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Abstract The mushroom body is a prominent invertebrate
neuropil strongly associated with learning and memory. We
built a high-level computational model of this structure using
simplified but realistic models of neurons and synapses, and
developed a learning rule based on activity dependent
pre-synaptic facilitation. We show that our model, which is
consistent with mushroom body Drosophila data and incor-
porates Aplysia learning, is able to both acquire and later
recall CS–US associations. We demonstrate that a highly
divergent input connectivity to the mushroom body and
strong periodic inhibition both serve to improve overall learn-
ing performance. We also examine the problem of how synap-
tic conductance, driven by successive training events, obtains
a value appropriate for the stimulus being learnt. We employ
two feedback mechanisms: one stabilises strength at an initial
level appropriate for an association; another prevents stren-
gth increase for established associations.

Keywords Mushroom body · Drosophila · Neural network ·
ADPF

1 Introduction

Mushroom bodies are paired neuropils found in invertebrate
brains, characterised by prominent structures and linked to
diverse and interesting roles, including sensory integration,
place memory, motor control, visual navigation and certain
types of learning and memory, with an emphasis on olfactory
stimuli (Farris 2005; Zars 2000; Martin et al. 1998; Straus-
feld et al. 1998; Ferveur et al. 1995; de Belle and Heisenberg
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1994). They are one of the best studied regions of the insect
brain, and a framework for explaining learning and mem-
ory processes is beginning to emerge (Margulies et al. 2005;
Davis 2005; Heisenberg 2003; Waddell and Quinn 2001;
Roman and Davis 2001).

In this paper, we present a concrete model of learning
and memory in the mushroom body. Building such a model
implies completing any gaps in existing knowledge, and to
do so we incorporate models from other invertebrate stud-
ies (so that overall our model is constrained by biology). A
particular gap is the nature of synapse modification under-
lying learning and memory, which we address by including
the synaptic mechanisms underlying learning and memory
in Aplysia. We use simplified but realistic models of neurons
and synapses as model components.

A second constraint is functionality; the model had to suc-
cessfully perform a learning task. This requirement drove the
selection and modification of both connections, mechanisms
and parameters. We selected a learning task by beginning
with an hypothesis of mushroom body functionality, and then
devised a simplified and representative behaviour.

In the sections that follow we begin by presenting our
hypothesis of mushroom body functionality. This in turn sets
the learning problem the network has to solve, and the later
sections describe the model in detail and present data to illus-
trate it performing the task and how it does so.

2 Mushroom body function

While there is compelling evidence for mushroom body
involvement in learning and memory behaviours (Heisenberg
et al. 1985; de Belle and Heisenberg 1994; Dubnau et al.
2001) there is much less certainty of how, at a detailed level,
it actually contributes to these behaviours. We adopt a
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Fig. 1 The mushroom body (here represented by the single “output”
neuron) functions to learn and later identify biologically salient pat-
terns. During an initial training phase a particular pattern (shaded neu-
rons) is learnt. This process is driven by a value signal which indicates
when learning should occur (and is activated by the occurrence of a
salient event in the environment). During these times the representa-
tive mushroom body output neuron does not fire; the pattern has not
yet been acquired. Later, following sufficient learning, the pattern is
internalised. Further presentations of the pattern result in activity of the
output neuron, indicating the pattern has been detected

modelling approach whereby we first assume a specific role
provided by the mushroom body. A model is then developed
to meet this functional goal, while also being constrainted by
mushroom body and other invertebrate data.

We suggest the mushroom body serves to acquire, and
later detect, the patterns of synchronized activity in upstream
sensory neurons that reliably precede (and therefore predict)
the occurrence of a value signal (which itself typically sig-
nifies the occurrence of a biologically salient event). This is
illustrated in Fig. 1. A particular set of projection neurons
(which convey stimulus input to the mushroom body) fire
in synchrony just prior to activity of the value signal; this
set is the pattern which is acquired during learning. Once
learnt, subsequent occurrences of this pattern lead to activ-
ity of an “output neuron”, (the lobe neurons), which permits
downstream neuropils to initiate appropriate reflexes. The
mushroom body is the neuropil that performs this pattern
learning and subsequent activation of the output neuron. A
naïve mushroom body will detect no patterns; only through
learning and memory processes does it acquire patterns to
detect. The existence of value signals, or reward signals, in
the insect brain is supported by Schwaerzel et al. (2003) who
found certain neuro-modulators play an important role in
Drosophila learning and memory. Similar neuro-modulators
also exist in the honeybee brain, including prominent projec-
tions to the mushroom body (Hammer 1993; Hammer and
Menzel 1998).

Such an overall function makes sense from a behavioural
perspective. Any animal undergoing the daily struggle to
survive and reproduce will be strongly interested in salient
events that either endanger or support these aims. Animals

that can predict when such events are about to occur will
gain a clear advantage over competitors that are less able
to do so. Liu et al. (1999) also consider the problem faced
by animals living in the “real world” which use learning as
an adaptive mechanism to survive: “animals need to extract
from the universe of sensory signals the actual predictors of
salient events by separating them from non-predictive stim-
uli (context)”. Their experiments indicate that the mushroom
body may support this process.

3 Model description

Figure 2 illustrates the complete mushroom body model. The
core components are the calyx (excitatory synapses), Kenyon
cells (KCs), and the synapses of the lobes. Also shown are
the nearby networks for input and output. The model has a
two layer architecture. The first layer—the calyx and KCs—
transforms the spatial code of projection neuron (PN) activity
into a sparser spatial code at the Kenyon cells. The second
layer—the lobe synapses and lobe neurons—act as detectors
for particular spatial codes among Kenyon cells.

The model was implemented using “simplified” models
of neurons and synapses; a spiking integrate and fire model
is used for neurons, and a conductance based model for
synapses (Koch 1999). Such simplifications are necessary
when computing large networks of neurons and serve to
highlight the minimal features necessary to support network
properties (Trappenberg 2002 p. 13). This approach is com-
monly termed “biologically inspired”, which places empha-
sis on replicating general principles rather than detailed
physiology.

Although the architecture and learning mechanisms used
in the model were strongly inspired by Drosophila data,
the objective of the simulation was to demonstrate the con-
ceptual model of layer interactions and synapse learning
rule, rather than attempting to replicate the real fly-brain.
Model size therefore reflected what was minimally neces-
sary for interesting scenarios to be investigated (e.g., multiple
input stimuli), and what was tolerable in terms of the dura-
tion of simulation execution. The later point is particularly
important because some parameter values were found by a
manual process; we needed simulation runs to complete in
hours rather than days. Simulation execution time depends on
the total network size, and here our architecture compounds
the problem of scaling; if instead of 630 KCs we matched
Drosophila’s 2500 (Heisenberg et al. 1995), the number of
KC to lobe neuron synapses would increase from ≈16,000
to ≈65,000. It is also important to note that the size of some
layers result from our interlayer connectivity rule; e.g., the
number of KCs is determined by the number of upstream
PNs. Our present focus is to investigate the behaviour that
follows from such rules alone, rather than how these rules
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Fig. 2 Overview of the mushroom body model and the input/output
networks it connects to. Input is provided by 36 projection neurons
(PNs). These connect to 630 Kenyon cells (KCs) in a pair-wise fash-
ion: for every combination of two PNs, there is a KC which receives
input from solely those two PNs. Each KC acts as a coincidence detec-
tor; it spikes only if its upstream PN pair fire in loose synchrony. This

leads to a sparse activity pattern at KCs, which aides learning and mem-
ory. Learning and memory processes occur at the ADPF lobe synapses
which connect KCs to 40 lobe neurons (LNs). ADPF is a form of value
driven learning; synapse strengthening occurs when the synapse and
value neuron (VN) are simultaneously active. Each KC–LN pair is con-
nected with probability 0.65, leading to ≈16,000 lobe synapses

would need to be adjusted to fit within more realistic net-
work sizes.

3.1 Input transformation

The ability of the network to sparsen an earlier spatial activ-
ity pattern rests on the PN-to-KC connectivity and the role
of individual Kenyon cells. Actual Drosophila mushroom
bodies exhibit a highly divergent connectivity; 50 antennal
lobe glomeruli project to 2,500 Kenyon cells (Heisenberg
et al. 1995). Our model uses an idealised connectivity scheme
which serves to highlight the principle of high divergence.
PN-to-KC connectivity is based on each Kenyon cell acting
as a simple coincidence detector for a pair of PN inputs; a
KC will only fire if both inputs are synchronously active.
A straightforward method to connect a population of PNs
to a downstream population of KCs is to mandate that each
combination of two PNs projects to a unique Kenyon cell.
This pair-wise connectivity leads to a hugely divergent con-
nection, and also determines the number of KCs required to
support a given number of PNs (36 PNs requires 630 Ken-

yon cells and 1,260 synapses). A further consequence of this
pair-wise connectivity and KC coincidence detection role is
that activity transformation is entirely deterministic.

Figure 2 illustrates sparsening occurring. The active PNs
(shaded blue) account for 33% of their population, however
the pattern they affect at the KC layer accounts for only ≈9%
of the population. In general a sparseness of S at the PN layer
will result in sparseness of S2 at the KC layer.

3.2 Coincidence detection

Kenyon cells function as coincident detectors by way of
appropriate parameter adjustment for both neuron and excit-
atory PN-to-KC synapses. Parameters for each KC (listed in
the appendix) were chosen to reflect other simulation studies
(Wüstenberg et al. 2004; Gingrich and Byrne 1987, 1985).
Parameters for the excitatory PN-to-KC synapses were found
empirically. This was done by tuning their values to achieve
robust coincidence detection for a pair of single spikes, and
also for a pair of loosely synchronous spike trains arriving at
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Fig. 3 a Input spikes (top) for a pair of PNs, PN-A and PN-B, do
not have to be perfectly synchronised to trigger KC V (t) (bottom) to
threshold. Because of temporal processes in both the synapse and neu-
ron models, coincidence detection is robust to some spike jitter, i.e., a
separation of several milliseconds. This also shows IF neuron behaviour
post spiking. V (t) is immediately reset to Vrecov, which is set just below
Vthresh (see Table 1). Then follows a brief refractory period (10 ms)
during which end plate currents from pre-synaptic spikes are ignored.
When normal behaviour resumes “after potentials” are observed; these
are due to residual levels of end plate currents. b Response to two loosely
synchronous spike trains. The KC is still able to perform coincidence
detection

20 Hz (Fig. 3), which is based on the frequency of projection
neuron spiking in the Locust (Wehr and Laurent 1996). The
end result is an upper and lower bound for synapse intrinsic
conductance gsyn. Values for individual synapses were drawn
from this range (with gmean = 1.3 nS and gσ = 0.1 nS). These
synapses were also fast acting, with a conductance decay
half-life of 5 mS.

Robust KC performance could not be achieved solely via
parameter selection. Problems arise when spike trains arrive
completely out-of-phase. In such cases we observed occa-
sional KC firing, even though spike pairs were not synchro-
nous (Fig. 4a). To solve this problem the functionality of
lateral horn inhibitory (LHI) network was introduced to pro-
vide regular bursts of inhibition to the KC layer. This inhibi-
tion served to reset the KCs following the most recent detec-
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Fig. 4 a KC mis-firing arising from two out-of-phase spike trains.
There are no occurrences of loosely synchronous spike pairs, but the
KC coincidence detector still (wrongly) fires. b KC mis-firing is elimi-
nated by synchronized inhibition from LHI neurons. Inhibition arrives
shortly following a global population response (here signified by PN-C
and PN-A synchrony). A feature of this inhibition is that it is very pow-
erful. KCs are strongly polarised, preventing the PN-B out-of-phase
spike train raising V (t) to threshold. The KC only spikes for PN-C and
PN-A synchrony

tion episode (Fig. 4b), and is implemented through powerful
inhibitory synapses which are activated whenever a PN pop-
ulation response occurs (i.e., when a large proportion of the
PNs begin to fire in sychrony). A delay of 15 ms is introduced
between PN population response and inhibition occurrence,
which gives the KCs time to integrate PN spikes before inhi-
bition arrives.

Building a biologically plausible LHI network from neu-
ron and synapse models to detect and respond to PN popu-
lation responses is a non-trivial task. This was not attempted
for the present study, although work on antennal lobe mod-
elling by Bazhenov et al. (2001a,b) suggests an approach for
solving this kind of problem. Instead, we replicated the func-
tionality of such an LHI network. This was possible because
the input stimuli (i.e., patterns of PN firing) were under exper-
imental control, and so the output of an LHI network could
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be replaced by an LHI signal that was coupled (and delayed,
as noted above) to the pre-determined PN patterns.

As noted earlier, the combined effect of KCs acting as
coincidence detectors and a hugely divergent connectivity
from PNs to KCs serves to sparsen patterns of activity. Sparse
coding is typically associated with greater memory and recall
efficiency (Olshausen and Field 2004), and in the current
case, such coding leads to improvements in learning and
memory when similar patterns must be discriminated, which
can be illustrated with a numerical example. Consider two
patterns both of size 10 with an overlap of 70%. With such
a high overlap an animal could easily mis-identify one pat-
tern for another, leading to potentially life threatening wrong
decisions. However, via the pair-wise transformation, this
overlap is reduced to ≈47% at the KC layer. Thus the ani-
mal will be better able to discriminate KC patterns, and it is
the patterns of this layer that feed to the next layer, where
learning, memory and recall take place.

3.3 Associative learning

The second layer of the model is representative of the mush-
room body lobe. Its chief component are the lobe synapses,
which convey input from the upstream KCs to 40 lobe neu-
rons. Any KC is connected to any lobe neuron with a proba-
bility of 0.65. The lobe also receives input from the external
value neuron. Collectively the lobe provides the learning and
memory ability of the model.

The lobe serves two roles. The first is to detect patterns
of KC activity. Each lobe neuron may become associated
with one or more KC spatial activity patterns; if one of these
pattern arises, the associated lobe neuron will start to spike.
These lobe neuron spikes in turn trigger a behaviour that is
appropriate to the CS being presented, i.e., we assume the
lobe neurons are connected to “command neurons” (Carew
2000) that can initiate reflex actions (not shown in Fig. 2).
Through these roles the mushroom body is able to associate
a CS (KC patterns) with a conditioned response (lobe neuron
spiking).

The second role of the lobe is the formation of these associ-
ations. Initially each lobe neuron will not detect any KC pat-
terns. It is only through learning and memory processes that
lobe neurons are recruited as detectors. The basis of these pro-
cesses is purposeful change to lobe synapse strength. Mem-
ory acquisition corresponds to strength increase; sufficiently
strong lobe synapses permit KC spikes to depolarise lobe
neurons to supra-threshold levels, inducing spiking (and in
turn an appropriate reflex action).

In choosing a learning rule for the lobe synapses we faced
a synapse weight dilemma. Because arbitrary KC patterns
could be of any size, there is no uniform value that synapse
strengths should tend toward during learning. Rather, for a
useful association to be made, the final lobe synapse strength

Fig. 5 The variables and interactions of the ADPF based synapse
model. A pre-synaptic spike train drives the pre-synaptic history trace
p(t), which together with modulatory input r(t) drives growth of intrin-
sic conductance gsyn(t). Each spike increases the actual time varying
conductance occurring at the target neuron, g(t); these increments are
equal to the value of gsyn(t) at the spike times. Spiking activity at the
post-synaptic neuron results, via a retrograde signal, in a second history
trace q(t) which in turn drives gbase(t) to quickly approach gsyn(t). Out-
side of learning episodes gbase(t) decays very slowly to zero and gsyn(t)
decays quickly toward gbase(t); through this relationship gbase(t) indi-
cates longer term memory. The quantity p(t) is loosely analogous to
an intra-cellular Ca2+trace elevated by CS activity, while r(t) relates
to US induced serotonin input

must correlate closely with the size of the KC pattern; too
low and the association will not be recalled, but too high and
the association will be recalled for partial presentations of
the pattern.

3.3.1 Synapse model

A synapse model was built with this problem in mind, and
also with the motivation to remain consistent with Drosoph-
ila and other invertebrate biology. This model is depicted in
Fig. 5, which shows the time varying quantities and interac-
tions underlying learning, memory and signal transmission.

The synapse uses a conductance based model of signal
transmission. Pre-synaptic spikes drive transient increments
to an instantaneous conductance g(t) according to,

dg

dt
= − ln 2

λsyn
g +

∑

tp

δ(t − tp)gsyn(t)

where λsyn is g(t) decay half-life, and tp are the pre-synap-
tic spike times. This equation (and others like it encountered
below) was simulated using an update rule,
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g(t + �t) = g(t)e
− ln 2
λsyn

�t + np(t,�t)gsyn(t)

where np(t,�t) is the number of pre-synaptic spikes between
t and t + �t .

Whereas g(t) is a measure of the present activity of the
synapse, gsyn(t) corresponds to intrinsic strength. Learn-
ing and memory processes are introduced through equations
involving this latter quantity.

No complete mechanistic account of synaptic plasticity
in the Drosophila mushroom body exists (i.e., a descrip-
tion of how multiple events in different neurons qualitatively
affect strength). To overcome this gap, we modelled learn-
ing and memory processes on ADPF—activity dependent
pre-synaptic facilitation (Hawkins et al. 1983; Walters and
Byrne 1983). This is the mechanism underlying sensitisation
and classical conditioning of defensive reflexes in Aplysia.
Briefly, a sensitising stimulus (the US) causes release of the
modulatory neurotransmitter serotonin onto sensory neuron
terminals, where it binds to G-protein-linked receptors. This
initiates an intra-cellular biochemical cascade: first the pro-
duction of second messenger cyclic AMP (cAMP) is stimu-
lated; increased levels of cAMP next activate protein kinase
A (PKA); PKA promotes the phosphorylation of other pro-
teins, and those it targets are thought to include K+channels,
the phosphorylation of which can lead to their closure. Closed
K+channels result in broadened action potentials in the sen-
sory neuron, which in turn leads to greater neurotransmitter
release per spike (i.e., an enhanced synapse strength). The
net consequence is that an enhanced excitatory post synaptic
potential (EPSP) is invoked in neurons post-synaptic to the
sensory neuron.

This mechanism accounts only for facilitation. Activity
dependent facilitation describes US interaction with a pre-
ceding CS. The main concept is that activity in sensory neu-
rons (the CS) immediately before the arrival of serotonin
neurotransmitter (the US) results in an amplification of the
sensitisation effect that serotonin alone induces. Successive
sensory neuron action potentials transiently elevate intra-cel-
lular Ca2+, which in turn activates a calmodulin dependent
“priming” of a serotonin-sensitive adenylyl cyclase (AC).
This primed cyclase causes a greater production of intra-cel-
lular cAMP upon subsequent coupling of serotonin to sen-
sory neuron receptors. Increased cAMP levels amplify the
remaining steps in the sensitisation cascade, finally resulting
in enhanced EPSPs. The key difference between the cellu-
lar mechanisms for sensitisation and classical conditioning
is this “priming” of cAMP production by preceding sensory
neuron (CS) activity. The pre-synaptic neuron is the site of
CS and US convergence and where initial learning-associ-
ated changes occur.

Core concepts of this mechanism motivate the synapse
model of Fig. 5. Intra-cellular Ca2+allows early occurring
CS related pre-synaptic spike activity to influence a later

occurring US. This is modeled as a history trace of spike
activity,

dp

dt
= − ln 2

λp
p +

∑

tp

δ(t − tp)

where λp is decay half-life and tp are the times of pre-synaptic
spikes.

According to ADPF, enhanced strengthening occurs when
this spike activity interacts with modulatory input. In Fig. 5
such input is represented by r(t), and this interacts with p(t)
to modify intrinsic strength according to,

dgsyn(t)

dt
= r(t)p(t)ηsyn − (

gsyn(t) − gbase(t)
)
κsyn (1)

where ηsyn is the growth rate, κsyn the decay rate, and gbase(t)
the decay target.

Learning events (i.e., when r(t) > 0 and p(t) > 0) cause
immediate change in gsyn(t). However, this initial learning
is not long lasting; gsyn(t) quickly decays to gbase(t), which
itself represents longer lasting memory.

Consolidating initial learning into memory is based on fur-
ther Aplysia neurobiology. Learning and memory in Aplysia
is not an entirely pre-synaptic process. Antonov et al. (2003)
provide direct evidence that together with ADPF, there is a
longer term post-synaptic component to learning, and that
these interact with each other. A revised “hybrid” model of
associative learning (Antonov et al. 2003; Lechner and By-
rne 1998) has post-synaptic Hebbian LTP interacting with the
pre-synaptic ADPF process via a postulated retrograde sig-
nal; this signal arises from post-synaptic increases in Ca2+,
which in turn results from activation of post-synaptic NMDA
receptors. Roberts and Glanzman (2003) suggest that learn-
ing associated changes in sensory neurons could be made
more persistent by this trans-synaptic signal, and are essen-
tial for longer term memory.

We incorporate this concept of a retrograde signal being
critical for consolidation into the synapse model. The retro-
grade signal is q(t) in Fig. 5, and is just a history trace of
post-synaptic activity,

dq

dt
= − ln 2

λq
q +

∑

tq

δ(t − tq)

where λq is decay half-life, and tq are the times of post-syn-
aptic spikes.

The memory term gbase(t) evolves according to,

dgbase

dt
= (

gsyn(t)αsyn − gbase(t)
)

q(t)ηbase − gbase(t)κbase

where ηbase is the growth rate, κbase the decay rate and αsyn

influences the target value that gbase(t) will grow toward. The
driving process is the difference between short term conduc-
tance gsyn(t) and longer term conductance gbase(t), and such
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differences occur shortly after learning events at the synapse.
Before initial learning is forgotten (i.e., before gsyn(t) decays
to base levels), the above equation allows gsyn(t) to “pull”
gbase(t) toward it. This pulling-up process is the consolida-
tion of learning into longer term memory, since changes to
gbase(t) will decay more slowly than changes to gsyn(t). For
this volatile to persisted transfer to happen there must be
ongoing activity of the retrograde signal q(t). In the simu-
lation runs αsyn = 1.05 was used. This allowed gbase(t) to
very slightly overshoot gsyn(t), leading to more robust mem-
ory formation. However this has a problem; later activation
of the strengthened synapse that leads to post-synaptic firing
will result in further slight increments of its strength. In the
present model this can continue without limit. One solution
is to take the approach of other synapse models, where the
weight variable [in this case gbase(t)] is restricted to hard
limits (Damper et al. 2001).

3.3.2 Feedback mechanisms

The above model solves one aspect of the weight dilemma.
Due to memory consolidation requiring the retrograde signal
and because this signal is only active once lobe synapses have
been sufficiently strengthened to trigger lobe neuron spiking,
consolidation will always tend toward a strength that is suf-
ficient for activating lobe neurons.

The retrograde signal is one of two feedback mechanisms.
The second form of feedback prevents synapses from becom-
ing over-strengthened. It takes the form of an inhibitory path-
way from lobe neurons to a relay on the value neuron (VN)
pathway (illustrated in Fig. 2). Once lobe synapses possess
sufficient strength in order to trigger lobe neuron spikes,
the value signal is suppressed (via the feedback). This cau-
ses the modulatory input r(t) to become zero, and so no
further strengthening takes place; lobe synapses remain at
a strength appropriate for the size of the KC pattern just
acquired.

The overall performance of r(t) has similarity with the
idea that expectation of a reward/punishment influences
learning. If a US is predicted (i.e., if a lobe neuron is
firing), then its immediate occurrence does not cause learn-
ing. However if the US occurs unexpectedly, learning takes
place.

Aside from achieving an appropriate synapse strength, the
overall learning network has the advantage of being very
selective in the synapses that undergo consolidated enhance-
ment. Only synapses that conveyed the CS pattern and con-
nect to a lobe neuron that fired, undergo consolidated
strengthening. This helps to minimise the introduction of
spurious associations (i.e., accidental associations between
KC patterns and lobe neuron firing that are not based on
experience).
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Fig. 6 a Spiking activity of 14 out of 36 PNs. Each PN is plotted on a
different row, and a short vertical line signifies a single spike. The spike
trains are loosely synchronous, and one set of 4 PNs is firing out-of-
phase to another set of 8. b Corresponding response of the 630 Kenyon
cells. Each KC is plotted on a separate row, although most are inactive
and so produce no spikes. Due to the strong LHI inhibition the KC fir-
ing quickly reflects only activity of the 8 PNs, and not the 4 that are
out-of-phase. Very few of the Kenyon cell population fire, illustrating
the sparse response

4 Results

The model was repeatedly evaluated as a computer simula-
tion in order to refine values for selected neuron and synapse
parameters until coincidence detection and learning behav-
iours were reliably established (other parameters were based
on values taken from biological and simulation literature, as
explained in the tables in the appendix). Data from selected
runs are next presented to demonstrate these behaviours.

4.1 Coincidence detection

The response of KCs to synchronised input from PNs is
shown in Fig. 6. Input comes from two active subsets of
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Fig. 7 Learning demonstration. The upper plot shows 12 projection
neurons producing a series of short spike trains which are accompanied
by US input, r(t). The middle graph shows lobe neuron activity; at

t ≈ 30 s several start reliably firing, which indicates an association has
formed. This is caused by increasing lobe synapse strengths reaching a
level sufficient to trigger lobe neuron firing (bottom graphs)

PNs. Out of a population of 36 (only 14 are shown in 6a), a
first subset of 8 (22% of population) is synchronously active,
while a second subset of 4 is also synchronously active but
out-of-phase to the first. Activity takes the form of a brief
spike train with duration 600 ms and frequency ≈20 Hz. All
other PNs are inactive.

Individual KCs emit single spikes at times strongly
coupled to PN spikes. A brief deviation from this regular-
ity occurs at the start of the response (at ≈90.025 s), which
is due to the LHI inhibition not yet being effective. Moving
from individual KCs to the KC population as a whole, the
spareness of the response is clearly evident. Very few KC fire;
the Y -axis of 6(b) represents all 630 KCs, but only ≈28 KCs
are spiking, which is less than 5% of the population.

4.2 Learning

Figure 7 demonstrates learning. Synchronous PN activity is
delivered together with a value signal r(t), which consists of
a sequence of pulses (brief periods of r(t) = 1, while at all

other times r(t) = 0) each 300 ms in duration and follow-
ing CS onset by 300 ms. Lobe neurons do not initially spike
(demonstrating that initially there is no association based
on the PN patterns), but a pair start to do so at ≈30 s. This
change from no-response to spiking occurs because of learn-
ing-driven synaptic strengthening, which is shown in the plot
of synapse strength gsyn(t).

The presence of a learning process is evident in the nature
of gsyn(t) changes. These consist of abrupt increases that
occur with each training event [i.e., occurrence of r(t)
pulses]. Each increase is followed by a period of quick decay
as gsyn(t) falls back to the base level gbase(t). However gsyn(t)
does not fully decay to zero; training events occur in close
enough succession to raise gsyn(t) to increasingly higher
levels. A threshold effectively exists at ≈60 pS; this is the
level at which a particular group of active lobe synapses are
sufficiently strong to induce spikes in lobe neurons. This
threshold is not a fixed parameter of the model; it rather is
determined by the number of lobe synapses that convey a par-
ticular KC pattern to a lobe neuron, and is hence dependent
on the size of the KC pattern, which is illustrated in Fig. 8.
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Fig. 8 Relationship between pattern size and synapse strength. For
larger PN patterns, the lobe synapse strength required to form an asso-
ciation is lower (right hand column); for smaller patterns, the required
synapse strength is higher (left hand column). The speed of acquisition
is also influenced by pattern size; lobe neurons begin spiking earlier for
larger PN patterns

The start of regular spiking by 2 lobe neurons indicates that
an association has been acquired (and the feedback mecha-
nism from lobe neurons to VN means that this activity shuts-
down the modulatory input). Following this point two main
pathways exist for gsyn(t). The synapses connected to the
2 spiking lobe neurons receive the retrograde signal which
induces longer term memory, and subsequent gsyn(t) decay
is greatly reduced (indeed it is not even apparent from the fig-
ure), because the longer term conductance gbase(t) has been
rapidly “pulled up” to around 60 pS. The association between
the CS pattern of 8 PNs and activity in these 2 lobe neurons

has been consolidated into longer term memory via changes
in these synapses. Persistence is illustrated by the later pre-
sentation of the CS pattern, which is able to activate the lobe
neuron pair.

Nearly all other lobe synapses—including those strength-
ened but not connected to the active lobe neurons—undergo
gsyn(t) decay toward base level of zero, illustrated in Fig. 9a.
These decay to zero because that is the initial value of gbase(t),
and for these synapses gbase(t) was never increased by con-
solidation events (i.e., spiking of their post-synaptic lobe neu-
ron). The gbase(t) trace in Fig. 7 shows that a small group of
synapses stabilized at ≈20 pS; this indicates partial consol-
idation, and is due to their post-synaptic neuron not firing a
sufficient number of times in order to induce full consolida-
tion.

V (t) for one of the lobe neurons that became active is
plotted in Fig. 9b, and illustrates another effect of increas-
ing synapse strength. In response to successive volleys of
KC spikes (4 s period) the lobe neuron becomes increas-
ingly depolarised, which is due to the increasing strength
of the lobe synapses. Eventually synapses are strong enough
to cause depolarisation to exceed threshold, and the neuron
fires.

4.3 Partial CS

As noted earlier, the value of gsyn(t) attained during consoli-
dation is determined by the size of the input pattern presented
during learning. A consequence is that the implicated lobe
neuron will not be activated for partial presentations of the
learnt pattern. This is a useful property, since an association
is between the learnt stimulus and the US, i.e., between the
whole set of PNs activated by the stimulus and the US; an
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Fig. 9 a Histogram of lobe synapse gbase(t) at t = 100 s. Very few syn-
apses underwent consolidation, indicating the highly selective nature
of synapse learning (only 10% of lobe synapses linked to KCs that
conveyed the two PN patterns in Fig. 7 were recorded.) b V (t) for a
single lobe neuron during the acquisition of an association. As succes-

sive training events drive synapse strength growth, KC activity (occur-
ring at 4 s intervals) causes increasing depolarisation. Threshold is first
exceeded at ≈25 s [indicated by V (t) reseting to the recovery potential
of −90 mV], and regular spiking begins shortly afterwards
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Fig. 10 Presentation of partial stimuli to test recall of an association.
After an association has been acquired for a PN pattern of eight neurons,
partial patterns are presented (between 60 and 90 s). None are able to
cause firing of lobe neurons; partial patterns fail to recall the association

association should not be recalled by some arbitrary subset
of the CS.

Figure 10 demonstrates this feature of the model. During
an initial training phase an association develops between a
pattern of 8 PNs and two lobe neurons; acquisition occurs
at ≈30 s, and the memory still exists when tested at 90 s.
Synapse strength stabilises at ≈60 pS, the level suitable for
an input size of 8 PNs. The test phase comprises the succes-
sive presentation of partial PN patterns. The first such stim-
ulus, at t = 63 s, consists of only a single PN (12.5% of the
CS), and subsequent presentations are steadily increased until
the whole pattern is presented at t = 84 s. The figure shows
that lobe neurons do not fire for any partial-CS. Even when
7 out of 8 PNs are firing (87.5% of the CS) the association is
still not recalled. This is because synapse strengths are at the
minimum value for a PN pattern of size 8 (corresponding to
a KC pattern of ≈28 neurons) to trigger a lobe neuron. Even
for large subsets of the CS, the corresponding KC pattern is
significantly reduced; e.g., when the PN pattern is reduced
to 87.5% of the CS, only ≈21 KCs are activated (or 75% of
the original 28). This large reduction in the number of active
KCs results in insufficient synaptic input to induce lobe neu-
ron spiking.

4.4 Suppressing mushroom body output

We next introduced specific mushroom body impairments.
Actual conductance g(t) was selectively held at zero for
particular time intervals. This impairment is motivated by
Drosophila mushroom bodies studies in which output from
mushroom body neurons was transiently blocked (Dubnau
et al. 2001; McGuire et al. 2001).

Figure 11a shows the situation when mushroom body out-
put is blocked during training; i.e., there is no lobe synapse
output for the first 60 s of the experiment. During this period
the PNs and the US are being presented as per the estab-
lished training routine, and lobe synapse strengthening still
occurs as is demonstrated by the increasing gsyn(t). Due to
g(t) = 0 for this period, lobe neurons receive no stimulation;
there is no lobe neuron spiking. Consequently the feedback
control mechanism—for limiting the increasing strength—
is broken, and learning becomes distorted in the sense that
gsyn(t) exceeds the approximate value of 60 pS attained dur-
ing normal operation of the model.

When synapse output is permitted again, at t = 60 s, many
lobe neurons instantly begin firing, more than would occur
under normal conditions. This extra volume of response is
due to the enhanced synapse strengthening that occurred dur-
ing training; i.e., even for lobe neurons receiving a smaller
number of synaptic connections, the overall effect, when
combined with their excessive strength, is sufficient to cause
firing. This lobe neuron activity in turn causes retrograde
signalling, which consolidates the distorted synapse strength
into longer term memory.

The second run has lobe synapse output blocked between
60 and 90 s, i.e., during the test period (Fig. 11b). During
training synapse behaviour is normal, and consequently an
association develops at t ≈25 s, which is consolidated during
the remainder of the period.

During the test period there is no lobe neuron spiking;
i.e., there is no recall of the association that developed dur-
ing training. This is not very surprising, since lobe neuron
stimulation is driven by lobe synapse g(t), which for this
period is fixed at zero. This period also continues to present
the US (not shown) along with the stimulus, which results
in further strengthening of synapses. The resulting effect can
be seen when lobe synapse output is once more permitted
at t = 90 s; the number of lobe neurons responding has
increased.

Taken together these demonstrate the requirement of
lobe synapse signalling during learning: output is required
during recall, but not during learning, which matches
Drosophila observations. However once the messy details
of a neural network are considered, this conclusion has some
caveats. For instance, the suppression of output may lead to
distorted learning (which might not be immediately detect-
able at the behavioural level). Further, while synaptic trans-
mission is not required for acquisition of an association, in
our model it is required for consolidation (the retrograde
signal). This prediction could be examined in actual
Drosophila by training flies during a period of KC trans-
mission restriction, and later testing for longer term (24 h)
memory. We would expect such memory to be significantly
impaired due to the absence of any prior consolidation
events.
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Fig. 11 a Suppression of mushroom body output during training. An
association still develops but it is now distorted; synapses become overly
strengthened, so that many lobe neurons now fire for later presentations

of the CS. b Suppression during test (60 − 90 s). During the preceding
training phase an association successfully develops; however associa-
tion is not recalled while KC output is suppressed

5 Discussion

In this paper, we have aimed to give a mechanistic account
of learning and memory in the Drosophila mushroom body.
A simplified model was built to emphasise the higher level
processes involved. In developing the model we had the aim
of making it achieve a particular behaviour. This behaviour
is our hypothesis for mushroom body function: it serves to
acquire associations based on stimuli patterns that predict
biologically salient events, and later detects for such learnt
patterns. Our computer simulations demonstrates the model
is able to perform such learning.

Our model has a clear functional separation between the
KC layer and the lobe neuron layer. We assume a relatively
simple role for individual Kenyon cells; each acts as a coin-
cidence detector for a pair of inputs. Although the nature
of this connectivity is somewhat idealised (i.e., every possi-
ble set of two PNs is represented by a unique Kenyon cell),
the hypothesis supported here is that actual Kenyon cells do
offer a very similar unit of functionality, i.e., they detect for
coincidence across a small number of inputs. We address
the specific problem of KC mis-firing from extended spike
trains, or out-of-phase spike trains. Appropriate parameter
adjust solves the first problem, while the strong inhibition
provided by the lateral horn solves the second.

This coincidence detector role builds upon current ideas
in the field. A model developed by Huerta et al. (2004) simi-
larly has “individual KCs” serving as “coincidence detectors
for the synchronous PN input.” In his review of mushroom
body function Heisenberg (2003) discusses an olfactory role
in which he assumes “Kenyon cells are coincidence detec-
tors” that respond to activity in “three projection neurons
simultaneously”. The idea that the LHI provides a gain con-
trol mechanism also extends existing ideas. Nowotny et al.
(2005) employ “gain control through the known feed-for-
ward inhibition of lateral horn inter-neurons,” concluding

that it “increases the capacity of the system but is not essential
for its general function”. The present work assigns a simi-
lar but more specific role; the LHI input is precisely timed,
and strongly weighted, to disrupt the influence of PN spike
trains that are out-of-phase to the population response. The
inhibition serves to effectively reset KCs between coinci-
dence detection episodes. If LHI neurons were disrupted in
actual Drosophila, during either learning or recall phases,
then we would expect learning performance to be signifi-
cantly impaired.

Our model demonstrates the sparsening of a PN activity
pattern to a KC pattern, which is due to our pair-wise connec-
tivity between layers. Other mushroom body models suggest
this sparsening enhances learning; we too support this con-
clusion, but also offer qualitative and quantitative support.
It was shown a sparse representation aids in the situation
of preventing partial patterns from triggering an association
through the large reduction in KC overlap between full and
partial patterns. This is advantageous for the mushroom body
role of identifying predictors, because the predictor will be
the whole set of stimuli that strongly precede the US and
not just some arbitrarily small sub-part. A further aspect of
our pair-wise connectivity is the deterministic nature of PN
to KC pattern mapping; a defined PN pattern will robustly
establish a specific KC pattern. This is supported by Wang
et al. (2001), who found that odour quality (and also quantity)
can be identified with particular distributions of activity in the
Drosophila mushroom body. Our combinatorial connectiv-
ity predicts that odours which share molecular components
should yield different but partially overlapping patterns.

Our model also suggests a multi-modal integration role
for the mushroom body, for two reasons. First, our assumed
role—detector for patterns predicting salient events—is
inherently a multi-modal sensory processing task; predic-
tors will likely have simultaneous aspects in several modal-
ities. Second, we assume a homogeneous connectivity and
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operation of Kenyon cells, supported by Drosophila data
(Yusuyama et al. 2002; Ito et al. 1997), that is not restricted to
any single modality. Signals from a range of sensory modal-
ities could project to the mushroom body, providing they
satisfy the two constraints the model places on input signal:
they must be roughly synchronous and fire at the same fre-
quency (20 Hz); and more significantly, in terms of how they
represent information, input signals must convey an invari-
ant representation of stimuli. Early sensory pre-processing
networks could affect such transformations to raw sensory
output (Krichmar and Edelman 2002; Sporns and Alexander
2002).

Learning and memory processes are isolated to the lobe
synapses, supporting the hypothesis that changes in these
underly such abilities. Our synapse model is based on
Aplysia research; a neuro-modulatory transmitter acts on
recently active synapses to selectively increase their strengths
(ADPF). Other related models exist. Gingrich and Byrne
(1987) developed a synapse model of much greater detail
for their simulation of the mechanism in Aplysia, and
Damper et al. (2000) used a simpler model to incorporate
ADPF ideas into a robot capable of performing learning
behaviours. However, in terms of detail—at the level of
simplified but realistic models (with counterparts such as
IF-neurons and conductance based synapses)—the model
developed here is a new contribution. Our model is extended
to incorporate longer term memory by using two interacting
internal “weight” variables that decay at different rates. This
is a promising approach for building simplified/descriptive
synapse models that display a range of learning dynamics
because it is straightforward to introduce additional memory
phases. We solved part of the weight stabilisation problem
(i.e., when to trigger the consolidation process that converts
short term memory into longer term memory) by incorpo-
rating more biology, in this case the hypothesised feedback
mechanism from a spiking neuron onto its afferent synapse.
Because learning is driven by a modulatory neuro-transmit-
ter, we would expect that the US could be replaced by the
micro-injection of a suitable neuro-transmitter directly into
the Drosophila brain, as similarly occurs in the honeybee
(Hammer and Menzel 1998).

The possibility of an Aplysia learning mechanism exist-
ing within Drosophila is supported by biochemical processes
common to each animal. ADPF begins with the binding of
serotonin to G-protein-linked receptors. Partly disrupting this
form of signalling in Drosophila completely abolishes olfac-
tory learning (Connolly et al. 1996). ADPF also involves the
activation of a Ca2+dependent adenylyl cyclase (AC). Com-
monality to Drosophila is found in rutabaga mutants, which
are flies that lack a particular form of AC, and which show
significant learning impairment (McGuire et al. 2003; Zars
et al. 2000). The retrograde signalling is more speculative.
However, there is a possible post-synaptic contribution to

learning in Drosophila (Glanzman 2005). Xia et al. (2005)
found that flies in which NMDA receptors (suggested to exist
at neurons that project to the mushroom body) had been dis-
rupted scored significantly less in odour-shock conditioning
and abolished formation of long term memory.

Our model specifically addressed the need to prevent syn-
apse strengths becoming too strong. We hypothesised a feed-
back mechanism between lobe neurons and modulatory
input. The essential nature of this connection is that when
an association has been invoked by the occurrence of a cer-
tain CS pattern, any reinforcement events that might quickly
follow do not result in the over strengthening of synapses
underlying the association. In our model this mechanism was
implemented as inhibition from lobe neurons to a value neu-
ron. If feedback does take this form (rather than being a bio-
chemical process internal to KCs) then we would expect that
learning in Drosophila that occurs when KC output is sup-
pressed during training would result in distorted memories;
such an association based on a first odour would be recalled if
a different but similar odour were presented. Although spec-
ulative, this feedback mechanism relates to ideas in formal
learning theories where the discrepancy (“prediction error”)
between expected reward/punishment and actual reward/pun-
ishment influences stimulus–response learning (Sutton and
Barto 1981; Rescorla and Wagner 1972). In our model the
firing of a lobe neuron corresponds to US expectation and
r(t) to (partly) prediction error.

The mushroom body is an increasingly attractive target
system for computational modelers. It is manageable in size,
relatively well understood, is implicated in diverse and
interesting behaviours, including some that arguably con-
stitute primitive forms of cognition (Giurfa 2003; Brembs
and Heisenberg 2001; Menzel and Giurfa 1999). However,
it is only recently that computational models have appeared
(Wessnitzer et al. 2007; Nowotny et al. 2005; Huerta et al.
2004; Nowotny et al. 2003). A notable difference between
these and ours is the choice of synapse learning rule. In other
work there is a preference for using some form of STDP
(Sjöström and Nelson 2002), rather than ADPF. Another
important difference is overall function. While the present
work focuses on the problems with simple associative learn-
ing, Wessnitzer et al. (2007) consider non-elemental learn-
ing, Nowotny et al. (2005) and Huerta et al. (2004) study
classification of odours and Nowotny et al. (2003) examine
how interconnections between Kenyon cells might assist the
decoding of spatio-temporal patterns. These differences in
model function and composition will decrease as the mush-
room body is increasingly understood at behavioural, cellular
and genetic levels. The challenges facing modelers is to deter-
mine which data is most significant, and to incorporate this
into increasingly detailed but also insightful models that give
an account of how mushroom body processes interact with
other invertebrate brain regions to produce animal behaviour.
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Table 1 Parameters for an IF neuron model of a Kenyon cell

Parameter Value

Vrest −84 mV

gleak 0.26 nS

C 4.0 pF

Vthresh −25.8 mV

Vspike 9.5 mV

Vrecov −40.2 mV

trefract 10 ms

See text for details

Appendix

The parameters and values for the simulation components
that were modelled as neurons or synapses are listed below.
All equations were numerically solved user the (forward)
Euler method, with time-step of dt = 0.01 ms (chosen so that
it is much smaller than other time constants and so maintains
accuracy of simulation).

Keynon cell parameters

Table 1 lists parameter values for the IF neuron model of a
Kenyon cell. Vrest, gleak, C and Vthresh are copied from phys-
iological recordings (Wüstenberg et al. 2004 Table 1). Vspike,
the voltage the membrane is set to when a spike occurs, is
taken from a simulated Kenyon cell (Pelz et al. 1999 p. 1754).
trefract was initially set so that the maximum spiking fre-
quency is approximately 60 Hz [To match the observed max-
imum firing frequency of a Kenyon cell Wüstenberg et al.
2004 p. 2596]; this required a value of 16 ms. However due
to the time pressure of fitting coincidence detection into 50 ms
windows (due to the 20 Hz spiking frequency of projection
neurons) the refractory period was reduced to 10 ms, which in
turn gives the calyx inhibition (if present) greater time to act.
Vrecov is chosen to be 15 mV less than Vthresh; although this is
an artificial parameter of the IF neuron, the value was chosen
to reflect the approximately 15 mV dip in V (t) that follows an
action potential, as observed in empirical traces (Wüstenberg
et al. 2004). Lobe neurons used the same parameter values
except for Vrecov, which was set to −90 mV.

Calyx synapse parameters

Table 2 lists parameter values for the calyx synapses. The
reversal conductance was chosen to be above the resting
potential of the KC (which makes the synapse excitatory).
The decay half-life was set low, particularly to keep it signif-
icantly under the refractory period of the KC. This is done
to prevent the synaptic input resulting from one spike from
contributing to more that one KC spike. gmin and gmax are the

Table 2 Parameter values used for calyx synapses

Parameter value

E 0 mV

λsyn 5 ms

gmin 1.1 nS

gmax 1.5 nS

gmean 1.3 nS

gσ 0.1 nS

See text for details

Table 3 Parameters for the calyx inhibitory synapses conveying LHI
input

Parameter value

E −86 mV

λsyn 4.3 ms

gsyn 25 nS

axon delay 15 ms

See text for details

limits of intrinsic conductance which meet the behavioural
requirements outlined in the main text. Actual gsyn values
were drawn from a Gaussian with the specified gmean and
gσ . The latter was set so that 95% of gsyn value fell within
the guide limits

LHI Synapse Parameters

Table 3 lists parameter values for the LHI synapses. The
reversal potential is set very close to Vrest of the Kenyon
cells, so that inhibition is effective at resetting a neuron to
its rest state. Synapse strength, gsyn, has to be very strong; it
only has a very brief time to force V (t) to the resting level.
λsyn, the decay half-life is set sufficiently large so that inhi-
bition persists long enough to prevent out-of-phase spikes
from triggering a KC. If set smaller the inhibition would be
unsuccessful in resetting the KC; if set too high inhibition
would leak into the next cycle of spikes travelling from the
PNs to the KCs. The axon delay is the amount of time it
takes inhibition to arrive at the KC, relative to a PN popu-
lation synchronous response. i.e., if PNs are active at time
t = 0 their spikes will arrive at the KCs almost immediately,
while the LHI inhibition will follow at 15 ms. This value pro-
vides a hard limit to the level of loose-synchrony KCs can
accommodate.

ADPF synapse parameters

Table 4 lists parameter values for the ADPF synapses that
underpin learning and memory in the model. All synapses
were configured identically. Most values were found through
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Table 4 Parameters for ADPF based lobe synapses

Parameter value

E 0 mV

λsyn 8 ms

gsyn 0 pS

λp 50 ms

λq 200 ms

ηsyn 2.5 × 10−10

κsyn 3.125 × 10−2

αsyn 1.05

ηbase 1.66

κbase 8.33 x 10−4

Refer to the text for details

a lengthy try-and-test manual process (i.e., the model was
repeatedly “run” with slightly different parameter sets until
learning and memory behaviour was reliably established).
However some insights exist. λp, the pre-synaptic trace half-
life decay, was chosen to reflect the approximate KC ISI of
50 ms. λq, the half-life of the retrograde signal decay, was
given the larger value of 200 ms so that strengthening events
were prolonged. Reversal potential was set above KC thresh-
old in order to make the interaction excitatory; a relatively
long decay half-life was chosen to support temporal integra-
tion of many active lobe synapses; and the 0 pS initial strength
reflects the initial latent state of all synapses. The remaining
parameters control change in gsyn(t) and gbase(t). The equa-
tions for these are first order linear differential equations. As
such these parameters have, in a sense, standard roles. η con-
trols rate of increase and κ is the leak, and limits the value
the variable can obtain. It may appear odd that ηsyn is eight
orders of magnitude less than κsyn. However in Eq. (1) κsyn is
multiplied with a conductance term having magnitude 10−12,
while ηsyn combines with r(t) and p(t) having magnitude 1.
The net effect is that the growth term is three to four orders
of magnitude larger than decay; this results in the strong but
brief spurts of gsyn growth visible in Fig. 7. The remaining
parameter αsyn was chosen to be just above zero; this ensures
that during consolidation gbase(t) slightly overshoots gsyn(t),
which supports robust learning.
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