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Abstract In contrast to a feed-forward architecture, the
weight dynamics induced by spike-timing-dependent plas-
ticity (STDP) in a recurrent neuronal network is not yet well
understood. In this article, we extend a previous study of the
impact of additive STDP in a recurrent network that is driven
by spontaneous activity (no external stimulating inputs) from
a fully connected network to one that is only partially con-
nected. The asymptotic state of the network is analyzed, and
it is found that the equilibrium and stability conditions for
the firing rates are similar for both full and partial connec-
tivity: STDP causes the firing rates to converge toward the
same value and remain quasi-homogeneous. However, when
STDP induces strong weight competition, the connectivity
affects the weight dynamics in that the distribution of the
weights disperses more quickly for lower density than for
higher density. The asymptotic weight distribution strongly
depends upon that at the beginning of the learning epoch;
consequently, homogeneous connectivity alone is not suffi-
cient to obtain homogeneous neuronal activity. In the absence
of external inputs, STDP can nevertheless generate structure

M. Gilson (B) · A. N. Burkitt · D. B. Grayden · D. A. Thomas
Department of Electrical and Electronic Engineering,
The University of Melbourne, Melbourne, VIC 3010, Australia
e-mail: mgilson@bionicear.org

M. Gilson · A. N. Burkitt · D. B. Grayden
The Bionic Ear Institute, 384-388 Albert St., East Melbourne,
VIC 3002, Australia

M. Gilson · A. N. Burkitt · D. B. Grayden · D. A. Thomas
NICTA, Victoria Research Lab, University of Melbourne,
Melbourne, VIC 3010, Australia

J. L. van Hemmen
Physik Department (T35) and BCCN–Munich, Technische Universität
München, 85747 Garching bei München, Germany

in the network through autocorrelation effects, for example,
by introducing asymmetry in network topology.
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1 Introduction

Synaptic plasticity is central to understanding information
processing in the brain, in that it is believed to structure neu-
ronal circuits. It relies on changes at the molecular level,
which take place locally at the synaptic site between neurons,
which results in the strengthening (potentiation) or weaken-
ing (depression) of the synaptic weight. Recent studies have
established the importance of the timing of individual spikes
in synaptic plasticity (Gerstner et al. 1996; Markram et al.
1997; Bi and Poo 2001), which lead to the model of spike-tim-
ing-dependent plasticity (STDP). Previous theoretical stud-
ies have primarily investigated the weight dynamics induced
by STDP for single neurons and the implications for feed-
forward networks (Gerstner et al. 1996; Kempter et al. 1999;
Gütig et al. 2003; Burkitt et al. 2004; Meffin et al. 2006).
The cortex, however, is dominated by recurrent connections,
and the effect of STDP has only begun to be addressed in
such recurrent networks, mainly using numerical simulation
(Song and Abbott 2001; Morrison et al. 2007). A few theo-
retical results on synaptic plasticity in recurrent architectures
(Karbowski and Ermentrout 2002; Masuda and Kori 2007)
illustrate the difficulty in incorporating the effect of feed-
back synaptic loops. The relationship between STDP and
synchronous activity has been particularly studied in specific
network configuration (Levy et al. 2001; Câteau et al. 2008;
Lubenov and Siapas 2008). In a recent article (Burkitt et al.
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2007), we developed a framework for the analysis of STDP
in recurrent networks for general network topology and activ-
ity. This framework describes how the network activity, viz.
firing rates and spike-time correlations, determines the evo-
lution of the weights, which occurs on a slower time scale
and the resulting development of structure within the net-
work. In that cited article, the analysis was carried out only
for network with full recurrent connectivity and no external
inputs (Burkitt et al. 2007).

Now, we extend the analysis of the synaptic dynamics to
the case of an arbitrary topology of partial recurrent con-
nectivity. The focus of our analysis is laid on the stable
asymptotic distributions of the firing rates and of the recur-
rent weights that take place after a sufficiently long learning
epoch (emerged structure). This article is part of a series
that analyzes the emergence of network structure induced by
STDP. Previous articles in this series (Gilson et al. 2009a,b)
investigated the case of a recurrently connected network stim-
ulated by external inputs with plastic input synapses, while
the recurrent connections are kept fixed. In this article, we
focus on the case of plastic recurrent synapses with no exter-
nal inputs; in other words, each neuron receives excitation
from the same external background activity. This analysis
is a first step toward investigating a network with plastic
recurrent synapses and external inputs with a firing-rate and
spike-time correlation structure (Gilson et al. 2009c), simi-
lar to that described by Gilson et al. (2009a). We constrain
our study to additive STDP (Sect. 2.1), keeping in mind its
limitations compared to more elaborate versions of STDP
(van Rossum et al. 2000; Sjöström et al. 2001; Gütig et al.
2003; Pfister and Gerstner 2006; Meffin et al. 2006; Appleby
and Elliott 2006; Morrison et al. 2007). Even though additive
STDP is only one possible approximation to a more complete
description of neuronal plasticity, it nevertheless is useful to
initially study this case for a number of reasons. First, it is
sufficiently simple that it allows tractable analytical methods
to be used that are capable of providing considerable insight
into the behavior of the system. In this sense, it provides a
test bed for the development of new analytical tools that may
lead to methods for investigating other forms of plasticity.
The method for analyzing partially connected networks in
this article could be more generally applied, for example, to
weight-dependent (non-additive) STDP. Second, the results
of the present analysis are still meaningful and allow us to
gain a better understanding of some principles underlying
more general forms of STDP. After presenting the Pois-
son neuron model (Sect. 2.2), we recapitulate the theoreti-
cal framework used to model the evolution of the recurrent
weights in a partially connected network of neurons only
driven by their spontaneous activity. We then analyze the
equilibrium enforced on the weights by STDP (Sect. 3) and
how a structure can emerge (Sect. 4) when there is no external
stimulation.

2 Modeling learning and neuronal activity

2.1 Hebbian additive STDP

STDP describes the change in the synaptic weight induced
by single spikes and pairs of spikes, and incorporates the
precise timing of spikes. Here, we use the so-called Hebbian
additive STDP model (Kempter et al. 1999), in contrast to
the other STDP versions (van Rossum et al. 2000; Gütig et al.
2003). For two neurons in and out connected by a synapse
in → out with weight J , the weight change δ J induced by
a sole pair of pre- and post-synaptic spikes at times t in and
tout, respectively, is given by the sum of three contributions:

δ J = η

⎧
⎨

⎩

win at timet in

wout at timetout

W (t in − tout) at timemax(t in, tout).

(1)

The constant win (resp. wout) accounts for the effect of each
pre-synaptic (post-synaptic) spike, which occurs at time t in

(tout). The STDP learning window function W determines
the contribution of each pair of pre- and post-synaptic spikes
in terms of the difference between the spike times t in − tout

(Gerstner et al. 1996; Kempter et al. 1999). Figure 1 illustrates
a typical choice of W where pre-synaptic spikes that take part
in the firing of post-synaptic spikes induce the potentiation
(Hebb 1949). These three contributions are scaled by a learn-
ing parameter η, typically very small, so that learning occurs
very slowly compared to the other neuronal and synaptic
mechanisms. We chose η such that the weight change is three
orders of magnitude below the corresponding upper bound.
All spike pairs are involved in the weight modification; we do
not consider any temporal restriction (Sjöström et al. 2001,
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 0 

 15

spike−time difference (ms)

Fig. 1 Example of STDP window function W . It consists of one decay-
ing exponential for potentiation (left curve) with time constant 17 ms
and one for depression (right curve) with 34 ms. See Appendix 10 for
details on the parameters
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Burkitt et al. 2004). See Gilson et al. (2009a, Sect. 2.1) for
more details.

2.2 Poisson neuron model

In the Poisson neuron model (Kempter et al. 1999), the spik-
ing mechanism of a given neuron i is approximated by an
inhomogeneous Poisson process driven by an intensity func-
tion ρi (t) to generate an output spike-time series Si (t). The
rate function ρi (t) is to be related to the soma potential, and
it evolves over time according to the excitation received from
other neurons j �= i (self-connections are forbidden),

ρi (t) = ν0 +
∑

j �=i

[

Ji j (t)
∑

n

ε
(
t − t j,n − di j

)
]

. (2)

The constant ν0 is the spontaneous firing rate (identical for
all the neurons), which accounts for other incoming connec-
tions that are not considered in detail. Each pre-synaptic spike
induces a variation of ρi (t) taken care of by the post-synaptic
potential (PSP), which is determined by the synaptic weights
Ji j , the post-synaptic response kernel ε, and the delays di j .
The kernel function ε models the PSP due to the current
injected into the post-synaptic neuron as a consequence of
one single pre-synaptic spike; ε(t) is normalized to one, i.e.,∫

ε(t) dt = 1, and to preserve causality, we have ε(t) = 0
for t < 0. A PSP also incorporates a fixed delay, denoted by
di j for the synaptic connection from neuron j . The overall
synaptic influx is the sum of the PSPs over all spike times
t j,n (related to the synapse from neuron j , and indexed by
n). We only consider positive weights here, i.e., excitatory
synapses. See Gilson et al. (2009a, Sect. 2.2) for details.

2.3 Dynamical system to model network activity

Previous articles developed a framework to describe the
impact of STDP upon the neuronal dynamics (Kempter et al.
1999; Burkitt et al. 2007; Gilson et al. 2009a). A dynami-
cal system of equations was derived to link the variables of
importance for the network activity (firing rates and pairwise
spike-time correlations) and the synaptic weights. Here, we
recapitulate this framework that requires very slow synaptic
plasticity compared to the neuronal activation dynamics (adi-
abatic hypothesis); thus the expectation values of the firing
rates and pairwise correlations are quasi-constant in time for
the network neurons.

2.3.1 Description of the network activity

We consider a recurrently connected network of N Poisson
neurons as illustrated in Fig. 2a, where each neuron excites
other neurons via connections that may form feedback loops
in the network, but without self-connections. Typically N is

a

b
firing rates νi(t)

pairwise correlations Qij(t, u)
weights Jij(t)
delays dij

Fig. 2 Presentation of the network notation. a Schematic illustration
of two of the N network neurons (circles, indexed by 1 ≤ i, j ≤ N ).
The neurons are recurrently connected with plastic weights Ji j (t) (thick
arrows). The output spike train of neuron i is denoted by Si (t). b Table
of the network variables that describe the neuronal activity (time-aver-
aged firing rates ν and correlation coefficients Q), and those related to
the synaptic connections (weights J and delays d)

large, and the network connectivity topology can be arbitrary
with n J recurrent connections. Partially connected networks
are generated by randomly assigning neuron-to-neuron con-
nections.

Spikes are considered to be instantaneous events. We
denote by Si (t) the spike-time series (Dirac comb) of the
neuron i , 1 ≤ i ≤ N ; its value is zero except at the times
when a spike is fired and the spike train is described as a sum
of Dirac delta-functions.

We define the time-averaged firing rate νi (t) of neuron i ,
over a duration T taken much larger than the time scale of
the neuronal activation mechanisms but much smaller than
the learning time scale related to η−1 (Kempter et al. 1999;
Burkitt et al. 2007; Gilson et al. 2009a)

νi (t) := 1

T

t∫

t−T

〈
Si (t

′)
〉
dt ′, (3)

where the angular brackets denote the probabilistic ensemble
average over the randomness so that 〈Si (t)〉 is the instanta-
neous firing rate.

In order to take the delays into account, the correlation
coefficients previously used by Burkitt et al. (2007) have been
modified: QW

i j accounts for the correlation between neurons i
and j , after the convolution with the STDP window function
W and the delays di j

QW
i j (t) :=

+∞∫

−∞
W (u)Qi j (t, u − di j ) du, (4)

where Qi j is the time-averaged correlation between neuron
j and neuron i
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Qi j (t, u) := 1

T

t∫

t−T

〈
Si (t

′)S j (t
′ + u)

〉
dt ′. (5)

The delay di j in (4) accounts for the transmission time
required for a spike fired by neuron j to reach the synap-
tic site j → i , which plays a role in the learning process.

2.3.2 The equations describing the dynamical system

The weights are modified due to STDP according to the activ-
ities of the pre- and post-synaptic neurons for each synapse.
For a small time interval [t, t + δt], the change in the input
weight Ji j described in (1) can be expressed using the pre-
and post-synaptic spike trains (Kempter et al. 1999; Burkitt
et al. 2007)

δ Ji j (t) = η

t+δt∫

t

[
win S j (t

′ − di j ) + wout Si (t
′)
]

dt ′

+ η

∫

(t ′,u)∈I(t)

W (u) Si (t
′) S j (t

′ − di j + u) du dt ′.

(6)

Recall that S j (t ′ − di j ) is the delayed time series of the pre-
synaptic spikes so that the time difference u at the synaptic
site between the pre- and post-synaptic spikes (at respec-
tive times tpre and tpost at the somas of both neurons) is
u = tpre + di j − tpost. The domain of integration I(t) is the
subset (t ′, u) ∈ R

2 satisfying the three conditions:

t ′ ≤ t + δt;
t ′ − di j + u ≤ t + δt; (7)

t ≤ t ′ or t ≤ t ′ − di j + u.

The first two lines ensure that the spikes occur before t + δt ,
and the last line that at least one of them is in the time interval
[t, t + δt].

When STDP slowly modifies the weights over a long time,
the terms in (6) self-average and, consequently, they can be
evaluated using the probabilistic ensemble average denoted
by the angular brackets 〈· · · 〉; see Kempter et al. (1999);
Burkitt et al. (2007); Gilson et al. (2009a) for details of sim-
ilar derivations. The derivative of the expectation value of
the weight Ji j denoted by J̇i j (t) is approximated by the tem-
poral average of the summed 〈δ Ji j (t ′)〉 over a sufficiently
long-time interval of duration T , which leads to the ensem-
ble average taken on (6).

In the limit of large networks (N 	 1), we can ignore
the effects related to autocorrelation as a first approxima-
tion to evaluate the evolution of the expectation values for
the recurrent weights and neuron firing rates. We keep in
mind that such effects may have an impact on the dynamics,
which will actually be discussed in Sect. 4; the general case

will be the focus of a subsequent companion article (Gilson
et al. 2009c). In this way, the spike trains are probabilisti-
cally quasi-independent for all pairs of neurons, i and j ; the
correlation coefficients, QW

i j , defined in (4) satisfy

QW
i j (t) 
 W̃ νi (t) ν j (t), (8)

where W̃ is the integral value of the function W

W̃ :=
+∞∫

−∞
W (u) du. (9)

We finally obtain a system of matrix equations, which
describes the dynamics of the firing rates and the weights.

ν = (1N − J )−1 ν0 e, (10a)

J̇ = �J

(
win e νT + wout ν eT + W̃ ν νT

)
. (10b)

Time has been re-scaled to remove η, and the time variable t
is omitted from all the vectors and matrices that evolve over
time. The vector e is the column vector with all N elements
equal to one, i.e.,

e := [1, . . . , 1]T. (11)

The superscript, ‘T’, denotes the matrix transposition so that,
e.g., e eT is a N × N matrix. The projector �J operates on
the vector space of N × N matrices: it nullifies all the matrix
components that correspond to non-existent connections in
the network. In particular, since we forbid self-connection of
the neurons, �J nullifies all the diagonal terms. The system
of equations (10a–10b) is the same system that was studied
by Burkitt et al. (2007).

Considerations concerning the invertibility of the matrix
1N − J are discussed in Appendix 6. This invertibility prop-
erty is required at all times to ensure that the firing rates
remain bounded. We introduce bounds on the weights in
numerical simulation for this purpose, since the weights tend
to diverge due to the competition induced by STDP (Kempter
et al. 1999; Burkitt et al. 2007). These bounds on the weights
also induce bounds on the firing rates (see Appendix 6). All
the simulation results presented in this article were run using
the neuron and learning parameters listed in Appendix 10.

2.3.3 Analysis of the system dynamics

Our aim is to investigate the steady states of the network vari-
ables and of the weights, as well as their stability. Note that
(10b) corresponds to pure rate-based learning, where syn-
aptic delays do not play any role. The system of equations
(10a–10b) describes the evolution of the expectation value
of the weights, i.e., the first order of the stochastic process.
In the remainder of the article, we refer to this leading order
as the drift of the dynamics, in comparison to higher orders
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ignored by (10a–10b). It is, however, possible to use our for-
malism to analyze further the latter (spike-based effects), as
will be done in Sect. 4.

3 Equilibrium and stability

The study of the weight dynamics induced by STDP for a
network with no external inputs was demonstrated in an ear-
lier article for the case of full recurrent connectivity (Burkitt
et al. 2007): we described the fixed points of the firing rates
and of the recurrent weights, their stability, and the evolution
of the weight variance. In particular, Burkitt et al. (2007)
derived the stability conditions for the homeostatic equi-
librium, namely, the situation where the mean firing rates
and mean weights stabilize although individual firing rates
and weights may continue to change, and the same analy-
sis can be applied to the present case of partial connectiv-
ity. We recall these stability conditions: the mean firing rate
and the mean weight over all neurons have stable equilibria
provided

win + wout > 0 and W̃ < 0. (12)

Here, we study the equilibria of the dynamical system
(10a–10b) in terms of individual firing rates and mean
weights (taking into account the network topology) and the
corresponding stability conditions. The present analysis of
the weight drift is similar to that of Burkitt et al. (2007),
but here the projector �J in (10b) is non-trivial and nulli-
fies not only the diagonal elements, but also other elements
according to the partial connectivity of the network. The
matrix J belongs to the vector subspace of R

N×N defined
by MJ := {X ∈ R

N×N ,�J (X) = X}, whose dimension is
the number of existing connections n J .

3.1 Fixed point of the firing rates

We first find the equilibrium states of the network dynam-
ics in terms of the firing rates. Setting J̇ = 0 in (10b) leads
to the following condition on the firing rates for all existing
connections j → i :

winν j + woutνi + W̃ν jνi = 0, (13)

that is,

νi = q(ν j ) := − winν j

wout + W̃ν j
. (14)

For any loop of synaptic connections from a given neuron
i0 back to itself through neurons i1, i2, …, in−1, we have

νim+1 = q(νim ) for m = 0, . . . , n − 1, (15)

and thus νi0 = q{n}(νi0) where q{n} is the self-composition
of q defined in (14) iterated n times. In other words, νi0 is

a fixed point of q{n} whenever there exists a loop of length
n in which neuron i0 takes part. Similarly, for all the νim

of the loop. Owing to the special form of q, the function
x �→ q{n}(x) has only two fixed points, namely, those of q
(see Appendix 7.1). This means that at the equilibrium of the
learning weight dynamics, any neuron i with non-zero firing
rate νi within a loop of arbitrary length must satisfy

νi = µ := −win + wout

W̃
. (16)

We discard silent neurons at the equilibrium since the con-
sistency equation for the firing rates (10a) would then imply
infinitely large weights.

Consequently, the firing rates at the steady state are homo-
geneous provided the network connectivity is such that each
neuron is part of a loop. In a randomly connected network,
the probability for the existence of such loops increases with
the connectivity density and becomes almost equal to one
above a certain value (i.e., for a sufficiently dense network).
This follows since a Hamiltonian cycle (loop going through
all neurons of the network) is almost certain to exist when
there are more than 10 log(N ) connections per neuron, in
a random network of N > 10 neurons (Bondy and Murty
2008, Theorem 18.22). Typical cortical density involves 104

excitatory connections per neuron for 105 neurons per mm3,
which is compatible with these figures. The existence of loops
for every neuron is thus a reasonable assumption for corti-
cal-like neuronal networks, and this assumption will be made
throughout this article.

3.2 Fixed points of the weights

A fixed point of the network dynamics denoted by (ν∗ =
µe, J ∗) must satisfy the following condition on the weight
matrix J ∗ according to (10a)

J ∗ e = µ − ν0

µ
e. (17)

Similar to the case of full connectivity (Burkitt et al. 2007),
this equation characterizes an affine space of dimension
n J − N (recall that n J is the number of connections). For
example, a fully connected network without self-connections
corresponds to n J = N (N − 1). A redistribution of the
strengths of the incoming weights on each neuron, while
keeping the sum of these weights constant at (µ − ν0)/µ,
gives all the solutions J ∗. In other words, the sum of the
elements for each row of any J ∗ is equal to that constant.

In general, the dimension of the affine hyperplane of the
J ∗ is non-zero, and there is a continuum of fixed points,
except for the case where a single loop links all the neurons
together (or several disjoint loops). In a single loop, there is
only one incoming weight per neuron, which must be equal
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to (µ− ν0)/µ at the equilibrium; in other words, no redistri-
bution is possible.

We recall that the matrix 1N − J ∗ must be invertible
(cf. Appendix 6); this condition can be enforced by placing
bounds on the weights, which we do in the numerical simu-
lations. The weight matrix can then move on a manifold of
fixed points denoted by M∗, where the drift of the weights
arising from the learning equation is zero and the weight
evolution is only due to higher orders of the stochastic pro-
cess (cf. Sect. 2.3.3), similar to the case of full connectivity
(Burkitt et al. 2007).

3.3 Stability analysis

We derive from the learning equation (10b) the following
linear operator that describes the evolution at the first order
of the variation of the weight matrix �J := J − J ∗ around
a given fixed point J ∗ (Burkitt et al., 2007, Sect. 5)

�̇J 
 L(�J )

:= −µ�J

[
win (1N − J ∗)−1

�J e eT

+wout e eT �J T (
1N − J ∗)−1 T

]
. (18)

The matrices X such that Xe = 0 form a linear subspace
of MJ of dimension n J − N ; for �J in this subspace, (18)
clearly gives �̇J = 0. This corresponds to a displacement
along the fixed-point manifold M∗ where the learning equa-
tion does not provide any constraint to the leading order,
i.e., the drift term of the stochastic weight evolution is zero
(Burkitt et al. 2007).

The eigenmatrices related to the linear operator defined
in the rhs of (18) depend on the detail of the connectivity
topology in a non-trivial way, as described in Appendix 7.2.
In addition to n J − N eigenvalues equal to zero for the matri-
ces X ∈ MJ such that Xe = 0, the spectrum of the linear
operator L also contains all the eigenvalues of the following
matrix L r, as discussed in Appendix 7.2.1,

L r = win L in + wout Lout,

L in := −µ R
(
1N − J ∗)−1

, (19)

Lout := −µ�J

[
e eT

] (
1N − J ∗)−1

where R is the diagonal matrix whose i th element is the
number of incoming connections for neuron i , namely,

R = diag
[
�J

(
e eT

)
e
]
. (20)

In the case of homogeneous recurrent connectivity, the
spectrum of L r for |win| 	 |wout| is almost the same as
that of L in, which lies in the left half-plane as illustrated in
Fig. 3a. It follows that the condition win 	 |wout| ensures
eigenvalues with large negative real parts for L, as illustrated
in Fig. 3c and e. On the contrary, if |wout| 	 |win|, then the

a

b

c

d

e

f

Fig. 3 Illustration of spectra for the linear operator L. The scale is the
same for the five plots, and the axes are the gray solid lines. a and b
Spectra of the matrices L in (each eigenvalue is a plus) and Lout (circle)
defined in (19), for a network of N = 100 neurons with homogeneous
partial connectivity (30%) and a randomly generated fixed point J ∗.
These two matrices were re-scaled by win + wout. Spectrum of L for: c
win = 4 and wout = 1 (squares); d win = 1 and wout = 4 (triangles);
e win = 4 and wout = −1 (crosses); f win = −1 and wout = 4 (stars).
The cases c and e show a spectrum similar to that of L in in a, where
the eigenvalues have larger negative real parts than in case d, whose
spectrum is more similar to that of Lout in b. The case f shows many
eigenvalues with positive real parts

eigenvalues of L are almost those of Lout. Owing to the large
number of almost-zero eigenvalues in the spectrum of Lout as
shown in Fig. 3b, the eigenvalues of L are, then, more clus-
tered around zero, and the sign of their real parts may vary
according to win. For wout 	 win > 0, the spectrum of L
has eigenvalues with negative real parts (Fig. 3d). However,
for wout 	 −win > 0, the spectrum of L has eigenvalues
with positive real parts (Fig. 3f). These conclusions on sta-
bility are independent of the fixed point J ∗ used to define
L in (18), which means that the fixed-point manifold M∗ is
actually either attractive or repulsive as a whole, i.e., either
all fixed points are attractive or none of them is attractive.

It follows that in the case of random connectivity, where
each neuron has the same number of incoming connections,
the condition

win 	 |wout| (21)

is sufficient to ensure stability. On the other hand, the condi-
tion wout 	 |win| leads to weaker stability or even instability
when win < 0. For inhomogeneous connectivity topology,
we also expect win 	 |wout| to lead to stability. The con-
dition (21) on the rate-based learning parameters is slightly

123



Biol Cybern (2009) 101:411–426 417

stronger than that derived in the case of full connectivity
(Burkitt et al. 2007). In order to obtain a realizable equi-
librium for the firing rates, i.e., µ ≥ ν0 > 0 in (16), the
condition (21) implies that W̃ < 0, similar to the analysis
by Burkitt et al. (2007). Last, the denser the recurrent con-
nections are, the more attractive M∗ is, when the stability
conditions on win and wout are satisfied (details are provided
in Appendix 7.2.2).

4 Structural evolution of the recurrent weights

We now look in more detail at the evolution of the individ-
ual weights, when the stability conditions for the fixed-point
manifold determined in Sect. 3, namely, (21) and W̃ < 0, are
met. As shown previously for the case of full connectivity
(Burkitt et al. 2007), the recurrent weights tend to individu-
ally diverge from each other due to the autocorrelation of the
Poisson neurons; their variance increase relates to the fact
that we are dealing with stochastic point processes. In this
section, we show that this weight dispersion is affected by the
connectivity density. Then, we investigate some properties of
the asymptotic weight distribution.

4.1 Dispersion of the individual weights

In order to study the impact of recurrent connectivity upon
the evolution of the recurrent weights, we use calculations
involving the higher stochastic orders of the weight dynamics
similar to those in a companion article (Gilson et al. 2009b).
The connectivity density affects the weight dispersion, which
stems from spike-triggering effects induced by the recurrent
connections. This can be studied through the coefficients

�i, j,i ′, j (t, t ′) :=
〈

dJ	
i j (t)

dt

dJ	
i ′ j (t

′)
dt

〉

, (22)

which are related to the second moment of the weight dynam-
ics. The derivative dJ	

i j (t)/dt of the weight Ji j corresponds
to one trajectory 	 of the stochastic process (one realiza-
tion of the network spiking history), and it consists of weight
jumps for each spike and pair of spikes; see Appendix 8 and
Gilson et al. (2009b, Sect. 2.3.3) for details. Over a homoge-
neously connected network with n J connections, the sum of
the contributions to

∑
�i, j,i ′, j (t, t ′) of these spike-triggering

effects is

(n J
av)

3 Jav µwin
(
win + wout

)
, (23)

where n J
av = n J /N is the mean number of incoming recur-

rent connections per neuron. Details are given in Appendix 8,
(46); note that η2 would be present if we had not re-scaled
time. Under the stability conditions win 	 |wout| and W̃ < 0
(cf. Sect. 3.3), this sum is positive, which means limiting the

increase of the weight variance; this effect is stronger when
win is large and W̃ is small.

The expression (23) is to be compared with the terms due
to the first-order autocorrelation of the neurons. These first-
order terms are independent of the connectivity and cause the
variance of the recurrent weights J to increase, and, hence,
the divergence of individual weights. For a homogeneously
connected network, the sum of these terms over all the con-
nections is given by (Burkitt et al., 2007, Eq. 45)

n J
{
µ
[
(win)2 + (wout)2

]
+ µ2W̃ 2

}
. (24)

The ratio of the expressions in (23) and (24), is given by

(n J
av)

3 Javw
in
(
win + wout

)

n J
{[

(win)2 + (wout)2
]+ µ2W̃ 2

} ∼ n J

N 2 n J
av Jav. (25)

This ratio ignores the details of the STDP parameters to focus
on the connectivity density. We consider n J

av Jav = (µ −
ν0)/µ < 1 to be of order one. The denser the recurrent con-
nections, the closer to one the ratio is. In the case of full
connectivity, the ratio is approximately n J

av Jav. This indi-
cates that the weight variance increases more slowly for a
network with full connectivity (Fig. 4a) than that with partial
connectivity (Fig. 4b).

4.2 Asymptotic pattern of recurrent weights

After a sufficiently long learning epoch, the recurrent weights
J have evolved to either saturation or quiescence due to their
increasing variance, while J remains on the fixed-point man-
ifold M∗ (Burkitt et al. 2007). The matrix of the weights J
exhibits a constant number of saturated weights on each row,
when J remains in the attractive manifold M∗, because the
sum of incoming weights is then constant for each neuron
as discussed in Sect. 3.2. However, the number of potenti-
ated weights on each column, i.e., the sum of the outgoing
weights for each neuron, may vary depending on the initial
weight distribution, as shown in Appendix 9 and illustrated
in Fig. 5. The emerged weight structure in the recurrent net-
work is thus strongly affected by the initial conditions. In
other words, this asymptotic structure is not learned by the
network in the sense of being constrained by STDP.

In the absence of external inputs, there is no weight struc-
ture to learn per se, but a structure may still emerge in addi-
tion to that remaining from the initial weight distribution,
as described previously. For example, starting with full con-
nectivity (except for self-connections), STDP tends to break
the synaptic loops of length two between two neurons i and
j , i.e., from a neuron to another one and then back to itself
j → i → j . This can be explained by the second stochas-
tic moment for two recurrent weights Ji j and J ji in a sim-
ilar manner to the calculation for the weight dispersion in
Sect. 4.1. This second moment is related to �i, j, j,i (t, t ′), cf.
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Fig. 4 Comparison of the evolution of the weight variance between
two networks of N = 50 neurons each with a full connectivity and b
30% partial random connectivity. The weights were initialized to 0.01
(±10%) for both networks. The individual weights (gray bundles) of
the fully connected network a tended to remain more clustered, whereas
those of the partially connected network became more dispersed over
time; note that the equilibrium values for the mean weight in the two
cases are different because of the connectivity density. After an initial
period of linear growth at the predicted rate given in (24) (dashed line),
the nonlinear increase of the variance (thick solid lines, multiplied by a
factor 1000 here) of the fully connected network a is slower than that
for the partially connected network b. No weight saturated or became
quiescent during this simulation.

(22), and its evaluation during the homeostatic equilibrium
leads to a negative expression, namely,

− 2µ
[
(win)2 + (wout)2 + winwout

]
< 0, (26)

whatever the values for the STDP parameters, as explained
in Appendix 8.3. This means that STDP causes the weights
Ji j and J ji to diverge from each other due to the neuron
autocorrelation effects in the network. Consequently, when
the equilibrium value for the mean weight and the bounds are
set such that half of the weights become saturated and half
quiescent, the weight matrix J tends to become antisymmet-
ric as illustrated in Fig. 6.

Other subtle constraints may be imposed on the recurrent
weights by STDP, depending on the specific connectivity
topology and/or the distribution of delays. However, these
are not the primary aim of this article and will not be pursued
further here.
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Fig. 5 Evolution of the distributions of incoming and outgoing weights
for N = 100 neurons. The connectivity was random with 30% prob-
ability and the initial weights were respectively set with a spread of
± 10% around the following values: 0.01 from group 1 to 1; 0.005 from
1 to 2 and from 2 to 1; 0.0025 from 2 to 2. a The individual weights (gray
lines, with only a representative portion plotted) diverged to the bounds.
The incoming weight means for groups 1 and 2 (dotted lines, almost
undistinguishable from each other) quickly converged to the same pre-
dicted equilibrium value. The outgoing weight means for groups 1 and 2
(dotted-dashed lines) stabilized to different values for a slightly longer
period. b The means for each neuron of the incoming weights (black
traces) converged toward the predicted equilibrium value and remained
clustered together whereas the means of outgoing weights (gray traces)
individually stabilized at different values eventually. c Matrix of J after
50,000 s of learning. Darker elements indicate potentiated weights. The
left side corresponding to weights coming from group 1 had more poten-
tiated weights than the right side (weights from 2) at the end of the
simulation, similar to the initial conditions

5 Discussion

In this article, we have analyzed the learning dynamics
induced by STDP in a recurrent neuronal networks with
no external inputs, i.e., driven only by spontaneous activ-
ity related to the background excitation/inhibition ν0, which
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Fig. 6 Illustrative results of numerical simulations with N = 30 neu-
rons. Dark pixels indicate potentiated weights. The spontaneous rate ν0
has been set to 22 Hz to obtain an equilibrium Jav = 0.0177 roughly
equal to half of the weight bound 
 = 0.3 such that the asymptotic
matrix J has almost as many saturated as quiescent weights. a Anti-
symmetric pattern observed in the asymptotic matrix J when starting
from initial full connectivity. For each pair of weights Ji j and J ji , STDP
almost always depressed one while potentiating the other, resulting in
the breaking of most synaptic loops of length two in the network except
for b 37 pairs of indices (i, j) and ( j, i) (dark pixels). This corresponds
to 4.25% of the total number of initial loops, which is to be compared
with the expectation value of discrepancies Jav/
 − 0.5 = 9%; note
that, if the matrix J is completely antisymmetric, half of the weights will
be saturated and the other half will be quiescent, and, hence, Jav = 
/2.
The actual weight distribution is closer to an antisymmetric matrix than
the theoretical prediction

is common to all neurons. We focused on the case of partial
connectivity, extending our previous study for full connec-
tivity (Burkitt et al. 2007). Using the Poisson neuron model
(Kempter et al. 1999) in a framework developed previously
by Burkitt et al. (2007), we carried out a fixed-point analy-
sis on the expectation value of the firing rates and weights,
as well as a study of higher stochastic orders of the weight

dynamics to evaluate their dispersion due to the competition
generated by STDP.

Stability for the neuron firing rates, and equivalently for
the sum of incoming weights, can be obtained for a wide
range of STDP parameters, in particular, when win > |wout|
(21) and W̃ < 0. Under these conditions, a single pre-syn-
aptic spike increases the weight by a greater amount than
the effect of a single post-synaptic spike (either potentia-
tion or depression), and STDP induces more depression than
potentiation for uncorrelated inputs: rate-based anti-Hebbian
learning rule. These stability conditions are similar to those
obtained for full connectivity (Burkitt et al. 2007) and are in
agreement with earlier numerical studies using recurrently
connected networks of integrate-and-fire (IF) neurons (Song
and Abbott 2001). The equilibrium values of the firing rates
and of the sum of incoming weights are determined by the
STDP parameters only. These conclusions hold for a broad
range of neuronal and synaptic parameters (PSP kernel and
delays); the discrepancies observed between prediction and
simulation results are typically less than 5%. Synaptic delays
do not appear in the equation system (10a–10b) and did not
affect in numerical simulation the conclusions presented in
this article. Note that relieving the restriction about no self-
connections would not change the conclusions.

The individual weights exhibit a diverging behavior,
which requires the use of bounds to constrain them to a
given domain in numerical simulation. Our choice of STDP
and neuron models is motivated by the desire to keep the
equations tractable. A weight-dependent version of STDP
may be used to implement soft bounds on the weights, i.e.,
a stable weight distribution, similar to the case of learning
on feed-forward network architectures (van Rossum et al.
2000; Gütig et al. 2003; Meffin et al. 2006). We showed
that the weight dispersion is stronger for lower density of
recurrent connections; similar results are expected for other
STDP versions. After a sufficiently long learning epoch with
additive STDP, all weights are either saturated or quiescent.
The asymptotic weight distribution is constrained by STDP
through the sums of incoming weights, but it also strongly
depends on the initial weight distribution and can be affected
by higher stochastic orders when the firing-rate equilibrium
is satisfied. For example, because of the autocorrelation of the
neurons (independently of the neuron model), STDP tends
to eliminate synaptic loops of length two in the network,
which introduces asymmetry in the connectivity topology.
It is also possible for an initial unbalanced weight distri-
bution to survive the (partial) homogenization of STDP. In
particular, for two neuron groups with inhomogeneous cou-
pling (in terms of weights) within and between them, stronger
within-group weights in one group do not induce sufficiently
synchronized activity to strengthen the between-group con-
nections to the other group. Such increased synchronization
within one group does not necessarily lead to homogeneous
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weights throughout the whole network. Consequently, the
asymptotic weight structure is not completely constrained
by learning but rather could partially reflect the initial weight
distribution. When individual weights reach the bounds, the
qualitative weight distribution tends to remain preserved. The
results presented here contrast with the stable unimodal dis-
tribution of non-saturated weights observed for some ver-
sions of weight-dependent STDP (van Rossum et al. 2000;
Gütig et al. 2003; Morrison et al. 2007). A more complete
analysis of weight-dependent STDP remains to be carried
out: it is beyond the scope of this article, but will be addressed
in a subsequent companion article in this series.

The conclusions for the fixed point of the neuron firing
rates described above are valid for any neuron model, pro-
vided the correlation structure between the neurons is suffi-
ciently weak: the firing rates are then all constrained to the
same equilibrium value due to the learning equation (10b).
The stability conditions are expected to hold equally well for
other neuron models with excitatory synaptic weights. This
also implies the stabilization of the mean incoming weight,
but their actual equilibrium value depends on the neuronal
activation mechanism. The present analysis of the weight
drift (rate-based learning) is a first step toward the study of
network structure induced by STDP in recurrently connected
neuronal networks (Gilson et al. 2009c).
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Appendix

6 Invertibility of [1N − J(t)]

In Sect. 2.3 and in the previous article (Burkitt et al. 2007),
we required that the matrix [1N − J (t)] is invertible for all
times t since the contrary would imply a divergence of the
firing rates, cf. (10a). Actually, the possibility of diverging
firing rates is related to the properties of our Poisson neuron
model. It can be illustrated with a single neuron with spon-
taneous rate ν0 > 0 connected to itself by a scalar weight J .
In this case, the synaptic input is ν0 + Jν, and the resulting
firing rate ν is determined by

a

to
ta

l s
yn

ap
tic

 in
flu

x

output spiking−rate

linear
b

to
ta

l s
yn

ap
tic

 in
flu

x

output spiking−rate

sigmoidal

Fig. 7 Illustration of the impact of the activation function upon the
weight constraint. This figure compares two Poisson neurons with a a
linear and b a sigmoidal activation function σ . Each neuron is connected
to itself with a scalar weight J . The dashed and the dashed-dotted lines
correspond to different values of the weight J (resp. 1 and 0.3) in (28),
while the solid lines correspond to the activation function. The inter-
section point determines the firing rate self-consistently constrained by
the recurrent loop. For J = 1, the left plot has no solution, whereas the
right plot does have a solution

ν = ν0

1 − J
. (27)

Provided 0 ≤ J < 1, the firing rate is finite and positive.
This constraint on the upper bound of J is relaxed if,

instead of our version of the Poisson neuron model, we intro-
duce an upper bound on the firing rate ν. For example, we
may use a sigmoidal-like function σ such that the firing rate
is defined by the self-consistency relation

ν = σ (ν0 + Jν). (28)

This gives a solution of ν for any value of J ≥ 0, as illustrated
in Fig. 7.

This can be extended to the case of several recurrently
connected neurons, where J is a matrix. When σ is the iden-
tity function, the spectrum of J must then be within the unit
circle. This condition on the spectrum relates to the expan-
sion of (1N − J )−1 in a power series, which is well defined
for eigenvalues whose absolute values are strictly less than
one.

A bounded activation function σ allows us to remove the
upper bounds on the weights. However, the framework of
this article exploits the linearity of the Poisson neuron model
to make the analysis tractable. The qualitative behavior is
expected to be the same for the Poisson neuron model with
nonlinear activation function in terms of equilibria and stabil-
ity, provided the activation function σ is continuous, increas-
ing, and bounded. In this case, (28) always has a unique
bounded solution ν for any given value of J .
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In simulations, an explicit bound on the weights J was
introduced (generally around 0.9 for the sum of incoming
recurrent weights). This ensured that [1N − J (t)] remained
invertible at all times. Consequently, for certain parameter
values, the simulations showed some discrepancies from the
analytical predictions.

7 Equilibrium induced by STDP

This appendix contains a number of derivations whose results
are discussed in Sect. 3.

7.1 Fixed point of the firing rates in the presence
of recurrent loops

We define the function q as in (14)

q(x) = − winx

wout + W̃ x
. (29)

For a synaptic loop of length n, the firing rate νi of any
neuron i within the loop satisfies q{n}(νi ) = νi where q{n}
denotes the nth iteration of the self-composition of q, i.e.,
q{n} := q ◦ . . . ◦ q.

For each n ≥ 0, the function q{n} has a fractional form
ax/(b + cx) (proof by recurrence; a, b, and c depend on
n). Thus, it has two fixed points at most, determined by the
quadratic equation ax − x(b + cx) = 0. Since q has two
fixed points, q{n} has the same two fixed points: 0 and µ :=
−(win + wout)/W̃ .

7.2 Stability of the manifold of fixed points

We study the spectrum of the endomorphism related to the
first-order derivative of the learning equation around a given
fixed point J ∗, defined in (18). In the following analysis, we
fix J ∗ and denote by L the endomorphism that operates on
matrices X ∈ MJ

L(X) = −µ�J

[
win (1N − J ∗)−1

X e eT

+wout e eT XT (
1N − J ∗)−1 T

]
. (30)

Recall that MJ is the space of N×N real matrices X such that
�J (X) = X , i.e., matrices with non-zero elements only for
indices (i, j) corresponding to an existing connection j → i
in the network. The dimension of MJ is equal to the number
of recurrent connections n J . L has at least n J − N eigenma-
trices related to the eigenvalue 0, since any matrix X such
that Xe = 0 implies L(X) = 0.

If the real parts of all eigenvalues in the spectrum of L are
negative (i.e., in left half of the complex plane), then the fixed
point J ∗ is stable. When all the J ∗ have negative real-part
eigenvalues, then the fixed-point manifold M∗ is attractive.

Any J ∗ with one eigenvalue or more in the right half-plane
will be unstable.

7.2.1 Decomposition of L

We now study the N remaining eigenmatrices that do not
correspond to the subspace Xe = 0. The columns of the
matrix (1N − J ∗)−1 are denoted by the N -column vectors
gi for 1 ≤ i ≤ N , namely, gi = (1N − J ∗)−1 xi with xi the
i th N -column vector of the canonical basis of R

N (with all
elements equal to zero except that on the i th row, which is
equal to one). We denote by Ai j the matrices of the canon-
ical basis of MJ with all elements equal to zero except the
element on the i th row and j th column. For each index i , all
the matrices L(Ai j ) are identical, since Ai j e = xi ; thus, we
fix an index ji = j (i) and one matrix Ăi = Ai ji ∈ MJ . For
a given i , the identical images L(Ai j ) can be expressed in
terms of the Ăi ′ with 1 ≤ i ′ ≤ N and a matrix Z(i) ∈ MJ

such that Z(i)e = 0,

L(Ai j ) = L( Ăi )

= −µ�J

[
win gi eT + wout e gT

i

]

= −µ
∑

i ′

{
winxT

i ′ �J

[
gi eT

]
e

+woutxT
i ′ �J

[
e gT

i

]
e
}

Ăi ′ + Z(i). (31)

The matrix Z(i) corresponds to the specific redistribution of
the coefficients of L(Ai j ), where all the elements on each
row i ′ are summed to form the coefficient of the element
Ăi ′ = Ai ′ ji ′ (for a matrix X , the corresponding sum is xT

i ′ Xe).

This redistribution for each L(Ai j ) = L( Ăi ) only depends
on i and not on j . In other words, we reduce the dimension-
ality of MJ and work with classes of equivalent matrices
�J ∈ MJ that induce the first-order drift �̇J 
 L(�J ),
defined modulo the subspace {X ∈ MJ , Xe = 0}.

Therefore, we can express the endomorphism L in the
basis of MJ consisting of the N matrices Ăi , and a linearly
independent family of n J − N matrices X ∈ MJ such that
Xe = 0 to complete the basis

L ∼
(

L r 0
L Z 0

)

, (32)

where we assimilate L with its matrix in the basis defined
above. The (n J − N ) × N matrix L Z is the expression of
the Z(i) of (31) in the subbase of {X ∈ MJ , Xe = 0}. The
N × N matrix L r is given by

(L r)i j = −µ

(

winn J
i (g j )i + wout

∑

i ′→i

(g j )i ′

)

. (33)

The matrix element (L r)i j corresponds to the expression of
L r( Ăi ) in terms of the Ăi ′ in (31); note that i and j in (33)
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correspond to the indices i ′ and i resp. in (31). Note that (g j )i

is the i th element of the vector g j defined above, i.e., the ele-
ment of (1N − J ∗)−1 for indices (i, j). The sum

∑
i ′→i is

a sum over all i ′, such that there exists a connection from
i ′ to i ; n J

i is the number of incoming connections of neu-
ron i . This decomposition allows us to study the non-zero
spectrum of L, which coincides with that of L r according to
(32), excluding the n J − N eigenvalues equal to zero. From
(33), we obtain (19), where R defined in (20) is the diagonal
matrix with i th element equal to n J

i . Note that for the case
of full connectivity except for self-connections, this links to
the analysis by Burkitt et al. (2007).

7.2.2 Homogeneous connectivity topology

The matrix R in (20) can be approximated by n J
av1N in the

case of random connectivity with roughly the same number
n J

av = n J /N of incoming connections per neuron. It fol-
lows that L in 
 −µn J

av (1N − J ∗)−1. The spectrum of J ∗ is
assumed to be in the unit circle at all times (cf. Appendix 6),
which means that the spectrum of (1N − J ∗)−1 lies in the
right half of the complex plane. Since µ > 0, the spectrum of
L in (crosses in Fig. 3a) is in the left half-plane, i.e., its eigen-
values have negative real parts. The spectrum of Lout (circles
in Fig. 3b) contains N − 1 eigenvalues roughly equal to zero
due to the presence of �J [e eT] (it is strictly zero for full
connectivity except for self-connections), and one non-zero
eigenvalue related to the eigenvector e given by

− eT Lout e
N


 −n J
avµ

2

ν0
< 0, (34)

which also lies in left half-plane. We have used the approxi-
mation �J [e eT]e 
 n J

ave.
The discussion about the spectrum L r depending on the

values of win and wout is detailed in Sect. 3.3. For wout > 0
and win > 0, we expect the spectrum to remain in the left
half-plane, contained within the convex hull of the spectra of
L in and Lout expanded by the scale factor win + wout. The
conclusions on the stability are the same for all fixed points
J ∗, and hence they determine whether the whole fixed-point
manifold M∗ is attractive or not. Denser recurrent connec-
tivity also gives larger positive values of n J

av in R 
 n J
av1N

and in (34). This implies stronger stability of the fixed points
J ∗ when the conditions on win and wout are met.

8 Second order of the stochastic evolution of the weights

In this appendix, we provide details of calculations useful to
evaluate the structural evolution of the recurrent weights due
to STDP, which occurs after the fast convergence toward the
homeostatic equilibrium described in Sect. 3. The weight dis-
persion can be related to the second moment of the stochastic

evolution of the weight matrix J , through the multidimen-
sional matrix �(t, t ′) whose elements are defined in (22). We
show how the connectivity is involved in the evaluation of
this matrix, due to the autocorrelation of the neuron activity.

8.1 Analysis of the matrix �(t, t ′)

The trace of this matrix was used to evaluate the linear
increase of the weight variance due to STDP near the begin-
ning of the learning epoch for t = t ′ and zero recurrent delays
di j = 0 (Burkitt et al. 2007). The variance is the expectation
value of the trace of the matrix product involving the deriv-
ative of J ,

Var(J )(t)

=
〈

1

n J − 1

∑

j→i

[
Ji j (t) − Jav(t)

]2

〉

= 1

n J − 1

〈

trace

{ [
J (t) − Jav(t)�J (eeT)

]

[
J (t) − Jav(t)�J (eeT)

]T
}〉

, (35)

where
∑

j→i is the sum over the existing connections. When
the network is at the homeostatic equilibrium, the mean
weight over the network (considered “deterministic”) sat-
isfies Jav(t) = const.; it follows that the growth rate of the
weight variance is given by

dVar(J )

dt
(t) = 2

(n J − 1)t

t∫

0

trace

×
〈

dJ	 (t)

dt

[
dJ	 (t ′)

dt

]T
〉

dt ′, (36)

where dJ	 (t)
dt denotes here the derivative of the weight matrix

J for one stochastic trajectory; it is different from the drift
J̇ (t) (expectation value). Note that before the homeostatic
equilibrium is reached, the variance will evolve both due to
deterministic and stochastic contributions depending on the
initial value of the variance if the weights are not homoge-
neous at the beginning of the learning. The stochastic part
can then be evaluated using �(t, t ′) − J̇ (t) J̇ T(t ′) instead of
�(t, t ′) alone in (36).

The non-diagonal elements of �(t, t ′) can also be related
to the stochastic dispersion of the weights J . The sign of
�i, j,i ′, j (t, t ′) indicates whether the two incoming weights
Ji j and Ji ′ j of neurons i and i ′ evolve in the same direction
(potentiation or depression): when positive, they tend to both
either increase together or decrease together. Sets of weights
for which

∑
�i, j,i ′, j (t, t ′) (synaptic connections involving

indices i �= i ′ and j) are more positive will exhibit a smaller
dispersion. However, these terms do not directly relate to
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the generation of the increasing variance described by (35)
(Burkitt et al. 2007).

8.2 Autocorrelation effects on weight dispersion

We consider now the situation of network evolution at the
equilibrium, i.e., the weight matrix J (t) is on the manifold
of fixed points M∗ at all times without reaching the bounds
and its drift J̇ (t) = 〈 dJ	 (t)

dt 〉 = 0 with ν(t) = µe. We want
to evaluate the impact of the recurrent connectivity on the
evolution of �i, j,i ′, j (t, t ′).

8.2.1 Impact of Jii ′ on �i, j,i ′, j (t, t ′)

Here, we evaluate the effect of the presence of a single recur-
rent connection i ′ → i at the first order of the recurrence, by
naively deriving the spike-triggering effects related to Jii ′ in
�i, j,i ′, j (t, t ′). We use similar calculations to those by Gilson
et al. (2009b, Appendix A) to evaluate the common evolution
of input weights. Applying (6) to express the variation of the
weights Ji j and Ji ′ j for one stochastic trajectory, we obtain

dJ	
i j (t)

dt

dJ	
i ′ j (t

′)
dt

=
[

win S j (t − d) + wout Si (t)

+
∫

W (u)Si (t)S j (t + u − d) du

]

[

win S j (t
′ − d) + wout Si ′(t

′)

+
∫

W (u′)Si ′(t
′)S j (t

′ + u′ − d) du′
]

, (37)

where we assumed that all the recurrent delays are equal to d.
Four terms induced by spike-triggering effects related to Jii ′
arise from (37) and contribute to �i, j,i ′, j (t, t ′) when taking
the ensemble average on (37).

First, (wout)2Si (t)Si ′(t ′) involves Jii ′ through the depen-
dence of Si (t) on the past synaptic input history of Si ′(t),
according to (2), namely, for index j ′ = i ′,

ρi (t) = ν0 +
∑

j ′
Ji j ′

∫

ε(r)S j ′(t − r − d) dr. (38)

This leads to an extra contribution due to the autocorrelation
of Si ′ for j ′ = i ′ and t − r − d = t ′,

Ji j ′ε(t − t ′ − d)
〈
Si ′(t

′)
〉
. (39)

Note that this expression is a priori valid only for t ′ < t ,
but it actually holds in general since ε(t − t ′ − d) = 0 for
t ′ ≥ t . Second, the term [wout Si (t)][

∫
W (u′)Si ′(t ′)S j (t ′ +

u′ − d) du′] gives

wout Jii ′ε(t − t ′ − d)

∫

W (u′)
〈
Si ′(t

′)S j (t
′ + u′ − d)

〉
du′


 wout Jii ′ε(t − t ′ − d)
〈
Si ′(t

′)
〉

∫

W (u′)
〈
S j (t

′ + u′ − d)
〉

du′, (40)

where the spike trains Si ′ and S j are taken to be independent
(we only evaluate the leading order here). Third, the term
[∫ W (u)Si (t)S j (t + u − d) du][wout Si ′(t ′)] gives

wout Jii ′ε(t − t ′ − d)
〈
Si ′(t

′)
〉
∫

W (u)
〈
S j (t + u − d)

〉
, du.

(41)

Fourth and last, the term involving the function W twice, i.e.,
[∫ W (u)Si (t)S j (t + u − d) du][∫ W (u′)Si ′(t ′)S j (t ′ + u′ −
d) du′], gives

Jii ′ε(t − t ′ − d)
〈
Si ′(t

′)
〉
∫ ∫

W (u)W (u′)
〈
S j (t + u − d)

〉 〈
S j (t

′ + u′ − d)
〉

du du′. (42)

Summing the terms in (39), (40), (41), and (42), we obtain
the total contribution to �i, j,i ′, j (t, t ′) due to the single weight
Jii ′ , at the leading order:

Jii ′ε(t − t ′ − d)
〈
Si ′(t

′)
〉

×
[

wout +
∫

W (u)
〈
S j (t + u − d)

〉
du

]2

. (43)

The coefficient of Jii ′ in (43) is positive, which tends to cause
the weights Ji j and Ji ′ j to evolve in the same direction, either
potentiation or depression, cf. Appendix 8.1.

When the network is at the equilibrium, νi (t) = µ for each
neuron i and the time-averaged contribution to the weight
coupling �i, j,i ′, j (t, t ′) due to Jii ′ given in (43) becomes

Jii ′µ
(
wout + W̃µ

)2 = Jii ′µ (win)2, (44)

where we have used the normalization of the PSP kernel
function (

∫
ε = 1) and the definition of µ in (16).

8.2.2 Impact of J ji on �i, j,i ′, j (t, t ′)

Similar to the calculation above, we now evaluate the effect
of J ji on �i, j,i ′, j (t, t ′) using (38) and examine the spike-
triggering effect due to the autocorrelation of Si . We find the
equivalent to (44) for the time-averaged contribution at the
equilibrium,

J jiµ
(
wout + W̃µ

) (
win + W̃µ

)
= J jiµwinwout, (45)

where we have used (16). The sign of the coefficient of J ji can
either be positive or negative here. For example, our choice
of parameters corresponds to win > 0 and wout < 0 (cf.
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Appendix 10), so the contribution in (45) is negative in this
case.

8.2.3 Link to the density of recurrent connections

It follows from this analysis that the stronger the recurrent
connections are in a neuron group, the more its weights
tend to evolve together. Weakly connected sets of weights
are more likely to exhibit individual weights that evolve in
different directions (potentiation vs.depression). For homo-
geneous recurrent connectivity, where each connection has
the probability n J /N (N − 1) of existing (n J is the number
incoming recurrent connections), the lumped effect for the
whole network corresponds to the sum of the terms in (44)
and (45) for the two possible connections i ′ → i and i → j ,
and for all triplets (i, i ′, j) when the connections j → i and
j → i ′ exist:

1

t

∫ ∑

j→i

∑

j→i ′
�i, j,i ′, j (t, t ′) dt ′


 N (N − 1)(N − 2)(n J )3

[N (N − 1)]3 Jav µwin
(
win + wout

)


 −(n J
av)

3 Jav
win

(
win + wout

)2

W̃
, (46)

where we have used the definition of µ in (16) and taken
the limit of a large network (N 	 1 neurons). Recall that
n J

av = n J /N is the mean number of incoming recurrent con-
nections per neuron. Note that the triplets are ordered so that
the triplet (i, i ′, j) accounts for the connections j → i and
j → i ′; the connections i → i ′ and i ′ → j are taken into
account by the triplet (i ′, i, j). The overall effect is positive
provided win and W̃ have opposite signs, which is the case
where the fixed-point manifold M∗ of the weights J is attrac-
tive (cf. Sect. 3.3 and 3.2): win > 0 and W̃ < 0.

The contributions due to the recurrent connections at the
first order of the recurrence are captured by the spike-trigger-
ing effects in (46). Similar to the expansion (1N − J )−1 =
∑

n J n , it is possible to rigorously incorporate higher orders
of autocorrelation induced by these spike-triggering effects.
Since the network contains only positive weights, all of these
effects are positive and they accumulate. The higher-order
terms decay exponentially and consequently do not substan-
tially change the result obtained in (46). This can be illus-
trated for a scalar J such that 1 − J < 1 with a “safety”
margin (J is not too close to 1), where J/(1 − J ) and J are
of the same order.

8.3 Weight evolution for a synaptic loop j → i → j

Now, we evaluate the effect of STDP on a given synaptic
loop of length two between neurons i and j via the evolu-
tion of �i, j, j,i (t, t ′) defined in a similar manner to (22) with

different indices. Similar to (37), we use (6) to express the
relative evolution of the weights Ji j and J ji for one stochastic
trajectory, which relates to

dJ	
i j (t)

dt

dJ	
j i (t ′)
dt

=
[

win S j (t − d) + wout Si (t)

+
∫

W (u)Si (t)S j (t + u − d) du

]

[

win Si (t
′ − d) + wout S j (t

′)

+
∫

W (u′)S j (t
′)Si (t

′ + u′ − d) du′
]

. (47)

We consider the network to be at the homeostatic equilib-
rium to evaluate the effects due to the autocorrelation of the
neurons, νi = µ = −(win + wout)/W̃ for all i , cf. (16). In
this case, the leading order of the terms that arise is negative,
independent of the learning parameters,

2
[
winwoutµ + (win + wout)W̃µ2

]

= −2µ
[
(win)2 + (wout)2 + winwout

]
< 0, (48)

since the polynomial in x of the second order x2 +ax +a2 is
always positive for any value of the coefficient a. Note that
we did not use the Poisson neuron model here.

9 Dependence of the asymptotic weight distribution
on initial conditions

We consider a specific example of evolution of the weights
J with full connectivity except for self-connections, so that
in this case, �J only nullifies the diagonal terms of its matrix
argument. The sums of the outgoing weights for each neu-
ron are given by the elements of the row vector eT J , which
according to (10b) is

eT J̇ = win eT e νT + wout eT ν eT + W̃ eT ν νT

−
(
win + wout

)
νT − W̃ νT diag

(
ν
)
. (49)

We consider initial conditions for which the sums on the
incoming weights are identical for each neuron, but the sums
of the outgoing weights are inhomogeneous: Je ∝ e but eT J
is not proportional to eT. This implies homogeneous firing
rates, i.e., ν ∝ e, since J̇e ∝ e at all times using a similar
equation to that above. Then, eT J̇ reduces to

eT J̇ = (N − 1)νav

(
win + wout + W̃νav

)
eT.

Consequently, the sums of the outgoing weights (i.e., on each
column of the matrix J ) will evolve identically; hence, the
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Table 1 Table of simulation parameters

Time step 10−4 s
Simulation duration 105 s

Poisson neurons
Instantaneous firing rate ν0 = 5 Hz

Synapses
Rise time constant τA = 1 ms
Decay time constant τB = 5 ms
Mean of recurrent delays d = 0.4 ms
Spread of recurrent delays ±0.2 ms
Mean of input delays d̂ = 7 ms
Spread of input delays ±1 ms

STDP
Learning parameter η = 5 × 10−7

Pre-synaptic rate-based coeff. win = 4
Post-synaptic rate-based coeff. wout = –0.5
Potentiation time constant τP = 17 ms
Potentiation scaling coefficient cP = 15
Depression time constant τD = 34 ms
Depression scaling coefficient cD = 10

initial discrepancies will remain after the learning stabilizes,
when νav = µ.

This example illustrates that STDP does not reorganize
the sums of the outgoing weights for each neuron, as it does
for the sums of incoming weights to obtain homogeneous
neuron firing rates. Similarly, for an initial inhomogeneous
vector of firing rates ν, eT J will be modified until ν converges
to µe, which may cause inhomogeneities to develop even if
initially eT J is homogeneous. As a result, the asymptotic
value of eT J is not constrained by STDP and this evolution
does not relate to learning per se. A similar conclusion can
be drawn for the case of partial connectivity.

10 Simulation parameters

The results in this article were obtained using Poisson neu-
rons simulated in discrete-time with the parameters listed in
Table 1, unless stated otherwise. The STDP window function
W is given by

W (u) =
{

cP exp (u/τP ) for u < 0
−cD exp (−u/τD) for u > 0.

(50)

The PSP kernel ε is defined by

ε(t) =
{

exp(t/τB )−exp(t/τA)
τB−τA

for t ≥ 0
0 for t < 0.

(51)

These parameters are in the same range as those used in pre-
vious studies (Kempter et al. 1999; Burkitt et al. 2007).
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