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Abstract A mirror system is active both when an animal
executes a class of actions (self-actions) and when it sees
another execute an action of that class. Much attention has
been given to the possible roles of mirror systems in respond-
ing to the actions of others but there has been little attention
paid to their role in self-actions. In the companion article
(Bonaiuto et al. Biol Cybern 96:9–38, 2007) we presented
MNS2, an extension of the Mirror Neuron System model
of the monkey mirror system trained to recognize the exter-
nal appearance of its own actions as a basis for recogniz-
ing the actions of other animals when they perform similar
actions. Here we further extend the study of the mirror sys-
tem by introducing the novel hypotheses that a mirror sys-
tem may additionally help in monitoring the success of a
self-action and may also be activated by recognition of one’s
own apparent actions as well as efference copy from one’s
intended actions. The framework for this computational dem-
onstration is a model of action sequencing, called augmented
competitive queuing, in which action choice is based on the
desirability of executable actions. We show how this “what
did I just do?” function of mirror neurons can contribute to the
learning of both executability and desirability which in cer-
tain cases supports rapid reorganization of motor programs
in the face of disruptions.
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1 Introduction

1.1 What did I just do?

Classically, the firing of mirror neurons has been associated
with the execution of certain actions and the observation of
more-or-less similar actions (di Pellegrino et al. 1992). This
has been the focus for the modeling in two preceding arti-
cles. The MNS model (Oztop and Arbib 2002) showed how,
using a training signal encoding an intended action, neurons
could achieve the mirror property by learning to recognize the
visual trajectories of hand motion relative to an object asso-
ciated with that action. The resulting mirror neuron could
be activated both by efference copy for self-execution of
the action, and by recognizing the hand-object trajectory
when the action was executed by another. The MNS2 model
(Bonaiuto et al. 2007) extended the MNS model by improv-
ing the learning method and modeling audiovisual neurons
which could respond to distinctive sounds, if any, associated
with an action, and could also become active if their asso-
ciated action was performed upon a recently visible object
that was occluded during the latter part of the action. The
present article postulates a novel role of the mirror system
in monitoring the execution of self-actions (as distinct from
recognizing an other’s action)—answering the “What did I
just do?” question by assessing the success of the intended
action and recognizing if what was intended as one action
may in execution look like another action. We demonstrate
the power of this hypothesis by a computational model which
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shows how rapid reorganization of motor skills can benefit
from this capability.

In macaque experiments, each action studied can be unam-
biguously characterized. A single mirror neuron is described
as strictly congruent if it is activated by observation of actions
very similar to those for which it is active during execution;
it is broadly congruent if it can be activated by observation
of a broader class of actions. Newman-Norlund et al. (2007),
using fMRI to assess the role of the human mirror neuron
system, found that the BOLD signal in the right inferior
frontal gyrus and bilateral inferior parietal lobes was greater
during preparation of complementary than during imitative
actions. They speculate that this is because strictly congru-
ent mirror neurons responded to the observed action in a
context-independent manner, whereas the planning of com-
plementary actions required the additional participation of
broadly congruent mirror neurons to link the observed action
to a different, but related, motor response. In a joint action
paradigm, Sebanz et al. (2003) have found that the actions
of the other participant are represented, and influence the
representation of one’s own action, even when an imitative
response is not required. These studies are consistent with
the emerging view (Brass and Heyes 2005; Schütz-Bosbach
et al. 2006) that action observation does not inevitably lead to
facilitation of matching actions. Rather, the claim is that mir-
ror neurons process associations between observed and exe-
cuted movements, and that representations of both observed
and associated actions may derive from this function.

Such findings establish the view that, in observing the
action of others, mirror neurons may code not only the
observed action but others as well. We would add that, in
general, the nature of the observed action may be ambigu-
ous so that influences from, e.g., inferotemporal cortex and
prefrontal cortex may be required for the mirror system to
converge upon the representation of one action rather than
another (Oztop et al. 2005). What we add to this discussion is
the hypothesis that during self-action, mirror neurons may be
activated not only by efference copy of the command for the
intended action but also by observation of self-action (cues
may be proprioceptive as well as visual)—and will thus acti-
vate mirror neurons for actions which appear similar to the
action as currently executed. This includes the case where the
unsuccessful execution of an intended action yields a perfor-
mance similar to that of a different action in the animal’s
repertoire.

The plausibility of this new hypothesis is enhanced by
computational considerations. In our modeling of the mirror
system for grasping as an adaptive system (Oztop and Arbib
2002; Bonaiuto et al. 2007),

• we postulate that a population of canonical neurons will
encode an action already in the animal’s repertoire, and
that these will activate a set of pre-mirror neurons (i.e.,

neurons in the area F5c of macaque brain that have not yet
been tuned to act as mirror neurons) which also receive
highly processed visual data on how the hand moves rel-
ative to an object (the so-called hand state).

• we then demonstrate how, through learning, the synapses
of these pre-mirror neurons become so tuned that the neu-
rons will become mirror neurons for the given action.
They will thus respond to an appropriate hand-state tra-
jectory whether it is based on the animal’s own movement
or its observation of another animal’s movement.

As a result, during self action, mirror neurons may be acti-
vated both by an efference copy of the intended action (rep-
resented in the model as canonical neuron activity, absent
during observation of others) and by observation of the hand-
state trajectory (which may activate neurons encoding one or
more actions).

In the MNS2 model (Bonaiuto et al. 2007) we modeled
data on audiovisual mirror neurons (Kohler et al. 2002) which
can respond to the sight or sound of an action which is asso-
ciated with a distinctive sound (e.g., peanut breaking; paper
tearing). Significantly, we modeled a case unaddressed by
the experimenters in which the visual and auditory inputs
were discordant—demonstrating activation of mirror neu-
rons both for the heard action and the seen action. A further
property of our model, not developed in earlier publications
but central here, is that since mirror neurons can be activated
both by the efference copy for an intended action and the
observation of an executed action, cases can arise where the
visual similarity of the performed action to an unintended
action results in the activation of a mirror neuron represen-
tation for an apparent action simultaneously with that for
the intended action. This is the “What did I just do?” prop-
erty that we now posit as a new role for mirror neurons. In
the rest of this article, we develop a computational model
to demonstrate the relevance of this role to situations where
rapid motor reorganization occurs.

1.2 Motor reorganization and Alstermark’s cat

At times in trying to solve a novel task (or a familiar task
under novel conditions) we may succeed by using a random
variation on an action A—and then benefit from that suc-
cess by recognizing that the variant is more like some other
action B than like A itself. We then succeed immediately on
replacing A by B in our usual strategy. This suggests that
success may reinforce not only successful intended actions
but also any action the mirror system recognizes during the
course of that execution. Furthermore, the fact that action A
was intended but was not recognized as being successfully
completed can be used to decrease the estimate of the exec-
utability of A in the current circumstances, facilitating the
exploration of alternate actions. The claim is that the mirror

123



Biol Cybern (2010) 102:341–359 343

Fig. 1 The experimental setup used in Alstermark’s experiments. A
horizontal tube containing food is facing the cat and the cat must reach
into the tube with its paw to extract the food. a–e A cat able to grasp the

food with its paw. f–j A cat unable to grasp the food with its paw eventu-
ally learns to rake it from the tube and grasps it with its mouth. (Repro-
duced from Alstermark et al. (1981) with permission of the author)

system, by recognizing this apparent action—and also by
recognizing if the intended action was unsuccessful—can
greatly speed the learning of a new motor program. We also
predict that no such rapid reorganization will take place in
cases where the mirror system can find no action in the ani-
mal’s repertoire that “explains” the accidental success of an
intended action.

To demonstrate this claim, we show its efficacy in explain-
ing data on rapid reorganization of food taking in a cat after
spinal lesions which impaired grasping with the forepaw.
Alstermark et al. (1981) experimentally lesioned the spinal
cord of the cat in order to determine the role of propriospinal
neurons in forelimb movements. A piece of food was placed
in a horizontal tube facing the cat (Fig. 1). In order to eat the
food, the cat had to reach its forelimb into the tube, grasp the
food with its paw, and bring the food to its mouth (Fig. 1a–e).
Lesions in spinal segment C5 of the cortico- and rubrospinal
tracts interfered with the cat’s ability to grasp the food, but
not to reach for it. However, for us the significant observation
is that these experiments also illustrate interesting aspects of
the cat’s motor planning and learning capabilities.

After the grasp-impairing lesion, the cat could still reach
inside the tube, but would repeatedly attempt to grasp the
food and fail. These repeated failed attempts to grasp would
eventually succeed in displacing the food from the tube by
an accidental raking movement, and the cat would then grasp
the food from the ground with its jaws and eat it. After only
a few trials thereafter, rather than attempting to grasp the
food the cat would simply rake the food out of the tube, a
more efficient process than random displacement by failed
grasps (Fig. 1f–j). In this case, the cat rapidly modified its
motor program when a previously successful plan became
impaired because of changes in its abilities.

We refer to the example of Fig. 1 as Alstermark’s cat. Its
importance for the present account is that it introduces the
general issue of how, when a habitual course of action fails an
animal may, if suitable means are available, undergo motor
reorganization to attain a new strategy on a faster time scale
than would be expected on the basis of mere trial-and-error.
We demonstrate that this fast learning can be obtained by
exploiting the “What did I just do?” role for the activation of
mirror neurons. In the present example, when a failed grasp
dislodges the food from the tube it looks like a successful
raking movement. We also show the utility of monitoring the
success or failure of the intended action. More generally then,
we posit that the cat (and perhaps other species in addition
to macaques and humans) has a primitive mirror system for
recognition of at least some of its own actions.

While the mirror system is typically only studied in prima-
tes, there is reason to believe that a proto-mirror system may
be a general neural phenomenon related to simple behaviors.
The key assumption is that neurons whose firing correlates
with the sensory feedback generated by simple actions may
also fire during observation of another individual performing
these actions. Aspects of such a system are seen in the song
learning systems of some birds in which neurons fire dur-
ing listening and producing songs (Prather et al. 2008). It is
thought that these cells are involved in feedback vocal learn-
ing. There is even evidence of imitation or at least contagion
effects in rat (Heyes and Dawson 1990), dog (Miller et al.
2009), and pigeon behavior (Klein and Zentall 2003). Note
however, that this model focuses on the role of the mirror
system in self-observation, and therefore could benefit from
a proto-mirror system that is simply involved in sensory feed-
back control of manual actions and does not respond to obser-
vation of other individuals. This model assumes that such a
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system is widespread among animals and would also respond
to unintended actions whose sensory feedback resembled that
actually received.

In order to demonstrate the utility of our hypothesis, we
have modeled the integration of a mirror system capable of
recognizing the success of apparent actions and the failure of
intended actions into a system called augmented competitive
queuing (ACQ) for opportunistic scheduling which combines
reinforcement learning, action affordances, and competitive
queuing. (An informal description of ACQ was published
in Arbib and Bonaiuto 2008; an extended description of the
model with further simulation results will appear in Bonai-
uto and Arbib, to appear.) Here we hide many of the details
of ACQ, including details of the MNS/MNS2 models not
germane to the present analysis, so that we can focus on the
interaction between the mirror system and the rest of ACQ
in rapid motor reorganization.

1.3 Model overview

These simulations exemplify a general framework using
the illustrative example of motor reorganization following
a lesion. A simplified version of the general ACQ model is
shown in Fig. 2. The model includes a repertoire of actions
with each action associated with a set of preconditions that

determine when it can be performed and effects that are
deterministically enforced when it is successfully performed.
Each action in these simulations can theoretically be unam-
biguously recognized by its effects. The key notion is that
the system will execute the most desirable action which is
currently executable. This model is implemented as a set
of interacting functional units called schemas (Arbib 1981).
Here, the schemas are at two levels—the key groupings of
components at the level of Fig. 2, and, at a more detailed
level, the perceptual schemas which recognize affordances
in the environment and the motor schemas which are run to
execute specific actions. The use of this methodology in the
original MNS model was spelled out by Oztop and Arbib
(2002). Since our focus is on action scheduling and motor
reorganization, we represent the latter schemas as (possibly
state-dependent) mappings from input to output variables,
while those elements of ACQ that are the focus of this study
are implemented as neural networks.

The external world is modeled as a set of environmen-
tal variables (in the present example, position of the food,
position of the paw). The executability signal activates the
schemas encoding those actions to the extent that they are
currently executable, i.e., for which the environment pro-
vides suitable affordances. The desirability signal specifies
for each motor schema the reinforcement that is expected to
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Fig. 2 A simplified version of the ACQ system. The Actor selects the
currently executable action that is most desirable. Desirability is the
expected reinforcement for executing an action in the current internal
state. Estimates of desirability are updated by the Adaptive Critic, which
employs temporal difference learning. A crucial innovation here is that
the Adaptive Critic assesses not only the currently intended action but

also those apparent actions reported by the Mirror System in making
its assessments. The executability of a particular action is negatively
or positively reinforced depending on a comparison between an effer-
ence copy of the selected action and the action recognized by the mirror
system
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follow its execution (perhaps after follow-up actions), based
on the current internal state of the organism. The Actor then
simply uses a noisy Winner-Take-All (WTA) mechanism to
select for execution the executable action with the greatest
priority, defined by

priority(a) = executability(a)× desirability(a).

In the general version of ACQ (Bonaiuto and Arbib, to
appear), there can be many sources of primary reinforcement,
and the organism can be in diverse internal states. However,
in the simplified model used here to demonstrate the efficacy
of mirror neurons that recognize apparent actions, the only
reinforcer is food, and the only internal state is “hungry.”

Lower-level motor control structures are not modeled
here. Instead, execution of motor schemas is modeled by
updating the representation of the appropriate environmental
variables. For example, execution of the Reach-Food motor
schema is simulated by modifying the value of the variable
representing the position of the paw to that directly above the
food.

In our MNS and MNS2 models of the mirror system, the
complete trajectory of the effector relative to the target was
used to provide a time series of activation of mirror neurons
related to the unfolding of the trajectory. Future modeling
should additionally utilize population codes for action rep-
resentation, but the general mechanism of utilizing action
recognition for reinforcement would remain the same. How-
ever, our emphasis here is not on how mirror neurons (learn
to) recognize actions, but rather on how such recognition of
one’s own actions (including apparent actions) may enter into
learning of new patterns of action. Therefore, we use a simple
feedforward neural network which processes external state
information to activate the mirror neuron for an action if the
end-state stands in the appropriate relation to the start-state.
The key innovations are these:

• During self-action, if the final state stands in the appro-
priate relation to the initial state for any action, then the
mirror neurons for that action will be activated even if it
was not the intended action, and its desirability will be
updated, as described below.

• Just as importantly, if the final state does not stand in the
appropriate relation to the initial state for the intended
action, then this attempted execution will be branded as
unsuccessful: the desirability of the intended action will
not be updated on this occasion, but its executability for
this context will be downgraded.

Desirability is learned using the standard approach of tem-
poral difference learning (Sutton 1988; Sutton and Barto
1998) in which the Adaptive Critic learns to transform pri-
mary reinforcement (how much reinforcement you get now
if you execute this action) into expected reinforcement (how

much reinforcement, on a discounted schedule, you are likely
to get from now on if you execute this action—which may or
may not elicit reinforcement—and continue thereafter with
your current policy).

In the ACQ model, the estimate of expected reinforce-
ment for an action is called its desirability. The Mirror Sys-
tem informs the Adaptive Critic which actions are eligible
for temporal difference learning to update estimates of desir-
ability—namely the intended action if it is successful, as well
as any apparent actions. (If the intended action is unsuccess-
ful, its desirability is not changed since this instance provides
no evidence of whether or not its successful execution con-
tributes to reaching a desired outcome.) In the Alstermark
example, reaching for food is desirable because it makes
grasping the food possible which makes putting the food
in the mouth possible, leading to eating which is the only
action that receives primary reinforcement—but, because of
discounting, reaching for food is less desirable than grasping
the food, and so on.

The simplified model of the mirror system used here rec-
ognizes actions based on a comparison of the environmental
state before and after the action is performed. This allows
reinforcement learning to operate on a discrete timescale.
(Continuous versions of reinforcement learning in general
and temporal difference learning in particular have been for-
mulated (Doya 2000). Future work could utilize these meth-
ods with the full MNS2 model.)

Executability is learned using simple reinforcement. In
our model, when the Mirror System signals that an intended
or apparent action was executed successfully, the action’s
executability is increased. Conversely, if the intended action
was unsuccessful, its executability is decreased.

2 Materials and methods

2.1 Simulation protocol for Alstermark’s cat

Having introduced the general framework for ACQ, we now
present a simulation specialized to the case of Alstermark’s
cat. Here the external space is two-dimensional, with both
horizontal and vertical dimensions bounded by 0 and Vmax.

The external environmental variables are:

f (t): position of the center of the food at time t
p(t): paw position at time t

m(t): mouth position at time t
b(t): position of the floor of the tube opening

where each variable is a vector containing two-dimensional
coordinate values. Since, e.g., raking can only occur if the
food is on a surface so the “cat” must learn which food–tube
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and food–floor relationships afford the various actions. The
internal environment variables are:

h(t): level of hunger at time t
rd(t): primary desirability reinforcement at time t

re(a, t): primary executability reinforcement for action a
at time t

The “time-step” in the model corresponds to the execu-
tion of a single action. The execution of motor schemas is
modeled by the adjustment of the appropriate environmental
variables—e.g., after successful execution of the grasp with
mouth action the position of the mouth will be the same as
that of the food, m(T + 1) = f (T ) (see Motor schemas,
below). As noted earlier, in the present model, the desirabil-
ity signal for each action is always computed relative to the
state of being hungry.

These variables are transformed into population codes
encoding:

PF: distance between the paw and food
MF: distance between the mouth and food
BF: distance between the food and tube opening
PB: distance between the paw and tube opening

Going forward, note that ACQ must not simply choose an
action—e.g., reach versus grasp—but must parameterize that
action, reaching a specific distance or to a specific target.
This motivates the use of a population code: If executing
an action with coordinates (x, y) in a specific environment
proves desirable, then it helps to know for future reference
that similarly parameterized versions of the action could be
desirable in similar environmental conditions. In the pres-
ent model, only external environmental variables that affect
action executability are represented as population codes, and
thus the internal variables: hunger, h(t), and primary rein-
forcement, rd(t) and re(a, t), are represented as scalar values.
For each population code P, the activity of each element Px,y

at time t is given by a multivariate Gaussian:

Px,y (t) = 1

σp
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e
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− (�x(t)−x)2
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)

for − Vmax
2 < x < Vmax

2 ,− Vmax
2 < y < Vmax

2 , and �x(t),
�y(t) represent the current value of the distance encoded
by the population. Note that radial coordinates could also
be used, but the workings of the model would remain
unchanged.

The use of population codes allows for faster reinforce-
ment learning of the conditions in which an action is execut-
able (Oztop et al. 2004); however, spiking neurons and large
populations can raise difficulties with this approach (Urban-
czik and Senn 2009). When a particular action is successful,

not only do the executability connection weights for the high-
est activated element in each population get reinforced, but
also surrounding units since they are also activated to some
extent. This, as noted earlier, ensures that learning is taking
place with respect to the current environment, but also very
similar possible environments. If a localist code were used,
only the executability connection weights for the single ele-
ment in each population representing the current situation
would be reinforced.

2.2 Defining the schemas

2.2.1 Motor schemas

There are nine “relevant actions” in the model: Eat, Grasp-
Jaws, Bring to Mouth, Grasp-Paw, Reach-Food, Reach-Tube,
Rake, Lower Neck, and Raise Neck. However, in simulations
we add a number of “irrelevant actions” (varying from 0 to
100; see the Sect. 3.3 for details), so that the search space for
finding useful actions following the lesioning of the Grasp-
Paw schema is so large that the cues provided by the mirror
system’s recognition of apparent (though unintended) actions
can be shown to play a significant role in reducing the search
space.

Each of the named schemas is defined by its precondi-
tions and effects (see Appendix, Alstermark’s Cat Protocol).
If the preconditions are met and the action is “executed,” the
effects are (usually) enforced, but we will also model how
a lesion may yield unsuccessful execution of the Grasp-Paw
schema. Note that these preconditions and effects describe
the simple “model of the world”—the model cat must learn to
modify its executability connection weights such that it can
approximately evaluate these preconditions. During learn-
ing, if an action is attempted whose preconditions are not
met (due to improperly learned executability), its effects are
not enforced. In this case the attempted action will not be
recognized by the Mirror System and a negative executa-
bility reinforcement signal will be generated (see Learning
Executability, below).

2.2.2 Desirability

The connection weights between the Internal State schema
and the Actor (WIS) encode each action’s desirability given
the internal state of the organism (in these simulations the
only internal state variable is hunger, but these equations
can be extended for N-dimensional internal states). For each
action a, the desirability d(a) at time t is the noise-corrupted
product of hunger h and these weights:

d(a, t) = h (t)WIS(a)+ εd

where εd is the desirability noise. A more complete model
might parameterize each action, so that desirability is not

123



Biol Cybern (2010) 102:341–359 347

defined for action a, but for action a with parameter p.How-
ever, in the current model, each action is uniquely defined by
the precondition, so parameterization is left implicit.

2.2.3 Executability

The connection weights between the four populations PF;
MF; BF; PB and the Actor (WPF,WMF,WBF, and WPB)

encode each action’s executability in the current state of the
world. For each action a, other than irrelevant actions, the
executability e(a) at time t is given by:

e(a, t)

=
∑
x,y

(
PFx,y(t)WPF(x, y, a)+MFx,y(t)WMF(x, y, a)+
BFx,y(t)WBF(x, y, a)+ PBx,y(t)WPB(x, y, a)

)
+ εe

where εe is the executability noise. The (x, y) value is dif-
ferent for PF, MF, BF, and PB—there is no shared (x, y)
value for the four variables; the executability signal is just a
sum across the range for each population.

2.2.4 Action selection

The neurons in the Actor combine executability and desir-
ability to compute priority. For each action a, the priority
pr(a) at time t is given by:

pr(a, t) = e(a, t)d(a, t)

In the full version of ACQ this signal is input into a win-
ner-take-all (WTA) neural network for action selection. For
computational efficiency in evaluating the role of the Mirror
System in motor program reorganization, we employ a pro-
cedural WTA mechanism that simply selects for execution
the action with the highest priority. If two or more actions
have the same maximal priority, one of them is randomly
selected for execution. Given a selected action for execution,
its effects are enforced if its preconditions are met.

2.2.5 Mirror system module

The action recognition schemas of the Mirror System mod-
ule (Fig. 2) signal the perception of the cat’s own movements
using two patterns for input, the current perceptual input and
a working memory trace of the perceptual input from the pre-
vious time step (i.e., before execution of the current action).
In order to show that a mirror system model similar to MNS2
(Bonaiuto et al. 2007) can provide signals appropriate for
ACQ, we used a feedforward network previously trained to
classify actions. Each neuron in the output layer encodes a
different action, and its normalized firing rate is interpreted
as the level of confidence that the observed action is the one
it encodes. Only actions recognized by the mirror system

(whether intended or apparent) are reinforced by the Adap-
tive Critic as described below.

In the current implementation, the action recognition
schema does not examine environmental variables during
the course of an action, but how they change from action-to-
action. A more complete version of the model would use more
realistic motor controllers that generate time-varying control
signals during the course of an action and the dynamic values
of each environment variable would need to be input into a
recurrent neural network (as in the MNS2 model, Bonaiuto
et al. 2007).

The inputs to the network are the changes from the last
time step to the current one in the values of each environ-
mental variable used to evaluate executability (encoded by
the populations PF, MF, BF, and PB) and the internal state
variable encoding hunger. The output layer of the network
also receives an efferent copy of the output of the Actor mod-
ule which primes the neuron encoding the intended action.

Note, that in the present study, the only failures that occur
are those we specifically program into the system, as in the
case of simulated lesioning of the grasp schema, and errors
in action classification by the neural network. In the simu-
lation experiments described below, irrelevant actions that
have no environmental effects are used to test the efficacy of
the mirror system in reinforcement learning. These actions
are always executable (see Executability, above), successful,
and recognized by the mirror system. Due to noise in the
executability and desirability signals, these actions can be
selected for execution just as any other action. In a more real-
istic model that includes a dynamic model of the cat’s body
and probabilities of disturbances and errors in execution, the
range of possible mismatches of apparent and intended action
would increase, as would the possibility that the executed
action would appear somewhat similar to a different action.
However, such details are unnecessary for the key theme of
this article: to demonstrate the efficacy of the posited “What
Did I Just Do” function of mirror neurons in updating esti-
mates of both the executability and desirability of actions.

2.2.6 Learning

Learning proceeds as described above for the general ACQ
model in the paragraphs “Desirability is learned” and
“Executability is learned.” The Adaptive Critic employs tem-
poral difference learning to update estimates of expected rein-
forcement (desirability) of the successfully executed action
(whether intended or apparent). Mirror system recognition of
an action as successful is used to update the executability of
the attempted action using reinforcement learning. The output
of the Mirror System was also used to generate the eligibility
signals for reinforcement of the desirability weights.

Learning executability Each executability weight matrix
(WPF,WMF,WBF, and WPB) was modified with a positive
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or negative reward signal depending on the success or fail-
ure of the intended action. A comparison between the motor
efference copy x and the Mirror System output x̂ is used to
determine whether or not an action was successful. For each
action a, the executability reinforcement re(a) at time t is
given by:

re (a, t) =
⎧⎨
⎩

1 : x̂(a, t) > 0
−1 : x(a, t) > 0 ∧ x̂(a, t) < ψ

0 : otherwise

This means that the executability reinforcement will be
positive if the action was recognized by the Mirror System
as successfully performed (whether or not it was intended),
negative if an action was attempted but not recognized by the
Mirror System (indicating that it was unsuccessful), and zero
if the action was not attempted and not recognized. Some-
times an unsuccessful action can partially activate its repre-
sentation in the Mirror System, and therefore the threshold of
ψ ensures that a negative executability reward is generated if
the intended action does not result in significant Mirror Sys-
tem activation. This reinforcement is then used to update each
executability weight matrix (WPF,WMF,WBF, and WPB),

with the weight change, �W, given by:

�WPF(a, t) = αre (a, t)PF (t − 1)

�WMF(a, t) = αre (a, t)MF (t − 1)

�WBF(a, t) = αre (a, t)BF (t − 1)

�WPB(a, t) = αre (a, t)PB (t − 1)

where α is the learning rate.
Learning desirability The output of an Adaptive Critic is

used to update the weights, WIS, encoding action desirabil-
ity. The input to the critic is given by the desirability of the
action recognized by the Mirror System. This represents the
current prediction of that action’s desirability, d̂(t).The error
between this prediction and the discounted desirability esti-
mate of the next action, d̂(t + 1), and primary reinforcement,
rd(t), is the temporal difference error, or effective desirabil-
ity reinforcement r̂d(t):

r̂d(t) = rd(t)+ γ d̂(t + 1)− d̂(t)

where γ is the discount rate. The effective reinforcement is
used to update the weights encoding the desirability of any
actions recognized by the Mirror System:

�WIS(t) = αr̂d(t)x̂(t − 1)

This formulation is based on standard temporal difference
learning algorithms (Sutton 1988; Sutton and Barto 1998)
but differs in the eligibility signal used. All reinforcement
learning algorithms include some sort of eligibility signal
for determining which actions to reinforce. This is typically
a decaying copy of a signal encoding the last selected action.
Our hypothesis is that eligibility applies to the last selected

action only if it was successful, and that if the unsuccessful
action is recognized as the apparent execution of a different
action, then that apparent action is eligible.

3 Results

3.1 Motor program reorganization in a novel environment

We demonstrate how our model supports the rapid orga-
nization of the cat’s getting food from the tube prior to a
lesion that affects its grasp schema. First, we show how
ACQ encodes “motor programs” implicitly. The flow chart
of Fig. 3a describes the model’s behavior for reaching for
and grasping food and bringing it to the mouth to eat, and
for grasping food on the ground with its jaws and eating
it—but this flow chart is not explicitly encoded in the neural
network. We now show how it emerges through the competi-
tion between motor schemas differentially activated by their
learned executability and desirability.

Remember that at each time step, the Actor module will
select for execution the action with the highest priority (exec-
utability×desirability) given the current external state. The
effect of discounting in temporal difference learning is that
desirability (discounted expected reinforcement) will be pos-
itive in the hunger state for all actions that habitually lead to
eating food, but that for a given action, the greater the number
of actions that must follow before eating occurs, the lower
its desirability. We thus get

D(eat) > D(Grasp-Jaws) > D(Bring to Mouth)

> D(Grasp-Paw) > D(Reach Food)

> D(Reach Tube) > 0.

Combining these desirabilities with the executability for
the current external state means that the animal faced with
food in the tube and acting according to ACQ will behave
in the way described by Fig. 3a. In these simulations we
initialized each executability weight to 1.0 and desirability
weight to 0.0 and ran the model on the Alstermark’s cat pro-
tocol described above. In 88 out of 100 simulation runs, the
model converged on the Grasp-Paw strategy in Fig. 3a, set-
tling on the Rake strategy shown in Fig. 3b in the remainder.
Figure 4 shows the change in desirability weights for each
action during a sample simulation run. After the 50th trial,
the basic pattern of desirability weight inequalities described
above is learned. Figure 5 shows for each trial, the mean error
in executability estimates for each action (the mean differ-
ence over a trial between the executability estimated by the
model and the actual executability given by the action pre-
conditions). The combination of these learned desirability
and executability values results in the Grasp-Paw behavior
shown in Fig. 3a.
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Fig. 3 a The original motor
program for eating a piece of
food initially in a horizontal
tube. b The motor program that
describes the behavior that is
learned after the Grasp-Paw
motor schema is lesioned
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Fig. 5 Mean action
executability error over all trials
during training in the horizontal
tube task
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Fig. 6 Activity of the module during four selected training runs. The
(from top to bottom) executability, desirability, priority, and selected
action signals are shown for trials (from left to right) 1, 10, 25, and 100.

Each plot shows the values of these variables throughout a trial for each
action available to the model (irrelevant actions are grouped together)

The model’s activity (executability, desirability, priority,
and action selection values) during several trials of this simu-
lation is shown in Fig. 6. During the first through tenth trials,
all actions are thought to be executable, but their desirabilities
are not known. Many actions, including irrelevant ones are
attempted and the food is sometimes successfully obtained
by chance. By trial 25 the executability weights are shaped
enough to approximate the preconditions for performance of
most actions, but the desirability weights of all actions other
than Eat are close to zero, resulting in a high exploration rate.
From the 50th to 100th trials the executability and desirability
weights are further shaped and the motor program in Fig. 3a
is stabilized.

3.2 Motor program reorganization after a lesion

We simulated a lesion to the Grasp-Paw motor schema by
having the lesioned schema change the food position f (t) by
a small random amount with a mean displacement towards
the animal, and setting the paw position p(t) to a value
slightly above the old value of f (t). This corresponds to
the animal bringing its paw into contact with the food and
retracting the paw, but failing to maintain a stable grasp. Our
simulations showed that the system was in each case able to
rapidly reorganize its behavior to compensate for the lesion.

We then ran this lesioned schema in 100 instances of a
model that was already proficient on both the horizontal tube
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Fig. 7 Desirability of each action during training before and after the lesion (solid vertical line) with the mirror system (top row) and without
(bottom row). Five (left column) or 20 (right column) irrelevant actions were included. The dashed vertical lines show the recovery time (see Sect.
3.3)

task and the food on the ground task. Figure 7 shows the
changes in the desirability of each action before and after the
lesion in one of these instances with and without the mir-
ror system and with differing numbers of irrelevant actions
available. In the first trial after the lesion, the simulated cat
reaches into the tube and reaches for the food as it did prele-
sion, and then attempts to grasp the food with its paw. Since
we modified the Grasp-Paw schema to simulate the spinal
lesion, the grasp is unsuccessful. However, when by chance
the food is displaced from the tube the Mirror System recog-
nizes the performance as a Rake action. The model repeat-
edly attempts to execute the Grasp-Paw action until the food
is displaced from the tube and is close enough to perform the
Lower-Neck, Grasp-Jaws, and Eat actions. With the mirror
system affecting both executability of unsuccessful actions
and desirability of apparent actions, the model no longer
attempts the Grasp-Paw action and after only a few trials
switches to performing the Rake action before the Lower-
Neck, Grasp-Jaws, and Eat actions. This strategy is much
faster since the Rake action reliably displaces the food by a
large amount in the direction of the animal, while the lesioned
Grasp-Paw schema displaces the food by a random direc-
tion and magnitude. Without the mirror system the same
desirability levels for each action are reached, but after a
longer delay since the Rake action must be attempted by
chance.

The reorganization of the learned motor program after le-
sioning the Grasp-Paw schema involved adjustment of the
desirability of several motor schemas (Fig. 8). The Rake
schema achieved a higher desirability value than the Reach-
Food, and the desirability of the Drop Neck schema became
higher than that of the Reach-Tube motor schema. Interest-

ingly, the Grasp-Paw motor schema desirability remained
relatively unchanged, while that of the Reach-Food motor
schema decreased. As a result, the Drop-Neck and Rake
actions are then executed instead of the Grasp-Paw action.
This occurs because after lesioning the Grasp-Paw motor
schema, its execution causes the food to be randomly dis-
placed towards the animal 75% of the time. This causes
the perception of that failed grasp to look like a success-
ful rake 75% of the time (whereas a successful grasp does
not). When this occurs the executability of the Grasp-Paw
schema is negatively reinforced due to the mismatch between
the intended action (Grasp-Paw) and apparent action (Rake)
which indicates that the Grasp-Paw action was unsuccessful.
If the Drop-Neck action is then performed, the desirability
of the Rake action will be positively reinforced due to the
Mirror System recognition of it as the apparently executed
action and the relatively high desirability of the Drop-Neck
action.

Despite the relatively unchanged desirability of the Grasp-
Paw action, the network nonetheless switches strategies
after repeated failed grasp attempts to yield action selection
describable (but not controllable) by the flowchart of Fig. 3b.
This is due to the decrease in executability of the Grasp-
Paw action due to representation of the Grasp-Paw action in
the efference copy but not by the Mirror System, indicating
that it was unsuccessful (Fig. 9). Changing executability con-
nection weights encode the knowledge that the Grasp-Paw
action is no longer possible after the lesion even when the
paw and the food are very close together. The action is no
longer attempted in these circumstances once its executabil-
ity is lowered enough. The decrease in executability of the
Grasp-Paw action is crucial in the reorganization of the motor
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Fig. 8 The mean desirability
connection weights for each
action after initial training in the
horizontal tube task (unshaded)
and after lesioning the
Grasp-Paw motor schema and
retraining (shaded) of 100
instances of the model. The error
bars show standard deviation
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program as it encourages exploration of alternative actions.
When the desirability of actions recognized by the Mirror
System is reinforced, the Rake action desirability increases
as the executability of the Grasp-Paw action decreases (Fig. 9,
top), allowing the priority of the Rake action to exceed that
of the Grasp-Paw action at trial 7. Without reinforcement of
all actions recognized by the Mirror System the priority of
the Rake action remains low (Fig. 9, bottom) and is just as
likely to be randomly selected for execution as any irrelevant
action.

3.3 Testing the efficacy of the “What did I just do?” Mirror
System

In order to explore the benefits of the new roles posited for
the mirror system in reorganization, we compared the perfor-
mance of each network (i) with a mirror system evaluating
lack of success of intended actions and recognizing appar-
ent actions so these too could enter into learning of desir-
ability, and (ii) when only the successful intended action
was reinforced. An example of the behavior of the model
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Fig. 10 The length of each trial (the time step when the food is
acquired or 50 time steps, whichever comes first) with (solid) and with-
out (dashed) the mirror system

in terms of the functional recovery with and without the
mirror system is shown in Fig. 10. In this simulation there
were 25 irrelevant actions that could be selected at any time
and had no effect on the environmental variables. The maxi-
mum length of a trial in these simulations was 50 and there-
fore a trial length of 50 indicates an unsuccessful trial in
which the food was not obtained. The model converges on
the Rake strategy shown in Fig. 3b with and without the
mirror system, but this occurs in fewer than 10 trials with
the mirror system and in over 50 trials without it. Note that
without the mirror system the model successfully obtains the
food several times at the start of the simulation, but because
it cannot recognize the similarity between failed grasping
and raking, it cannot take advantage of these accidental suc-
cesses.

We tested how this convergence speed varied as a func-
tion of the number of irrelevant actions available to the model.
Since the Actor uses a noisy selection process to select an
action, these irrelevant actions can be selected for execution if
no other highly desirable actions are executable. We ran 100
instances of the model with the number of irrelevant actions
available ranging from 0 to 100. The time until the first suc-
cessful trial and recovery time (Fig. 11) were recorded for
comparison.

Without the mirror system for apparent actions the model
was typically successful in acquiring the food in early trials
because it takes relatively few unsuccessful grasps to dis-
place the food from the tube. But this is quite different from
learning a new strategy for rapid displacement of the food.
Since the desirability of the apparent raking action was not
reinforced and the executability of the unsuccessful grasping
action was decreased, irrelevant actions were subsequently
attempted. With the mirror system the desirability of the
raking action increased as the executability of the grasping
action decreased and the system smoothly transitioned to the
new behavior. Without the mirror system the model can even-
tually reorganize its behavior by selecting the Rake action by
chance, however, as the number of possible actions increases,
the probability that it will be randomly selected from among
the irrelevant actions decreases.
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Fig. 11 Mean number of trials until recovery (the first 4 out of 5 inten-
tionally successful trials) after lesion of the Grasp-Paw motor schema
for each number of irrelevant actions tested (0–100). Solid: The model
with reinforcement based on successful intended and apparent actions
(mirror system). Dashed: The alternate model version with reinforce-
ment based solely on successful intended actions (no mirror system).
The error bars denote the standard error

We defined recovery time as the number of trials until
model was intentionally successful (performing the Rake
action rather than taking advantage of the effects of the
lesioned Grasp-Paw schema) in 4 out of the 5 previous trials.
The recovery times for the model instances with and with-
out the mirror system were analyzed according to the num-
ber of irrelevant actions. Spearman’s rho, a nonparametric
measure of correlation, was used to assess the relationship
between the number of irrelevant actions and recovery time.
This correlation was not significant for the group with the
mirror system (ρ = 0.012, P = 0.591), but was for the
group without the mirror system (ρ = 0.32, P < 0.01). All
tested combinations of learning rates, numbers of trials, and
trial lengths yielded similar results. This indicates that as the
number of irrelevant actions increased, the mean recovery
time increased without the mirror system (Fig. 11). In con-
trast, the use of mirror system output in determining which
action to reinforce keeps the recovery time relatively con-
stant even with 100 irrelevant actions. Thus, the inclusion
of the mirror system for reinforcement of apparent actions
significantly improves the speed of recovery from injury in
the presence of a large pool of candidate actions.

4 Discussion

The main claims of this model are:

1. Mirror neurons respond to unintended actions when they
are associated with the unexpected consequences of the
current intended action
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2. Desirability is learned using an eligibility signal from
mirror neuron activity and can, therefore, take advantage
of accidental success

3. Executability is a graded signal of the probability of
action success and its learning is guided in part by sig-
nals from the mirror system indicating whether or not
the action achieved its expected outcome

4. Executability and desirability are combined into a single
measure of priority for use in action selection.

We used the example of Alstermark’s cat to demonstrate that
a Mirror System performing the hitherto unremarked “What
Did I Just Do?” function can support rapid motor reorgani-
zation when apparent actions support regaining a skill after
a lesion or other damage. We do this by embedding such a
mirror system in a general approach to scheduling behavior,
Augmented Competitive Queuing (ACQ), in a manner which
allows temporal difference learning to increase the desirabil-
ity of an apparent action that is repeatedly part of a successful
performance, as a result of which it rapidly becomes part of
a new solution to the task. With an increasing repertoire of
candidate actions the advantage of reinforcement of apparent
action in the speed of reorganization is more pronounced.

4.1 Generalizing the framework

Although these simulations involve actions with determinis-
tic and unambiguous effects, the model readily generalizes
to situations in which actions can be associated with a set of
effect probability distributions that could potentially overlap.
Nondeterministic action effects are due to randomness in the
motor system and world, while ambiguous actions are due to
the only partial observability of the world.

If an action probabilistically leads to a set of multi-
ple effects, this has implications for learning its desirabil-
ity and training the mirror system (which affects learning
executability). Desirability is learned using temporal dif-
ference learning, which has been shown to be capable of
handling nondeterministic environments (Lin 1992). In the
case of probabilistic action effects, the stochastic reward
schedule would result in desirability values according to
the probability of future reward given the performance of
each action. Action executability values for a given situation
are decreased or increased when an action is unsuccessfully
or successfully performed in that situation. Over time, this
results in executability values proportional to the probabil-
ity of successfully performing each action in that situation.
Indeed, in a study of how an infant acquires a set of grasps
for the mirror system to subsequently learn to recognize, we
have employed a probabilistic coding of actions as a basis
for reinforcement learning (Oztop et al. 2004).

Determining the success of an action performance depends
on the recognition of that action by the mirror system. In the

simplified model employed here (simplified for the reasons
discussed earlier), the mirror system is a feedforward neu-
ral network trained using back propagation. Actions with
probabilistic effects would result in training examples with
different input patterns, but the same target output pattern.
Given enough hidden units, this situation is easily handled by
such networks (Kreinovich and Sirisaengtaksin 1993). How-
ever, actions with ambiguous effects would have overlapping
input patterns with different target output patterns. Depend-
ing on the extent of the overlap, this would result in mirror
system activation for multiple actions during observation of
one action. The model would then increase the executability
and update the desirability of all recognized actions. How-
ever, since these actions have overlapping effects this may
actually be a beneficial feature which would allow learning
to update actions similar to the one actually performed.

In the simulations reported here, the world is fully observ-
able. However, the real world is only partially observable.
Basic temporal difference learning algorithms are inadequate
for partially observable environments where it can be difficult
to estimate the current state (Taylor et al. 2006). In this appli-
cation the problem of state estimation translates to a problem
of action recognition with limited cues. In the MNS2 model,
we introduced two methods to deal with partial observability
of the environment, namely multimodal sensory integration
and working memory with dynamic remapping (Bonaiuto
et al. 2007). Replacing the simplified mirror system mod-
ule used here with a version of the MNS2 model may help
address some problems associated with partial observability.

4.2 Unintended actions and the Mirror System

As mentioned earlier, most experimental work on mirror neu-
rons is done with monkeys or humans. A central underly-
ing assumption of this model is that mirror-like systems are
widespread among animals. In our motivating example, we
hypothesize that in the cat brain there exists a population
of neurons that respond to the sensory feedback involved in
raking. Claim 1 (at the start of this Discussion) suggests that
these neurons should also respond to the sensory feedback
whether the action is intended or not. The latter case may
arise during unsuccessful grasps performed after a C5 pro-
priospinal lesion.

Future neurophysiological experiments with mirror neu-
rons in monkeys could test the claim that they respond to
apparent actions even when these conflict with intended
actions. This could be investigated using an experimental
setup similar to that used by Iriki et al. (2001) in which
a device called a Chromakeyer is used to alter what the
monkey sees of its hands. A video monitor may display
an actual view of how the hands are moving, add superim-
posed images, or display something different. The proposed
experiment has three conditions governing the relationship
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between the action performed by the animal and that dis-
played on the monitor: congruent, incongruent, and apparent
only. The congruent condition would simply be a display of
the monkey’s hands without modification on the video mon-
itor while the monkey performs some object-directed grasp
or manipulation. In the incongruent condition the Chromake-
yer would be used to present a video of hands performing an
object-directed action different from that being currently per-
formed by the animal. The apparent only condition would
use the Chromakeyer to present video of hands perform-
ing some object-directed action while the monkey is at rest.
The congruent condition and apparent only conditions corre-
spond to the natural scenarios of self-and other-observation,
respectively, and should result in activation of mirror neu-
rons related to the observed action. We hypothesize that in
the incongruent condition, while mirror neurons selective for
the intended action will show some priming, those selective
for the apparent action will be the most activated. It is this
property that allows the model to take advantage of apparent
actions in motor program reorganization.

While our model suggests that the mirror system responds
to one’s own unintended actions, a recent fMRI study has
investigated the observation of the unintended actions of
another agent. Buccino et al. (2007) showed subjects video
clips of actions which did or did not reflect the intentions of
the agent. Observation of intended and unintended actions
activated the inferior parietal lobule, lateral premotor cortex,
and inferior frontal gyrus. Compared to intended actions,
observation of unintended actions activated the right temp-
oro-parietal junction, left supramarginal gyrus, and mesial
prefrontal cortex. The authors conclude that understanding
unintended actions involves both the mirror system and spa-
tial and temporal areas that signal unexpected events.

In our model, unintended actions are detected by com-
paring mirror system activity with an efference copy of the
intended action. In order to detect another agent’s unintended
action, the predicted effects of the other agent’s intended
action must be compared with the actual effects. To do this,
the intentions of the other agent must first be inferred. In
another fMRI study subjects viewed video clips of grasp-
ing actions in contexts that suggested the intention behind
the action (Iacoboni et al. 2005). A control action observa-
tion condition activated the superior temporal sulcus, inferior
parietal lobule, premotor cortex, and inferior frontal gyrus.
Viewing the action in context resulted in increased activation
in the inferior frontal gyrus. This suggests that the mirror
regions activated in the Buccino et al. study (inferior parietal
lobule, inferior frontal gyrus, and premotor cortex) may be
involved in inferring the intention behind the observed action.
Interpreted in the framework of our model, unexpected tem-
poral and spatial features of an observed action may have
caused the activation seen in the right temporo-parietal junc-
tion in the Buccino et al. study, while the comparison of

these features with the predicted effects of the action may
have resulted in the prefrontal cortex activation.

4.3 Motor program reorganization

Claim 2 suggests that motor program reorganization takes
advantage of mirror system recognition of unintended actions
during accidental success. There are multiple levels of action
reorganization including adapting to changing dynamics in
performance of single actions (Shadmehr and Mussa-Ivaldi
1994), changing the sequencing of actions in motor plan-
ning, and strategic symbolic learning. The reorganization of
walking patterns in response to leg injury, for example, prob-
ably does not require self-observation or mirror neurons.
It has been shown that children benefit from self-observa-
tion in the acquisition of procedural knowledge for solving
the Tower of Hanoi task (Fireman et al. 2003), specifically
from self-observation of a natural performance rather than
an instructed, optimal one. They are trained on the three disk
version of the task and then tested on the four disk version,
and therefore, are not learning a strict sequence of actions
nor a general symbolic strategy. Our model suggests that this
may be learning of opportunistic action selection rules that
benefits from self-observation of failure and accidental suc-
cess.

The MNS model suggested that the mirror system utilizes
an object-centered reference frame because it evolved for
feedback-based control of manual actions (Oztop and Arbib
2002). Keysers and Perrett (2004) extend this idea to sug-
gest that inhibition of STS by an efference copy from F5
can allow recognition of the unintended consequences of an
action. The mechanism here goes beyond conventional on-
line error detection and complements feedback based on the
controller for the intended action. Our model adds the possi-
bility that an alternative action might do a better job and the
means to recognize such an action and assess its suitability
through extended reinforcement learning. Note that there are
some echoes here of the Demiris and Hayes (2002) imitation
model which is based on recognizing which controller might
best match an observed action—but our mechanism is “inter-
nal” and does not imply the ability to imitate another, fitting
with our general evolutionary framework (Arbib 2002).

The present model thus addresses mechanisms that may
provide a foundation for, but are qualitatively different from,
those cases in humans where rapid behavioral reorganiza-
tion seems to emerge in situations that depend on symbolic
knowledge rather than motor action per se. For example, par-
ticipants in the Wisconsin Card Sorting Task must identify
the appropriate criteria for sorting a deck of cards, and rapidly
adjust the sorting rule when the criteria change. Participants
adapt well, but this adaptation seems to rely on frontal lobe
functioning with rules rather than actions being the prime
units of analysis. Reinforcement learning has been used to
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account for performance on such tasks (Amos 2000) but the
challenge for our future work is to model how rules may
emerge from compound actions and how symbolic structures
may become attached to key components of the resulting
organization.

4.4 Executability, desirability, and action selection

Affordances have traditionally been discussed as an all-or-
nothing trigger for actions: either an object or environment
affords a particular action or it does not (Gibson 1966). Claim
3 of this Discussion suggests that executability extends the
notion of affordances to include an estimate of the proba-
bility of the action’s success in the current environment, and
could decrease with effort or cost. Neurophysiological exper-
iments aimed at determining how grasping affordances are
encoded in the parietal cortex have used experimental setups
in which each grasp is successfully performed (Sakata et al.
1998; Murata et al. 2000). Studies using muscimol to tem-
porarily lesion an area have looked at how lesions to parietal
(Gallese et al. 1994) and premotor (Fogassi et al. 2001) cor-
tices affect grasping behavior, but none have looked at neural
activity in one area after inactivation of another. The ante-
rior intraparietal area AIP and ventral premotor area F5 are
thought to form a reciprocal circuit for grasp planning and
execution (Jeannerod et al. 1995) with AIP neurons encod-
ing grasp affordances (Murata et al. 2000) and F5 encoding
features of the planned grasp (Raos et al. 2006). Our model
predicts that when F5 is inactivated by muscimol, repeated
failed grasp attempts will result in a gradual decrease in firing
of AIP cells in response to the sight of graspable objects. We
suggest that this would reflect a decrease in the estimate of
the probability of successfully grasping the object. While all
of these studies have been done on monkeys, studies of cat
parietal and temporal cortices suggest a common organiza-
tion for mammalian cortex (Lomber et al. 1996).

Simple behavioral experiments could test claim 4, that
executability and desirability are combined into priority for
action selection. They would require an experimental setup
consisting of two knobs which release some amount of food
when turned. The executability of each knob could be modu-
lating by changing the friction of the knob, or the probability
that food will be released when turned. Desirability could
similarly be altered by changing the amount or type of food
released by each knob. The behavioral data from such an
experiment could be used to evaluate multiple competing
models of selection based on executability and desirability.
Our model predicts that a noisy selection process over the
product of some measures of executability and desirability
would best describe subject’s behavior.
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Appendix

Alstermark’s cat protocol

To simulate Alstermark’s setup, we arbitrarily chose Vmax =
35. However, only the relative distances are important for
these simulations. The variables representing the world took
the following initial values:

h(0) = 100, p(0) =
[

0
0

]
, m(0) =

[
0
Vmax

]
,

b(0) =
[

25
30

]
, f(0) =

[
30
30

]

The initial position of the paw was chosen as the origin of
the space (Fig. 12).

The width of each population code, σp, was set to
0.25 (Table 2). This parameter value was set empiri-
cally to allow executability learning to modify environ-
mental situations similar to the current one, but not so
different that the executability conditions are different.
Table 1 gives the preconditions and effects for each action,
both informally and formally. The exact values were cho-
sen so that the appropriate actions were only possible
after other actions had been performed (i.e., Grasp-Paw
can not be performed until the hand is close enough to
the paw, which can be achieved by performing Reach
Food).

Fig. 12 The initial values of the extrinsic coordinates of the center of
the tube opening, food, mouth, and paw used in these simulations. The
animal reaches with its right paw which, on each trial, starts in the rest-
ing position (0, 0) with the jaws initially at (0,35). Both paw and jaws,
as well as the food, may move from these positions during the trial,
whereas the glass tube remains fixed at the position shown. (Repro-
duced and modified from Alstermark et al. 1981, with permission of
the author.)
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Table 1 Set of relevant actions with preconditions and effects

Action Preconditions Effects

Eat Food in jaws Hunger reduced; positive

|m(t)− f(t)| ≤ 1 reinforcement

h (t + 1)← 0
rd (t + 1)← 1

Grasp-Jaws Food close to jaws Mouth moves to food

1 < |m (t)− f (t)| ≤ 5 m (t + 1)← f (t)

Bring to Mouth Food grasped by paw but not close Bring paw close to mouth with food still grasped by paw.

to mouth This makes the Grasp-Jaws schema executable without
|p (t)− f (t)| = 0∧
|m (t)− f (t)| > 5

putting the food inside the mouth yet

p (t + 1)← m (t)+
[

5
0

]

f (t + 1)← p (t + 1)
Grasp-Paw Paw close to food Paw grasps food

0 < |p (t)− f (t)| ≤ 5 p (t + 1)← f (t)

Reach-Food Food in tube and paw aligned with Paw is moved close enough

or within tube or food on floor to the food to grasp it

but not close to paw p (t + 1)← f (t)+
[

0
1

]

|p (t)− f (t)| > 5∧(
fy (t) = 0∨(
fy (t) = by (t) ∧ |p (t)− f (t)| < 5

) )

Reach-Tube Paw not near tube Move paw inside the tube,

px (t) < bx (t) ∨ py (t) �= by (t) near the end

p (t + 1)← b (t)+
[

3
1

]

If the food is currently

already grasped,

it moves with the paw if

f (t) = p (t), then

f (t + 1)← p (t + 1)

Rake Paw at a position both If food is in the tube,

beyond and higher than the food knock it to the ground. If it is already

0 < |p (t)− f (t)| ≤ 5∧
px (t) ≥ fx (t)∧
py (t) > fy (t)∧
fx (t) > 1

on the ground, rake it closer to the body.

if fy (t) > 0, then

f (t + 1)←
[

bx (t)− 1
0

]

else

f (t)←
[

1
0

]

p (t + 1)← f (t + 1)+
[

1
3

]

Lower Neck Neck above lowest position Bring neck to lowest position
my (t) > 3 my (t + 1)← 3

if f (t) = m (t),

then f (t + 1)← m (t + 1)

Raise Neck Neck below highest position Bring neck to highest position

my (t) < Vmax my (t + 1)← Vmax

if f (t) = m (t), then

f (t + 1)← m (t + 1)

In each case, if v(t + 1) is not specified for a variable v in the effects column, then v(t + 1) = v(t)
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Table 2 ACQ parameter values
Parameter Description Value Justification

σp Population 0.25 Allows reinforcement to

code width effect similar states

εe Executability noise Uniformly Encourages exploration,

distributed in but would not override actions with

interval [0, 0.25] priority greater than 0.25

εd Desirability Uniformly Encourages exploration,

noise distributed in but would not override actions with

interval [0, 0.25] priority greater than 0.25

κ Efference copy 0.1 Set to 10% of maximal mirror neuron

decay rate activation to yield priming effect

ψ Executability 0.25 Ensures executability is only decreased

decrease threshold if the mirror system is not activated

at 25% of its maximal level

(needs to be greater than κ)

α Executability/ 0.1 Determines rate of

desirability learning rate weight changes—the model

becomes unstable when this value is too large

γ Desirability 0.9 Determines maximal

discount rate length of action sequences that can be learned

For neck commands mx (t) is fixed, but can slightly change
during the final Grasp Jaws operation. After each raking
action the paw ends up just above and to the right of the
food. This makes the raking movement suboptimal, but still
a workable strategy in the lesioned model. If the Grasp-Paw
motor schema is lesioned, its effects are changed so that it
moves the food by a random amount, with a mean displace-
ment towards the animal:

p (t + 1)← f (t)+
[

0
5

]

fx (t + 1)← min (30, fx (t)+ rand (−10, 2))

where rand(x, y) returns a uniformly distributed random
number between x and y. This moves the food by a ran-
dom amount with a mean displacement toward the animal.
Thereafter, if the food was in the tube but is displaced beyond
the tube, it drops to the ground:

if fy (t + 1) = by (t) ∧ fx (t + 1) < bx (t),

then fy (t + 1)← 0

What’s on the ground stays on the ground.

ACQ

The executability signal is thresholded at 0 and 1. This
ensures at when it is combined with a desirability value, d,

the resulting priority value is in the interval [0 d]. The ex-
ecutability of each irrelevant action is always set to 1.0 so
that they can always be attempted. Executability connection
weights are not normalized but are thresholded at −5.0 and
1.0. The greater negative threshold ensures that certain spa-
tial relationships (such as food-paw, food-mouth, etc.) that
render an action unexecutable can override the influence of
other relationships.

The mirror system network had 161 input units, 30 hidden
units, and 9 output units (one for each action). The hidden
and output layers used a log-sigmoidal activation function,
giving mirror system output, x̂:

x̂ = g (κx + g (miWi→h)Wh→o)

where the function g is the sigmoidal activation function(
g(x) = 1

1+e−x

)
, κ is a scaling parameter to simulate decay

of the efference copy x, mi is the mirror system input, and
Wi→h and Wh→o are connection weights between network
layers (input to hidden layer, and hidden to output layer,
respectively) that are shaped through learning. The network
was trained using Levenberg–Marquardt backpropagation
with a dynamic learning rate (Marquardt 1963). Sample runs
of the model were used to generate training data with the
motor output, x, serving as the training signal. The network
was trained for 5000 epochs, or until the performance gradi-
ent fell below 1.0× 10−10.

123



Biol Cybern (2010) 102:341–359 359

References

Alstermark B, Lundberg A, Norrsell U, Sybirska E (1981) Integration
in descending motor pathways controlling the forelimb in the cat:
9. Differential behavioural defects after spinal cord lesions inter-
rupting defined pathways from higher centres to motoneurones.
Exp Brain Res 42:299–318

Amos A (2000) A computational model of information processing in
the frontal cortex and basal ganglia. J Cogn Neurosci 12:505–519

Arbib MA (1981) Perceptual structures and distributed motor control.
In: Brooks VB (ed) Handbook of physiology—the nervous system
II. Motor control. American Physiological Society, Bethesda, MD,
pp 1449–1480

Arbib MA (2002) The mirror system, imitation, and the evolution of
language. In: Dautenhahn K, Nehaniv CL (eds) Imitation in ani-
mals and artifacts. Complex adaptive systems. The MIT Press,
Cambridge, MA, pp 229–280

Arbib MA, Bonaiuto JB (2008) From grasping to complex imitation:
modeling mirror systems on the evolutionary path to language.
Mind Soc 7:43–64

Bonaiuto JB, Rosta E, Arbib MA (2007) Extending the mirror neuron
system model, I: audible actions and invisible grasps. Biol Cybern
96:9–38

Brass M, Heyes C (2005) Imitation: is cognitive neuroscience solving
the correspondence problem?. Trends Cogn Sci 9:489–495

Buccino G, Baumgaertner A, Colle L, Buechel C, Rizzolatti G, Bin-
kofski F (2007) The neural basis for understanding non-intended
actions. Neuroimage 36:T119–T127

Demiris Y, Hayes G (2002) Imitation as a dual-route process featuring
predictive and learning components: a biologically-plausible com-
putational model. In: Dautenhahn K, Nehaniv CL (eds) Imitation
in animals and artifacts. MIT Press, Cambridge, MA

di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolat-
ti G (1992) Understanding motor events: a neurophysiological
study. Exp Brain Res 91:176–180

Doya K (2000) Reinforcement learning in continuous time and space.
Neural Comput 12:219–245

Fireman G, Kose G, Solomon MJ (2003) Self-observation and learning:
the effect of watching oneself on problem solving performance.
Cognitive Dev 18:339–354

Fogassi L, Gallese V, Buccino G, Craighero L, Fadiga L, Rizzolat-
ti G (2001) Cortical mechanism for the visual guidance of hand
grasping movements in the monkey—a reversible inactivation
study. Brain 124:571–586

Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of
hand preshaping after muscimol injection in monkey parietal cor-
tex. Neuroreport 5:1525–1529

Gibson JJ (1966) The senses considered as perceptual systems. Hough-
ton-Mifflin, Boston

Heyes CM, Dawson GR (1990) A demonstration of observational learn-
ing in rats using a bidirectional control. Q J Exp Psychol B 42:59–
71

Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC,
Rizzolatti G (2005) Grasping the intentions of others with one’s
own mirror neuron system. PLoS Biol 3:e79

Iriki A, Tanaka M, Obayashi S, Iwamura Y (2001) Self-images in the
video monitor coded by monkey intraparietal neurons. Neurosci
Res 40:163–173

Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping
objects: the cortical mechanisms of visuomotor transformation.
Trends Neurosci 18:314–320

Keysers C, Perrett DI (2004) Demystifying social cognition: a Hebbian
perspective. Trends Cogn Sci 8:501–507

Klein ED, Zentall TR (2003) Imitation and affordance learning by
pigeons (Columba livia). J Comp Psychol 117:414–419

Kohler E, Keysers C, Umiltà MA, Fogassi L, Gallese V, Rizzolatti
G (2002) Hearing sounds, understanding actions: action represen-
tation in mirror neurons. Science 297:846–848

Kreinovich V, Sirisaengtaksin O (1993) 3-Layer neural networks are
universal approximators for functionals and for control strategies.
Neural Parallel Sci Comput 1:325–346

Lin LJ (1992) Self-improving reactive agents based on reinforcement
learning, planning and teaching. Mach Learn 8:293–321

Lomber SG, Payne BR, Cornwell P, Long KD (1996) Perceptual and
cognitive visual functions of parietal and temporal cortices in the
cat. Cereb Cortex 6:673–695

Marquardt DW (1963) An algorithm for least-squares estimation of
nonlinear parameters. J Soc Indust Appl Math 11:431–441

Miller HC, Rayburn-Reeves R, Zentall TR (2009) Imitation and emula-
tion by dogs using a bidirectional control procedure. Behav Process
80:109–114

Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selec-
tivity for the shape, size, and orientation of objects for grasping
in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–
2601

Newman-Norlund RD, van Schie HT, van Zuijlen AMJ, Bekkering
H (2007) The mirror neuron system is more active during comple-
mentary compared with imitative action. Nat Neurosci 10:817–818

Oztop E, Arbib MA (2002) Schema design and implementation of the
grasp-related mirror neuron system. Biol Cybern 87:116–140

Oztop E, Bradley NS, Arbib MA (2004) Infant grasp learning: a com-
putational model. Exp Brain Res 158:480–503

Oztop E, Wolpert D, Kawato M (2005) Mental state inference using
visual control parameters. Brain Res Cogn Brain Res 22:129–151

Prather JF, Peters S, Nowicki S, Mooney R (2008) Precise auditory-
vocal mirroring in neurons for learned vocal communication.
Nature 451:305–310

Raos V, Umiltà MA, Murata A, Fogassi L, Gallese V (2006) Functional
properties of grasping-related neurons in the ventral premotor area
F5 of the macaque monkey. J Neurophysiol 95:709–729

Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y, Tsutsui
K (1998) Neural coding of 3D features of objects for hand action
in the parietal cortex of the monkey. Philos Trans R Soc Lond B
Biol Sci 353:1363–1373

Schütz-Bosbach S, Mancini B, Aglioti SM, Haggard P (2006) Self and
other in the human motor system. Curr Biol 16:1830–1834

Sebanz N, Knoblich G, Prinz W (2003) Representing others’ actions:
just like one’s own?. Cognition 88:11–21

Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of
dynamics during learning of a motor task. J Neurosci 14:3208–
3224

Sutton S (1988) Learning to predict by the methods of temporal differ-
ences. Mach Learn 3:9–44

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.
The MIT Press, Cambridge, MA

Taylor ME, Whiteson S, Stone P (2006) Comparing evolutionary and
temporal difference methods in a reinforcement learning domain.
In: 8th annual conference on genetic and evolutionary computa-
tion. ACM, Seattle, Washington, USA, pp 1321–1328

Urbanczik R, Senn W (2009) Reinforcement learning in populations of
spiking neurons. Nat Neurosci 12:250–252

123


	Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons
	Abstract
	1 Introduction
	1.1 What did I just do?
	1.2 Motor reorganization and Alstermark's cat
	1.3 Model overview

	2 Materials and methods
	2.1 Simulation protocol for Alstermark's cat
	2.2 Defining the schemas
	2.2.1 Motor schemas
	2.2.2 Desirability
	2.2.3 Executability
	2.2.4 Action selection
	2.2.5 Mirror system module
	2.2.6 Learning


	3 Results
	3.1 Motor program reorganization in a novel environment
	3.2 Motor program reorganization after a lesion
	3.3 Testing the efficacy of the ``What did I just do?'' Mirror System

	4 Discussion
	4.1 Generalizing the framework
	4.2 Unintended actions and the Mirror System
	4.3 Motor program reorganization
	4.4 Executability, desirability, and action selection

	Acknowledgements
	Appendix
	Alstermark’s cat protocol
	ACQ

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


