than the other group (Fig. 9). This is
explained by the fact that the allocentric taxon strategy relies
on the remembered allocentric direction from the landmark
to the goal, while the egocentric taxon strategy cannot use
this information, and hence searches randomly around the
landmark (see Sect. 2.1). From these results we conclude
that the allocentric Taxon expert is a suitable model of the
heading-vector strategy observed by Pearce et al.
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In summary, our results support the hypothesis of Pearce
et al. (1998) that, at the beginning of the training sessions,
place- and response-based strategies were in competition
with each other. However, on the basis of results of this
study, we propose that, at the end of a session, a cooperation
between strategies takes place. In addition, we propose that
the improvement of the rat performance by the end of training
is not due to the decrease in the use of place-based strategy,
but rather due to the decrease in the number of exploratory
actions. We stress here that in the model described, the trade-
off between exploration and exploitation is not fixed, but
learned during training (see Sect. 5).

4 Simulation II: Experiment of Devan and White (1999)

In this experiment, sham-operated, fornix-lesioned and DLS-
lesioned groups rats were trained for nine days to remember
the location of a platform in a water maze. On days 3, 6,
and 9 the platform was hidden, whereas it was visible on the
other days. During a competition test on day 10, the visible
platform was placed in a novel location (Fig. 10a).

Four principal findings from the original experiment
were related to the issue of interaction between place- and
response-based strategies (see Fig. 2 in their article). First,
sham-operated rats, rats with fornix/fimbria lesions and rats
with DLS lesions were equally fast in learning the visi-
ble platform location, suggesting that either strategy can
be used to approach a visible goal. Second, rats with for-
nix/fimbria lesions were slower than both sham-operated
and DLS-lesioned rats during the hidden platform sessions,
suggesting that Hc-dependent strategy, and not the DLS-
dependent strategy, is required to locate the hidden plat-
form. Third, on the competition test, rats with fornix/
fimbria lesions escaped faster from the pool than either sham-
operated or DLS-lesioned groups, suggesting a competition
between the two strategies. Fourth, the authors identified two
groups of sham-operated animals during the final test day:
“place-responders” were approaching the place where the
hidden platform was in the previous trial, discarding informa-
tion from the visible platform in a new place; “cue-respond-
ers” headed toward the visible platform and were not biased
by the hidden platform location in the previous trials.

4.1 Simulation procedure and data analysis

The experimental setup was similar to that used in Simula-
tion I, except that the diameter of the water maze was set
to 172 cm to be consistent with the original protocol. On
days 1, 2, 4, 5, 7, 8, the visual landmark 10 cm in diameter
(representing the visible platform) was placed into the center
of the southwest quadrant of the environment (its position
coincides with the reward zone). On days 3, 6, and 9, the

(a)

(b)

Fig. 10 a Protocol of the experiment. b Mean escape latencies of sim-
ulated rats in Control, Taxon, and Planning groups across sessions with
visible (connected plot, days 1, 2, 4, 5, 7, and 8) and hidden (days 3, 6,
and 9) platform. Competition test was conducted on day 10 (see text)

landmark was absent, but the reward zone remained in the
same location. On day 10, the landmark together with the
reward zone were moved to the center of the northeast quad-
rant of the environment. Starting positions were chosen as
in Simulation I. On the competition test the starting position
equidistant from both landmark locations was chosen.

Sham-operated, fornix-lesioned and DLS-lesioned groups
were respectively simulated by the Control, Taxon and Plan-
ning groups as in Simulation I. In this simulation we used
the egocentric version of the Taxon expert (see Model and
Sect. 5.3.2). The same statistical tests as in Simulation I were
used to assess learning.
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4.2 Simulation results

4.2.1 Parallel learning of navigational strategies

When the visible landmark was signaling the platform loca-
tion, all groups of animats were successful in learning the
goal location (Fig. 10b, trial blocks 1, 2, 4, 5, 7, and 8). The
Planning group was longer than Taxon and Control groups.
In this model, this is a consequence of the fact that the plat-
form location did not usually coincide with a graph node,
resulting in the lower precision of the Planning Graph com-
pared to the visual input and elevated use of the Exploration
expert. The performance of Control and Taxon groups was
not different, suggesting that in this case, the behavior of
the Control animats was controlled primarily by the Taxon
expert.

When the reward location was not signaled by the land-
mark, the Taxon group had significantly longer escape laten-
cies, that did not decrease with training, similarly to the rats
with fornix/fimbria lesions (Fig. 10, trial blocks 3, 6, 9). The
performance of the Control group was not different from that
of Planning group, suggesting that, in these trial blocks, the
behavior was controlled by the Planning expert.

On the competition test, animats from the Taxon group
were significantly faster than those from either Control and
Planning groups in reaching the new platform location (P <

0.001, Fig. 10, trial block 10). In addition, Control group was
significantly faster than Planning group, whose performance
did not differ from that in the first trial. This last difference
was not observed in the original experiment, possibly due
to the fact that DLS-lesions in rats may have spared some
ability to approach a visible target moved to a new position,
whereas our animats in the Planning group were not able to
do so. Nevertheless, these results are consistent with the find-
ing of Devan and White (1999) that rats with fornix/fimbria
lesions performed significantly better on the competition test
than both the Control and DLS-lesioned groups.

Taken together, these results show that our selection model
is consistent with the rat behavior observed in this experi-
ment. Similar to the analysis performed in Simulation I, in
the next section, we focus on the influence of visual cues and
on analysis of strategy interaction.

4.2.2 Influence of sensory cues

The evolution of the synaptic weights in the gating network
reflected the irrelevance of the Taxon expert for the trials in
which the goal is hidden (Fig. 11). This was expressed by
the progressive decrease of the connection weights between
spatial cues and the gating unit corresponding to the Taxon
strategy. This is in marked contrast with the weight evolu-
tion in Simulation I (Fig. 6), where both types of cues were

Fig. 11 Synaptic weights of the gating values in the gating network
in Control group. Thick lines represent straight links (LC → Taxon,
PG → Planning). Dotted lines represent cross links (LC → Planning,
PG → Taxon)

(a) (b)

Fig. 12 Navigational maps of a Taxon and b Planning experts at the
end of the trial blocks 8 and 9

present throughout training and could be both used to find
the goal.

4.2.3 The absence of cooperation between strategies
during training

During training, both the Taxon and Planning experts learned
to approach the fixed goal location. This is illustrated by the
navigational maps learned by the two experts (Fig. 12). It can
be observed that the map learned by the Taxon expert was
more accurate than that of the Planning expert, due to the
fact that in this experiment goal location coincided with the
landmark. Hence, no cooperation with the Planning expert
was necessary in this case. Indeed, trial selection rates of dif-
ferent experts show that the Taxon expert clearly controlled
the behavior when the goal was visible (Fig. 13a, b).

In contrast, during trial blocks in which the goal was hid-
den, the Planning expert was progressively more selected
than the Taxon expert (Fig. 13a, b). In addition, the role
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(b)

(a)

Fig. 13 a Selection rates of the three experts during training and com-
petition test in Simulation II (H: Hidden Platform). b Summary plot,
showing the average rate of selection rate of different experts during
trial blocks with visible goal, hidden goal and during competition test

of exploratory behavior was more prominent in these trials,
compensating the relative inaccuracy of the Planning Graph.

4.2.4 Competition between strategies during test

In the competition test, the simulated Control group was able
to select a cue-based strategy to reach the goal location, as
suggested by escape latencies (Fig. 10) and the selection rate
of the Taxon expert (Fig. 13b). However, a significantly bet-
ter performance of the Taxon group in the competition test
(Fig. 10) and a higher selection rate of the Taxon expert dur-
ing training with visible goal (Fig. 13b) suggests that com-
petition with other strategies slowed down the Control group
relative to the Taxon group during the test.

Using the same labeling scheme as Devan and White
(1999), Control animats could also be classified into “cue-
responders” (59%) and “place-responders” (41%). This divi-

Fig. 14 Rates of selection of experts of cue-responders (CR) and place-
responders (PR) in the competition test

(b)(a)

Fig. 15 a, b Typical trajectories of animats labeled as a “place-
responders” and b “cue-responders”

sion qualitatively reproduced the division of Control rats into
both groups of the original experiment (4 “cue-responders”
and 6 “place-responders” over 10 animals). Analysis of the
trial selection rates of Taxon and Planning experts showed
that indeed, in the group of “place-responders” the Planning
expert was selected significantly more often than for the
group of “cue-responders” (P < 0.05), In contrast, in the
group of “cue-responders,” the Taxon expert was selected
more often (although the difference does not reach the sig-
nificance level, P = 0.05, Fig. 14a, b). The observation of
typical trajectories of place- and cue-responders shows that
place-responders were stuck near the previous goal location
during competition test, while cue-responders went almost
straight to the visible goal (Fig. 15).

In summary, these results suggest that the proposed selec-
tion criterion is flexible enough to deal with rapid strat-
egy switches required when environmental cues drastically
change. The Taxon expert in our model learned navigational
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maps that were more accurate than those of the Planning
expert. The limited number of nodes of the Planning Graph
was compensated by the high selection rate of the Exploration
expert in the sessions with hidden goal (Fig. 13a). The role
of the Exploration expert in our model was to find the exact
goal location in an approximate goal area signaled by the
“cognitive map” (represented by the Planning Graph), rather
than to update the map, as is usually proposed (O’Keefe and
Nadel 1978).

5 Discussion

We presented a computational model of switching between
cue-guided and place-based strategies in the water maze. The
main novel property of this model is that it is capable of
learning to select between cue-guided and place-based strat-
egies that use different learning algorithms and spatial refer-
ence frames to locate a goal. The place-based strategy uses a
graph-search algorithm to find the shortest path to the goal.
The graph is learned online using the activities of simulated
Place Cells that encode spatial location of the animat in an
allocentric reference frame. The cue-guided strategy uses a
TD learning rule to approach either a visible goal, encoded
in an egocentric reference frame; or a hidden goal marked by
a landmark, encoded in an allocentric directional reference
frame. The strategy selection is performed by a gating net-
work that learns to predict, using a simple TD-learning rule,
the most successful strategy, on the basis of the direction of
movement that each expert offers at each time step, given all
current sensory inputs.

The model was tested in two simulated water-maze tasks
designed to investigate interactions between place- and
response-based strategies in rats. Owing to the separation
between cooperative (during action learning) and competi-
tive (during action selection) interaction between strategies
in the model, we were able to assess the relative contribution
of different strategies within, as well as across experimen-
tal trials. The sections hereafter shall aim at answering the
questions raised in the introduction.

5.1 Strategy selection mechanism

5.1.1 Relation to other models

Several models of strategy switching based on the theory of
parallel memory systems were proposed earlier (Guazzelli
et al. 1998; Daw et al. 2005; Girard et al. 2005; Chavar-
riaga et al. 2005). In the model of Guazzelli et al. (1998), the
orientations proposed by egocentric taxon and allocentric
planning strategies are, respectively, determined by current
affordances and cognitive knowledge. The final movement
is computed as a sum of these orientations that hand-tuned

parameters adapt to the situation. A similar selection is also
made in the basal-ganglia loops model of Girard et al. (2005).
In these models, strategy switches occur in a set of situations
a priori chosen by the modeler. In our earlier study (Chavar-
riaga et al. 2005; Dolle et al. 2008), the strategy-selection
network is adaptive, but it is able to select only between
strategies that use TD learning to learn the task. Indeed, the
selection network uses TD reward-prediction error as a mea-
sure of success of different strategies and hence is not able
to deal with other goal-navigation algorithms such as plan-
ning. Reinforcement learning framework is also used in the
model of Uchibe and Doya (2005) to select between two nav-
igational strategies, but does not handle strategies that are
not learned by RL. Finally, the model of action selection in
an operant conditioning (Daw et al. 2005) proposes another
interesting mechanism of selection depending on the relative
uncertainty of different experts. However, in this model, the
tree-based computations performed by the experts only allow
the model to work with rather small state spaces, and hence
cannot be applied to navigation in continuous space. The
advantage of the selection criterion proposed in this study is
that it permits comparison between experts that use differ-
ent learning rules and scales well with increasing number of
exerts.

5.1.2 The role of random exploration

In the above model, exploration is implemented as a separate
“strategy,” i.e., during goal learning, it is chosen when its
gating value is the highest among the gating values of all the
strategies. It means that the need for exploring novel actions is
learned during training and can depend on sensory input. This
is in contrast to standard reinforcement learning algorithms
in which exploration is chosen according to a predefined sto-
chastic scheme. For example, Arleo and Gerstner (2000) and
Chavarriaga et al. (2005) use an ε-greedy scheme, in which
novel actions are tested with small probability ε on each time
step, while Foster et al. (2000) use a soft-max selection where
actions with high Q-values have a higher probability of being
chosen. In robotic experiments (Cuperlier et al. 2007; Barrera
and Weitzenfeld 2007), the exploration is chosen when the
animat cannot associate its location with any existing node
in its topological map. In Girard et al. (2005), the exploration
is a random direction chosen among the other strategies, but
the selection is not learned. We show here that the model in
which the balance between exploitation and exploration is
not predefined but learned with training can reproduce well
the rat behavior in two real-world behavioral tasks. In agree-
ment with standard RL algorithms, the exploration is mainly
chosen at the beginning of the training and then decreases as
the strategies are learned (Fig. 7). Our simulations also show
that Planning strategy is associated with higher exploration
rate (Fig. 13b, sessions 3, 6, and 9), which is explained by
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the lower accuracy of the cognitive map compared to visual
input (due to a limited number of nodes). In the model pro-
posed, the path to the goal derived from the cognitive map
can only follow connections between nodes, thus producing
paths which are close to optimal, but still deviating from the
approximately straight paths generated by Taxon strategy.

The above mentioned model suggests that exploratory
behavior may be governed by a separate brain network sim-
ilarly to Taxon (DLS) and planning (Hc–PFC) networks. If
so, then exploratory behavior can be potentially dissociated
from other strategies using a specialized experimental para-
digm. In support of this idea, several experimental addressed
thigmotaxic (i.e., wall-following) behavior which can be con-
sidered as an exploratory (yet non-random) behavior (Devan
and White 1999; Devan et al. 1999; Pouzet et al. 2002; Chang
and Gold 2004).

5.2 The mechanism of selection can result in competition
and cooperation between strategies, across
and within trials

In the above model, the Taxon and Planning experts learn in
parallel and in such a way that action–outcome pairs gener-
ated by one of the experts can be used by the other expert to
update its action value estimates. Learning of an expert from
the actions performed by another expert represents cooper-
ation between strategies in our model, which fits well the
definition of cooperation introduced by behavioral studies
(see Sect. 1). In our simulations, the facilitating effect of
cooperation is clearly seen by observing that performance of
intact simulated animals is always better than or equal to that
of lesioned simulated animals, when both strategies predict
correct paths (Fig. 4b, Taxon-4 and Control-4).

On the other hand, the gating network will select an expert
with the highest gating value at each time step, where the
gating value corresponds to the total future reward predicted
for this strategy. Such a reward-based selection of experts
allows competition between strategies (see Sect. 1). Evidence
for competition in our simulations is given by performance
data showing that when two strategies suggest contradictory
predictions about goal location, lesioned simulated animals
outperform control ones (Fig. 4b, Taxon-1 and Control-1 and
Fig. 10b, session 10). In summary, the presented model pro-
vides a rather simple strategy selection mechanism which
implements cooperation as well as competition between the
strategies within the same network.

5.3 Influence of sensory cues

5.3.1 Influence of intra-maze and extra-maze cues

A noticeable contribution of the model concerns the analy-
sis of the influence of different types of sensory cues (intra

versus extramaze) on strategy selection, which is hard to do
in real life experiments. Within the gating network, the gating
units of both Taxon and Planning strategies receive two types
of sensory input provided by Landmark Cells (i.e., landmark
information) and Planning Graph nodes (location informa-
tion). Essentially this means that the availability of sensory
cues at each moment in time determines the relative values
of available strategies. Hence, by observing the evolution of
synaptic weights between sensory inputs and gating units,
it is possible to assess the relative contribution of different
types of input on the behavior. From the weight analysis in
our simulations we make two observations.

First, in both behavioral tasks, landmark information is
more important than spatial cues for strategy selection, as
shown by larger average weights of Landmark Cells com-
pared to Place Cells (bold lines versus thin lines, respec-
tively, in Figs. 6, 11). In Simulation I, this is due to a higher
accuracy of landmark information over information provided
by spatial cues, since the landmark signals the correct goal
location at the beginning of a session. In Simulation II, this
is due to the fact that the presence or the absence of the land-
mark determines whether the Taxon strategy can be used
at all.

Second, in Simulation II, the input from the spatial cues
(i.e., Planning Graph nodes) serves mainly to decrease the
influence of Taxon expert in the trials with hidden goal by
negative projection from Place Cells to the Taxon gating
value (Fig. 11). However, this does not completely prevent
this inappropriate expert from being selected in this situation
(see Fig. 13a, showing that the Taxon is selected even when
it cannot “see” the landmark). In the absence of a landmark,
the Taxon expert proposes a randomly chosen action and is
thus equivalent to the Exploration expert. Its selection rate on
the trials without landmark decreases with learning, as can
be seen from Fig. 13a, b.

5.3.2 Allocentric versus egocentric cue-based learning

There are two versions of Taxon strategy in the model. They
use exactly the same learning algorithm, but the visual cues
are represented in an allocentric directional reference frame
for the allocentric Taxon expert, and in an egocentric ref-
erence frame for the egocentric Taxon expert (Fig. 2 and
Sect. 2.1). The use of allocentric directional frame implic-
itly requires the use of stable extra-maze cues with respect to
which such a frame is defined. Our model does not include the
estimation of the allocentric head direction from extra-maze
cues (see Skaggs et al. 1995; Zhang 1996), but it is assumed
to be provided by the head direction network (Taube et al.
1990. In contrast, infromation from the intra-maze cues is
sufficient for the egocentric Taxon expert to determine direc-
tion to the goal.
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Fig. 16 a Results of
Simulation I (Pearce et al.’s
experiment) with an egocentric
Taxon instead of an allocentric
one. b Results of Simulation II
(Devan and White’s experiment)
with an allocentric Taxon
instead of an egocentric one

(a) (b)

As shown in Fig. 9, in contrast to the egocentric Taxon
strategy, the allocentric Taxon strategy reproduces the rat
behavior attributed to the “heading vector” strategy observed
by Pearce et al. (1998). This is because the allocentric Taxon
strategy takes into account the current allocentric heading,
and thus is able to tell whether the platform is located north or
south of the landmark. When the platform position changes,
the allocentric Taxon strategy fails to find the goal. For the
egocentric Taxon strategy, the two cases are identical since
the animat is using random search around the landmark in
both cases.

We note here that our main results will not change if we
use egocentric Taxon strategy in the simulation of the exper-
iment of Pearce et al. (1998), as demonstrated in Figs. 4a
and 16a. The use of the egocentric strategy simply slows
down the performance of both Taxon and Control groups.
Accordingly, the use of an allocentric Taxon strategy does
not deeply change the results of Taxon and Control groups in
the simulation of Devan and White (1999) when the platform
is visible (Figs. 10b, 16b). However, Control group is much
less efficient in hidden trials: in the sudden absence of the
landmark, the allocentric Taxon, which has memorized the
previous heading, helps to a lesser extent in finding the goal
than does the egocentric Taxon which proposes a random
orientation.

5.4 Neural substrates for the strategy-selection network

According to Ragozzino et al. (1999) and Rich and Shapiro
(2009), the prelimbic–infralimbic areas (PL/IL) of the medial
prefrontal cortex (mPFC) are not required for acquiring nav-
igation strategies, but are responsible for switching between
them. These data fit well to the model proposed here. Indeed,
PL/IL areas receive afferents from Hc (e.g., Conde et al.

1995) and dorsomedial striatum (e.g., Groenewegen et al.
1991) which are the potential biological loci for the place- and
cue-based learning, respectively. Moreover, PFC receives
dopaminergic projection from the ventral tegmental area
(e.g., Descarries et al. 1987). and so the reward informa-
tion necessary for reward-based learning in the model may
be available in the PFC.

On the neural level, Rich and Shapiro (2009) observed that
different subpopulations of mPFC neurons code for differ-
ent behavioral strategies. In the current model, gating values
of different strategies can be considered as representing the
activity of these subpopulations. Indeed, switches between
strategies in the current model correspond to switch in
relative gating values: if Taxon gating value is greater than
Planning gating value, Taxon strategy takes the control of
behavior, and vice versa (see, e.g., Figs. 6, 13). This switch
between relative gating values corresponds to the switch
between population activities in the recorded data of Rich
and Shapiro (2009) (see Fig. 6a in their article).

Despite these similarities, however, the model cannot
account for some other data in relation to the role of the
mPFC in behavior. For example, it has been shown that
mPFC is responsible for cross-modal but not intra-modal
selection (i.e., reversal learning, Young and Shapiro 2009). In
the current model, both strategy switching and reversal can be
learned within the same network, since reversal in our model
corresponds to simply changing the reward location. Other
inconsistencies come from the study of Rich and Shapiro
(2007), who have shown that mPFC is involved only dur-
ing first strategy switches and it does not seem to play a role
during subsequent switches. Our model cannot provide plau-
sible explanation for these data. In summary, mPFC might
be considered as a biologic locus for the selection network,
but in this case (i) a separation of the gating network into at
least two different parts is required to take into account the
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reversal data (Young and Shapiro 2009), and (ii) an extension
to the model is required to explain how the strategy switch-
ing is performed after more than a few subsequent switches
(Rich and Shapiro 2007).

6 Conclusion

This study proposes a mechanism of switching between
procedural cue-based and cognitive place-based navigation
experts in continuous environment. The cue-based expert
uses visual input, while the place-based expert uses a topo-
logical representation of the environment built on the basis of
Place Cells. Random exploration is considered as a separate
strategy and participates in the strategy selection process.
The selection between strategies is performed by estimating
how successful the strategies are in predicting the reward,
on the basis of the direction of movement they propose. The
model is able to select between navigation strategies that are
based on distinct learning mechanisms (i.e., procedural or
cognitive), potentially operating in different spatial reference
frames (i.e., allocentric or egocentric). As we demonstrated,
the model can serve as a useful tool for analyzing interac-
tions between navigational strategies in spatial learning and
for prediction of behaviours of lesioned animals.

The model is intended to be extended to model experi-
mental paradigms that add, change, or remove extra-maze
landmarks. The current integration of a recent hippocam-
pal model (Ujfalussy et al. 2008) will allow Place Cells to
be learned on line and to express dynamic changes in the
environment. The model will also be able to simulate par-
adigms using multiple intra-maze landmarks. Addition of a
second landmark amounts to adding another Taxon expert
(either egocentric or allocentric) tuned to the new landmark.
No changes need to be implemented in the selection network.
Such an extended model can potentially be used to address
the issue of blocking and overshadowing effects between dif-
ferent types of cues (Rescorla and Wagner 1972; Chamizo
2003; Gibson and Shettleworth 2003, 2005; Stahlman and
Blaisdell 2009). These effects are inherent to any learning
algorithm which updates associative weights between cues
and rewards so as to reduce reward prediction error (e.g., TD-
learning) as is true for the selection network in our model.
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