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Abstract Insects can remember and return to a place of
interest using the surrounding visual cues. In previous exper-
iments, we showed that crickets could home to an invisible
cool spot in a hot environment. They did so most effectively
with a natural scene surround, though they were also able
to home with distinct landmarks or blank walls. Homing
was not successful, however, when visual cues were removed
through a dark control. Here, we compare six different mod-
els of visual homing using the same visual environments.
Only models deemed biologically plausible for use by insects
were implemented. The average landmark vector model and
first order differential optic flow are unable to home bet-
ter than chance in at least one of the visual environments.
Second order differential optic flow and GradDescent on
image differences can home better than chance in all visual
environments, and best in the natural scene environment, but
do not quantitatively match the distributions of the cricket
data. Two models—centre of mass average landmark vec-
tor and RunDown on image differences—could produce the
same pattern of results as observed for crickets. Both the
models performed best using simple binary images and were
robust to changes in resolution and image smoothing.

Keywords Insect learning · Visual navigation ·
Place memory · Cricket · Homing models

1 Introduction

The ability of insects to return to a location of interest such as
a feeder or nest using visual cues has been well documented
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in natural settings (Wehner 2003; Collett and Collett 2002).
In addition, it has been shown that cockroaches (Mizunami
et al. 1998) and crickets (Wessnitzer et al. 2008) can learn
to return to a target location in experiments analogous to the
Morris water-maze used to assess place memory in mammals
(Morris et al. 1982). Insects were placed in a hostile environ-
ment (a hotplate maintained above 40◦C) from which they
would seek an escape. An invisible cool spot maintained at
a moderate temperature represented the only refuge. Over
successive trials, the time taken by the insects to relocate the
cool spot decreased significantly. Removal of all visual cues
(trials performed in the dark) resulted in no improvement in
relocation times, and the search was affected by rotation of
the visual surroundings.

Many visual homing models have been proposed as pos-
sible strategies employed by insects. These can be broadly
split into two classes: feature-based models and view-based
models. Feature-based models, for example the snapshot
model (Cartwright and Collett 1983), extract features from
the visual surround such as angular size and bearing of prom-
inent landmarks. Comparison of the features extracted at
the home location with the corresponding features extracted
from an image taken at a displaced location allows a hom-
ing vector to be calculated. View-based models, by contrast,
use comparison of the raw images as seen from the home
and the displaced location. For example, Zeil et al. (2003)
show that the pixelwise root mean square (RMS) difference
between a panoramic reference image and image viewed
from a displaced location increases monotonically with dis-
tance. Homing can then be achieved through some form of
gradient descent where either agent movements allow the
home direction to be inferred (Zeil et al. 2003) or where sim-
ulated agent movements allow a home vector to be estimated
(Franz et al. 1998; Binding and Labrosse 2006; Möller and
Vardy 2006; Möller et al. 2007).
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Fig. 1 Box plots showing times taken to locate the cool spot for crickets
across trials 7–10 (i.e. after learning) in the different visual surroundings
(n = 12). Boxes show lines at the lower quartile, median, and upper quar-
tile values. Whiskers indicate the most extreme values within 1.5 times
the interquartile range from the ends of the box. Outliers are shown as
+ signs. Testing within the natural scene (NS) produces fastest homing
times, followed by blank walls (BW), distinct landmarks (DL) and the
dark control (DC), respectively

If insects are indeed using a feature-based technique to
return to locations of importance, then it might be expected
that performance would be best when distinct landmarks,
easily segmented from the background, are presented. In
contrast, a view-based algorithm will perform more success-
fully when a complex scene is presented, as it uses infor-
mation from each pixel directly. In the hotplate experiments
described above (Wessnitzer et al. 2008), crickets were tested
with both distinct landmarks and a natural scene stimulus.
Learning was observed in both cases, but the natural scene
elicited greater improvement in homing times and more con-
sistent learning. Figure 1 shows box plots of time taken to
locate the cool spot by crickets during the final four out of
ten learning trials, when their homing times had stabilised.
It is clear that crickets locate the cool spot fastest in the
Natural Scene surround followed by Blank Walls, Distinct
Landmarks and then the Dark Control. Statistical compari-
sons (Table 1) show that the Natural Scene surround elicits
significantly better results than all other paradigms, and per-
formance in the dark is significantly worse than any visual
condition.

Surprisingly, results in the Blank Walls and Distinct Land-
mark surrounds are not significantly different, but it should
be mentioned, as noted in Wessnitzer et al. (2008) and below,
that the Blank Walls environment did not eliminate all pos-
sible visual cues, as a combination of shadows in the canopy
and light gradients across the arena wall remained. It may
also be noted that as the Natural Scene was provided by a
poster wrapped around the arena wall, no natural depth infor-
mation is provided. Observations from other insects would
suggest that homing might be even better with a truly 3D

Table 1 P values calculated using Wilcoxon rank-sum test when com-
paring homing times across trials 7–10 within the four experimental
paradigms

NS BW DL DC

NS X <0.01 <0.01 <0.01

BW <0.01 X 0.54 <0.01

DL <0.01 0.54 X <0.01

DC <0.01 <0.01 <0.01 X

environment. However, the poster offers a much more natu-
ral stimulus than the classic landmarks as it contains many
spatial frequencies, contrasts and contours.

In this study, we implement six biologically plausible
models of visual homing, including both view-based and fea-
ture-based model types, and test them using the visual envi-
ronments that were presented to the crickets in Wessnitzer et
al. (2008). A direct comparison can then be made between
the homing path lengths recorded using the competing visual
homing models and the homing times of crickets under vary-
ing visual conditions. The models will thus be assessed on
their ability to reproduce the pattern of performance shown
in Fig. 1 and Table 1.

2 General methods

2.1 Image databases

Three image databases were collected from within the cricket
experimental arena (height 25.5 cm, diameter 40 cm) on a
2 cm×2 cm grid using a Khepera II mobile robot mounted
with a custom built wireless panoramic camera turret (see
Fig. 2). Images were collected with the arena configured as
for the cricket trials giving three sets of 208 images: Distinct
Landmarks, Blank Walls and Natural Scene. All images were
captured with the camera in the same orientation (see Sect. 4).
Similar image databases have been used to model the hom-
ing behaviour of rats in a rectangular arena (Stürzl et al.
2008). It is worth noting that the BW database images are
not uniform, as might be expected. Instead, imbalances in
the arena lighting cause a clear intensity gradient to form on
the arena walls culminating in a bright region (not visible
the naked eye) located NNW of the cool spot position. This
seems to have been sufficient for homing in the cricket and,
as we shall demonstrate, also suffices for homing in some of
the tested models.

2.2 Homing process

Visual homing models, as described in the literature, fre-
quently differ not only in how the home vector is determined
but also in how it is used to generate motion. Here, we tried
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Fig. 2 a Khepera II robot base with custom wireless panoramic camera
turret used to record the image database. b Cricket arena diagram show-
ing 2 cm×2 cm grid where images were taken. The cool spot perimeter
is shown by the inner circle and the home location used in the model-
ling study is located at grid location (16,12). c–e Sample images from

the DL, BW and natural scene image-sets, respectively, at the home
location. Below is shown the images’ unwrapped at 1◦ resolution to the
maximum image size of ±20◦ around the horizon prior to smoothing,
and also the same sample images post smoothing

Fig. 3 System overview: all processing steps are kept consistent except
the method used to determine the homing direction

to maintain consistency across the implementations so that
only the relative efficacy of each model’s method of deter-
mining the home direction will contribute to the results. A
block diagram of the homing process for one time step is
shown in Fig. 3.

Visual input is received from the image database in the
form of an unprocessed image (Fig. 2c–e) as would be sup-
plied by a robot positioned at the corresponding grid position.
The Cricket Eye Model then unwraps and unwarps a ring
corresponding to 20◦ above and below the image horizon.
Note that as the camera turret is mounted above the robot
base unit and with the mirror located above the camera to
prevent image interference from cables, the image horizon

is approximately 10 cm above the arena floor. Images are
initially unwrapped at 1◦ resolution in both azimuth and ele-
vation. We were not able to find a precise estimate for the
visual acuity of the ventral areas of the cricket species Gryllus
bimaculatus eye, but interommatidial angles of 1◦ have been
observed in the dorsal rim area (Labhart et al. 2001). Note
that the models are also tested with lower resolutions (see
Sect. 2.4). Images are then blurred using a first order But-
terworth filter where the cut-off frequency is defined using
the acceptance angle of 6◦ as observed in Gryllus campestris
(Labhart et al. 1984). The Cricket Eye Model images sampled
at the home locations within each of the test environments
are shown in Fig. 2 under the corresponding original images.

Grid position 16,12 was chosen as the home location and
images taken at this location in the various environments act
as the reference images during homing. The specific homing
model under test is then used to calculate the home vector
at the current location. The Motor Output then selects the
cardinal direction most closely matching the home vector
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and updates the agent position to the nearest grid location in
the defined direction. As described below, different levels of
noise can be added to the home vector direction after it has
been calculated and before the movement is determined. A
similar motor output routine has been used to simulate the
paths of homing rats in a virtual image database (Cheung et al.
2008). Note, however, that the RunDown model (Sect. 3.4.2)
is an exception as it does not calculate an explicit home vec-
tor but instead moves first and then evaluates, on the basis
of image difference, whether to continue in the same direc-
tion or randomly try a new direction. If the agent attempts to
move to a location outwith the image-database (equivalent
to the cricket encountering the arena wall), then the agent is
forced to move to the closest available location to the right.
This procedure keeps the agent within the image-database
and simulates a simple wall following response when the
wall is encountered.

The process described above iterates until either the home
location is found or the path length exceeds 300 steps. This
stop condition was selected as cricket trials were ended after
300 s if the cool spot had not been located. The ability of the
homing models to replicate the cricket behaviour is assessed
by recording the homing path lengths produced within each
of the three environments. We then compare directly the path
lengths produced by each model with the homing times of
crickets in the same environments. Homing trials are initiated
from the same 48 positions (and where appropriate, orienta-
tions) from which cricket trials were initiated. It should be
noted that as cricket start locations were chosen at random in
the behavioural study, this leads to somewhat different start
positions and orientations within each environment. The start
locations and orientations used within each environment are
shown in Fig. 4. We also calculate the home vector from
every grid position so as to visualise the overall effectiveness
of the homing method. Home vector plots are shown with the
average angular error (AAE) which is calculated by taking
the mean error between home vector calculated at each loca-
tion and the known ideal home vector and provides a simple
measure of model accuracy.

2.3 Control trials

In the original experiments, a completely dark arena acted
as the control. This would produce a uniformly black image
set, making any visual homing process ineffective. To gen-
erate comparable control data for the simulation, we gener-
ated random search paths from the same 48 start positions
as crickets tested in the Dark Control (see Fig. 4). At each
time step, the agent moves randomly in one of the four possi-
ble directions with equal probability, until either the home is
encountered or the path length exceeds 300 steps. This pro-
cess produces path lengths with comparable median (289)
and upper and lower quartiles (300 and 125) as the observed

path durations of crickets in the dark (median 258, quartiles
300 and 79).

2.4 Parameter tuning

In their original forms, the different visual homing models
implemented in this study utilise various further pre-process-
ing steps such as image smoothing, or using only a certain
area of the image, to improve performance. Rather than mak-
ing any assumptions about such image processing in crick-
ets, which might bias the results towards one or other homing
model, we instead use an optimisation procedure to tune the
pre-processing parameters individually for each model. That
is, optimisation is done by exhaustively searching through
all possible parameter combinations and determining which
parameters (if any) produce the same performance trend
across the different visual environments as we observed for
the crickets. Parameters are optimised according to two suc-
cessive criteria:

1. Median path lengths in all visual environments must sta-
tistically outperform the Dark Control.

2. Median path lengths in the Natural Scene environment
must statistically outperform homing within both the
Distinct Landmarks and Blank Walls environments.

Statistical comparison of the homing performance is per-
formed using the Wilcoxon rank-sum test. For each model,
the outcome from the parameter setting that produces the
closest match of medians and interquartile differences to the
cricket data will be presented in the results, and the pattern
of parameter settings that pass or fail the criteria discussed.

This search through parameter space also allows us to
compare the relative robustness of the different models. The
free parameters optimised by the models are:

Image smoothing: In many studies, visual homing is
performed on images that have been highly low-pass fil-
tered; a processing step easily performed in neural hard-
ware. Vardy (2005) outlines a Gaussian low-pass filtering
scheme where images are convolved with the kernel:

G=[ 0.005 0.061 0.242 0.383 0.242 0.061 0.005 ] (1)

in the x and then the y direction. It is shown that suc-
cessive applications of this filter is comparable to con-
volving with a single larger Gaussian. Thus, smoothing
the cricket eye images using Gaussians of various sizes
is achieved by optimising for 0, 1, 3 or 5 applications of
this Gaussian Filter.

Down-sampling rate: As the cricket eye model unwraps the
raw image at a resolution of 1◦, down-sampling can be
thought of as resetting the visual acuity to 1◦, 2◦ or 4◦.
This is achieved by sampling every 1, 2 or 4 pixels both
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Fig. 4 Cricket start locations and orientations in the final four trials are
approximated giving the 48 image database start positions and orienta-
tions shown for each test environment. These start-positions, and where

appropriate orientations, are used in all subsequent model testing. a DC
start locations, b DL start locations, c BW start locations and d natural
scene start locations

horizontally and vertically from those images supplied
by the cricket eye model. It is worth noting that these
values are closely matched to the visual acuity of the
cricket Gryllus campestris (1◦), the honeybee Apis me-
liphora (1.7◦) and desert ant Cataglyphis bicolor (4◦)
(Land 1997). Although, it should also be noted that the
acceptance angle of the honeybee and ant eye are 2.6◦
and 3◦ degrees, respectively, compared with the cricket
eye acceptance angle of 6◦ which would result in less
initial smoothing.

Image area used: Each model also optimises for the portion
of the input image used to calculate the home vector. The
input image from the cricket eye model consists of ±20◦
of elevation around the horizon sampled at 1◦ azimuth
giving a maximum image size of 360×41 pixels. Each
model then selects whether to use:

1. 10◦ above the horizon.
2. 10◦ below the horizon.
3. Horizon pixels only.
4. ±5◦ around the horizon.

5. ±10◦ around the horizon.
6. ±20◦ around the horizon.

Note the optic flow models cannot use the horizon pixels
only as this does not allow vertical image gradients to be
calculated.

Addition of noise to home vectors: The addition of noise to
the homing signal aids certain models that otherwise
become trapped in deterministic loops in the grid leading
to high failure rates despite good general approximation
of the home direction. At each homing iteration, noise is
generated through the addition of an offset to the derived
home vector. The offset is randomly selected from a cir-
cular normal distribution with a mean of zero and variable
standard deviation. Models optimise for the noise stan-
dard deviation (noise SD) which ranges from 0 (no noise)
to 90◦ in increments of 10◦. The maximum noise SD set-
ting of 90◦ results in a 62% chance that the additional
noise corrupts the home vector by more than 90◦, result-
ing in movement in a random orientation with respect to
the generated home vector.
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Image type: Some models can operate with black and white,
rather than greyscale, images. For the COMALV and
gradient descent methods we optimise for either image
type, where black and white images are generated by
thresholding the output of the cricket eye model at the
median greyscale value. The ALV model inherently con-
verts images to black and white to define landmarks, and,
thus, only optimises for greyscale images. The differ-
ential optic flow models can only operate on greyscale
images.

3 Models of visual homing

As the explicit aim of this study is to investigate the
strategies employed by crickets when returning to the
cool spot, only visual homing models that can be consid-
ered ‘biologically plausible’ are implemented. The criteria
for the selection of such models were outlined by Vardy
(2005):

1. As the insect brain has limited neural capacity, models
must not be so computationally complex that no con-
vincing argument can be made for their implementation
in the neural hardware of an insect.

2. As the retinotopic mapping is maintained through-
out sensory pathways from the insect eye through the
optic lobes, then all calculations required by the model
must be theoretically possible using local retinotopic
calculations rather than global searches in the image
space.

Applying the above criteria, the following six models were
selected for use in this study:

1. Average landmark vector model.
2. Centre-of-mass average landmark vector model.
3. Differential optic flow models:

(a) First order
(b) Second order

4. Gradient descent models using:

(a) GradDescent
(b) RunDown.

It should be noted that the average landmark vector (ALV)
model is the only feature-based model to adhere to the biolog-
ical plausibility constraints. All the other models are view-
based. For each model, we present a brief outline of how
it works, the results for the optimised model after parameter
tuning and discussion of why the homing behaviour succeeds
or fails in the different environments.

+
C

+
H

Fig. 5 The ALV is calculated at the home location H and also at the
current location C. Through a simple vector subtraction, the home vec-
tor is calculated

3.1 Average landmark vector model

The ALV model is a derivative of the classic snapshot model
(Cartwright and Collett 1983) offering an extremely parsimo-
nious system which also bypasses the correspondence prob-
lem (Lambrinos et al. 2000). At the home location (H) the
home image is reduced to a 1D vector (see below for details).
Vertical edges in the 1D image are then identified, and a unit
vector drawn towards each edge (Fig. 5). Taking the mean of
the vectors across the entire image provides the home loca-
tion average landmark vector (ALVH). When the agent is
moved to a distant location (C), the current average land-
mark vector (ALVC) is calculated in the same manner. The
home vector can then be calculated through a simple vector
subtraction (h = ALVC − ALVH).

The ALV model has been shown to home successfully
in simulated environments consisting of Prominent land-
marks within an infinite horizon background (Lambrinos et
al. 2000). Homing has also been successfully achieved on a
mobile robot in a desert habitat with black cylinders provided
as landmarks and in a university lobby (Möller et al. 2001).

Simple edge detection techniques such as those employed
by Lambrinos et al. (2000) are found inadequate for homing
within the cricket surrounds, specifically within the Natural
Scene. Therefore, the edge detection procedure implemented
by Möller et al. (2001) to achieve successful homing in the
university lobby is adopted. First, the home image is col-
umn averaged producing a 1D greyscale image. Regions of
this 1D home image showing consistent intensity levels are
identified as stable points in the image, and their intensity
values are recorded. The mid-point between the largest dif-
ference in stable points is then defined as the threshold value.
Any points where the image intensity crosses this threshold
are considered edges and are associated with a unit vector.
Selection of the threshold value in this manner is intended to
offer robustness to light and contrast variance. The threshold
calculated at the home location is then used throughout when
defining all subsequent edges at displaced locations.
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Fig. 6 a ALV model path lengths within the three image databases
and control condition. Optimal parameter settings: downsampling rate
= 1, number of Gaussians = 1, image region used = horizon pixels only
and noise SD = 10◦ using greyscale images. b–d Home vectors gener-

ated using the optimal parameter settings in the DL (AAE = 12◦), BW
(AAE = 58◦) and natural scene (AAE = 93◦) surrounds, respectively.
Note that the single bar at 300 for the natural scene results indicates that
all homing trials save outliers reached the stop condition

Table 2 P values calculated for comparisons between path lengths in
the various image databases using the ALV model

DC DL BW NS

DC X <0.01 0.12 <0.01

DL <0.01 X <0.01 <0.01

BW 0.12 <0.01 X <0.01

NS <0.01 <0.01 <0.01 X

Note the significant difference of NS and control is in the wrong direc-
tion (NS worse than control)

Figure 6 shows the homing path lengths produced by
the ALV model in the various image databases, and the
home vectors generated in each environment. Table 2 shows
the P values of the statistical comparisons of homing
paths.

It is clear that the ALV model does not reproduce the
same performance trend as observed in crickets. Indeed no
parameter setting produced shorter path lengths in all visual
environments when compared to the control, the first perfor-
mance criterion. This failure is caused by inaccurate home

Table 3 Comparison of the number of edges identified in the home
image compared to the mean and standard deviation found at all subse-
quent image positions in each environment

Home edges µ Edges σ

DL 6 5.9320 0.8897

BW 2 1.9612 0.3922

NS 4 4.4951 1.8401

vector generation within the Natural Scene due to the diffi-
culty in consistently defining edges within such an environ-
ment. The slightly improved path lengths produced within
Blank Walls are attributable to the background intensity gra-
dient outlined previously which the ALV model defines as a
single landmark that is generally detected across arena posi-
tions allowing somewhat accurate home vector generation.
In contrast, within the Distinct Landmarks surround, where
edges are easily identified, home vectors are accurate from
most regions of the arena, resulting in short path lengths.
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Fig. 7 a COMALV model path lengths within the three image dat-
abases and control condition. Optimal parameter settings: downsam-
pling rate = 2, number of Gaussians = 0, image region used = ±20◦
around the horizon, noise SD = 80◦, using black and white images.

b–d Home vectors generated using the optimal parameter settings in
the DL (AAE = 38◦), BW (AAE = 32◦) and natural scene (AAE = 14◦)
surrounds, respectively

Table 3 shows the mean number of edges detected across
image positions within each of the image databases compared
with the number of edges found in the home image of those
image-sets. Within the Natural Scene the high degree of var-
iance in detected edges catastrophically affects correct home
vector calculation. Despite a higher degree of edge detection
accuracy within Blank Walls, the small number of detect-
able edges also results in inaccurate home vector calculation
when edges are incorrectly defined. Furthermore, the reduced
intensity range within Blank Walls images renders the model
susceptible to noise and makes accurate ALV computation
difficult resulting in a high AAE. In contrast, within Dis-
tinct Landmarks six edges are detected in the home image.
The larger number of distinguished edges in this environ-
ment increases the robustness of the ALV when edges are
incorrectly identified, or missed, resulting in the improved
performance displayed. It may be possible to improve the
performance of the ALV model in the Natural Scene using a
more sophisticated feature extraction algorithm. However,
as homing is close to optimal within the Distinct Land-
marks it seems unlikely that any such enhancement would

produce statistically superior homing in the Natural Scene
surround, as is observed in crickets. We thus dismiss the
ALV model as a strategy used by the crickets to relocate the
cool spot.

3.2 Centre-of-mass average landmark vector model

The centre-of-mass average landmark vector (COMALV)
model (Hafner 2001) as its name suggests is conceptually
similar to the ALV model. Vectors are again derived at
both the home and current locations and the home vector
through vector subtraction. However, rather than using iden-
tified edges to calculate these vectors, the COMALV model
stores the vector projecting to the ‘centre of mass’ in each
image:

COMALV =
∑ (

I (θ)

(
cos(θ)

sin(θ)

))
(2)

where I (θ) is the image intensity value at the bearing indi-
cated by θ in the 1D input image.
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Table 4 P values calculated for comparisons between path lengths in
the various image databases using the COMALV model

DC DL BW NS

DC X <0.01 <0.01 <0.01

DL <0.01 X 0.28 <0.01

BW <0.01 0.28 X 0.01

NS <0.01 <0.01 0.01 X

The COMALV model was originally derived through the
use of a learning procedure on an artificial neural network, but
in this study, we directly implemented the above equations.
The COMALV model has performed successfully in homing
trials in simulation and also on a mobile robot within an office
environment. Furthermore, it is computationally cheap and
bypasses both correspondence and feature extraction issues.
The model, however, failed to home successfully in vari-
ous image databases without retuning of parameters (Vardy
2005). Nevertheless, as Vardy’s image database consisted of
an office environment where the homing capability of insects
is unknown, the COMALV is included in this study.

Figure 7 shows the homing path lengths produced by the
COMALV model in the various image databases, and the
home vectors generated in each environment. Table 4 shows
the P values of the statistical comparisons of homing paths.

Parameter optimisation of the COMALV model found 80
parameter combinations that pass both performance criteria.
These settings include every possible smoothing and acuity
variant at least once indicating a robustness to these pre-pro-
cessing procedures. In contrast, the only successful image
region is ±20◦ around the horizon, and the image type is
restricted to black and white images. All parameter settings
require some level of noise for successful homing.

The selection of only the maximum image region
setting is due to the interaction of the landmarks and the
background intensity gradient within the Distinct Land-
marks surround. COMALVs obtained within both Blank
Walls and Natural Scene generally orient towards an attrac-
tor in the environment when sampled across image locations.
For example, within Blank Walls, COMALVs are oriented
towards the peak of the background intensity gradient out-
lined previously. An attractor is necessary such that when the
home COMALV is subtracted from the current COMALV, an
appropriate angular offset is present resulting in correct home
vector computation. However, within Distinct Landmarks,
for smaller image region settings, no such attractor exists as
the T-shaped landmark and background intensity peak coin-
cide. This flattens the intensity gradient and removes the
presence of a prominent COMALV. However, when ±20◦
images are presented, the proportion of blank arena wall to
landmarks is increased, introducing a prominent attractor to

which COMALVs orient and resulting in the improved hom-
ing observed.

It was found that the use of greyscale images had a cata-
strophic effect in the Blank Walls environment. This failure
is caused by a subset of home vectors located near the home
location, which are inverted with respect to the true home
direction across many parameter settings. Thus, agents hom-
ing from certain arena areas would be deflected from the
home location. The incorrect home vector direction was a
result of the magnitude of the current COMALVs at these
locations exceeding that of home COMALV; often only by
a small amount but this is sufficient to produce a small but
incorrectly oriented home vector. This problem is partially
circumvented when sufficient noise is added such that agents
near the home would sometimes reach it instead of being
deflected. However, the addition of such high noise levels
degraded performance in the Distinct Landmarks surround
to chance levels. No parameter combination using greyscale
images could be found where path lengths within both Dis-
tinct Landmarks and Blank Walls are statistically superior to
the control.

The impact of these anomalous home vectors within the
Blank Walls surround is probably magnified by the use of an
image-database rather than a fully autonomous robot study
where images would be generated repeatedly across trials.
There also exist a number of simple modifications to the
COMALV model that may help overcome such deficiencies
such as defining a minimum threshold between magnitudes
that should be reached before home vectors are computed,
weighing trust in home vector relative to magnitude, image
normalisation prior to COMALV calculation or the use of
a momentum component that would push agents past erro-
neous home vectors. However, none of these model exten-
sions were implemented in this study, given that the use of
black and white images was sufficient to produce cricket-like
results.

3.3 Differential optic flow models

Building upon the finding that successful block-matching
models of visual homing are dependent upon low frequency
rather than high frequency components of images, Vardy and
Möller (2005) derived two equivalent models based on clas-
sic differential optic flow techniques. The differential models
perform only local searches for image correspondences and,
therefore, fulfil biological plausibility constraints failed by
block-matching methods.

The first order (FO) model rests on the assumption that
pixel intensities are maintained across images such that:

H(x, y) = C(x + u, y + v) (3)

where, H is the intensity of the pixel at image position (x, y)

in the home image and C is the intensity of the same pixel
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at its new location in the current image given by summing
the previous pixel location with the translation vector (u, v)

caused by the agent movement.
The second order (SO) model assumes that intensity gradi-

ents rather than pixel intensities are maintained across images
such that:

Hx (x, y) = Cx (x + u, y + v) (4)

Hy(x, y) = Cy(x + u, y + v) (5)

where, Hx and Hy are the partial derivatives of the pixel
intensity at image position (x, y) in the home image and Cx

and Cy are the partial derivatives of the intensity of the same
pixel at its new location in the current image given by sum-
ming the previous pixel location with the translation vector
(u, v) caused by the agent movement.

Differential models seek to calculate the translation vector
(u, v) of each pixel by calculating the intensity gradients (FO
model), or the second derivative of the intensity gradient (SO
model), surrounding the pixel in question. This allows the
translation vector orientation to be calculated locally, which
is then converted into a home vector through an approxi-
mate vector mapping technique. That is, knowledge of the
robot hardware allows the translation vector existing in image
space to be transformed into a home vector in robot space.
As differential models derive home vectors at all pixels in
the image, the overall home vector is computed by taking the
mean of all home vectors across pixel locations.

Differential methods have classically been applied to optic
flow problems where pixel translation is small between suc-
cessive images and therefore intensity gradients are robust
ensuring good translation vector calculation. The success of
these models in homing tasks therefore is somewhat counter-
intuitive as the scale of agent translation between image
captures causes large pixel translations between home and
current image. Such image shifts are shown to have cata-
strophic effects on correct translation vector accuracy. How-
ever, it was demonstrated that incorrect home vectors are
uncorrelated and, therefore, when averaged they generally
cancel each other out. Moreover, in the focus of expansion
and contraction in the image, pixel movement remains small
such that the small image translation assumption is valid.
This allows correct home vectors to be calculated at pixel
locations within these regions. These correct and correlated
home vectors dominate when averaged across pixel locations
(known as the democracy effect) producing accurate overall
home vectors despite the large image translations.

Although the procedure outlined above may sound com-
putationally complex, differential optic flow models remain
biologically plausible. The majority of the model calcula-
tions are local and are ideally suited to parallel computation
as could be performed retinotopically by insects. The differ-
ential visual homing models have been shown to home suc-

cessfully within a number of indoor image databases such as
an office environment and a university hall-way (Vardy and
Möller 2005).

3.3.1 First order differential model

Figure 8 shows the homing path lengths produced by the FO
model in the various image databases, and the home vectors
generated in each environment. Table 5 shows the P values
of the statistical comparisons of homing paths.

Parameter optimisation of the FO model found no param-
eter settings that passed the first performance criterion where
improved path lengths are sought in all visual environments
when compared with the control. Despite performing excel-
lently within both Natural Scene and Distinct Landmarks,
the FO model fails to generate accurate home vectors within
Blank Walls, where it never outperforms the control. This is
because the lack of significant intensity variations within the
Blank Walls environment does not allow a sufficient number
of correct pixelwise home vectors to be calculated such that
when pixelwise home vectors are averaged, the correct home
vector prevails.

The failure of the FO model to successfully outperform
the control when homing within the Blank Walls surround
contrasts with the observed behaviour of the cricket, and we,
therefore, dismiss the FO model as a candidate visual homing
technique used by crickets.

3.3.2 Second order differential model

Figure 9 shows the homing path lengths produced by the SO
model in the various image databases, and the home vectors
generated in each environment. Table 6 shows the P values
of the statistical comparisons of homing paths.

Parameter tuning of the SO model found five parameter
settings that passed both performance criteria. These com-
prise two distinct settings buoyed by the addition of large
noise terms. The first setting applies one Gaussian filter, to
maximally sampled ±20◦ images with noise SD = 70◦, 80◦
and 90◦. The second setting applies no smoothing to ±20◦
images downsampled at 2◦ with noise SD = 70◦ and 80◦.
The SO model was tuned for only greyscale image type as
explained in the methods.

As with the FO model, homing within Blank Walls rarely
outperforms the control when using the SO model. This is
again due to the absence of robust intensity gradients required
by differential optic flow models to accurately compute home
vectors. The increased accuracy of the home vectors gener-
ated by the SO model within Blank Walls may have been
expected as some image gradients are likely to be maintained
even where individual pixel intensities are not. The use
of minimal levels of downsampling and image smoothing
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Fig. 8 a FO model path lengths within the three image databases and
control condition. Optimal parameter settings: downsampling rate = 2,
number of Gaussians = 1, image region used = ±10◦ around the hori-
zon and noise SD = 90◦ using greyscale images. b–d Home vectors

generated using the optimal parameter settings in the DL (AAE = 20◦),
BW (AAE = 66◦) and natural scene (AAE = 15◦) surrounds, respec-
tively

Table 5 P values calculated for comparisons between path lengths in
the various image databases using the FO model

DC DL BW NS

DC X <0.01 <0.01 <0.01

DL <0.01 X <0.01 <0.01

BW <0.01 <0.01 X <0.01

NS <0.01 <0.01 <0.01 X

Note the significant difference of BW and control is in the wrong direc-
tion (BW worse than control)

increases the robustness of such gradients where they exist.
Moreover, the use of the largest image region increases the
influence of correct and correlated home vectors where they
can be generated. However, despite this improvement, the
resultant path lengths still fail to outperform the control with-
out the addition of a substantial noise term.

3.4 Gradient descent models

Gradient descent models of visual homing have their roots in
the finding that the pixelwise intensity difference between

aligned images taken from different locations tends to
increase smoothly and monotonically with distance (Zeil
et al. 2003). Plotting the difference between images across
locations, therefore, reveals a sloped surface where the min-
imum corresponds to the home location. Figure 10 shows
the image difference functions (IDF) calculated within the
various image databases using the image difference metrics
further detailed below.

By sampling the image difference at a number of loca-
tions in the environment (by either simulated or actual agent
movement), simple gradient descent algorithms can utilise
the difference slope to return to the home. Gradient descent
models have been shown capable of homing in natural out-
door scenes (Zeil et al. 2003), in indoor environments using
image databases (Zampoglou et al. 2006; Vardy 2005), and
also on a mobile robot in a laboratory environment (Zam-
poglou et al. 2006). Furthermore gradient descent models are
computationally cheap, and ideally suited to parallel compu-
tation as is expected in a retinotopic structure.

Previous gradient descent models generally make use of
only greyscale images and both the pixelwise root-mean-
squared (RMS; Zeil et al. 2003) and sum-squared difference
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Fig. 9 a SO model path lengths within the three image databases and
control condition. Optimal parameter settings: downsampling rate = 1,
number of Gaussians = 1 and image region used = ±20◦ around the
horizon and noise SD = 80◦ using greyscale images. b–d Home vec-

tors generated using the optimal parameter settings in the DL (AAE
= 46◦), BW (AAE = 53◦) and natural scene (AAE = 30◦) surrounds,
respectively

Table 6 P values calculated for comparisons between path lengths in
the various image databases using the SO model

DC DL BW NS

DC X <0.01 0.01 <0.01

DL <0.01 X <0.01 <0.01

BW 0.01 <0.01 X <0.01

NS <0.01 <0.01 <0.01 X

(SSD; Vardy 2005) differences have been implemented as
difference metrics. In this study, the difference metric shall
be the pixelwise RMS for use when both greyscale and black
and white images are presented. It should be noted that use
of the SSD metric was investigated but changing the image
difference metric had no effect on the resultant path lengths.

3.4.1 GradDescent homing method

Vardy (2005) outlined the GradDescent method of homing
which samples image differences at multiple locations such

that an explicit home vector can be derived. Thus, homing
can proceed as in the case of other models implemented
in this work. GradDescent samples image differences in all
the four cardinal directions surrounding the present location.
Comparison of the values in the cardinal directions with that at
the central point allows a difference vector to be drawn in each
direction. Taking the mean of the difference vectors indicates
the orientation producing the largest increase in image differ-
ence, and thus thehomedirectioncorresponds to its inverse. In
the implementation of GradDescent in this study, when loca-
tions outside of the current image database are to be sampled,
the difference values are set to the maximum possible value
such that the agent moves away from the wall.

Figure 11 shows the homing path lengths produced by
the GradDescent algorithm in the various image-sets and the
home vectors generated in each environment. Table 7 shows
the P values of the statistical comparisons of homing paths.

Parameter tuning of the GradDescent method found six
parameter settings that passed both performance criteria. The
image region used is limited to ±20◦ around the horizon,
and the downsampling rate to 2 or 4. However, the model
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Fig. 10 RMS image difference functions within the three image data-
bases. Note that the parameter settings are constant for both image types
used: Number of Gaussians = 0, downsampling rate = 1, image regions
= ±20◦ around the horizon. a–c IDFs generated using greyscale images

in the DL, BW and natural scene surrounds respectively. d–f IDFs gen-
erated using black and white images in the DL, BW and natural scene
surrounds respectively

seems robust to smoothing with all settings except no smooth-
ing being used. The image type used is fixed as black and
white. All six parameter settings require a small amount of
additive noise (max noise SD = 30◦, µ = 16.67◦, σ = 8.16◦
across the parameter set). When greyscale images are used,
homing paths within Blank Walls fail to statistically outper-
form the control. This failure is caused by the IDF gener-
ated within Blank Walls (Fig. 10b), which appears noisy and
littered with local minima. The rugged nature of the IDF
is likely due to the high degree of similarity in the Blank
Walls greyscale images coupled with some noise possibly
introduced by the wireless camera. This makes successful
and repeatable homing almost impossible using greyscale
images regardless of other parameter settings. Conversion of
the input images to black and white removes a dimensional-
ity of the data producing smoothed IDFs across image-sets,
but with particularly profound effect on the Blank Walls IDF
(Fig. 10e). The use of black and white images in prefer-
ence to greyscale improves homing across image-sets to the
extent that statistically separating the performance between
paths generated within the Natural Scene and those gener-
ated within the other surrounds becomes the main cause of
model failure. The use of the largest image type in conjunc-
tion with downsampling increases the proportion of blank
arena wall in comparison to landmarks and, thus, degrades

the IDF in Distinct Landmarks, without overly affecting the
IDF in Natural Scene. With the further addition of noise, sta-
tistical separation can be achieved at the expense of a much
higher variance in the Distinct Landmarks paths than was
found in the cricket data.

3.4.2 RunDown homing method

In contrast to the other methods described so far, the Run-
Down homing method (Zeil et al. 2003) does not compute a
home vector at all, but instead uses agent movement to assess
the local image difference gradient. The agent’s first move-
ment in our simulation is determined by the approximated
initial orientation of the cricket in the corresponding trial
(Fig. 4). At each iteration, the current image difference value
is compared to that computed when at the previous location.
If the movement resulted in a decrease in image difference,
then the agent continues in its current direction. However, if
the image difference value is equal or larger, then the agent
performs a 90◦ turn, with the orientation selected at random.
The entire procedure is then repeated until the home location
is found. The random turning inherently incorporates noise
into this approach.

The resulting path lengths and statistical comparisons are
shown in Fig. 12 and Table 8, respectively. Optimisation of
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Fig. 11 a GradDescent model path lengths within the three image dat-
abases and control condition. Optimal parameter settings: acuity = 4◦,
number of Gaussians = 1, image region = ±20◦ around the horizon,
noise SD = 10◦ and using black and white image type. b–d Home vec-

tors generated using the optimal parameter settings in the DL (AAE
= 26◦), BW (AAE = 23◦) and natural scene (AAE = 27◦) surrounds,
respectively
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Fig. 12 Box plots showing path lengths obtained using the RunDown
model within the three image databases and control condition. Optimal
parameter settings: downsampling rate = 1, number of Gaussians = 3
and image region used = ±20◦ around the horizon using black and white
images

Table 7 P values calculated for comparisons between path lengths in
the various image databases using the GradDescent model

DC DL BW NS

DC X <0.01 <0.01 <0.01

DL <0.01 X 0.3 <0.01

BW <0.01 0.3 X 0.03

NS <0.01 <0.01 0.03 X

parameters for the RunDown algorithm found six param-
eter settings successfully passing the performance criteria.
The RunDown method seems robust to most parameter set-
tings with all possible smoothing, downsampling and image
regions (excluding horizon pixels only) being used. How-
ever, as with the GradDescent method, if greyscale images
are used, path lengths in Blank Walls are never significantly
better than those in the control. With black and white images,
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Table 8 P values calculated for comparisons between path lengths in
the various image databases using RunDown model

DC DL BW NS

DC X <0.01 <0.01 <0.01

DL <0.01 X 0.67 <0.01

BW <0.01 0.67 X <0.01

NS <0.01 <0.01 <0.01 X

Table 9 Summary of the model parameter tuning results

Homing model Number of
parameter
permutations
tested

Control
outperformed
in all visual
surrounds

DL and
BW out-
performed
by NS

ALV 720 0 0

COMALV 1,440 102 80

FO 600 0 0

SO 600 5 5

GradDescent 1,440 426 6

RunDown 144 41 6

The total parameter permutations are shown for each model. The values
in the subsequent columns indicate the number of parameter permuta-
tions that successfully passed the performance indicated by the column
title

many parameter settings pass the first criteria of significantly
shorter paths in all visual surrounds than the control; whereas
most combinations also show the trend of shorter paths for
Natural Scene, this is not statistically significant except for
the six settings mentioned.

4 Conclusions

Six biologically plausible models of visual homing have been
implemented and tested using image datasets taken directly
from the visual environments used in homing experiments on
crickets. Each model was assessed for its ability to replicate
the performance trends observed for crickets homing with
different visual surrounds (Wessnitzer et al. 2008). That is,
that homing was better with any visual surround than in the
dark and that homing was better with a Natural Scene than
with Distinct Landmarks and Blank Walls. Homing paths
were initiated from the same start-points, and where appro-
priate, start directions, as the crickets. In addition, across the
model implementations, aspects of visual pre-processing and
movement control were either held constant or optimised for
each model by an exhaustive parameter search.

Table 9 summarises the results of the parameter search,
indicating the number of possible parameter permutations
(which, as explained in the methods, could vary for different

models) and the number of permutations that met the perfor-
mance criteria for each model.

The average landmark vector and first order differential
models were found to be incapable of reproducing the perfor-
mance trends of crickets. The ALV model was unable to home
in the Natural Scene, and always produced the best homing
with Distinct Landmarks. Similar results might be expected
for any feature-based homing algorithm that relies on reli-
able extraction of landmark features. The first order differ-
ential model in contrast homes well within both the Distinct
Landmarks and Natural Scene but performance within the
Blank Walls surround is statistically worse than the control
condition. This can be explained by the fact that the useful
homing information for this model is contained largely in
the focus of expansion and contraction. In the Blank Walls
environment, the foci always coincide with regions of bare
arena wall where intensity values are broadly similar, and
thus correspondences are difficult to accurately assess. We,
therefore, dismiss the average landmark vector and first order
differential models as homing strategies employed by crick-
ets.

The increased robustness of image gradients compared
with absolute pixel intensities within the Blank Walls sur-
round enabled the second order differential model to produce
some parameter combinations that passed the performance
criteria. However, this is dependent on large levels of addi-
tive noise, which are not only required to improve homing
within Blank Walls but also to increase the performance gap
between the Natural Scene and Distinct Landmarks. As a
result, even with the optimal parameter settings, which min-
imised for both the difference in medians and inter-quartile
range between cricket and model data, the median and vari-
ance generated within Blank Walls are substantially greater
than the cricket homing times when tested in the same envi-
ronment. Moreover, unlike the cricket data, performance was
significantly worse in Blank Walls than that in the case of
Distinct Landmarks. Thus, this algorithm does not match the
cricket data as well as some others.

Gradient descent based models of visual homing were
found capable of reproducing the performance trend of
crickets. However, the noisy IDF produced within the Blank
Walls surround when greyscale images were used prevented
statistical improvement on the control condition. Through
the use of black and white images rather than greyscale, the
IDFs are smoothed such that homing is successful in all envi-
ronments. Indeed this smoothing makes performance within
Natural Scene and the other tests environments difficult
to statistically separate. The GradDescent homing method
successfully achieved statistical significance between Nat-
ural Scene and both Distinct Landmarks and Blank Walls
by downsampling the image at the maximum rate, which
reduced the robustness of the IDF within Distinct Land-
marks, in combination with a small noise term. However,
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even with the optimal parameter choice, this produces much
higher variance in path lengths in Distinct Landmarks than
that observed in the case of crickets. Given that this method
also requires the sampling of image differences in all cardi-
nal directions before moving in the home direction, it seems
less plausible than the simple RunDown method.

The RunDown method could successfully reproduce the
right pattern of statistical differences across the visual
environments and also provided a reasonable match to
the observed median and spread in the cricket data. The
COMALV model also accurately reproduced the perfor-
mance of crickets. The performance criterion was reached for
6 out of 144 possible parameter combinations for RunDown
and for 80 out of 1,440 possibilities for COMALV. For both
the methods, the performance criteria were only met when
black and white images were used as input. This reduction in
information dimensionality reduces the effects of noise in the
Blank Walls environment. Both models were successful for
all possible levels of image smoothing and image resolution
suggesting they may be robust for different insect eye models
such as bee or ant. COMALV required some noise to prevent
it from being trapped in loops; RunDown is an inherently
noisy procedure. The COMALV algorithm worked only with
the largest image type (±20◦ around the horizon), whereas
RunDown was also successful with more restricted fields of
view, excepting when only horizon pixels were used.

From these results, we conclude that the ‘place memory’
observed in our original cricket experiment (Wessnitzer et al.
2008) can be explained by visual homing (rather than requir-
ing more explicit spatial representations); and that simple
calculation of either the image ‘centre of mass’ or the image
difference is not only sufficient, but produces results closer
to those observed for the cricket than more complex algo-
rithms requiring feature extraction or optic flow calculation.
In passing it is worth noting that the initially unexpected
cricket homing in the Blank Walls environment is accounted
for by these models without including the canopy area in
the images; the very slight light gradient that existed across
the arena was sufficient for homing. This may be impor-
tant for eliminating unintended cues in any visual orientation
experiments on insects. Additionally the finding that crick-
ets home faster when the visual surround is a noisy Natural
Scene in comparison to easily identified landmarks (as used
in many previous homing experiments) may be used to guide
the design of future homing experiments in insects.

Both the successful methods are computationally cheap.
The COMALV method is also cheap in requiring only one
vector, rather than a home image, to be stored: although paral-
lel retinotopic processing in the insect brain may mean image
storage is also relatively cheap. The reliance of the COMALV
model on the entire image region suggests a possible experi-
mental design to separate the COMALV and RunDown mod-
els. If the field of the view of the insect could be limited, either

through eye capping or physical barriers, and its impact on
the homing ability of insects observed, then the likelihood
that the COMALV model is the homing strategy in use could
be inferred. Such screening experiments have sought to infer
the portion of the visual scene used by homing wood ants
(Fukushi 2001) and desert ants (Graham and Cheng 2009),
and may offer a modelling environment able to distinguish
the homing models.

Analysis of the homing paths may also offer clues to the
homing mechanism guiding crickets. As gradient descent
models require a local sampling to infer the home direction,
it may be possible to analyse for stop and search patterns in
homing paths. As mentioned previously, this type of behav-
iour was not obvious in the cricket study. Alternatively if the
crickets are using an active move and sample policy as in
RunDown then it would be expected for the home path to arc
towards the home location rather than being direct. This is
in contrast to the COMALV which should generate accurate
and direct home vectors from many locations.

Similar databases of panoramic images have been used
to investigate the rotational errors observed in rats trained to
locate a corner in a rectangular arena (Stürzl et al. 2008). As in
this study, IDFs were shown to exist in the test environment.
Use of a simple gradient descent technique was sufficient to
reproduce the animal behaviour indicating a role for view-
based homing rather than a dedicated geometric module. Fur-
thermore, the behavioural results have been replicated in ants
(Wystrach and Beugnon 2009), which offer further evidence
for the use of a gradient descent based homing in insects.
Unfortunately, other models of homing were not also inves-
tigated in the above modelling study and, therefore, cannot
be dismissed at this time. Such testing of different models
in various experimental situations where model output can
be directly compared to biological data may allow further
insights into the exact strategy used by insects and other ani-
mals.

One limitation of all biologically plausible homing mod-
els described here is that the orientation of the image at the
current location must be the same as that of the home image.
Many authors address this restriction by assuming the insect
or agent has a compass to provide rotation information. How-
ever, within the cricket arena no compass cues (magnetic or
polarised) are available. Another possible solution is pre-
sented through IDFs where it has been shown that the image
difference between images increases smoothly and mono-
tonically with rotation as well translation (Zeil et al. 2003).
Thus, to align the current image with one stored previously
the agent must rotate the current image, either physically
or mentally, until the minimum image difference is found.
While this technique has been used successfully in model-
ling studies, it seems unlikely that an insect could perform
such image rotations mentally, and there is no clear evidence
from the behavioural data of crickets rotating to align images.
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A possible solution to the alignment problem, where com-
pass information is not available, is that insects may store
multiple images at the home location, while oriented in
different directions. Thus, when the insect is performing
a subsequent homing run, the home memory most closely
matching the current world view would be used as a refer-
ence for calculating the current image difference or home
vector. In this way, locations of importance which are visited
repeatedly would have multiple, strongly re-inforced memo-
ries and could be approached from many directions without
the need for a compass at all. This type of gradual learning of
a location may account for the learning curve observed in the
cricket behavioural experiments in Wessnitzer et al. (2008)
and will be the subject of further study.
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