
Biol Cybern (2009) 100:59–79
DOI 10.1007/s00422-008-0281-6

ORIGINAL PAPER

Computational object recognition: a biologically motivated
approach

Tim C. Kietzmann · Sascha Lange · Martin Riedmiller

Received: 28 January 2008 / Accepted: 14 November 2008 / Published online: 17 December 2008
© Springer-Verlag 2008

Abstract We propose a conceptual framework for artificial
object recognition systems based on findings from neuro-
physiological and neuropsychological research on the visual
system in primate cortex. We identify some essential ques-
tions, which have to be addressed in the course of design-
ing object recognition systems. As answers, we review some
major aspects of biological object recognition, which are
then translated into the technical field of computer vision.
The key suggestions are the use of incremental and view-
based approaches together with the ability of online feature
selection and the interconnection of object-views to form an
overall object representation. The effectiveness of the com-
putational approach is estimated by testing a possible reali-
zation in various tasks and conditions explicitly designed to
allow for a direct comparison with the biological counter-
part. The results exhibit excellent performance with regard
to recognition accuracy, the creation of sparse models and
the selection of appropriate features.
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1 Introduction

In recent years, the area of computer vision has made great
advances coming up with a variety of different approaches
and solutions. Especially in the area of robotics, the anal-
ysis of visual information is very important. Here, the task
of object recognition (also known as object identification) is
of major significance because it forms the basis for further
computations such as reasoning and decision making. Since
robots directly interact in real world environments, creating
highly adaptive and reliable systems capable of real time rec-
ognition is a crucial issue.

Although considerable progress has been made, perfor-
mance of most of the current systems is still limited to spe-
cial tasks and areas of application. As a result, automatically
finding solutions capable of dealing with a great variety of
tasks while still preserving the effectiveness of task-specific-
ity still remains a difficult challenge. For humans, however,
object recognition forms a very basic capability, working
seamlessly in most diverse situations and tasks. Based on
this superior performance, it is reasonable to exploit our bio-
logical and psychological knowledge to guide and inspire the
creation of artificial vision systems.

The idea is not new. Among the first authors to describe
this kind of approach were Poggio and Edelman (1990) who
employed neural networks in order to learn and represent
object models for visual object recognition. However, their
approach dealt only with artificial data in the form of wire-
frame 3D objects. Task complexity was thus comparatively
low and far from real world applications. SEEMORE, a neu-
rally inspired architecture capable of dealing with more real-
istic images was later introduced by Mel (1997). Here, the
biologically relevant notion of view-based object represen-
tation was applied together with a great variety of visual fea-
tures. Object recognition was achieved by a nearest neighbor
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decision strategy, i.e. comparing each input vector to all train-
ing patterns and selecting the nearest one to assign an object
label. A more recent approach was provided by Wallraven
and Bülthoff (2001a). In addition to explicitly using only
some of the training vectors as stored object views, temporal
information was successfully used to fully represent object
models.

The selection of a good feature space is a very important
issue because it forms the basis of object representations,
learning and recognition. A considerable amount of work
has been put into the design of biologically motivated fea-
tures and feature hierarchies (Mutch and Lowe 2006; Mel
1997; Serre et al. 2005; Wersing and Korner 2002), exhibiting
very good performance. Taken together, there is an increasing
body of research pointing into the direction that biologically
motivated systems are able to achieve very promising results
while being able to deal with more generic and thus less
specialized object recognition tasks.

In this context, we will address some important and yet
unsolved issues of computer vision systems such as the selec-
tion of an appropriate object representation scheme, auto-
matic extractions of object model connections, how to
achieve increased robustness and abstractness, the selection
of an appropriate feature space and the choice for an adaptive
learning mechanism. To tackle these problems, we identify
and discuss important neurophysiological and neuropsycho-
logical evidence and argue for the necessity in this partic-
ular case. As a consequence, we conclude that a consistent
model of computational object recognition must respect the
following five aspects: (1) Object representations should be
view-based. (2) The resulting view-prototypes should be
associated by Hebbian connections to form aspect graphs,
thereby representing the 3D structure of the object. (3) Visual
computations should be layered to achieve increasing stabil-
ity and level of abstraction. (4) Visual features should be
selected automatically and task-specific during the learning
process and not a priori. (5) Any applied learning mechanism
has to account for variable view-based object representations
and should be able to increase the amount of resources on an
object-specific basis. Starting from these aspects, we develop
a conceptual framework and describe a possible realization.
For the latter, we show that the required characteristics can be
realized by three central building blocks: the learning mech-
anism incremental Generalized Relevance Learning Vector
Quantization (iGRLVQ) (Kietzmann et al. 2008), Hebbian
connections of view-prototypes (Tarr and Bülthoff 1998) and
object cells. Taken together, these three main components
cover the five required aspects. To verify the effectiveness
of the approach, the system’s recognition performance was
tested together with a variety of related effects such as the
semantics of feature selection, rotation invariance, Hebbian
connections of prototypes and the automatic creation of view-
and object cells.

2 Human object recognition

Problems of artificial vision systems are known to arise from
a variety of sources, including changing illumination, occlu-
sion and object variability. Because of the human superiority
in this task, it is sensible to let the creation of artificial systems
be inspired and guided by biological findings. In the follow-
ing, we will highlight some central questions, that arise when
investigating biological and computational object recogni-
tion systems. The first issue which has to be addressed is the
question of how to store knowledge about objects. Given the
present understanding, this question comes down to follow-
ing either the view-based approach or the 3D model-based
approach. Given that the decision is to follow the view-based
approach the second decisive question is how to integrate 3D
information from a representation based on only 2D views.
The third question arises from the need to assign the same
identifying label to all the various perspectives and views
of an object. How can consistent and view-invariant object
recognition be achieved from lower-level representations?
Moreover, there is a great diversity of possible visual fea-
tures which can be used by humans as well as computational
systems. Do we need all possible features or is a small set
of decisive measurements sufficient? This issue is covered
in question four. Another question is whether each object
should have a model of constant or variable representations
and complexity. An answer requires a closer look at object
models. The following list shortly summarizes these ques-
tions.

Question 1: How should knowledge about objects be
stored? View- or object-centered?

Question 2: How can temporal and 3D information be
integrated with the view-based approach?

Question 3: How can view-invariant representations be
built from simple visual features and object
views?

Question 4: Should all possible features be used?
Question 5: Should the complexity and representation of

each object model be variable or fixed?

In order to find possible answers, we review aspects of neuro-
physiological and neuropsychological object recognition
strategies in humans which we find to be essential for suc-
cessful object recognition. The described evidence forms the
basis of the proposed framework.

Aspect 1: Object representations are stored view-based

There are two major streams in the literature dealing with
mental representation schemes of objects, i.e. view- and
object-centered. The former assumes objects to be repre-
sented and recognized by referring to their 2D views under
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which they can be seen by an external viewer. The latter
expects objects to be stored in the form of a single and more
abstract 3D model, which can mentally be turned in order to
be mapped to the perspective currently seen. Although not
totally uncontroversial, there is increasing evidence speaking
in favor of the view-based approach. Single cell recordings
of Perrett et al. (1987) revealed some neurons in superior
temporal sulcus (STS) responsive to certain perspectives of
faces. More view-centered cells selective to faces were found
by Tanaka (1996). Located in anterior inferotemporal cortex
(AIT), these cells are arranged in overlapping columns such
that neighboring views are encoded by adjacent cell struc-
tures. Today, neurophysiologists believe that object views
are represented by groups of neurons, each responsive to a
collection of visual features (Abbott et al. 1996; Young and
Yamane 1992).

On a more abstract level, objects are represented as
view-invariant. In a study by Logothetis et al. (1995) investi-
gating inferotemporal cortex (IT), view-selective cells were
found together with a smaller amount of neurons, respon-
sive to an object being present independent from the current
viewing-perspective. Further support for these object-encod-
ing cells was provided by Perrett et al. (1991) and Booth and
Rolls (1998). In addition to supporting a view-centered the-
ory of object-representations, these findings can be seen as
evidence for the assumption that object centered behavior
is formed by integrating information from view-dependent
cells (Massad et al. 1998).

Psychophysical evidence speaking in favor of view-
centered behavior in humans was put forward in (Tarr and
Pinker 1989; Bülthoff and Edelman 1992; Tarr and Bülthoff
1995; Wallis and Bülthoff 1999). In a prominent study,
Bülthoff and Edelman (1992) used artificial, computer-gen-
erated 3D objects shown from two oscillating perspectives.
Recognition was tested on static views which lay either inside
(intro condition) or outside (extra condition) the trained ones
or orthogonal to the trained meridian (ortho condition). The
resulting performance pattern of the subjects clearly sup-
ports view-based representations and proved incompatible
with object-centered schemes. For more detailed reviews on
object representation schemes, see Tarr and Bülthoff (1998)
and Riesenhuber and Poggio (2000). For the described rea-
sons, we follow the view-based theory of human object rec-
ognition.

Aspect 2: Co-occurring object views are interconnected
to form the overall object representation and to improve
efficiency

The apparent question of how to integrate 3D information
arises from the assumption that object representations are
based on 2D views. As an answer, theorists propose the

Fig. 1 An aspect graph is created by interconnecting adjacent views of
an object. This way, the graph represents the object’s three-dimensional
structure (adapted from Luong Chi)

use of temporal associations, which connect co-occurring
object views. In the case of object recognition, this is sensi-
ble because object views are often seen in rapid succession
(Edelman and Weinshall 1991; Wallis and Bülthoff 1999).
The resulting interconnections of adjacent views can be inter-
preted as a graph being able to resemble the 3D structure of
the object (Tarr and Bülthoff 1998). As put by Poggio and
Edelman (1990), “having enough 2-D views is equivalent to
having its 3-D structure specified” (p. 263). This representa-
tion scheme is also known as aspect graph (Fig. 1).

There are several psychophysical and neurophysiologi-
cal experiments providing scientific evidence for temporal
correlations of object views. Single cell recordings in IT
of macaque monkeys, as performed by Miyashita (1988);
Miyashita (1993) and Sakai and Miyashita (1991), showed
that neuronal associations could be built on the basis of
temporal connectedness regardless of geometric similarity.
Psychophysical evidence was put forward by Wallis (1996,
1998) and Wallis and Bülthoff (2001). The latter performed
an experiment in which subjects were shown sequences of
faces in which the identity shown changed during rotation.
As predicted by the temporal associations theory, subjects
exhibited the tendency to treat the different views as a single
person.

In addition to being able to represent the 3D structure of
objects, there is an additional advantage of connecting object
views. As was shown in various experiments (Erickson and
Desimone 1999; Vuilleumier et al. 2002), the use of visual
associations of object views enhances efficiency. As an effect,
response times decreased when subjects were primed by dif-
ferent viewpoints of the same object and also by associated,
but different stimuli. In both experiments, expectancy was
shown to be able to enhance performance.

The positive effects on efficiency were also described by
Bar (2003), who suggested that the connections could be used
to reduce the number of prototypes that need to be compared
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with the current input. The prior expectations would thus
reduce search-space by offering an ’educated guess’ (Bar
2003). Finally, some out of all possible views occur more
often and thus allow for easier and faster recognition than
others. These are known as ’canonical’ views (Palmer et al.
1981). In order to incorporate temporal and 3D information,
we thus identify the second important aspect of human object
recognition as the presence of interconnections of object
views.

Aspect 3: Computations and representations become
more abstract in subsequent levels

An important characteristic of human visual processing is
the fact that visual representations become more and more
abstract in subsequent areas. Thus, higher level neuronal
activity corresponds to more complex features and feature
clusters (Mareschal et al. 1999). Most neuroscientists agree
on the initial visual processing in the first milliseconds of
feedforward hierarchical processing. The resulting picture
is also known as the standard model of object recognition
(Riesenhuber and Poggio 1999), which has been subject to
intensive computational modeling. Starting with the retina
and Lateral Geniculate Nucleus (LGN), visual information
enters V1 where simple and complex cells are selective to
bars of light and blobs to colors. Afterwards, information
is passed through the extrastriate areas V2 and V4. Later, it
reaches higher cortical areas such as posterior inferotemporal
cortex (PIT), anterior inferotemporal cortex (AIT), and cen-
tral inferotemporal cortex (CIT). Here, the neurons respond
to complex shapes, object views and faces. Object-selective
neurons are thought to pool activity of view-selective cells.
This way, the overall object is represented through the collec-
tion of views. Figure 2 shows the corresponding schematic
layers together with their biological counterparts. Among

many others, biological evidence for this hierarchical model
was put forward by Perrett et al. (1992), where it was shown
that response latencies of view-dependent cells are faster than
view-independent cells.

Aspect 4: Features are selected according to the task
and objects presented

The human visual system is capable of using a great variety
of features for object recognition. In addition to color and
brightness information and bars of light, more complex and
finer grained features exist in higher brain areas, encoding
external form and shape information (Milner and Goodale
1993; Tanaka 1992) as well as texture-shape combinations
(Kobatake and Tanaka 1994). Even more importantly, neuro-
nal selectivity to visual features ranges from highly localized
information to object-centered information. As described in
the standard model, this difference in selectivity is a result
of increasing receptive field sizes. The existence of different
levels of position specificity is especially advantageous with
regard to object occlusion. In this case, localized informa-
tion is highly beneficial because global object features are
not extractable. Out of this wide diversity of features and
feature combinations, humans are known to select impor-
tant visual features in a highly task-specific manner (Walther
and Fei-Fei 2007; Murray and Wojciulik 2004). In the case
of attentional weighting, known from the area of percep-
tual learning, people rapidly adapt to the respective task by
varying attention paid to different features. In addition to
emphasizing important features through attentive selection,
unimportant ones are decreased or completely disregarded
(Goldstone 1998). Further evidence for this highly adaptive
way of selecting features comes from the area of object cat-
egorization, where shifts towards features that are useful for
specific tasks can be observed (Nosofsky 1984).

Fig. 2 Representations of objects can be seen on different levels
of abstraction in artificial as well as biological systems. Shown are
the connections between the different layers and the corresponding
brain-structures. Higher level elements and rely on information present
in a greater number of lower ones (poolings). The topmost and thus most

abstract layer represents a controlling element, which can influence a
priori information used for the decision process and guide possible fea-
ture extractions and learning on lower levels. Moreover, it is needed in
order to integrate other modalities as well as task-specific information.
(The figure was partially adapted from Riesenhuber and Poggio (2000))
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In addition to the online selection of task-relevant dimen-
sions, feature selectivity is known to be subject to learning.
Neurophysiological evidence was provided by Bichot et al.
(1996) who tested the effects of learning on neuronal selec-
tivity in the frontal eye field (FEF). After macaque mon-
keys were trained exclusively on targets of a certain color
the recorded neurons exhibited selectivity corresponding to
the trained features. A related effect was found for neurons
in AIT, which show increased activity upon behaviorally sig-
nificant stimuli after training (Jagadeesh et al. 2001). These
effects are also known as long-term visual priming (Chun
and Marois 2002).

The positive effect of feature selection is clearly an
increase in efficiency. As all incoming information com-
petes for limited neural resources, a selection procedure is
able to facilitate performance by suppressing irrelevant infor-
mation. As an effect, task-relevant information is separated
from task-redundant information. For instance, Haider and
Frensch (1996) performed an experiment in which subjects
were able to improve their performance in an alphabetic
string verification task by limiting their processing to relevant
aspects and dimensions of the task. For the reasons described
above, we identify the fourth aspect of human vision: Task-
specific feature selectivity.

Aspect 5: Neural selectivity is increased and views
are created with learning and task complexity

The neuronal representations of object views allow for the
observations that the number of views and the selectivity
of the corresponding neurons increase with experience. Evi-
dence for the creation of views comes from Kobatake et al.
(1998), who trained monkeys to discriminate 28 complex
shapes. After training, there were significantly more neu-
rons selective to views of the trained than untrained objects.
Support for the changing selectivity was given by Perrett
et al. (1998). In this experiment, selectivity of neurons in
temporal cortex adapted to match the features present in the
most commonly seen view of an object. As reviewed above,
the number and selectivity of neurons is thus assumed to be
variable.

3 An artificial object recognition system

Having described the underlying neurophysiological and psy-
chophysical assumptions of the human visual system, we
now turn to artificial object recognition. First, we propose a
conceptual framework integrating the aforementioned bio-
logical aspects, which is, at this level of description, mainly
independent of realizations of its different parts. For this, we
translate aspects 1–5 to possible technical realizations which
are described in the following notions. Note however, that the

framework should be seen as a suggestion on what properties
artificial systems should include and not as a complete bio-
logical equivalent or simulation. A description of a possible
realization will be provided afterwards.

3.1 General description

Notion 1: Views are represented through
prototype-based systems

As specified in Aspect 1, there is increasing evidence for
the view-based representations of 3D objects in humans.
Although many of the early computational approaches relied
on single 3D and thus object-centered representations
(Biederman 1986; Lowe 1985; Marr and Nishihara 1978;
Thompson and Mundy 1987), there is an increasing num-
ber of view-centered approaches. Among the first authors to
employ object views for object recognition were Poggio and
Edelman (1990), who used Generalized Radial Basis Func-
tion Networks (GRBFs) in order to represent their object
models. One of the main assumptions underlying this
approach is that the 3D structure of an object can be specified
by interpolating between stored 2D views of the respective
item. Ullman and Basri showed that any 3D projection of an
object can be obtained by a linear combination of 2D views
(Ullman and Basri 1991). Thus, matching and recognition of
a novel view can be accomplished by interpolating between
the stored views. This basic assumption led to a great vari-
ety of approaches for 3D object recognition (Roobaert and
Van Hulle 1999; Shokoufandeh et al. 1999; Wallraven and
Bülthoff 2001b), including the current work.

The view-centered representation scheme forms one of
the basic notions of the current description. One of its most
important implications is that it is not necessary to store
all possible image instances of an object, but only its most
descriptive views. As mentioned before, neurophysiologic
findings see object views represented by collections of neu-
rons responsive to combinations of features present in each
view. Transferred to the computational domain, this corre-
sponds to the prototype-based approaches known from the
machine learning literature, where each prototype resembles
a specific combination of input features. In this view, interpo-
lating between views is realized by neighborhood relations in
feature space (compared to the mathematical transition pro-
cedure used by Ullman and Basri (1991)). In the following,
the terms view and prototype will thus be used interchange-
ably.

In the recent past, various artificial object recognition sys-
tems based on prototypical views have shown very prom-
ising performance (Jugessur and Dudek 2000; Lowe 2000;
Tuytelaars et al. 1999), and thereby provided empirical evi-
dence for the efficiency of this representation scheme.
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Notion 2: Prototypes are interconnected by Hebbian
connections to form aspect graphs

Because of the potential increase in efficiency and the increas-
ing evidence for the existence of temporal associations
between object views (Aspect 2), the use of aspect graphs in
artificial systems is clearly reasonable. Since such a structure
cannot be known a priori without providing a large amount
of external knowledge, an artificial system should be able to
automatically extract it from its training data. The tempo-
ral order of information in form of view sequences naturally
exhibits the underlying structure of the object, i.e. seeing
sequences of moving objects over time reveal their 3D struc-
ture.

Waxman and Seibert were among the first authors to apply
the notion of aspects in artificial object recognition (Seibert
and Waxman 1992). Their system automatically constructs
aspect transition matrices, similar to aspect graphs as defined
by Koenderink and Doorn (1979). Recognition is then per-
formed on the basis of accumulated evidence to find a best-
match hypothesis. A different solution to the problem of
learning aspect graphs from data comes from the theory of
temporal associations. The main idea is to enhance connec-
tions of subsequently winning prototypes. Being presented
with different image sequences of the same object, this nat-
urally results in a graph in which often co-occurring repre-
sentations will be strongly connected.

In addition to providing a straightforward method for
obtaining an object’s aspect graph, only characteristic view
sequences are extracted. Thus, the resulting models repre-
sent typical ways of motion (Massad et al. 1998). Canonical
views can be obtained by storing the total number of activa-
tions of the prototypes together with the connections. This
way, the views with the most activations can be used before
less frequent ones are considered.

Beyond providing a computationally less complex alter-
native to the object-centered representations, there are fur-
ther positive effects speaking in favor of the use of aspect
graphs. For instance, they can be used in decision making by
influencing the a priori probability of a hypothesis. Having
seen a prototype A and having a strong connection H(A, B)

in the graph implies that the prototype B often co-occurred
with A. Thus, the a priori probability or prototype activity
for the next classification can be altered to prefer hypothesis
B. This is particularly important in the case of ’ambiguity in
appearance’ (Paletta and Pinz 2000; Massad et al. 1998). This
term describes the phenomenon that two different objects can
look similar when viewed from a certain perspective. In this
case, the resulting classification of a single image is clearly
ambiguous. However, integrating previous information can
disambiguate the decision and thus improve efficiency and
reliability (Bradski and Grossberg 1995; Rao 1997). This
effect broadly corresponds to the behavior of cells in the

ventral stream, whose responsiveness can be modulated by
prior occurrences of stimuli (Goodale 1993); an effect which
can be interpreted as a feature memory trace (Mareschal et al.
1999).

Finally, this approach easily integrates with further infor-
mation and modalities in a sensor fusion process, which
is clearly reasonable in the light of real-time robotics. For
instance, it would be reasonable to integrate auditory infor-
mation or data from other ‘visual’ devices such as laser scan-
ners or additional cameras (Voigtländer et al. 2007) in the
recognition process.

Notion 3: Information becomes more abstract in subsequent
stages of processing

In most computer vision systems, increasing abstractness is
an implicit result of the process of feature extraction. After
mapping from the raw pixel space into feature space, features
resemble more complex and and mostly more abstract input
configurations. Visual features can be manifold. Among
many others, present approaches reach from highly local-
ized image features (Lowe 1999), to computational models
based on our knowledge of visual cortex (Serre et al. 2005;
Mutch and Lowe 2007), which additionally incorporate dif-
ferent layers of processing and abstraction in a layered, feed-
forward hierarchy, to directly object based features such as
area, diameter and color. After features are extracted, which
can potentially include several stages of hierarchical pro-
cessing already, prototypes represent collections of feature
values in input space. Their activity can be interpreted as
being caused by an object viewed from a certain perspective.
By pooling over all view-selective units for one object, the
overall object representation is formed (Fig. 2). In this final
and object-selective level, objects are encoded invariant from
the perspective, position and scale currently seen. In the fol-
lowing, these cells will be referred to as object cells (OCs),
whereas prototypes form the underlying view cells (VCs). A
computationally related approach worth noting are convolu-
tional neural nets (Lecun et al. 1998). This technique employs
subsequent layers of processing in order to yield higher-order
features. Starting from selectivity for localized patterns in
the input image, representations become increasingly posi-
tion invariant through subsampling. A final, fully connected
layer of the network can then be trained to recognize high-
level, position invariant patterns, such as handwritten digits
or objects.

Notion 4: Features are selected online according
to the underlying tasks and requirements

Extractions of features are computationally very expensive.
Moreover, problems arise from the presence of great var-
iability in visual data. If a set of calculations is useful in
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a certain task or situation, it is often the case that it turns
out to be useless in others. For these reasons, the system
should be able to automatically select relevant from irrele-
vant features in a highly task- and situation-specific fashion.
Even more important, a selection should be performed dur-
ing the learning process. With this capability, it is possible
to significantly increase efficiency by rejecting unnecessary
features and thus computations. Furthermore, a task-specific
and online selection of useful features allows for a broader
area of application. This is because an a priori specification
of a fixed input space/feature set is specifically done for a
certain task. However, starting with a more general feature
set and then iteratively selecting the right dimensions gives
greater variability and a greater range of feasible situations.

Notion 5: Incremental methods are able to account
for varying task and object complexity

As described in Aspect 5, the number of views and neuronal
selectivity change with increasing expertise and task com-
plexity. For two reasons, this aspect is especially important
for artificial systems. First, efficiency can be increased by
assigning only the minimum number of required resources
to each object. This is achieved by starting with a very small
number of prototypes. By adding prototypes on demand, very
sparse models are created. Applying this principle to the use
of object views leads to the observation that simple objects
are often able to be represented by a single view, whereas
more complex ones often need considerably more views in
order to allow for a complete representation and consequently
good recognizability. Second, the underlying input space nat-
urally varies when rejecting parts of it. As was shown by
Kietzmann et al. (2008), the number of clusters formed by
the object instances varies together with input space. Con-
sequently, when considering online feature selection, as in
the currently proposed framework, the required number of
prototypes can vary for one and the same object. The use
of incremental methods enables the system to adapt to these
changes in a straightforward manner by automatically adding
prototypes if objects turn out to be misclassified repeatedly.

Moreover, changing the feature space demands variable
rather than stable prototypes. This way, the existing proto-
types are able to change their selectivity in order to account
for new evidence or changing input space after having been
put into the system. In short, moving prototypes in feature
space accounts for changing selectivity whereas additions of
prototypes are expected to lead to increased selectivity.

Dealing with image sequences instead of single object
instances is of great importance to artificial vision systems
especially in the case of real-time robotics. Temporal asso-
ciations can only be extracted from temporally connected
visual information and an integration of subsequent evidence
can support a more reliable recognition. We propose the

following procedure: The currently winning prototype is
always stored in the form of a ‘keyframe’, which was also the
procedure in (Wallraven and Bülthoff 2001b). If the active
keyframe of a previous image is also the most appropriate
prototype for the next image in the sequence, it is adjusted
according to a learning rule, its winning count is increased
and a feature-selection procedure is run. If a different pro-
totype is more appropriate for the new image, it is set to be
the current keyframe and is adapted. Whenever the keyframe
changes, the Hebbian connection of the underlying proto-
types is increased. In order to be able to add prototypes to
complex classes, the best matching prototype of a different
class (negative prototype) is retrieved together with the best
one of the same class (positive prototype). The case that the
negative prototype is performing better than the positive one
can also be interpreted as a case of misclassification and an
error-term is increased. Whenever the total number of errors
exceeds a selected threshold, signaling that still too many
errors occur and that the current resources are not sufficient,
new representations for problematic objects are added to the
system (Fig. 3). With this procedure, the system is able to
dynamically select the appropriate number of prototypes for
each object.

Summing up, the currently proposed framework requires
object representations to be altered by updating existing and
adding new prototypes. Hebbian connections are used to form
aspect graphs and OCs provide a view-invariant object rep-
resentation. Features should be selected as part of its learn-
ing procedure. Taken together, the system is expected to be
able to provide directly task dependent solutions for both,
prototypes and feature set. Successive updates of view-con-
nections further improve stability and produce structural
representations of the underlying objects. So far, the actual
learning and feature selection mechanism were left unspec-
ified. As an overview, Table 1 shows a direct comparison of
biological aspects and computational notions. The current
description is meant as a guideline on what properties are
expected to improve performance when included in artifi-
cial object recognition systems. Still, the actual realization
of these elements can be chosen independently.

3.2 A possible realization

To allow for a detailed evaluation of the approach, a possible
realization of the described notions was implemented. The
first central component of the system is the learning mech-
anism. Here, we chose to use iGRLVQ, which was recently
introduced and algorithmically evaluated (Kietzmann et al.
2008). Additionally, we use a Hebbian learning procedure
to automatically extract aspect graphs (second component)
and introduce a more abstract object representation in form
of object cells (third component). In the following, we will
give a more detailed description of the realization including
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Fig. 3 A modular scheme of the framework showing the main learning process and handling of image sequences. At this level of description, it
is still independent from a possible realization

Table 1 A direct comparison of
the reviewed biological aspects
and suggested computational
notions

Biological aspect Computational suggestion

View-selective cells represent objects Prototype based approaches resemble
object-views

Co-occurring views are interconnected Hebbian connections create aspect graphs

Representations become more abstract in subsequent levels Prototypes react on combinations of lower
of processing level features

Perceptual learning and feature attention strengthen the Features are selected during the learning
influence of relevant features process to find task- and

situation-dependent solutions

The number of views increases and neuronal selectivity Incremental learning methods changing the
changes with learning and task complexity number and selectivity of prototypes

a description of iGRLVQ, OCs, the underlying feature space,
the feature selection method and the Hebbian learning pro-
cedure.

3.2.1 Prototype updates via iGRLVQ

As specified in Notion 1, prototype-based methods form an
excellent combination with view-based approaches. In order
to be able to deal with visual data, the highly redundant image
data presented in form of raw pixels has to be transformed
into points in input space. The system’s prototypes, which
can be seen as (labeled) points in the same feature space,
exist for every learned object and are stored as vectors in a
codebook. When being presented with an object to be recog-

nized, the best matching prototype is used to assign the label.
Thus, the goal of a learning procedure is to adjust the proto-
types of each class such that they represent it as accurately
as possible.

In particular, learning vector quantization (LVQ) is very
appealing because of its straightforward update rule and good
generalization properties. Recently, we proposed the learn-
ing method iGRLVQ. In addition to incrementally adding
prototypes to the codebook, it also allows for an elegant way
of feature selection, as illustrated below. Prototype learn-
ing is achieved by using each training vector to attract the
closest prototype of the same class (w J ) and push away the
closest one of a different class (wK ) according to w J

new =
w J

old + ∆w J and wK
new = wK

old − ∆wK respectively. The
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update elements are defined as:

∆w J := ε × dK

(dJ + dK )2 (xi − w J )

(1)
∆wK := ε × dJ

(dJ + dK )2 (xi − wK )

dJ and dK describe distances between the codebook and the
training vector. With this rule, the prototypes are lead into
parts of feature space where they best resemble their corre-
sponding class instances (Notion 5).

For the update calculations, LVQ relies on standard
Euclidean distance. However, it is not necessarily the case
that this particular metric is suitable for the respective learn-
ing task. Because every dimension is regarded equally, the
data has to be preprocessed such that the input dimensions
have approximately the same magnitude w.r.t. the classifi-
cation. In order to avoid these problems, relevance learn-
ing applies adjustable weights λ = (λ1, . . . , λn) to the input
dimensions, which are altered during learning together with
the prototypes. When calculating distances between proto-
types and input patterns, the differences in the corresponding
dimensions are scaled by these relevances (Eq. 2). This way,
dimensions with higher weights are emphasized whereas
others become less pronounced. Following the main update
principle for prototypes, relevances are adjusted online
according to the learning rule provided in Eq. 3. This rule
can be interpreted as follows: On correct classification, the
update increases the weight terms of dimensions in which
the training data is close to the positive prototype, whereas
relevances for terms with greater distance are decreased. In
contrast, on false classification the more distant dimensions
are increased and the closer ones weakened. As a result,
the mechanism facilitates dimensions which contribute to the
right classification and which do not contribute to a
false one. As will become evident later, an important advan-
tage is that the resulting relevance terms can be used for
feature selection.

dJ = ‖ x − w J ‖2
λ=

n∑

i=1

λi (xi − wi )
2 (2)

λm := λm−1 − ε1 ×
(

dK

(dJ + dK )2 (xi
m − w J

m)2

− dJ

(dJ + dK )2 (xi
m − wK

m )2
)

(3)

Activity of prototypes i belonging to class j , ai j is com-
puted according to the Winner-Takes-All (WTA) principle.
Thus, only the most appropriate prototype becomes active,
whereas all others remain silent. When being presented with
an input pattern x , the distance to each prototype is calculated
and the closest one becomes active (Eq. 4).

ai j =
{

1 if i = argmini ‖ x, wi ‖2
λ

0 else
(4)

Standard methods use the same fixed amount of proto-
types for every class. As described in Notion 5, however,
the required number naturally varies with the complexity of
the object and with the input space, as it is in the case of
online feature selection. A solution to these issues was pro-
vided by using incremental methods. Having already proven
to be quite effective for monitoring technical systems (Bojer
et al. 2003) and for object recognition in a biologically moti-
vated approach (Kirstein et al. 2005), prototypes are succes-
sively added for classes, which get misclassified repeatedly
after starting with only one prototype for every class. As a
result, every object receives the optimal number of prototypes
needed for successful recognition.

3.2.2 Object cells

VCs encode object information implicitly by being associ-
ated with a defined object. To achieve an explicitly view-
invariant object model, a more abstract representation is
needed (Notion 3). Object cells respond to the presence of
objects independent of the current view and define their activ-
ity by pooling from the underlying VCs’ activity. Thus,
whereas VCs are embedded in feature space, OCs are super-
imposed (Fig. 4).

In detail, each OC gets input from all VCs belonging to
the same object. Since we are dealing with a WTA network of
view-cells in the subjacent layer, an obvious way of modeling
such behavior is to activate an OC whenever one of its asso-
ciated VCs becomes active. This is achieved by taking the
maximum VC activity as activation for the OC (Eq. 5). This
procedure was also biologically motivated and applied in the
HMAX approach (Riesenhuber and Poggio 1999, 2003).

OCk = max
i

aik (5)

3.2.3 Feature set

As we apply a prototype-based algorithm, the only constraint
lies in the need for a fixed dimensionality of input space. As
shortly noted above, visual features can be extracted from
complete, segmented object images (global) or in a more
localized manner dealing with smaller image patches (local).
Local image features, such as SIFT (Lowe 1999), which
transform small image parts into a high dimensional feature
space, have become very popular in the computer vision com-
munity. The clear benefit of these approaches lies in poten-
tially high recognition rates and invariance to changes in scale
and rotation. Nevertheless, the number of features found in
an image is not fixed and can vary from image to image
such that a classification with procedures being dependent
on a fixed dimensionality of input space, such as the current
one, are not possible in a straight forward way. Moreover,
highly localized features are expected to be less efficient in
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Fig. 4 VCs are embedded in feature space whereas OCs are superimposed. Each OC receives input from the underlying VCs belonging to the
same class. This way, a more robust and abstract representation is formed

tasks requiring a high level of generalization. On a more
abstract level are intermediate image features such as the ones
put forward by Ullman et al. (2002). In their approach, the
most informative image fragments are automatically selected
from a training set, each fragment-template then formed one
dimension of the resulting feature space. The object rec-
ognition system proposed by Serre et al. (2005), which is
based on the standard model mentioned earlier, uses a dif-
ferent approach. Their hierarchy of visual features is based
on localized image properties, which are integrated in sub-
sequent levels of processing to form intermediated feature
levels with more complex and less local features. In addition
to the biological relevance and robust recognition rates, the
feature hierarchy also gives a fixed dimensionality. Finally,
global or object features are on the most abstract level.

Out of the great variety of possible feature sets, two pos-
sibilities were selected for the experiments. First, a generic
set of object features is used which deals with global object
features. Despite their great performance and expressibility,
a disadvantage of these features lies in the need of image seg-
mentation. Although promising approaches exist, segmenta-
tion is still a highly discussed and yet greatly unsolved issue
in computer vision and neurosciences. We greatly acknowl-
edge the importance of this problem. However, the work with
this first feature set explicitly concentrates on object recog-
nition from already segmented images. For reasons of sim-
plicity, a region-growing algorithm, as proposed in (Adams
and Bischof 1994), was applied as a preprocessing step to
separate the object from the image background. To solve the
problem of the dependence on image segmentation, a second
type of feature set was used, which is based on the extended
feature hierarchy of Serre et al. (2005), which was proposed
by Mutch and Lowe (2007). Among many other advanta-
ges of this approach is the fact that the features trained and
extracted without the need for a segmentation of the image.

The generic feature set was composed of the following
parts. Color information of the pixels was encoded in the
YUV color space. In order to include color information, a 32-

dimensional Y-luminance histogram, and an UV-color histo-
gram (8×8 bins = 64 dimensions) were included. Moreover,
the area of the object, its centroid, perimeter, eccentricity, cir-
cularity, compactness, and maximum and orthogonal diame-
ter were extracted together with the Hu set of image moments
(Hu 1962). The latter are calculated as particular weighted
averages of the object’s pixel intensities and have the special
property of being invariant under translation, scale and rota-
tion, a characteristic which is also thought to support recogni-
tion memory in humans (Milner and Goodale 1996). Finally,
Gabor wavelets with three scales and four orientations were
extracted, which can be seen as detecting specially oriented
and scaled bars of intensity in the image. Their usage was
suggested by Würtz (1995) because of computational advan-
tages and biological plausibility.

In the second feature set, the visual hierarchy, informa-
tion is processed through subsequent layers of increasing
complexity. For this, localized information is integrated to
learn intermediate image features. The hierarchy consists of
four layers. S1, C1, S2 and C2. S1. Starting from the image
layer, subsequent layers pool their activity from each previ-
ous level, which leads to increasing location invariance and
more complex features. Activity in S1 corresponds to simple
cells in V1, C1 corresponds to their complex counterpart. S2
is calculating information which is expected to be present in
area V4 or posterior IT. In the final layer, C2, all position and
scale information is removed, this level is representing a "bag
of features". In its original version, the output of the hierar-
chy was used as input for a classical support vector machine.
Instead, the current approach extended the hierarchy by add-
ing two layers of VCs and OCs. This way, VCs resemble
collections of intermediate features and their activity corre-
sponds to spread activity in the underlying layer C2. As can be
seen in Fig. 5, VCs and OCs integrate very well with the stan-
dard model of object recognition and the aspect of increasing
complexity in subsequent layers. This feature set was used
as additional input space for experiments designed to assess
recognition performance, as explained in more detail below.
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Fig. 5 The extension of the
used feed forward hierarchy
with our notion of VCs and OCs
(partially adapted from
Riesenhuber and Poggio 2003).
Layer C2 represents a set of
scale and position invariant
features, which acts as input for
the prototypes of the learning
procedure.

3.2.4 Feature selection

Extractions of visual features are known to be computation-
ally very expensive, which is why the dimensionality of input
space should be kept as small as possible. Consequently,
selecting the right amount and types of features is decisive for
the later performance of the system which is why this deci-
sion is highly task-specific and normally done by a human
expert. With iGRLVQ, however, this problem can be solved
differently. Initially offering a whole variety of standard mea-
surements, the system automatically selects relevant features
and prunes irrelevant ones in order to decrease dimension-
ality. The features initially used can broadly be put into two
categories, appearance and shape selective.

The required capability of selecting relevant features and
pruning irrelevant ones (Notion 4) is applied for efficiency
reasons and is done during learning to achieve better task-
dependency. Due to the high variability in visual data, it is,
even for humans, very hard to assess which measurements
will be useful for a particular data set and in a particular con-
dition. As mentioned before, the assigned relevance terms are
updated during learning and enhance important dimensions.
As also described in (Strickert et al. 2001), in addition to
only diminishing the influence of unimportant dimensions,
the system iteratively prunes the weakest dimensions, i.e.
the ones with the smallest λ-values, in order to completely
exclude them from the following learning process and, even
more importantly, from future calculations. In order to stop

pruning automatically, we suggest the usage of a validation
set. If recognition performance on this set drops, pruning is
stopped. One of the main advantages of using relevance terms
as a basis for pruning is that it can be done online, making
it an integrated part of the overall learning process. Hence,
feature selection and model learning cannot be seen as two
distinct processes in this setting. Both work interactively in
order to solve the current task and to adapt to the individual
situation.

3.2.5 Hebbian learning

In order to account for temporal associations of prototypes
and even more importantly to represent the inherent 3D struc-
ture of the objects, we use a mechanism comparable to Heb-
bian learning (Notion 2). Because learning is based on image
sequences, it is possible to keep track of the currently active
prototype. If it changes, the connection-weight H(wr , ws)

between the old wr and the new prototype ws is increased
according to:

Hnew(wr , ws) = τ Hold(w
r , ws) = τ Hold(w

s, wr ) (6)

τ is the learning rate. This simple and computationally very
efficient approach is able to successively extract aspect graphs
during learning.

The current implementation is a prototype- or view-based
approach. It uses a generic set of visual features together
with an automatic pruning algorithm. Because feature selec-
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tion is based upon relevance learning of iGRLVQ, the system
can reduce the input space as part of its learning process in
order to speed up future computations. Prototypes are con-
nected through Hebbian connections and OCs receive their
input from associated VCs to form a coherent object repre-
sentation. An incremental mechanism is applied in order be
able to deal with varying numbers of clusters and to create
sparse object models. Considering the number of parameters,
the approach is able to find the correct number of prototypes
and input dimensions and selects the most important features.
This significantly reduces the amount of external knowledge,
which has to be put into the system.

4 Empirical Evaluation

In order to test the effectiveness and behavior of the cur-
rent approach, multiple experiments have been carried out.
In addition to recognition performance, which is clearly most
interesting from a technical point of view, the current work
also includes an empirical evaluation of the system’s behav-
ior in comparison to the characterized biological findings.
The first section examines the system’s performance, which
is compared to other state of the art methods. Afterwards,
an elaborated investigation of the system’s properties with
regard to its biological counterparts is provided. In a different
setup, the automatically chosen number and the selectivity of
the prototypes are analyzed and compared to non-incremen-
tal methods. Moreover, some instances of the learned aspect
graphs are presented. The final experimental setup explicitly
deals with the feature selection mechanism, which is tested
in a standard and a one-vs-all setting. Finally, the rotation
invariance of the VCs and OCs is tested and compared, pro-
viding evidence for the increasing level of abstraction and the
effectiveness of the view-based prototype learning. An over-
view of the performed experiments together with the system’s
behavior and corresponding biological effects is provided in
Table 4.

4.1 Recognition performance and generalization
capabilities

Because the goal of the current work is to suggest a way of
creating high-performance object recognition systems
inspired by biological equivalences, the resulting recogni-
tion performance is clearly one of the most important com-
ponents in the evaluation of the overall approach. In detail,
the system’s object identification performance is tested on
the COIL100 database (Nene et al. 1996) and the CSC-
LAB image database Murphy-Chutorian et al. (2005). The
first provided image sequences needed for the extractions of
aspect-graphs. The second data set introduces object images
with heavy occlusion and varying illumination, scale and
viewpoint. Occlusion is one of the hardest problems with
which artificial recognition systems have to cope.

4.1.1 COIL100

The data set includes 360◦ image sequences of 100 objects.
In each subsequent picture of an object, it is turned by 5◦
such that there are 72 images for every object in total. The
experimental setup was the same as in (Obdrzalek and Matas
2002; Schneider et al. 2004), 4 (8, 18 and 36) images of
each object were used for training, and performance was
tested on the remaining ones forming the test set. Thus, in
the case of 18 views per object, the training set included
1,800 data points and recognition performance was tested
on the remaining 5,400 vectors. Some of the stimuli of the
database are shown in Fig. 6, resulting accuracies, adapted
from Kietzmann et al. (2008), are shown in Table 2. Our bio-
logically motivated approach is clearly able to compete with
other state of the art recognition systems even when drasti-
cally reducing the dimensionality of the underlying feature
space. The generic feature set performs slightly better than
the localized feature hierarchy. The latter does not include
any color information. A possible explanation for the differ-

Fig. 6 a Some examples of the
images in the COIL100
database. b Labelled example
scene from the CSCLAB
database

(a) (b)
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Table 2 Recognition performance of various approaches based on the
COIL100 database

Method # Training views

36 (%) 18 (%) 8 (%) 4 (%)

iGRLVQ Generic (137) 99.3 97.9 92.6 85.4

iGRLVQ Generic (50) 99.2 97.7 92.0 82.9

iGRLVQ Hierarchy (500) 96.5

iGRLVQ Generic (20) 98.5 96.3 88.9 76.3

PCA & NNa 98.2 96.5 – –

Spin-Glass MRF – 96.8 88.2 69.4

iGRLVQ Hierarchy (250) 95.9

iGRLVQ Hierarchy (100) 94.8

iGRLVQ (10) 97.0 93.8 85.3 69.2

Linear SVM – 91.3 84.8 78.5

Nearest Neighbor – 87.5 79.5 74.6

The numbers in parentheses of the generic feature set correspond to
the resulting dimensionality of feature space after pruning
a Results on 40 of the 100 objects using the first 12 PCAs

ence in performance is that color information is very ben-
eficial in this data set. This interpretation is also supported
by our feature-selection experiments with the generic fea-
ture set. which showed that dimensions dealing with color
information are among the most relevant ones.

4.1.2 CSCLAB image database

Because the COIL100 database does not contain cases of
occlusion or varying illumination and scale, the approach
was tested on a second, more difficult database. The CSC-
LAB image database consists of images of 50 objects in ten
highly cluttered scenes with heavy occlusion and changes
in illumination, scale and perspective. Exemplary stimuli
are shown in Fig. 6. Together with the object scenes, the
database provides one binary mask per image separating the
scene’s foreground from its background. This mask, how-
ever, does not include information about the separation of
the individual objects in a scene. As proposed by Murphy-
Chutorian et al. (2005), the images with only one object
present and half of the object images from the cluttered
scenes were used for training while the other half was used
for testing. The resulting test set thus only included images
of occluded objects. Scenes for which binary masks were
present were used in the experiments (967 for training and
490 for testing purposes, 1,457 in total). Although the data-
base is comparably difficult, the system was able to achieve
80.53% accuracy on the test set (Table 3). Despite the
promising results, the degraded performance, as compared
to the COIL100 results, shows the limitations of the sys-
tem when dealing with occlusion. An explanation for this is
the used generic feature set. Global features fail to capture

Table 3 Recognition performance of the approach using different types
of features

Feature set used Test accuracy (%)

Generic feature set 80.53

Feature hierarchy 100 92.04

Feature hierarchy 250 93.88

Feature hierarchy 500 94.90

Whereas the generic feature set is based on global features, the fea-
ture hierarchy includes localized information. In the case of occlusion,
as in the CSCLAB database, localized information greatly improves
recognition performance

the localized information needed to successfully deal with
only partly visible objects. This assumption, which implies
that localized information is needed to cope with occluded
objects, was verified by experiments in which an extension
of the feature hierarchy following the standard model (Mutch
and Lowe 2007). As expected, running experiments on the
same training and test sets increased performance dramati-
cally up to 94.9% (Table 3).

4.2 Amount and selectivity of prototypes

The number of object views is known to increase with learn-
ing progress and supports recognition with increasing task
complexity. In the same manner, the algorithm is able to
recruit different numbers of prototypes depending on the
given task during the learning procedure. When dealing with
easy tasks, no further recruitment of additional prototypes
is needed in order to achieve good results. However, with
increasing difficulty, the system automatically adds more
prototypes for complex objects in order to compensate for
the increased demands. The resulting possibility of the incre-
mental method to create sparse object models can very well
be seen when taking a closer look at the resulting numbers
of prototypes. Whereas the most simple object in the data set
(onion) was able to be represented with only one prototype,
more complex objects (e.g. hook) needed considerably more
resources. Exemplary selectivity of prototypes can also be
seen in Fig. 9. Generally speaking, because iGRLVQ starts
with only one representation per object and successively adds
resources on demand, the average number of prototypes is
significantly smaller as compared to standard methods. The
latter was explicitly tested in a prior experiment (based on the
generic feature set) in which iGRLVQ was tested against the
non-incremental variant GRLVQ with different numbers of
prototypes (3, 6, 9, 12 and 15) assigned to each object. Both
approaches were tested on 18 different training sets, which
were chosen such that every image was only once included
in a training set. Although iGRLVQ uses on average only
3.17 prototypes, it performs significantly better than GRLVQ
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Fig. 7 The average recognition accuracy and standard deviation of GRLVQ with 3, 6, 9, 12 and 15 prototypes per object compared to iGRLVQ
(which used only 3.17 prototypes on average)

when equipped with up to 12 prototypes per object (Wilcoxon
signed rank test with p < 0.001). Only when being equipped
with 15 prototypes per object, which is close to the num-
ber of training patterns, was GRLVQ able to compete with
iGRLVQ leading to a non-significant difference (Wilcoxon
signed rank test with p > 0.49). As important as the average
recognition performance is the resulting variance. Figure 7
shows the recognition accuracy together with the correspond-
ing standard deviation. Results of iGRLVQ proved to be least
variant. The degree of improvement becomes especially clear
when comparing iGRLVQ to GRLVQ (3). Although nearly
the same amount of resources was used, results of accuracy
and standard deviation differ remarkably.

An explanation for this remarkable difference can be given
by the fact that, with regard to the amount of prototypes,
GRLVQ does not differentiate between objects. Because of
this, every object has to receive the same amount as the most
complex one.

In the current system, the change in responsiveness, which
can also be seen in neurons in IT, was accomplished by chang-
ing the position of prototypes in feature space. Together with
the additions of new prototypes, the system is thus able to
find the optimal views needed for successful recognition.
Figure 8 shows the training patterns of a complex object and
a simple one together with the resulting prototypes. As can
readily be seen, the prototypes moved to parts of input space
where they could maximize the coverage of instances of their
corresponding class. In other words, the prototypes changed
their selectivity with increasing experience.

4.3 Learning of aspect graphs

Hebbian connections of prototypes were extracted during the
learning process. As a result, frequently co-occurring object
views are strongly interconnected. As can nicely be seen in
Fig. 9, the resulting aspect graph represents the 3D structure
of the object very well. Thus, the computational simulation
of creating coherent object views based on temporal associ-
ations proved to lead to quite effective solutions, which can
be used to infer the 3D structure of the object and improve
recognition stability.

4.4 Feature selection performance and semantics

Because it is among the most important capabilities of the
current system, the effects of feature selection were tested
in more detail. A good feature selection procedure should be
able to reduce input space as much as possible, while keeping
recognition accuracy comparably stable. The positive effects
of online feature selection are twofold. First, efficiency is
increased considerably because the pruned dimensions can
be completely excluded from the prototypes and therefore
from computations and future extractions. Second, the selec-
tion of relevant features during learning leads to solutions
particularly fitted for the current setting. With regard to effi-
ciency, results are provided in Table 2. As can readily be
seen, the feature space could be reduced to about 1/6 of the
original dimensionality while still keeping performance very
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Fig. 8 The x- and y-axis were selected to be the two most important
dimensions of input space. The training instances of a simple and a com-
plex object are drawn together with the resulting prototypes of iGRLVQ.
If the currently present amount is not able to cover the complexity of an

object, new prototypes are introduced (Object B). However, if the object
forms a clear cluster, as in the case of the easy object, a comparably
small amount of prototypes suffices (Object A)

(a) (b)

Fig. 9 a The three interconnected prototypes of a car. While it often
happened that a car was seen from the side followed by either the front
or back, it never occurred that a car was seen from front and back sub-
sequently. This is integrated in the graph by a zero-connection. Notice

that the canonical view of the car is put to the middle of the graph. b
The resulting aspect-graph of a more complex representation using five
prototypes

high. This can also be seen as proof for the effectiveness of
the selection algorithm.

Still, there is considerably more to be examined. In order
to test the feature selection semantics, two additional exper-
iments were conducted. In the first, subsets of objects were
formed according to two conditions. In the same shape condi-
tion, the sets contained only objects of similar shape (boats),
whereas the same color condition examined objects with
comparable color (wood, blue and red). The different train-
ing sets are shown in Fig. 10. Naturally, relevant features
vary with the training set and task. Thus, the feature selector
was expected to give emphasis on color in the first condi-

tion and to diminish relevance of color information in the
second. Because these feature expectancies were able to be
determined in a straightforward manner, this was used to
verify the semantics behind the selection as well as the sys-
tem’s capability of finding task-dependent solutions. The sys-
tem worked as expected in both conditions. In the first, all
shape information was pruned and only color information
corresponding to the colors in the training data was kept.
In the second condition, in which the color of all objects
was similar, color information was greatly diminished and
shape-selective features were emphasized (Fig. 11). Notice
that in the latter case, the color information present corre-
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Fig. 10 Instances of the training sets. Objects in the same shape con-
dition are shown at the top row, the three other rows show object sets
belonging to the same color/different shape condition

sponds to the colors in the training data. If any, only differ-
ences in these colors could differentiate the objects.

In a second experiment, the system was trained in a one-
versus-all setting. For this setup, all but one object were
assigned to the same class whereas the left object formed
a second one. The difference between this method and the
procedure used in previous experiments is that it results in
directly object specific features and not in a feature set best
fitting the whole recognition task. Results of this experiment
are given in Fig. 12. Regarding color histograms, it is espe-
cially remarkable that the importance of the selected col-
ors directly matches the distribution in the object. While the
object’s main colors were chosen to be highly descriptive,
minor nuances and variations were disregarded.

The advantage of having object-specific feature knowl-
edge is that the amount of extractions needed is reduced,
which is sensible in a great variety of situations. For instance,
when searching for a particular object in an image, as in
the case of object detection, it is especially valuable to have
a small but highly expressive set of features for which the
image can be scanned (Lange and Riedmiller 2006). In a dif-
ferent but related setting, namely the case of feature-based
attention, the knowledge of object-specific features is used.
As reviewed in (Maunsell and Treue 2006), neuronal activ-
ity in visual cortex can be modulated by attention paid to
certain features. With this in mind, the selected features can
be integrated into saliency maps in order to simulate atten-
tion paid to particular features and therefore objects. In yet
another but still related case, the system could extract only
some very general features and let further calculations be
guided by a first guess. Thus, the system first comes up with
a broad expectation with further extractions relying on the
object-specific features extracted to verify the first assump-
tion. This broadly corresponds to the reverse hierarchy theory
(Ahissar and Hochstein 2004; Oliva 2005), where the gist of
a scene is processed first in order to guide a later and more
detailed analysis.

4.5 Rotation invariance of VCs and OCs

We argued for the importance of invariant object
recognition, i.e. an object should be recognized indepen-
dently of its currently seen perspective. In this regard, rota-
tion- or view-invariance is an interesting feature of VCs and
OCs. Testing a biologically motivated object recognition sys-
tem, this attribute was also used by Einhäuser et al. (2005).
Generally, this measurement describes the sensitivity of the
cell’s activity with regard to the object’s perspective, i.e. cells
being only active on a certain view of an object are less rota-
tion-invariant and thus more view-dependent than cells with
high activity for a greater amount of views. Because we deal

(a) (b) (c) (d)

Fig. 11 The pie charts show the resulting feature space after training
objects with a different color but similar shape, b wooden color, c blue
color, d red color. The sizes of the parts are proportional to the rele-
vance values assigned to the corresponding features. Although shape
information was completely pruned in the same shape/different color

condition, the relevance values for shape selective features were greatly
enhanced in the cases where the colors were selected to be similar. In
the latter case, the remaining colors directly resembled the ones present
in the training set (e.g blue colors in c)
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Fig. 12 Some exemplary objects together with the resulting features
when trained in a one-vs-all condition. In this case, feature selectiv-
ity was set to 10, such that the most relevant 10 features were itera-
tively selected. Still, it is possible to apply a stopping criterion to decide
when to stop pruning based on the current performance. This way, each
object would also yield its required number of features. Together with an

example of the training images, the selected color features are shown.
Here, the proportion of the colors in the images illustrates the weight
of the corresponding input dimension. Finally, the remaining feature
types selected together with the color information are provided, sorted
by relevance
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Fig. 13 This figure shows examples of the rotation invariance measure used. The more specific a cell reacts on certain views compared to others,
the smaller is the value of rotation invariance

with WTA networks and binary prototypical activity, a good
measure of rotation invariance is the area below the activa-
tion graph (Fig. 13) or simply the number of angles for which
the cell is active.

As in (Einhäuser et al. 2005), we train the system with
12 views of 50 objects and probe each VC and OC of our
system. The activity of OCs is calculated according to Eq. 5.
Because these cells represent objects on a more abstract level,
using the maximal activity of the connected VCs guarantees
achieving higher invariance than the VCs.

The trained system contained 127 VCs and 50 OCs.
Because the number of VCs was selected automatically, there
is a variable amount for each object whereas each OC repre-
sents exactly one. We compared the average rotation invari-

ance of all VCs versus OCs. For VCs, the average activity
and thus rotation invariance is 38% of the whole 360◦. As
expected, the OC rotation invariance was confirmed to be sig-
nificantly larger with a value of 98%. This means that about
7◦ of the possible object views are not covered by the object
cells. Obviously, this is equivalent to the achieved recogni-
tion accuracy.

These findings clearly demonstrate the system’s ability of
finding prototypes, which are explicitly responsive to views
of objects. Moreover, the proposed definition of VCs and
OCs proved to be able to realize different layers of abstrac-
tion. Cells in the lower layer correspond to specialized views,
whereas cells on a higher level resemble view-invariant object
representations.
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Table 4 A summary of the performed experiments, observed effects and their biological equivalents

Experiment Computational effect Biological equivalent

Number of prototypes Increasing numbers of prototypes are The number of views increases with

recruited on demand for complex learning and task complexity (Aspect 5)

objects and in complex tasks

Selectivity of prototypes Adjustments of prototypes result in Neurons change their selectivity while

different positions in feature space and learning (Aspect 5)

thus changing selectivity

Feature selection semantics Features were selected to best suit Perceptual learning, popout effects and

the task at hand. Irrelevant information was visual attention provide evidence for

pruned in order to increase selective feature relevance (Aspect 4)

performance and stability

Feature selection: one-vs-all The selected features are directly Experiments show that relevant

dependent on the underlying object and features are selected for

resemble the input dimensions, which object detection (Aspect 4)

are suited best to distinguish the object

from all others

Learning of aspect graphs The resulting aspect graphs directly Neurons are known to connect

resembled the 3D structure and typical co-occurring visual stimuli

way of motion of the learned objects such as object views (Aspect 2)

Rotation invariance VCs exhibit increased rotation variance, Object cells in IT are known to be

whereas OCs form a more abstract and rotation invariant. However, view-selective

invariant object representation. cells respond to particular views of objects (Aspects 1, 3)

5 Discussion

The current work proposes a conceptual framework for bio-
logically motivated object recognition systems. Integrating
the suggested notions for artificial approaches and being
conform to the described aspects of human vision, the imple-
mented system proved the effectiveness and biological plau-
sibility of the approach in various settings. The aim of the
current work was not to give a biological simulation of visual
processing in primate cortex, but to create a highly variable
and automatic object recognition system by relying on some
major biological notions and findings. This was accomplished
by applying an automatic feature selection procedure together
with an incremental learning method, Hebbian connections
of VCs and more abstract level of representation in form
of OCs. With this combination, the necessary amount of
human expertise and domain knowledge could significantly
be reduced.

The incremental learning procedure proved to be very
effective especially when applied together with feature selec-
tion because the optimal number of prototypes cannot be
known a priori when dealing with a varying input space. As a
result, the system is able to recruit new prototypes on demand
when the task at hand turns out to be too complex to be solved
with the resources currently available. iGRLVQ is designed

to generalize from the presented data and thus to use the
smallest possible amount of prototypes. As indicated, each
object is represented by only one prototype in the system’s
starting state. However, the task of concurrently optimiz-
ing recognition accuracy clearly forced the system to create
more specialized representations on a lower level, resulting
in view-selective cells. Although some objects could suc-
cessfully be represented by only one view, more complex
objects required multiple but specialized cells. This can be
seen as computational evidence for the necessity of view-
cells in object recognition.

The system’s ability to select relevant visual features out of
all available ones is clearly one of the most important benefits.
Since the feature selection is part of the learning procedure
itself, there is no necessity for relearning as in other standard
methods such as artificial neural nets (ANN) (Bishop 1995).
In addition to the clear computational advantages resulting
from the reduction of needed feature extractions, the system
is capable of creating highly task- and situation-dependent
solutions without the need for additional external knowledge.

Most of the current approaches to object recognition and
the underlying feature spaces are handcrafted to suit particu-
lar tasks. However, when a more general approach is needed,
thus being able to deal with a greater variety of tasks and situ-
ations, many systems use very general setups and give solu-
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tions suitable for many tasks with the same configuration.
This has the clear disadvantage of decreased performance
due to lacking task specificity. Our approach is capable of
finding task specific solutions while still being able to deal
with a great variety of situations and tasks. This substantial
advantage is due to its ability to automatically adjust the size
of the codebook as well as the feature space.

Limitations of the approach using the generic set of global
features were found in cases of heavy occlusion. Object based
image features only insufficiently capture local information
which is needed to successfully recognize partly visible
objects. A second limitation of the generic set of features
is the need for reliable image segmentation. As a possible
solution to both problems, the output of a feed forward hier-
archy of visual features, which integrates localized image
features to form intermediate representation schemes, was
used as input for the described framework. As can readily be
seen in Fig. 5, the feature hierarchy integrates very well with
our notion of VCs and OCs and is in line with the standard
model of object recognition. In more detail, the prototypes
of iGRLVQ react on collections of features from the output
layer of the hierarchy. As expected, including localized infor-
mation in the feature set greatly enhanced performance on
occluded objects.

As shown, object identification in cases of occlusion
requires highly specific and localized image features. On the
other extreme lies the task of object categorization where
multiple different class instances have to be classified as
belonging to one more abstract class. Although our current
description and implementation is explicitly designed to deal
with object recognition and not categorization, the system
was tested on the ETH80 database (Leibe and Schiele 2003)
which consists of ten object categories with ten instances
each. Based on the generic feature set, our approach reached
82% in a leave-one-out cross validation procedure, which
is comparable to results based on PCA (Leibe and Schiele
2003). Superior, but more task-adapted methods have
been published by Leibe and Schiele (2003) and Suard et al.
(2006). More interestingly, the localized feature hierarchy,
which clearly outperformed the global features in the CSC-
LAB recognition experiment, performs significantly worse
on this categorization tasks. Testing accuracy of the localized
feature hierarchy with 250 features was found to be 72.44%,
which is comparable to results of a patch-based approach
using SIFT Teynor et al. (2006). This shows the relatively
poor generalization capabilities of localized image features.
Taken together with the benefits of localized features in cases
of occlusion, the results clearly illustrate advantages and dis-
advantages of the described feature sets. While no feature
type exists, which performs well in all tasks, the different
approaches were shown to complement each other. Thus, a
combined use of localized and more global feature types in
a hybrid approach with the capability of selecting the cor-

rect features based on the current task is clearly sensible.
Although a more detailed analysis of these approaches is
beyond the scope of the current work, the proposed frame-
work and the described learning mechanism for features and
prototypes are well equipped to deal with this integration in
future work. For instance, an integration of color informa-
tion and local features could be achieved by adding a color
histogram to the input space. Input to the histogram could be
provided by color information from image patches around
the extracted local features. If global image features are avail-
able, which always includes the need for image segmentation,
local and global features could both form the overall input
space. After training, prototype positions then correspond to
collections of local and global features and task-irrelevant
dimensions are pruned. However, this approach does not
change the relative impact of the different feature types on a
case-to-case basis during recognition. A solution which does
not imply retraining could be to train two different modules,
one based on local features and one on global ones. When a
decision is required, each system “votes” for the object iden-
tity. The votes are weighted by the certainty of the decision,
calculated through the distance of the object currently seen
to the winning prototype and the overall reliability of the
module.

Additional future work includes a more detailed analysis
of the use of aspect graphs and visual context for chang-
ing a priori probabilities of prototypes and its application
in a fusion process, which are expected to further improve
performance of the overall system. Moreover, the system is
currently trained offline in batch mode. Nevertheless, an
implementation of the described learning procedure in an
online system is especially reasonable in the light of dynam-
ics of visual information and a possible application in the area
of robotics. Finally, integrating color information in possible
feed-forward hierarchies of visual processing is expected to
further improve performance and stability of the approach.
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