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Abstract The human brain has been documented to be
spatially organized in a finite set of specific coherent pat-
terns, namely resting state networks (RSNs). The interactions
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among RSNs, being potentially dynamic and directional,
may not be adequately captured by simple correlation or
anticorrelation. In order to evaluate the possible effective
connectivity within those RSNs, we applied a conditional
Granger causality analysis (CGCA) to the RSNs retrieved by
independent component analysis (ICA) from resting state
functional magnetic resonance imaging (fMRI) data. Our
analysis provided evidence for specific causal influences
among the detected RSNs: default-mode, dorsal atten-
tion, core, central-executive, self-referential, somatosensory,
visual, and auditory networks. In particular, we identified that
self-referential and default-mode networks (DMNs) play dis-
tinct and crucial roles in the human brain functional archi-
tecture. Specifically, the former RSN exerted the strongest
causal influence over the other RSNs, revealing a top-down
modulation of self-referential mental activity (SRN) over
sensory and cognitive processing. In quite contrast, the latter
RSN was profoundly affected by the other RSNs, which may
underlie an integration of information from primary function
and higher level cognition networks, consistent with previous
task-related studies. Overall, our results revealed the causal
influences among these RSNs at different processing levels,
and supplied information for a deeper understanding of the
brain network dynamics.

Keywords Resting state networks · Effective connectivity ·
Independent component analysis · Conditional Granger
causality analysis

1 Introduction

Exploring long-range interactions of neuronal assemblies at
different temporal and spatial scales is an important issue
in human brain research. The concept of brain functional
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connectivity, defined as the statistical dependence between
neuronal activities in distant regions, is central for the under-
standing of the organized behavior of cortical regions which
constitute distributed functional networks typically engaged
in cognitive and perceptive processing (Friston et al. 1996).
Besides, activity in a neural system can directly or indirectly
exert influence over that in another. This influence is modeled
as effective connectivity in the brain (Friston 1994; Friston
et al. 1993), and has been extensively investigated with multi-
modal functional neuroimaging studies (Brovelli et al. 2004;
Seth 2005).

Functional magnetic resonance imaging (fMRI) has
emerged as a powerful imaging tool for mapping the large-
scale brain networks engaged in specific tasks or at rest.
The original formulation of functional connectivity (in brain
imaging) used principal component analysis (PCA) (Friston
et al. 1993) to determine spatial patterns of coherent activ-
ity. In several recent studies, however, networks of interest
are defined based on the correlation of the fMRI blood oxy-
gen level-dependent (BOLD) signals of all the voxels of the
brain with the mean time-course of a user-selected “seed”
region (Biswal et al. 1995; Fox et al. 2005; Hampson et al.
2002). Interestingly, in analogy with PCA, independent com-
ponent analysis (ICA), a data-driven method able to separate
independent spatio-temporal patterns of coherent neuronal
activity without prior knowledge about activity waveforms
or locations (Bartels and Zeki 2005; McKeown et al. 1998;
van de Ven et al. 2004), is becoming an increasing popular
exploratory method for investigating functional connectiv-
ity, particularly in resting state fMRI data (Beckmann et al.
2005; Damoiseaux et al. 2006; De Luca et al. 2006; Mantini
et al. 2007; Stevens et al. 2009; van de Ven et al. 2004).

Functional connectivity investigations documented that
brain activity at rest is spatially organized in a finite set of
specific coherent patterns (Damoiseaux et al. 2006; De Luca
et al. 2006; Mantini et al. 2007). Interestingly, such patterns,
namely resting state networks (RSNs), recapitulate the func-
tional architecture of somato-motor, visual, auditory, atten-
tion, language, and memory networks that are commonly
modulated during active behavioral tasks (Bartels and Zeki
2005; Corbetta and Shulman 2002; Gusnard and Raichle
2001). Despite there is not a consensus yet, a number of con-
sistent RSNs, as detected by ICA, could be jointly reported
in the same study, i.e., the default-mode network (DMN)
(Gusnard et al. 2001; Gusnard and Raichle 2001; Raichle
et al. 2001), and other task-positive networks corresponding
to dorsal attention, visual, auditory, and sensorimotor pro-
cessing (Beckmann et al. 2005; Chen et al. 2008; Damoi-
seaux et al. 2006; De Luca et al. 2006; Mantini et al. 2007;
van de Ven et al. 2008). Interactions among these RSNs
are still largely unexplored (Kelly et al. 2008). For exam-
ple, the sensory systems, including the visual, auditory, and
somatosensory networks, are anticorrelated with the DMN

individually, but no positive correlation is found among them
(Tian et al. 2007). Although competitive interactions have
been documented even in the resting state between the DMN
and the dorsal attention network (DAN) (Fox et al. 2005;
Fransson 2005), it is debated whether this result is an effect
of different brain systems competing for resources (Fox et al.
2009) or is purely induced by preprocessing for functional
connectivity analysis (Murphy et al. 2009). In this study,
we considered causality analysis to be particularly relevant
to the investigation of the possible effective connectivity
within RSNs, assuming that their interactions are complex,
possibly dynamic and directional (Sridharan et al. 2008),
rather than simple correlation, or anticorrelation. As a fur-
ther remark, we would like to point out that the causality
analysis should be substantially insensitive to the problem of
possible false instantaneous interactions among RSNs. Spe-
cifically, its results should be unaffected by the factors that
can theoretically induce temporal correlations between the
RSN time-courses, such as the contamination of nonneural
signals in the fMRI data, or the use of processing methods
for their attenuation (Murphy et al. 2009).

In a causality study based on resting state fMRI, Jafri
et al. (2008) addressed the temporally maximal correlation
among these RSNs by using a delay correlation technique,
and attempted to reveal the weaker temporal dependencies
among these RSNs. However, the delay correlation method
provides estimation of the dependencies between functional
networks, but not the direct information of their causality.
Alternatively, the Granger causality analysis (GCA) is likely
to be an appropriate approach to study the directional inter-
actions of these RSNs (Stevens et al. 2009). GCA rests upon
multivariate or vector autoregressive models for fMRI time-
series to test for directed connections (Harrison et al. 2003).
The GCA can provide information about the dynamics and
directionality of fMRI BOLD signal in cortical circuits (Chen
et al. 2009; Gao et al. 2008; Goebel et al. 2003; Liao et al.
2009; Londei et al. 2007; Roebroeck et al. 2005; Seth 2005;
Sridharan et al. 2008; Uddin et al. 2009; Upadhyay et al.
2008; Wilke et al. 2009; Zhou et al. 2009). The GCA, how-
ever, has the principal limit of dealing with bivariate time-
series, which does not make use of the whole covariance
structure for multivariate data. Another important extension
of Granger’s original definition of causality is the consid-
eration of the multivariate case: For three or more simulta-
neous time series, the causal relation between any two of the
series may be direct, mediated by a third one, or a combi-
nation of both. Recently, the conditional Granger causality
analysis (CGCA) (Geweke 1984) has been proposed to esti-
mate functional coupling effectively in multivariate data sets
(Chen et al. 2006; Zhou et al. 2009).

Moreover, the functions in human brain are thought to be
processed hierarchically, on the basis of either top-down or
bottom-up modulation (Northoff et al. 2006). In this sense,
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the RSNs representing the sensory system, including the
visual, auditory, and somatosensory network, can be con-
sidered at the lower-order of the cognitive processing hier-
archy; the RSNs corresponding to the DAN at higher-order
processing; the DMN at the middle order (Northoff et al.
2006). From this standpoint, effective connectivity measures
should be able to extract the strength and directionality of the
network interactions, thus, allowing to assess the suitability
of the aforementioned classification.

In this study, we have studied the possible effective con-
nectivity within these RSNs, applying the CGCA to the tem-
poral information of RSNs defined by ICA. In particular, we
focused our interest on directed influences among the RSNs,
because, as mentioned earlier, the instantaneous influence
term of the CGCA may not provide clear evidence for RSN
interactions at the neuronal level. Our approach is expected
to reveal the causal influence among the RSNs at different
cognitive processing hierarchy, supplying information for a
deeper understanding of the brain network dynamics.

2 Materials and methods

2.1 Subjects

Twenty-two (nine women, age range: 21–42 years, mean age:
25.8 years) right-handed subjects participated in this study.
All the subjects were healthy, with no history of psychiatric
or neurologic illness. This study was approved by the local
ethical committee in West China Hospital of Sichuan Univer-
sity, and informed written consent was obtained from all the
subjects prior to the experiment. For the resting state scans,
subjects were instructed simply to rest with their eyes closed,
not to think of anything in particular, and not to fall asleep.

2.2 Data acquisition

Experiments were performed on a 3.0-T GE-Signa MRI
scanner (EXCITE, General Electric, Milwaukee, USA)
in Huaxi MR Research Center, Chengdu, China. Foam
padding was used to minimize head motion for all the
subjects. Functional images were acquired using a single-
shot, gradient-recalled echo-planar imaging (EPI) sequence
(TR=1,000 ms, TE=30 ms and flip angle=90◦). Sixteen
transverse slices (FOV=24 cm, in-plane matrix=64 × 64,
slice thickness=6 mm, without gap), aligned along the ante-
rior commissure–posterior commissure (AC–PC) line were
acquired. Here, the scanner parameters were optimized for
fast scanning, especially for shorter TR, which is very impor-
tant for the analysis Granger causality on the time-courses
(Roebroeck et al. 2005). For each subject, a total of 205
volumes was acquired, and the first five volumes were dis-
carded to ensure steady-state longitudinal magnetization.

Subsequently, for spatial normalization and localization, a
set of high-resolution T1-weighted anatomic images was
acquired in axial orientation using a 3D spoiled gradi-
ent recalled (SPGR) sequence (TR=8.5 ms, TE=3.4 ms,
flip angle=12◦, matrix size=512 × 512 × 156, and voxel
size=0.47×0.47 × 1 mm3) on each subject.

2.3 Data preprocessing

Data preprocessing was partly carried out using the Statisti-
cal Parametric Mapping software (SPM2, http://www.fil.ion.
ucl.ac.uk/spm). The 200 volumes were first corrected for the
temporal difference in acquisition among different slices, and
then the images were realigned to the first volume for head-
motion correction. No subject’s translational or rotational
parameters in a data set exceeded ±1 mm or ±1◦, and there-
fore, no datasets were excluded from the analysis. The fMRI
images were realigned with the corresponding T1-volume
and warped into a standard stereotaxic space at a resolution
of 3 × 3 × 3 mm3, using the Montreal Neurological Insti-
tute (MNI) EPI template in SPM2. Then, they were spatially
smoothed by convolution with an isotropic Gaussian kernel
(FWHM=8 mm).

2.4 Independent component analysis

Group spatial ICA was conducted using the GIFT software
(http://icatb.sourceforge.net/, version 1.3e) (Calhoun et al.
2001). This involves a preliminary dimension estimation on
all the subjects to determine the number of independent com-
ponents (ICs), using the minimum description length (MDL)
criterion (Jafri et al. 2008; Li et al. 2007). Then, fMRI data
from all the subjects were concatenated, and the temporal
dimension of this aggregate data set was reduced to 40 by
means of PCA (see Supplementary Fig. 1), followed by an
IC (with time-courses and spatial maps) estimation using
the FastICA algorithm (Hyvarinen 1999). IC time-courses
and spatial maps for each subject were back-reconstructed,
using the aggregated components and the results from the
data reduction step (Calhoun et al. 2001; Jafri et al. 2008).
For each IC, the time-course corresponds to the waveform of
a specific pattern of coherent brain activity, and the intensity
of this pattern of brain activity across the voxels is expressed
in the associated spatial map (Mantini et al. 2007). In order to
display the voxels that contributed most strongly to a particu-
lar IC, the intensity values in each spatial map were converted
to Z -values, removing the average value and dividing by the
standard deviation of the intensity distribution (Calhoun et al.
2001; Mantini et al. 2007). Voxels with absolute Z -values
greater than a preset threshold (in this study, |Z | > 1.5)
are considered active voxels of the IC. Negative Z -values
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indicate voxels in which the BOLD signals are modulated
opposite to the IC time-course (Mantini et al. 2007).

2.5 RSN detection

According to the previous studies (Jafri et al. 2008; Stevens
et al. 2007), a selection of the components to be retained for
further analysis among the 40 estimated ICs was performed
using anatomic information. The classification of the ICs in
terms of RSNs was performed according to the fMRI net-
works during rest consistently shown in previous ICA stud-
ies (Beckmann et al. 2005; Damoiseaux et al. 2006; De Luca
et al. 2006; Mantini et al. 2007), using the network spatial
maps from our previous studies (Mantini et al. 2007, 2009).
Specifically, our selected RSNs corresponded to the cerebral
ICs with the largest spatial correlations with the network
templates (van de Ven et al. 2004, 2008).

2.6 Frequency analysis of RSN time-courses

Spatial ICA in GIFT produced time-courses for each IC
and for each subject. Prior to investigating the effective
connectivity relationship among the selected RSNs, their
time-courses were analyzed in the frequency domain, and
subsequently filtered through a band-pass filter at low-
frequency bands (0.005–0.17 Hz), according to the method
by Salvador et al. (2005), to reduce the effects of low-fre-
quency drift and high-frequency noise.

2.7 Conditional Granger causality analysis

CGCA is based on a straightforward expansion of the auto-
regressive model to a general multivariate case including
all measured variables. CGCA was introduced by Geweke
(1984), as recently reviewed in Chen et al. (2006) and applied
to fMRI data (Zhou et al. 2009). Consider the case of three
time-courses Xt , Yt , and Zt . First, the joint autoregressive
representation for Xt and Zt can be written as

Xt =
p∑

j=1

a1 j Xt− j +
p∑

j=1

b1 j Zt− j + ε1t ,

Zt =
p∑

j=1

c1 j Xt− j +
p∑

j=1

d1 j Zt− j + ε2t ,

(1)

and the noise covariance matrix can be represented as

∑
1 =

(
var(ε1t ) cov(ε1t , ε2t )

cov(ε2t , ε1t ) var(ε2t )

)
. (2)

Next, we consider the joint autoregressive representation
for a system involving all the three time-courses Xt , Yt , and
Zt as

Xt =
p∑

j=1

a2 j Xt− j +
p∑

j=1

b2 j Yt− j +
p∑

j=1

c2 j Zt− j + ε3t ,

Yt =
p∑

j=1

d2 j Xt− j +
p∑

j=1

e2 j Yt− j +
p∑

j=1

f2 j Zt− j + ε4 j ,

Zt =
p∑

j=1

g2 j Xt− j +
p∑

j=1

h2 j Yt− j +
p∑

j=1

k2 j Zt− j + ε5 j ,

(3)

and the noise covariance matrix for the above system can be
represented as

∑
2 =

⎛

⎝
var(ε3t ) cov(ε3t , ε4t ) cov(ε3t , ε5t )

cov(ε4t , ε3t ) var(ε4t ) cov(ε4t , ε5t )

cov(ε5t , ε3t ) cov(ε5t , ε5t ) var(ε5t )

⎞

⎠ (4)

where p is the order of the autoregressive model; and εi t , i =
1, . . . , 5 are the prediction error, which are uncorrelated over
time. From these two sets of equations, we define the con-
ditional Granger causality from time-course Yt to Xt condi-
tional on time-course Zt as

FY→X |Z = ln

(
var(ε1t )

var(ε3t )

)
. (5)

It is worth pointing out that Eq. 5 is essentially a log like-
lihood ratio test, comparing models with and without the
directed connection from Yt to Xt . When the causal influence
from time-course Yt to Xt is entirely mediated by other time-
course Zt , the coefficients b2 j in Eq. 3 are uniformly zero, and
var(ε1t ) = var(ε3t ). As such, FY→X |Z = 0, meaning that no
further improvement in the predication of time-course Xt can
be expected by including past measurements of time-course
Yt conditioned on the other time-course Zt . On the contrary,
when a direct influence from time-course Yt to Xt exists, the
inclusion of past measurements of time-course Yt in addition
to that of time-course Xt and Zt should result in better pre-
dictions of time-course Xt , leading to var(ε1t ) > var(ε3t ),
and FY→X |Z > 0 (Chen et al. 2006).

Applying the theory of CGCA to the resting state fMRI
data, the time-course of one of the RSNs can be associated
with Xt , and another one with Yt . Zt represents all the remain-
ing RSN time-courses other than Xt and Yt . Accordingly,
CGCA was performed to test causal influences among RSNs
using (1) the influence terms (FX→Y |Z and FY→X |Z ) (Gao
et al. 2008; Goebel et al. 2003) and (2) the difference of
influence term (FX→Y |Z − FY→X |Z ) (Roebroeck et al. 2005;
Sridharan et al. 2008). The order of the autoregressive model
was set to 1 using the Schwarz criterion (SC), although other
order selection criteria could also be used (Akaike informa-
tion criterion and Hannan–Quinn criterion). The coefficients
of the models were calculated using a standard least squares
optimization.
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2.8 Node interaction analysis

In order to better extract information on the temporal rela-
tions among these RSNs obtained from CGCA, a node inter-
action analysis was performed. Significant Granger causality
interactions on the difference of influence term (FX→Y |Z −
FY→X |Z ) among these RSNs can be represented as edges
in a graph, allowing the application of graph-theoretic tech-
niques. We chose to base our graph theory analyses on the
difference of influences, as opposed to the influences per se,
because these were conserved more consistently over sub-
jects. Since Granger causality is in general not symmetric,
these edges are directional. A general definition of the CGCA
graph-theoretic properties, as provided in previous studies
(Seth 2005; Sridharan et al. 2008; Stevens et al. 2009), is
listed in the following:
• Out-degree: Number of Granger causal afferent connec-
tions from a node (one of the RSNs) to any other node.
• In-degree: Number of Granger causal efferent connections
to a node from any other node.
• (Out-In) degree: Difference between the out-degree and
in-degree as a measure of the causal flow associated with a
node. This casual flow profile identifies nodes that differen-
tially affect, or are affected by, the other ones. A node with
highly positive casual flow (Out-In degree) exerts a strong
causal influence. On the contrary, a node with negative casual
flow (Out-In degree) can be considered to be largely affected
by the other ones.
• Path length: Shortest path from a node to every other node
in the Granger causality network (normalized by the number
of nodes minus one). A shorter path length indicates a more
strongly interconnected or hub node (Stam and Reijneveld
2007). The path length was computed using the Dijkstra’s
shortest path algorithm (Sridharan et al. 2008).

In this study, we constructed and analyzed the distribu-
tion of these graph-theoretic properties, for each node of
the Granger causality network, also calculating the mean
value and standard error across all the subjects (Sridharan
et al. 2008). As not all the graph-theoretic properties of the
RSNs showed Gaussian distribution, the Mann–Whitney U
test applied here to identify those nodes with graph-theo-
retic properties is significantly different (P < 0.05, FDR
corrected for multiple comparisons) from the others in the
Granger causality network.

3 Results

3.1 Component selection and analysis

The number of ICs in the resting state fMRI data was esti-
mated to be approximately 40 from the MDL analysis (Sup-
plementary Fig. 1). Accordingly, this output dimensionality
was used for the ICA decomposition.

The spatial maps of the eight RSNs obtained with this
analysis are illustrated in Fig. 1. Supplementary Table 1 sum-
marizes for each RSN the active regions and the MNI coor-
dinates of the peak foci, as well as the associated Brodmann
areas (BA). On the basis of our classification results, and
those of a large number of RSN studies (Beckmann et al.
2005; Damoiseaux et al. 2006; De Luca et al. 2006; Jafri
et al. 2008; Mantini et al. 2007; Stevens et al. 2009; van den
Heuvel et al. 2008), the eight ICs associated to RSNs can be
described as follows.
• RSN 1: a network of regions typically referred to as
the DMN (Fox et al. 2005; Greicius et al. 2003; Gusnard
et al. 2001; Gusnard and Raichle 2001; Raichle et al. 2001).
This network has been suggested to be involved in episodic
memory (Vincent et al. 2006), and self-projection (Buck-
ner and Carroll 2007). It involves posterior cingulate cor-
tex (PCC)/precuneus region, bilateral inferior parietal gyrus,
angular gyrus, middle temporal gyrus, superior frontal gyrus
and medial frontal gyrus.
• RSN 2: a network overlapping with the DAN, which is
thought to mediate goal-directed top-down processing (Cor-
betta and Shulman 2002). The network, which is left-lateral-
ized, primarily involves middle, and superior occipital gyrus,
parietal gyrus, inferior and superior parietal gyrus, and mid-
dle and superior frontal gyrus.
• RSN 3: a right-lateralized network putatively associated
with central-executive network (CEN) (Koechlin and Sum-
merfield 2007; Sridharan et al. 2008), whose key regions
include the dorsal lateral prefrontal cortices and the poster-
ior parietal cortices.
• RSN 4: a network dedicated to visual processing (VN)
(Lowe et al. 1998), which includes the inferior, middle and
superior occipital gyrus, the temporal-occipital regions along
with superior parietal gyrus.
• RSN 5: a network that primary encompasses the bilateral
middle and superior temporal gyrus, Heschl gyrus, insular
cortex, temporal pole, and correspond to the auditory system
(AN) (Biswal et al. 1997; Eckert et al. 2008).
• RSN 6: a network corresponding to sensory-motor function
(SMN) (Biswal et al. 1995; Fox et al. 2006). This network
includes pre- and postcentral gyrus, the primary sensory-
motor cortices, and the supplementary motor area.
• RSN 7: a network putatively related to SRN (D’Argembeau
et al. 2005). It includes the ventromedial prefrontal cortex
(vMPFC), medial orbital prefrontal cortex (MOPFC), gyrus
rectus, and pregenual anterior cingulate gyrus (PACC).
• RSN 8: a network associated with task control function,
namely core network (CN) (Dosenbach et al. 2006, 2007;
Mantini et al. 2009) whose key regions include the anterior
cingulate, the bilateral insular, and dorso-lateral prefrontal
cortices.

The power spectra calculated from the RSN time-courses
show that the frequency content is largely concentrated
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Fig. 1 Cortical representation
of the eight RSNs of resting state
fMRI data of a group results of
22 subjects. For each RSN. Left:
Lateral and medial views of left
hemisphere. Center: Dorsal
view. Right: Lateral and medial
views of right hemisphere

below 0.1 Hz (Fig. 2). It is observed that each RSN is
characterized by a specific spectral profile, with one or more
peaks. The DMN, the CEN, the SRN, and the DAN show
a common peak in the frequency domain at 0.02 Hz. More-
over, the SMN shows a peak at 0.015 Hz. The RSNs with
peaks at relatively higher frequency are the VN, AN, and
CN. The VN shows three large peaks at 0.025, 0.045, and
0.7 Hz; the AN, a prominent peak at 0.04 Hz; the CN, two
large peaks at 0.045 and 0.1 Hz.

3.2 Granger causality analysis

A Granger casual connectivity network was constructed
(Fig. 2) in which the thickness of connecting arrows indicated

the strengths of the causal influences in low frequency.
Figure 3 shows the Granger casual connectivity measures
of the eight RSNs, the slice activation maps of each RSNs,
and the corresponding time-courses filtered with low fre-
quency band (0.005–0.17 Hz). The “raw” influence terms
(FX→Y |Z and FY→X |Z ) were normalized by the respective
maximum F-value. We reported the raw F-values of the
directed influence terms (FX→Y |Z and FY→X |Z ) in Sup-
plementary Table 2. Only links with significant directed
influence terms (FX→Y |Z and FY→X |Z ) at the group-level
(P < 0.05, FDR corrected) are shown in gray arrows. Fur-
ther, a subset of these casual connectivity arrows showing
the difference of influence term (FX→Y |Z − FY→X |Z ) (dom-
inant direction of influence) (P < 0.05, FDR corrected) is
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Fig. 2 The frequency content of the RSN time-courses: RSN 1 with a
peak in the frequency domain at 0.02 Hz; RSN 2 with a peak at 0.02 Hz;
RSN 3 with a peak at 0.02 Hz; RSN 4 with a peak at 0.045 Hz; RSN 5

with a peak at 0.04 Hz; RSN 6 with a peak at 0.015 Hz; RSN 7 with a
peak at 0.02 Hz; RSN 8 with a peak at 0.095 Hz

Fig. 3 Granger causality network of the eight RSNs during resting state on low frequency band (0.005–0.17 Hz), obtained from the CGCA
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highlighted in red in the same figure (For interpretation of the
references to colour in this figure legend, the reader is referred
to the web version of this article.). The details of raw F-val-
ues of the difference of influence term (FX→Y |Z − FY→X |Z )
are provided in Supplementary Table 3.

In summary, a large number of Granger causal interac-
tions were detected among RSNs. Interactions were pre-
dominantly directional, with bidirectional interactions only
between AN and SMN, SMN and VN, and CEN and CN.
Interestingly, DMN and SRN showed ingoing and outgoing
interactions, respectively.

3.3 Node interaction analysis

In order to quantify the Granger casual interactions of each
RSNs, key graph-theoretic properties were performed, and
the distribution of these properties across subjects was con-
structed. Node interaction analysis on the difference of
influence term (FX→y|Z − FY→X |Z ) identified with CGCA
allowed quantifying the strength of causal afferent con-
nections (Out-degree) (Supplementary Fig. 2), the strength
of causal efferent connections (In-degree) (Supplementary
Fig. 3), the difference between out-degree and in-degree
(Out-In degree) (Fig. 4), and the shortest path length among
all RSNs (means and standard errors of these properties are
listed in Supplementary Table 4). The SRN (RSN 7) had the

Fig. 4 Net Granger causal flow (Out-In degree) of all eight RSNs. Sig-
nificant differences (marked with asterisk) in net causal flow between
RSN 7 (SRN) and other RSNs statistically assessed with the Mann–
Whitney U test (P < 0.05, FDR-corrected for multiple comparison),
are indicated with upper lines. Similarly, significant differences in net
Granger causal flow between RSN 1 (DMN) and other RSNs are shown
with lower lines

highest net causal flow (Out-In degree) among all the RSNs.
Significant differences in net causal flow (Out-In degree)
was showed between SRN and the DMN (RSN 1), DAN
(RSN 2), CEN (RSN 3), and VN (RSN 4) (Mann–Whitney
U test, P < 0.05, FDR corrected).

4 Discussion

To the best of our knowledge, this is the first study in which
effective connectivity among RSNs was examined using
CGCA directly. We observed that: (1) specific and consistent
causal influences among the RSNs are present in the human
brain; (2) the detected causal influences between lower-order,
middle order, and higher-order processing networks are in
accordance with the concept of top-down or bottom-up mod-
ulation; and (3) the SRN and the DMN largely show effer-
ent and afferent interactions with other RSNs, respectively.
These results will be discussed in detail as follows.

4.1 Methodologic considerations

The use of functional connectivity analyses of fMRI data,
which permits the study of coherent brain activity in dis-
tant brain areas, has gained acceptance in neuroscientific
research. This approach is particularly valuable for the inves-
tigation of cerebral networks, for which results supporting
a functional organization, not only related to task-induced
processes (Bartels and Zeki 2005; McKiernan et al. 2003)
but also to coherent synchronization/desynchronization pro-
cesses ongoing even during rest (De Luca et al. 2006; Fox
et al. 2005; Mantini et al. 2007), were reported.

A large number of functional imaging studies describing
specific patterns of seed-based coherences across the human
brain are present in the literature (Biswal et al. 1995, 1997;
Cordes et al. 2000; Fox et al. 2005; Greicius et al. 2003;
Hampson et al. 2002; Lowe et al. 1998). The analysis method
used in these studies supplied a solid foundation for hypoth-
esis-driven studies, which allowed the exploration of differ-
ent functional patterns. However, in this study, we defined
large-scale brain networks by means of ICA, a data-driven
approach. ICA is a method capable of separating independent
spatio-temporal patterns of synchronized neural activity from
fMRI data (Bartels and Zeki 2005), without prior knowledge
about their activity waveforms or locations (McKeown et al.
1998). Numerous authors demonstrated that voxels belong-
ing to a given ICA network have higher BOLD temporal
correlations among themselves compared with voxels belong-
ing to other patterns, making ICA particularly suitable for
functional connectivity studies (Beckmann et al. 2005; Chen
et al. 2008; Damoiseaux et al. 2006; De Luca et al. 2006;
Greicius et al. 2004; Jafri et al. 2008; Mantini et al. 2007;
Stevens et al. 2009). Using ICA, we obtained reproducible
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RSN spatial maps across subjects, along with their associated
time-courses, which could be used for effective connectivity
analysis.

A widely used approach for exploring effective connectiv-
ity properties in fMRI data is GCA, proposed and formalized
by Granger (1969). GCA has already shown its effective-
ness in evaluating direct, indirect, and instantaneous causal
relationships among brain regions (Chen et al. 2009; Gao
et al. 2008; Goebel et al. 2003; Liao et al. 2009; Londei
et al. 2007; Roebroeck et al. 2005; Sridharan et al. 2008;
Stevens et al. 2009; Uddin et al. 2009; Upadhyay et al. 2008;
Wilke et al. 2009). However, there are some controversies
whether it is appropriate to apply GCA to fMRI data (Fris-
ton 2009a,b; Roebroeck et al. 2009). In fact, there are some
reasons why GCA might not be the method of choice for
fMRI data. For example, the causal interactions are mediated
at the neuronal level, and the vector autoregression models
used by GCA have no hidden neuronal states. Another con-
cern is the fact that GCA rests upon uncorrelated predic-
tion errors, although random fluctuations in fMRI data are
smooth because of the hemodynamic response convolution.
Finally, regional variations in the latency of the hemody-
namic response function would violate the assumptions of
temporal precedence upon which GCA is based. In our cur-
rent application, we can appeal to the fact that we are looking
at the coupling among distributed modes, where any varia-
tions in hemodynamic latency will average out. Having said
this, we have to qualify our interpretation that the influence
among the RSNs that we have identified is due to neuro-
nal activity only. The GCA approach is based upon a vector
regression model with just two variables at one time: a seed
region and another voxel. This means that such an assessment
of effective connectivity ignored the influences of other areas,
when assessing the coupling between the reference region
and any particular voxel. However, if both brain regions A
and B are driven by region C, but with a different lag, then
there will be Granger causality between A and B (Gao et al.
2008). In order to handle this issue, an important extension of
Granger’s original definition of causality to the multivariate
case, called CGCA, was proposed by Geweke (1984). For
three or more simultaneous time-courses, the causal relation
between any two of the courses may be direct, mediated by
a third one, or a combination of both. Accordingly, CGCA
is based on a straightforward expansion of the autoregres-
sive model to a general multivariate case, including all mea-
sured variables. In our study, we applied CGCA to the RSN
time-courses, to investigate the effective connectivity among
cerebral networks in a resting state condition. Within this
framework, more CGCA measures could be used, particu-
larly the raw influence terms (FX→Y |Z and FY→X |Z ) (Gao
et al. 2008; Goebel et al. 2003) and the difference of influence
term (FX→Y |Z − FY→X |Z ) (Roebroeck et al. 2005; Sridharan
et al. 2008). Our results suggested a larger consistency in the

estimation of the node interactions could be observed with
the difference of influence term (FX→Y |Z − FY→X |Z ), which
is likely to limit potentially spurious links caused by hemo-
dynamic blurring (Roebroeck et al. 2005; Sridharan et al.
2008).

4.2 Analysis of resting state networks

We separated and characterized the activity of eight RSNs,
which strongly overlapped with DMN, CEN, SRN, DAN,
CN, VN, AN, and SMN, as previously defined in neuroim-
aging studies on active behavioral tasks (Corbetta and Shul-
man 2002; D’Argembeau et al. 2005; Dosenbach et al. 2006;
Gusnard and Raichle 2001; Kwong et al. 1992; Seifritz et al.
2002). Our networks have been also reported in a number of
previous resting state studies (Beckmann et al. 2005; Chen
et al. 2008; Damoiseaux et al. 2006; De Luca et al. 2006;
Mantini et al. 2007; van den Heuvel et al. 2008), although
there is no complete consensus on the number and topology
of the RSNs.

Our data provided evidence for the presence of two
fronto-parietal lateralized networks that were putatively asso-
ciated with the DAN, thought to mediate goal-directed stim-
ulus-response selection (Corbetta and Shulman 2002), and
with the CEN, assumed to be dedicated to adaptive task
control (Dosenbach et al. 2007). This partition, previously
reported by other authors (Beckmann et al. 2005; Chen
et al. 2008; Damoiseaux et al. 2006), has been suggested
to be largely related to hemispheric functional specializa-
tion (Damoiseaux et al. 2006). This issue has been addressed
by Stark and coworkers, who studied the regional variation
in interhemispheric coordination of spontaneous fMRI fluc-
tuations (Stark et al. 2008). They observed a high degree
of interhemispheric synchrony in primary sensory cortices,
which is essential for bilateral sensory integration and motor
coordination, and a lower degree of interhemispheric coordi-
nation in prefrontal and temporoparietal heteromodal asso-
ciation regions, reflecting the predisposition of higher-order
homotopic regions to operate more independently.

Moreover, our results confirmed the separation provided
by ICA between DMN and SRN, as previously reported in
a simultaneous EEG-fMRI study by Mantini et al. (2007).
As they observed hemodynamic fluctuations in these two
RSNs to be related to power variations in alpha/beta and
gamma rhythms, respectively, they suggested different neu-
ronal mechanisms underlying their function. Interestingly,
our causal connectivity results support this assumption, as
will be discussed in detail in the following paragraphs.

Another important finding of this study is the character-
ization of the frequency content of the RSN fluctuations.
Although it has been largely reported that intrinsic hemody-
namic activity is predominantly present between 0.01 and
0.1 Hz (Cordes et al. 2001; Fox et al. 2005), as well as
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frequency specificity across networks has been previously
documented (Wu et al. 2008), we have even been able to
provide a complete description of the RSN power spectra.
Differently from the results of Mantini et al. (2007), which
showed peaks at higher frequency for the dorsal attention
with than for the DMN, we observed the DMN, the SRN,
the DAN, and the CEN to show a common peak at 0.02 Hz.
Furthermore, the CN, AN, and VN were found to have peaks
at relatively higher frequency than the other RSNs. Possi-
ble discrepancies between these networks suggest that dis-
tinct physiologic mechanisms, perhaps related to differences
in underlying neuronal activity, may coexist in these brain
regions to sustain the network functions at rest.

4.3 Causal connectivity of self-referential network

Brain activity at rest is known to involve functional pro-
cesses of different kinds, including monitoring of external
environment and body state, stimulus-independent thought,
planning and problem exclusive, and planning future actions
(Gusnard and Raichle 2001). Among all these processes,
SRN may play an important role (D’Argembeau et al. 2005;
Northoff et al. 2006). SRN processing has been assumed
to filter, select, and provide those stimuli which are rele-
vant for the self of a particular person, so that self-referential
processing can be regarded rather as intermediary between
sensory and higher-order processing than a higher-order pro-
cess by itself. The SRN (RSN 7) has already shown pecu-
liar physiologic characteristics in the resting state, showing a
high level of neural activity during resting conditions (Gus-
nard et al. 2001; Gusnard and Raichle 2001; Raichle et al.
2001). Particularly, D’Argembeau et al. (2005) have argued
that the resting state is, indeed, characterized by a substan-
tial amount of SRN, and have suggested that the resting
state may enable people to represent knowledge concern-
ing to themselves. Furthermore, previous task-related stud-
ies reported the SRN to be related self-knowledge (Macrae
et al. 2004), self-material (Northoff and Bermpohl 2004) and
SRN processing (D’Argembeau et al. 2005; for a recent meta-
analysis see Northoff et al. 2006). Moreover, it has been
provided evidence for areas within this network to allow
for top-down modulation between sensory, self-referential,
and higher-order processing (Northoff et al. 2006). For all
the aforementioned reasons, the self-referential mental net-
work can be reasonably assumed to be a hub, allowing for
top-down modulation among all RSNs. Such a speculation
is supported by our results, as this network had the highest
net causal flow (Out-In degree) and the shortest path length
among all the RSNs. This suggests, in a positive causal flow
sense, that the SRN exerts a strong causal influence over the
other RSNs.

More specifically, a dominant direction of the causal influ-
ence was detected from the SRN (RSN 7) to the DMN

(RSN 1), the CEN (RSN 3), and the AN (RSN 5). The SRN
includes ventromedial prefrontal cortex (vMPFC), MOPFC,
PACC which, for convenience, will be jointly named as
medial frontal cortex (MFC). Anatomically, most MFC pro-
jections are intrinsic or involved in neighboring prefrontal
areas (Amodio and Frith 2006) (e.g., part of RSN 1 and RSN
3). MFC is also densely connected with the amygdala, the
basal ganglia including the striatum and the nucleus accum-
bens, all primary exteroceptive sensory modalities, as well
as subcortical regions implicated in interoceptive processing
(Ongur and Price 2000). Further, there are major anatomic
connects between MOPFC and the dorsolateral prefrontal
cortex, temporal pole, anterior superior temporal gyrus, pari-
etotemporal cortex, and PCC (these regions mostly emerge
in RSNs 1, 2, 3, 5) (for detailed review, see Amodio and Frith
2006). In an fMRI resting state study, Uddin and colleagues
found by means of a correlation-based approach that vMPFC
may directly modulate activity in task-positive networks. In
addition, they demonstrated by means of GCA that vMPFC
negatively predicted activity in the CEN. This was interpreted
as an evidence that vMPFC may directly bias the brain toward
a less vigilant state at rest, requiring suppression to release
task-control processes during task performance (Uddin et al.
2009).

4.4 Causal connectivity of default-mode network

The DMN exhibits high levels of activity during resting state
and decreases the activity for processes of internal-oriented
mental activity, such as mind wandering, episodic memory,
and environmental monitoring (for a recent review see Buck-
ner et al. 2008; Gusnard et al. 2001; Gusnard and Raichle
2001; Raichle et al. 2001). The DMN has been proposed to be
a brain intrinsic system similar to the sensory-motor system
or the visual system (Buckner et al. 2008). It involves sev-
eral brain regions, such as PCC/precuneus region, bilateral
inferior parietal gyrus, inferior temporal gyrus, and medial
frontal gyrus (Gusnard et al. 2001; Gusnard and Raichle
2001; Raichle et al. 2001). These brain areas are tightly
functionally connected and distinct from other brain areas.
Graph-theory analysis by Achard et al. (2006) suggested that
precuneus region, bilateral inferior parietal gyrus, inferior
temporal gyrus, and medial frontal gyrus (most of areas in
the DMN) are critical for cognition.

The DMN function is fundamental in the resting state, as
this network can integrate information from RSNs related to
both primary function and higher level cognition. In accor-
dance with this hypothesis, our study showed the DMN to
have the lowest negative net causal flow (Out-In degree),
and more specifically to be affected by the SRN (RSN 7),
the CEN (RSN 3), the AN (RSN 5), and the CN (RSN 8)
(Fig. 3). Based on previous interpretation, one possibility is
that DMN activity is associated with various forms of thought
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involving multiple sensory and cognitive representations
(Buckner et al. 2008). Another possibility is that sponta-
neous neuronal oscillations measured during resting state
may reflect both intrinsic low-level physiologic processes
and spontaneous cognitive events. The causal influences of
the DMN by SRN (RSN 7) have been discussed in the previ-
ous section. Sridharan et al. (2008) using Granger causality
documented that the CN (RSN 8) had an important role in
cognitive control related to switching between the DMN and
task-related networks as shown in our results, brain areas in
the CN (RSN 8) affected the DMN during the resting state.
A possible reason for the causal influences on the DMN by
the CEN (RSN 3) is that the DMN plays an important role in
monitoring the external environment (Buckner et al. 2008;
Gusnard et al. 2001; Gusnard and Raichle 2001). Accord-
ing to this hypothesis, the CEN would be able to suspend
activity within the DMN, being related to intentional focus
on specific features instead of the whole external environ-
ment (Buckner et al. 2008; Gusnard et al. 2001; Gusnard and
Raichle 2001; Raichle et al. 2001). In addition, considering
the detected interaction from the AN (RSN 5) not only to the
DMN (RSN1) but also to the CEN (RSN 3), we suggest that
the causal effect in this network may not be completely due
to intrinsic activity during resting state, but could be possibly
evoked by the noise from the scanner operation.

5 Conclusion

In summary, we focused on evaluating and understanding the
possible effective connectivity within RSNs. We used ICA,
a data-driven approach, to characterize RSNs from resting
state fMRI data, and then CGCA to gain information about
the causal influences among these RSNs. Our exploratory
analysis confirmed the brain network architecture described
in previous studies, and revealed that the self-referential net-
work and the DMN have the highest positive and negative
net causal flow, respectively. This suggests the two RSNs to
be fundamental networks during the resting state, playing
different roles in brain functional architectures. Such find-
ings may enable new causality hypotheses to be generated
for testing in future studies.
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