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Abstract We propose to model the functional architecture
of the primary visual cortex V1 as a principal fiber bundle
where the two-dimensional retinal plane is the base manifold
and the secondary variables of orientation and scale consti-
tute the vertical fibers over each point as a rotation–dilation
group. The total space is endowed with a natural symplectic
structure neurally implemented by long range horizontal con-
nections. The model shows what could be the deep structure
for both boundary and figure completion and for morpholog-
ical structures, such as the medial axis of a shape.

1 Introduction

There have recently been new applications of differential
geometry to neurophysiology of visual perception. In partic-
ular, it has been shown in Petitot and Tondut (1999), Petitot
(2003) and Citti and Sarti (2006) that the functional architec-
ture of the area V1 of the primary visual cortex can be geomet-
rically modeled as a three-dimensional structure V = M×P ,
where the two-dimensional retinal plane M is the base mani-
fold and the secondary variable of orientation constitutes the
fiber P over each point.

Even if V1 is concretely a two-dimensional neural layer, it
implements n > 2 degrees of freedom and is thus abstractly
of dimension n > 2. This difference between the physical
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concrete and the geometrical abstract dimensions correspond
to what Hubel called an “engrafting” of variables:

“What the cortex does is map not just two but many
variables on its 2-dimensional surface. It does so by
selecting as the basic parameters the two variables
that specify the visual field coordinates (distance out
and up or down from the fovea), and on this map
it engrafts other variables, such as orientation and
eye preference, by finer subdivisions” (Hubel 1988,
p. 131).

The total space V of the fiber bundle modeling V1 is
endowed with a natural contact structure neurally imple-
mented by long range horizontal connections. It is possible to
hypothesize that this fundamental contact structure (making
V1 an implementation of the space of 1-jets of curves in M)
is at the basis of the contour integration process.

Now it is well known that contact structures can be
extended to symplectic structures by adding a new dimen-
sion corresponding to the possibility of changing scale at
every point of M , that is treating scale as a gauge.

In Citti and Sarti (2006) the secondary variable of ori-
entation constitutes the vertical fibers over each point as
a rotation group. Thus, we will propose to add the scale
dimension to the model Citti and Sarti (2006) and to model
the functional geometry of V1 as a principal fiber bundle
G where the 2-dimensional retinal plane M is again the
base manifold and the secondary variables of orientation and
scale constitute now the fibers over each point as a rotation–
dilation group. In terms of Hubel’s engrafted variables our
model engrafts therefore two variables: orientation and scale.
The total space will be endowed with a natural symplectic
structure also neurally implemented by long range horizontal
connections.
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Moreover we will show how this symplectic structure can
be naturally deduced from the filtering of the optical signal
by the receptive fields (RFs) of visual neurons and their
functional architecture.

Our model naturally integrates several features of the
visual cortex observed in experiments of neurophysiology,
psychophysics and neuroimaging.

We start from the well known observation that the set
of simple cells receptive profiles (RPs) is generated by the
action of the affine group of the visual plane on a Gabor
mother function.

Each hypercolumn of simple cells RPs, defined at a retinal
point (x, y), forms a 2-dimensional subgroup of rotations–
dilations. This structure is identically repeated for every point
of the retina, and can therefore be considered as a fiber of the
4-dimensional principal bundle.

Then we show that the neural process of maximal selec-
tivity due to intracortical short range inhibitory connections
internal to hypercolumns selects in each case a section of the
fibration. This mechanism will be described as the lifting of
boundaries in M to curves in V1 and whole figures in M to
surfaces in V1.

From the neurophysiological point of view, there is evi-
dence of connections between simple cells belonging to
different hypercolumns. These neural connections are what
neurophysiologists call long range horizontal connections.
They implement what geometers call a connection operating
a parallel transport between fibers of a bundle.1 This latter
connection (in the geometric sense) can be expressed in terms
of a symplectic form on the 4-dimensional principal bundle
G, introducing on it what is called a complex structure.

It was already shown in Petitot and Tondut (1999) and
Citti and Sarti (2006) that the integral curves of the natural
contact structure in the 3-dimensional fiber bundle V is a
mathematical representation of the association field of Field
et al. (1993). In our model here, the integral curves of the
symplectic structure model more finely the connectivity pat-
tern between simple cells in V1, as observed by electro-
physiological experiments. In other words, the symplectic
structure introduces a system of natural coordinates in the
4-dimensional space C

2, which is implemented by neural
connectivity.2 Notice that many of the anatomical and func-
tional features we will discuss and model are common to most
mammals, nevertheless we will refer particularly to features
experimentally found in tree shrew.

We also refer to the following results, for a theoretical
description of the functional architecture of the striate cortex

1 It must be emphasized that the technical lexicons of neurophysiol-
ogy and geometry use the same terms “fibers”, “connections”, etc. in
completely different ways. In general the context will eliminate any
ambiguity.
2

C
2 is 2-dimensional over C but 4-dimensional over R.

(Bressloff et al. 2001; Bressloff and Cowan 2003; Swindale
2004, 2000; Ben 2003; Ben and Zucker 2004).

In this paper we model the cortex as a cotangent fiber
bundle that can be interpreted as a phase space from the
physical point of view. This is the natural space for stochas-
tic dynamical systems. The idealized model we presented can
be thought as the deterministic counterpart of these stochastic
models.

The paper is organized as follows:

• In Sect. 2 we consider the basic properties of simple cells
RPs and outline the group structure underlying the set of
cells. We show also how 1-forms can be naturally asso-
ciated to RPs.

• In Sect. 3 we deepen the group structure and introduce
the hypercolumnar structure and the related geometrical
concept of a principal fiber bundle.

• In Sect. 4 we prove that maximal selectivity in the hyper-
columns explains and justifies the association between
RPs and 1-forms.

• In Sect. 5 the “horizontal” connectivity between hyper-
columns is considered and the notion of symplectic struc-
ture on the fiber bundle is introduced. We define also the
associated complex structure.

• In Sect. 6 we present numerical simulations of integral
curves of the symplectic structure and compare them with
neurophysiological experimental results about long range
horizontal connections. We show also that the lifting of
images yields Lagrangian manifolds, which explains the
well known but enigmatic perceptive relevance of the
medial axis of a shape.

• For reader convenience we collected in Appendix A the
proof of the main theorem, and in Appendix B the basic
definitions of differential geometry instruments used in
the paper.

2 The receptive profiles of simple cells

In this section we define the RP of neural cells, make explicit
the effects on them of a change of frame in the visual plane
and show how to associate to a RP a differential 1-form
selecting its preferred orientation.

2.1 Receptive fields and receptive profiles

A great variety of cells respond to a stimulus on the retinal
plane M ⊂ R

2. The RF of a visual neuron is classically
defined as the domain of the retina to which it is connected
through the neural connections of the retino-geniculo-corti-
cal pathways (projecting from the retina to the cortex through
the lateral geniculate nucleus along the thalamic way) and
whose stimulation elicits a spike response.
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Fig. 1 A Gabor filter (left) and a schematic representation of its sign (right). Positive sign is in white and negative in black

In the sequel, we will restrict our models to the RF in
this narrow sense. Classically, a RF is decomposed into ON
(positive contrast) and OFF (negative contrast) zones
according to the type of response to light and dark luminance
Dirac stimulations. There exists, therefore, a RP of the visual
neuron, which is simply its impulse response as a filter kernel.
It is a function �(x, y) (where x, y are retinal coordinates)
� : M → R which is defined on the retinal plane M and
measures the response (ON / OFF) of the neuron to stimula-
tions at the point (x, y). Sophisticated techniques enable the
recording of the level curves of the RPs (see, e.g., De Angelis
et al. 1995). A light and dark spot or bar is switched on and
off at different positions of the RF and the mean response is
measured. One uses for instance random sequences of flashes
(of 50 ms) distributed over a lattice of 20×20 positions, with
100 ms − 1 s for each response after each flash, and takes the
mean value on 10 flashes at each position (white noise anal-
ysis). The correlation of the inputs (flashes) with the outputs
(spikes) yields the transfer function of the neuron.

It is a classical result of neurophysiology, already strongly
emphasized by Marr (1982) in the late 1970s, that the RPs
of the retinal ganglion cells are like Laplacians of Gaussians.
On the contrary, the simple cells of V1 are strongly oriented,
and are often interpreted as Gabor patches (trigonometric
functions modulated by a Gaussian).

2.2 The set of receptive profiles

The visual plane M will be identified with the plane R
2

endowed with coordinates (x, y) and a fixed frame (∂x , ∂y).
This is of course a wild idealization and presupposes the
choice of an arbitrary global origin O = (0, 0).

When a visual stimulus I of intensity I (x, y) : M ⊂
R

2 → R
+ activates the retinal layer of photoreceptors (iden-

tified with the visual field) M ⊂ R
2, the cells centered at

every point (x, y) of M process in parallel the retinal stimu-
lus with their RP �(x,y), which is defined on M .

Each RP acting on a point (x, y) depends upon a pre-
ferred direction θ and a scale σ , and it has been observed
experimentally that the set of simple cells RPs is obtained
via translations to the point (x, y), rotations of angle θ , and
dilations of scale s = eσ from a unique profile, of Gabor type.
This means that there does exist a “mother” profile �0(ξ, η)

from which all the observed profiles can be deduced by trans-
formation.

A good formula for �0 seems to be

�0(ξ, η) = e−(ξ2+η2)e2iη.

In Fig. 1 we represent its even part e−(ξ2+η2) cos(2η), which
will be studied in this paper.

It has to be noted that the RPs �(x,y) are localized in a
neighborhood of the point (x, y). Hence, they will be
expressed in local coordinates, around the point (x, y),
obtained by rotation and dilation of the initial ones. Any
vector will then have two representations: coordinates (ξ̃ , η̃)
in the global frame centered at (0, 0), and (ξ, η) in the local
frame centered at (x, y) :
⎧
⎨

⎩

ξ = e−σ
(
(ξ̃ − x) cos θ + (η̃ − y) sin θ

)
,

η = e−σ
(
−(ξ̃ − x) sin θ + (η̃ − y) cos θ

)
.

(1)

Therefore all the observed profiles can be modeled as

�x,y,θ,σ (ξ̃ , η̃) = e−2σ�0(ξ, η).

In this model we consider a uniform distribution of ori-
entations and scales, even if there is a neurophysiological
evidence of covariation of scale and orientation (Issa et al.
2000).

We recall that a change of frames can act on the space M
or, by duality, on functions defined on M . Precisely, if A is a
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transformation of M , it transforms also functions ψ through
the formula

Aψ(ξ̃ , η̃) = 1

det(A)
ψ(A−1(ξ̃ , η̃)).

Accordingly we will denote A−1
x,y,θ,σ the transformation

defined in (1), and obtain

�x,y,θ,σ (ξ̃ , η̃) = (Ax,y,θ,σ�0)(ξ̃ , η̃).

The expression of A thus becomes

Ax,y,θ,σ (ξ, η) =
(

x
y

)

+ eσ
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
ξ

η

)

.

Notice that for simplicity we identify translations in the
retinal plane and translations in the cortical layers, neglecting
the conformal log-polar retino-cortical mapping. Anyway,
the mapping can easily be taken into account by introducing
a suitable metric on cortical layers.

2.3 The output of receptive profiles

The overall output O of the parallel filtering is given by the
integral of the signal I (x, y) times the bank of filters:

O(θ,σ )(x, y) =
∫

M

I (ξ̃ , η̃)�(x,y,θ,σ )(ξ̃ , η̃)dξ̃dη̃

=
∫

M

I (ξ̃ , η̃)�0

(
A−1

x,y,θ,σ (ξ̃ , η̃)
) dξ̃dη̃

e2σ . (2)

Consequently we can perform a change of variable with
respect to the transformation A. We get:

O(θ,σ )(x, y) =
∫

�0(ξ, η)I
(

A(x,y,θ,σ )(ξ, η)
)

dξdη.

We explicitly note that the linear transformation A acts
on the retinal plane M , argument of I . On the contrary the
inverse transformation A−1 acts on the domain of �0. This
allows us to interpret the domain of �0 as dual plane, with
respect to the retinal plane.

3 Functional geometry of hypercolumns

3.1 The hypercolumnar structure

The hypercolumnar structure organizes the cells of V1 in
hypercolumns covering a small chart of the visual field (their
RF) and corresponding to parameters such as orientation,
scale, ocular dominance, direction of movement or color for
a fixed retinal position (x, y). The hypercolumnar organiza-
tion means, therefore, essentially that to each position (x, y)
of the retina M is associated a full exemplar P(x,y) of the
space of such “secondary” variables. We restrict here our-
selves to orientation θ and scale σ . As we have seen in the

introduction, even if the cortical space is a bidimensional
layer it “engrafts” secondary variables. Petitot and Tondut
(1999) and Citti and Sarti (2006) proposed a first approxi-
mated model with orientation. In Bosking et al. (1997) the
orientation θ is described as a single engrafted secondary
variable, in terms of the principal fiber bundle of the roto-
translation group.3 Here we will use the same geometrical
instruments to propose a new model, which takes into account
not only orientation θ but also scale σ , and leads, therefore,
to a 4-dimensional fiber bundle.

3.2 The fiber RP(x,y) over each retinal point (x, y)

To every fixed point (x, y) of the retinal plane M is associated
the complete set of values for orientation θ and scale σ . In
other words, for (x, y) fixed, we consider all filters obtained
via rotations of an angle θ and dilations of scale eσ from a
fixed one �(x,y,0,0). so that the set of filters over the point
(x, y) becomes:

RP(x,y) = {
�(x,y,θ,σ ) : (x, y) fixed, (θ, σ ) variable

}

=
{

A(θ,σ )�(x,y,0,0) : (θ, σ ) ∈ S1 × R

}
,

where we have denoted A(θ,σ ) = A(0,0,θ,σ ).

3.3 The group of orientation and scale operating
in a hypercolumn

The set of filters at the point (x, y) is generated as image of

G2 =
{

A(θ,σ ) : (θ, σ ) ∈ S1 × R

}
.

The set G2 is a trivial commutative group (topologically a
cylinder), since, if we apply in sequence two of its elements,
we get a new element of it:

A(θ1,σ1)A(θ0,σ0)(ξ, η) = A(θ0+θ1,σ0+σ1)(ξ, η).

Formally, we have a map
(

A(θ1,σ1), �(x,y,θ,σ )
) ∈ G2 × RP(x,y)

�→ �(x,y,θ+θ1,σ+σ1) ∈ RP(x,y)

which formally expresses that the group G2 acts on the set
of all filters RP respecting the fibers RP(x,y). Each filter is
obtained from the fixed one via one of these transformations:
RP(x,y) is the orbit G2

(
�(x,y,0,0)

)
.

3 The fiber bundle is a mathematical structure, locally described as a
cartesian product M × G,where M models the retinal plane, and G the
group of engrafted variables. In the model this expresses the fact that
that at every retinal point (x, y) ∈ M is associated a whole hypercol-
umn. (We refer to Definition 4 in Appendix B for the precise definition
of a fiber bundle).
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θ

σ

(x,y)

Fig. 2 The simple cell centered in (x, y) takes the maximal activity O(x, y, θ̄ , σ̄ ) = max(θ,σ ) O(x, y, θ, σ ) at a point σ̄ which is, up to a constant,
the logarithm of the distance to the nearest boundary and θ̄ is the direction of this boundary

The change of variable associated to the transformation
A acts on the RFs �(x,y,θ,σ ), as well as on the fixed frame
∂x , ∂y, which will be rotated to the vectors

X1 = eσ
(
cos(θ)∂x + sin(θ)∂y

)
,

X3 = eσ
(− sin(θ)∂x + cos(θ)∂y

)
.

4 Maximal selectivity and geometrical interpretation
of lifting

We come now to one of our central points. Up to now we have
described the hypercolumnar structure in terms of differential
geometry. Now we introduce the functionality of hypercol-
umns and particularly the orientation and scale selectivity.

In the past years several models have been presented to
explain the emergence of orientation and scale selectivity in
the primary visual cortex. These models use different combi-
nations of feedforward (thalamic) and feedback (intracorti-
cal) signals and consider different involvements of excitatory
and inhibitory short range connections (Miller et al. 2001;
Carandini and Ringach 1997; Bar et al. 1995; Shelley et al.
2000). Even if the basic mechanism producing strong ori-
entation selectivity is controversial; nevertheless it is evident
that the intracortical circuitry is able to filter out all the spuri-
ous directions and to strictly keep the direction of maximum
response of the simple cells.

4.1 The maximization procedure

Neurophysiologically, orientation and scale selectivity is the
action of intracortical short range connections to select the
maximum response from the outputs:

O(θ,σ )(x, y) =
∫

M

I (ξ̃ , η̃)�(x,y,θ,σ )(ξ̃ , η̃)dξ̃dη̃

=
∫

M

�0(ξ1, η1)I (A(x,y,θ,σ )(ξ1, η1))dξ1dη1,

(3)

where the last integral is obtained with a change of variables.

This maximal selectivity is the simplest mechanism to
accomplish the selection from among all different cells
responses to effect a lift in the cotangent space. Given an
input I , the neural processing associates to each point (x, y)
of the retina M a point (x, y, θ̄ , σ̄ ) in the cortex, we interpret
this mechanism as a lifting into the fiber of the parameter
space R

2(x, y) × S1(θ) × R(σ ) over (x, y). Precisely, the
odd part of the filters �(x,y,θ,σ ) lifts the boundaries of the
image and the even part of the filters lifts the interior of
the objects.4 The odd part has already been studied in Petitot
and Tondut (1999) and Citti and Sarti (2006). Hence we will
focus here on the even part of the filter.

We will denote (θ̄ , σ̄ ) the values of the maximal response:

O(x, y, θ̄ , σ̄ ) = max
(θ,σ )

O(x, y, θ, σ ).

This maximality condition can be mathematically
expressed requiring that the gradient of O with respect to
the variables (θ, σ ) vanishes at the point (x, y, θ̄ , σ̄ ):

∇(θ,σ )O(x, y, θ̄ , σ̄ ) = 0.

We will also require that at the maximum point the Hessian
is strictly negatively definite:

Hess(O) < 0.

For simplicity we will now reduce to contours, that is to
domains E in M with regular boundaries ∂E , the image I
being a cartoon image, formally expressed as a piecewise
constant function, which takes only the values 0 or 1. As we
will see with the following theorem, a geometrical interpre-
tation of the values of σ̄ and θ̄ selected by the maximiza-
tion procedure just described is that they detect respectively
the distance and the direction of the nearest boundary (see
Fig. 2).

Theorem 1 At first-order approximation, for any fixed value
of (x, y), the output function O(x, y, θ, σ ) reaches a local
maximum at the point θ̄ , σ̄ , where d(σ̄ ) = 1√

2
eσ̄ denotes the

4 Recall that �0(ξ, η) = e−(ξ2+η2)e2iη = e−(ξ2+η2)(cos(2η) +
i sin(2η)). The odd part is the sin part and the even part the cos part.
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Fig. 3 The output of a simple cell is equal to the output of the mother
filter on an appropriately translated, rotated, and dilated image. This
simple cell can, therefore, be associated with the cotangent vector (the
1-form) deduced from dy by the same transformation

distance of (x, y) from the nearest boundary of the image I ,
and θ̄ denotes the orientation of this boundary at the point
where the distance is achieved.

The proof is given in the Appendix A.
This theorem ensures that the simple cell selects the cou-

ple
(
θ̄ , σ̄

)
in such a way that, X3 being the vector

X3 = eσ̄
(− sin(θ̄)∂x + cos(θ̄)∂y

)
, (4)

then (x, y)+ 1√
2

X3 belongs to the nearest boundary of I.

4.2 Simple cells and associated 1-forms

Let us provide a new interpretation of the action of RPs as
filters. A simple cell �θ,σ (ξ, η) gives the maximal response

for contours with direction θ . We can, therefore, consider
that it selects such a direction. But a traditional way to select
orientations at points of M is to consider differential 1-forms
on M . (We refer to Appendix B for the definition of 1-form).

One form is a linear function, defined on the tangent space,
with real values. The form dy, dual of ∂y, selects the y-com-
ponent of a tangent vector. Analogously the form obtained by
dy, rotating in the inverse direction with respect to A, selects
the coefficient of X3 on T(x,y)M , i.e., on the tangent plane of
M at the point (x, y):
(
e−σ (− sin(θ)dx+cos(θ)dy)

)
(ξ X1|(x,y) + ηX3|(x,y)) = η.

We will, therefore, associate to any filter �ξ,η,θ,σ which
is able to select the direction X3, the 1-form

e−σ (− sin(θ)dx + cos(θ)dy)

which selects the same direction (see Figs. 3, 4).
Due to this correspondence between simple cells and

1-forms selecting their preferential orientation, for every
point (x, y) the fiber RP(x,y) of the set of filters �(x,y,θ,σ ) is
made out of elements of the form:
{
ω(θ,σ )=e−σ (− sin(θ)dx+cos(θ)dy) :θ ∈[0, π ], σ ∈R

}
.

(5)

Using this particular representation, we can say that the coef-
ficients (θ, σ ) provide a representation of a co-vector in
log-polar coordinates, and the elements of this type com-
pletely fill the 2-dimensional cotangent space T ∗

(x,y)M at
(x, y). Hence the fiber over the point (x, y) (the hypercolumn

Fig. 4 Simple cells act on the image as 1-forms (represented in the figure by black arrows), i.e., they select the tangent vector of optimal orientation
and scale, where optimality is given by selecting the maximally spiking cell over the fiber
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Fig. 5 A hypercolumn centered in (x, y) acts on the image as a fiber
of 1-forms

RP(x,y)) can be identified with the cotangent space T ∗
(x,y)M

at this point (see Fig. 5).

4.3 A field of 1-forms

We see that the selection of θ̄ and σ̄ by maximal response of
the internal local neural circuitry of the hypercolumn RP(x,y)
defines a function


̄ : M → R P
(x, y) �→ (x, y, θ̄ , σ̄ )

Identifying RP with T ∗M , 
̄ becomes a field of 1-forms
(see Fig. 6). We can interpret this function as the lift the image
I in M in the fiber bundle π : R P → M .

5 Long range neural connections and symplectic
structure

In the previous section we have analyzed the selection of
an orientation θ̄ and a scale σ̄ induced in each hypercol-
umn by its internal circuitry. We will now take into account
the relationships between different hypercolumns. We know
that these relations are neurophysiologically implemented in
long range excitatory intracortical intercolumnar “horizon-
tal” connections. We have seen on the other hand what are the
geometrical transformations which relate the fibers RP(x,y)
in the fiber bundle RP.5 In this section we will focus on
this double-neurophysiological and geometrical-functional
architecture and emphasize the action of the group G of roto-
translations and scaling.

5 See Appendix B for the definition of a fiber bundle and a fiber.

Fig. 6 The set of maximal responding cells selects a field of 1-forms
which lifts the image into V1

5.1 The cotangent bundle associated to the set
of receptive fields

We will now make more precise the geometrical structure of
the set of all hypercolumns that is implemented in the func-
tional architecture of V1. For every fixed point (x, y), the
set RP(x,y) of RPs based at (x, y) has been endowed with
a structure of a homogeneous space under the action of a
2-dimensional group G2.

The set of all hypercolumns is the 4-dimensional fiber
bundle

RP =
⋃

(x,y)

RP(x,y).

If we consider the hypercolumns as the cotangent space at
each point (x, y) of M , we associate to the bundle RP the
cotangent space T ∗M with its system of log-polar coordi-
nates:

T ∗M =
⋃

(x,y)

T ∗
(x,y)M =

⋃

(x,y)

{
(x, y, θ, σ ) : e−σ (− sin(θ)dx

+ cos(θ)dy) ∈ T ∗
(x,y)M

}
.

It is clear by definition that any element in the cotangent bun-
dle is a 4-dimensional vector (x, y, θ, σ ) where (x, y) ∈ M,
while (θ, σ ) ∈ T ∗

x,y(M) are the coordinates in the cotangent
plane at the point (x, y).

The group law G2 defined on RP(x,y) together with the
group law defined on the base space M define a group law
on the whole bundle.

123



40 Biol Cybern (2008) 98:33–48

This group G is

G �
{

A(x,y,θ,σ ) : (x, y, θ, σ ) ∈ R
2 × S1 × R

}
.

For reader convenience we compute here the group law.
Calling

rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

,

and applying in sequence two transformations we get:

A(x,y,θ,σ )A(x1,y1,θ1,σ1)(ξ, η)

= A(x,y,θ,σ )

((
x1

y1

)

+ eσ1rθ1

(
ξ

η

))

=
(

x
y

)

+ eσ rθ

((
x1

y1

)

+ eσ1rθ1

(
ξ

η

))

=
(

x
y

)

+ eσ rθ

(
x1

y1

)

+ eσ+σ1rθ+θ1

(
ξ

η

)

= A(x2,y2,θ2,σ2)(ξ, η)

with

σ2 = σ + σ1, θ2 = θ + θ1,
(

x2

y2

)

=
(

x
y

)

+ eσ rθ

(
x1

y1

)

. (6)

We emphasize again that the composition is not commuta-
tive.

5.2 Horizontal long range connections and the tangent
space to the cotangent plane

The “vertical” structure of hypercolumns lifts retinal points
to cortical ones but it is largely non-sufficient to implement a
global coherence , for which the visual system must be able
to compare two retinotopically neighboring fibers RP(xa ,ya)

and RP(xb,yb) over two neighboring points a and b of M .
This problem has been solved at the empirical level by the
discovery of “horizontal” cortico–cortical connections (see,
e.g., Das and Gilbert 1995). Horizontal connections are long
ranged (up to 6–8 mm) and connect cells of approximately
the same orientation. In distant hypercolumns this allows
curved contents of connection fields that have been modeled
quantitatively by Ben (2003). To detect them (see, e.g., Ts’o
et al. 1986), one can (i) measure the correlations between
cells belonging to different hypercolumns; (ii) compare the
preferred orientation of a reference cell with the preferred ori-
entation of other cells; (iii) compute cross-correlograms. One
verify that cells with neighboring orientations are strongly
correlated while cells with sufficiently different orientations
are decorrelated.

The key experimental fact is that, while short range con-
nections inside a hypercolumn are isotropic, long range hor-
izontal connections are on the contrary highly anisotropic

and restricted to cells sharing essentially the same orienta-
tion. These two different types of connections implement two
different levels of structure: (i) the short range connections
implement the local triviality of the fibration π : RP → M,
while (ii) the long range connections implement a richer
structure.

Long-range horizontal cortico–cortical connections insure
the large scale coherence of retinotopy. Without them, neigh-
boring hypercolumns would become functionally indepen-
dent and retinotopy would lose any immanent reality for the
system itself. That cortico–cortical connections connect neu-
rons of essentially the same orientation in different hyper-
columns means that the system is able to know, for (x ′, y′)
different from (x, y), if an orientation θ at (x, y) is approxi-
matively the same as an orientation θ ′ at (x ′, y′).

The direction of the motion between points in the cotan-
gent bundle T ∗M belongs to the tangent space to the cotan-
gent space. Since (x, y, θ, σ ) are coordinates for T ∗M , then
(∂x , ∂y, ∂θ , ∂σ ) is a tangent frame at the origin. On the other
side the group G acts on T ∗M, and the differential of the left
translation Lg of G by g (that is the map h �→ gh of G onto
itself) allows one to transport the standard basis of T0G to a
left invariant basis at any other point of the space. A direct
computation shows that this left invariant basis is precisely:
⎧
⎪⎪⎨

⎪⎪⎩

X1 = eσ
(
cos(θ)∂x + sin(θ)∂y

)
,

X2 = ∂θ ,

X3 = eσ
(− sin(θ)∂x + cos(θ)∂y

)
,

X4 = ∂σ .

The fact that the standard basis (∂x , ∂y, ∂θ , ∂σ ) is not
left invariant manifests the crucial phenomenon of
nonholonomy.

5.3 The symplectic structure and the scale as a gauge field

We will now consider another classical structure defined on
the cotangent bundle T ∗M , namely its symplectic structure.6

Indeed for every σ we have selected as fundamental 1-form
the 1-form defined in Citti and Sarti (2006) and Petitot (2003):

ω = e−σ (− sin(θ)dx + cos(θ)dy).

The subspace V = R
2(x, y)× S1(θ)×{σ }, associated to the

1-form for a scale σ , is a contact structure. We take then as
symplectic form on T ∗M the 2-form dω obtained by differ-
entiating ω with respect to all its variables. The symplectic
2-form dω is written as

dω = (
e−σ cos(θ)dx + e−σ sin(θ)dy

) ∧ dθ
(−e−σ sin(θ)dx + e−σ cos(θ)dy

) ∧ dσ

= ω1 ∧ ω2 + ω3 ∧ ω4,

6 See Appendix B for the definition.
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where ωi is the dual form of Xi . This form can be identified
with the left invariant 2-form deduced by left translations
from the standard 2-form on G at 0:

dx ∧ dθ + dy ∧ dσ.

5.4 The complex structure

It is well known that every symplectic structure induces a
complex structure. Let B be the matrix associated to the sym-
plectic form dω defined by dω(X, X ′) = 〈

B X, X ′〉 7 for every
pair (X, X ′) belonging to the tangent plane T(x,y,θ,σ )G:
{

X = ξ∂x + η∂y + ϑ∂θ + ς∂σ ,

X ′ = ξ ′∂x + η′∂y + ϑ ′∂θ + ς ′∂σ .

We have:

B = e−σ

⎛

⎜
⎜
⎝

0 0 − cos(θ) sin(θ)
0 0 − sin(θ) − cos(θ)

cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0

⎞

⎟
⎟
⎠. (7)

By definition of a 2-form we have dω(X, X ′) = −dω
(X ′, X), which implies that

B∗ = −B

(where B∗ is the transpose of B) since

dω(X, X ′) = 〈
B X, X ′〉 = 〈

X, B∗ X ′〉 = 〈
B∗ X ′, X

〉

= −dω(X ′, X) = − 〈
B X ′, X

〉
.

From this it is clear that −B2 = B B∗ is nonnegative definite.
In our case

−B2 = e−2σ I,

where I is the identity map. Hence, if we write

P =
√

−B2 = e−σ I,

and put

J = B P−1 = eσ B,

it is clear that J 2 = −I , which means that J defines a com-
plex structure. In our case

J =

⎛

⎜
⎜
⎝

0 0 − cos(θ) sin(θ)
0 0 − sin(θ) − cos(θ)

cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0

⎞

⎟
⎟
⎠. (8)

Through J , all the tangent spaces of G = R
2(x, y)×S1(θ)×

R(σ ) can be identified with C
2.

The complex/symplectic structure naturally associates the
vector fields X1 and J X1 = X2, and X3 and J X3 = X4. The

7 〈A, B〉 is the scalar product on the tangent planes.

planes {X1, X2} and {X3, X4} spanned by X1, X2 and X3, X4

at a point (x, y, θ, σ ) are complex lines in
(
T(x,y,θ,σ )G, J

) �
C

2.

6 Filtering, symplectic geometry and shape analysis

6.1 Integral curves of special vector fields

Viewed in V with σ = σ0, {X1, X2} is the contact plane
C(x,y,θ)V . The integral curves of the contact structure C start-
ing at a fixed point (x0, y0, θ0, σ0) are tangent to the con-
tact plane at every point. They are called contact curves and
write

γ ′(t) = X1(γ (t))+ k(t)X2(γ (t)),
(9)

γ (0) = (x0, y0, θ0, σ0),

k being a parameter varying in R. In particular for k constant,
the solution is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 1
k (sin(kt + θ0)− sin(θ0)+ kx0) ,

y = 1
k (− cos(kt + θ0)+ cos(θ0)+ ky0) ,

θ = kt + θ0,

σ = σ0.

For k = 0 its projection on the (x, y) plane is the x axis
and for k = 0 it is a circle of radius 1/k tangent to the x
axis (see Fig. 7 left). The emergence of curvature in this con-
text is strictly related to the curve detection model based on
curvature in Parent and Zucker (1989).

If we take into account the scale σ , x and y are scaled by
eσ while θ remains the same. Analogously, we can consider
the integral curves of the vector fields X3 + k X4,

γ ′(t) = X3(γ (t))+ k(t)X4(γ (t)),

γ (0) = (x0, y0, θ0, σ0). (10)

The solution is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = − sin(θ0)
k eσ0

(
ekt − 1

) + x0,

y = cos(θ0)
k eσ0

(
ekt − 1

) + y0,

θ = θ0,

σ = kt + σ0.

Its projection on the (x, y) plane is independent of k and
orthogonal to the direction θ0. For k variable the integral
curve is the line of slope k in the fixed “vertical” plane
{X3, X4} (see Fig. 7 right).

The projection of these two classes of integral curves on
the base plane (x, y) is plotted in Fig. 8. Their pattern is in
good agreement with the pattern of long range connections
found both in neurophysiological and psychophysical exper-
iments. In fact, excitatory connections are confined to two
regions, one flaring out along the axis of orientation of the
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Fig. 7 Integral curves
respectively of the (X1, X2)

and (X3, X4) vector fields
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Fig. 8 The projection of the
integral curves of the symplectic
structure on the retinal plane
(left) reveals the pattern of
co-axial and trans-axial
connections found by
neurophysiological experiments
(right, from Yen and Finkel
1998)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

cell (co-axial, in blu), and another confined to a narrow zone
extending orthogonally to the axis of orientation (trans-axial,
in red). The co-axial connections are similar to the “associ-
ation field” proposed by Field et al. (1993) and are repre-
sented here as integral curves of the fields X1, X2 (see also
Citti and Sarti 2006). The symplectic model adds a second set
of trans-axial excitatory connections which extends orthogo-
nally from the orientation axis of the cell. There is anatomical
evidence consistent with the existence of this orthogonal con-
nections (Fitzpatrick 1996; Lund et al. 1985; Mitchinson and
Crick 1982; Rockland and Lund 1982, 1993). The trans-axial
connections are represented here as integral curves of the
fields X3, X4. The reason why co-axial connections spread
out in a fan, while trans-axial connections are more spatially
focused is that the roto-translation fields X1, X2 not only do
not commute, but their commutator is linearly independent
from them:

[X1, X2] = −X3,

while the vectors X3, X4 do not commute, their commutator
is linearly dependent upon them:

[X3, X4] = −X3.

Then integral curves of roto-translation fields are not planar
(Fig. 8, left) while integral curves of X3, X4 belong to a plane
(Fig. 8, right) whose projection on the (x, y) plane is just a
line (red line in Fig. 8, right).

6.2 Liftings and Lagrangian manifolds

Let us now return to the lifted sets described in Sect. 3 and
see how we can interpret them relatively to the symplectic
structure we have just defined.

We associated to each point (x, y) of the retinal plane,
values θ̄ and σ̄ which we have interpreted as the direction of
the nearest boundary and (a function of) the distance from
the center of the filter to this boundary. Let us consider the
example of Fig. 9, that of a white ellipse E on a black bound-
ary. The boundary ∂E is lifted as in the contact structure
and gives the boundary of the down left ellipse. The gray
levels code the values of θ periodically from 0 (black) to
π (white). But due to the scale factor σ , we can lift not
only the boundary ∂E but every point (x, y) of the base.
We generate that way a surface in G: 
 = {(x, y, θ̄ , σ̄ ).
As we have shown in Sect. 4, 
 is a part of the extremal
surface where the gradient of the output O(x, y, θ̄ , σ̄ ) van-
ishes:


̄ = {
(x, y, θ̄ , σ̄ ) : ∂θO(x, y, θ̄ , σ̄ ) = 0,

∂σ O(x, y, θ̄ , σ̄ ) = 0,Hess(O) < 0
}
,

where Hess denote the Hessian matrix of the function O .
The condition on the Hessian ensures that 
̄ is a regu-

lar manifold. This locally defines θ̄ and σ̄ as two functions
θ̄ (x, y) and σ̄ (x, y) on the base plane.
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Fig. 9 Up center: an example of lifting of an ellipse. Down: the corresponding fields of selected orientation θ̄ (left) and scale σ̄ (right). The exterior
structure has been cancelled for graphical reasons

From the properties of the two functions θ̄ , σ̄ , we can
deduce interesting properties of 
 relative to the symplec-
tic structure, at least under the assumptions of Theorem 1
of Sect. 4. Indeed, according to this theorem θ̄ (x, y) is the
direction of the nearest boundary ∂E and σ̄ (x, y) (up to a
factor) the distance of (x, y) to this boundary. This implies
that the projections of the level curves of θ̄ (x, y) are orthog-
onal to the boundary ∂E and dually that the level curves
of σ̄ (x, y) are parallel to ∂E (see Fig. 10). In other words,
the filtering of the indicatrix function of the set E by the
family of filters �(x,y,θ,σ ) realizes the well-known propaga-
tion of the boundary by the eikonal equation of geometri-
cal optics: the boundary propagates as parallel wave fronts
and its points generate rays orthogonal to the fronts. We can
call it a Huyghens model. The singularities of the propaga-
tion generate the so-called “cut locus” or symmetry axis
of the shape. The symmetry axis of a shape, which is so
fundamental for its morphological analysis, segmentation,
and recognition as was shown since Harry Blum’s pioneer-
ing works (Blum 1973) by René Thom, David Marr, David
Mumford, Steve Zucker, James Damon and many others (see
Petitot and Zucker 1989; Kimia 2003), has therefore a
neurophysiological relevance in our model. It is not
surprising since symplectic structures constitute the frame-
work of Hamiltonian mechanics and the Huyghens model
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Fig. 10 Level curves of θ̄ (x, y) (blue) and σ̄ (x, y) (red)

(propagation of rays and wave fronts) is universal in
Hamiltonian systems. As far as a symplectic structure is
neurally implemented in V1 it is natural to observe
Hamiltonian structures such as symmetry axes.

Consider now a point (x, y) in the base space M . θ̄ (x, y)
and σ̄ (x, y) are as in Fig. 10:

X1 = eσ̄
(
cos(θ̄)∂x + sin(θ̄)∂y

)
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is parallel to the orientation of the boundary ∂E at the point
of minimal distance σ̄ and therefore

X1 (σ̄ ) = 0.

Analogously,

X3 = eσ̄
(− sin(θ̄)∂x + cos(θ̄)∂y

)

is orthogonal to the orientation of this nearest boundary and
it is constant along this direction θ̄ . Therefore,

X3
(
θ̄
) = 0.

From these relations we can deduce that

Theorem 2 The tangent plane to the surface 
 belongs to
the kernel of the symplectic form dω at every point (x, y,
θ̄ , σ̄ ).

Proof We compute first the tangent plane to the lifted surface

 at (x, y, θ̄ , σ̄ ). In the basis {X1, . . . , X4} it is spanned by
the two vectors
{

X1 + X1θ̄X2 + X1σ̄ X4,

X3 + X3θ̄X2 + X3σ̄ X4.

On the other side the symplectic 2-form dω can be repre-
sented as

dω = ω1 ∧ ω2 + ω3 ∧ ω4

with {ω1, . . . , ω4} the dual basis of {X1, . . . , X4}. Hence,
applying the two form to the tangent vectors we get

(ω1 ∧ ω2 + ω3 ∧ ω4)
(
X1 + X1θ̄X2 + X1σ̄ X4, X3

+ X3θ̄X2 + X3σ̄ X4
) = X3θ̄ − X1σ̄ .

But as X1σ̄ = X3θ̄ = 0, we see that the tangent vector fields
annihilate the symplectic form ��
Definition 1 Let (G,�)be a symplectic 4-dimensional man-
ifold. A (smooth) surface 
 of G is called Lagrangian if
� |T
≡ 0.

Corollary 1 The lifted surface 
 is Lagrangian.

6.3 Boundaries and objects: 1- and 2-forms

If we fix the value of the scale σ , we obtain a simplified
model, only dependent on orientation, but independent of
the scale. The lifted surface simply reduces to a curve � lift-
ing the boundary ∂E in the roto-translation group and called
the Legendrian lift of ∂E , and we find again the situation
studied in Citti and Sarti (2006). In this paper it was proved
that the tangents to the lifted curve � all lie in the so-called
contact planes which turn out to be the kernels of the 1-form

ω = − sin(θ)dx + cos(θ)dy.

In previous paper (Petitot and Tondut 1999; Petitot 2003) it
has been proposed a linearized version of the same form.

The analogous result for surfaces is contained in the pre-
vious theorem, since the lifted surface is Lagrangian with
respect to the 2-form dω.

7 Conclusion

We have shown how to filter a contour using a family of fil-
ters derived from a mother filter whose RP is that of a simple
cell of V1. This family is an homogeneous space under the
action of the group G(x, y, θ, σ ) of translations, rotations,
and scaling of the retinal plane M . The horizontal cortico–
cortical connections implement the natural G-invariant sym-
plectic structure of this space.

We have then shown that the maximal response of the fil-
ters to an input contour ∂E computes at every point (x, y) of
M the nearest distance d(σ̄ ) of (x, y) to ∂E and the orienta-
tion θ̄ of ∂E at its nearest point to (x, y). The lifted surface

 = {(x, y, θ̄ , σ̄ )} is a Lagrangian surface and realizes
the Huyghens model (rays and wave fronts propagation)
of the contour ∂E , propagation whose singularities constitute
the cut locus (the symmetry axis) of the shape E .

Appendix A: Proof of theorem 1

We give a simple sketch of the proof using the fact that I is
the indicatrix function of a set E with regular boundary ∂E ,
i.e., is 1 inside the set E and −1 outside. Hence the gradient
∇ I vanishes out of the boundary ∂E .

It is not restrictive to consider a fixed cell�(0,σ )(ξ, η) . As
�(0,σ )(ξ, η) is considered to be defined on the tangent plane
TO M , we compute the result up to the first-order approxima-
tion. Then

�(0,σ )(ξ, η) = 1

e2σ e−(ξ2+η2)/e2σ
cos(2η/eσ )

� 1

e2σ e−(ξ2+η2)/e2σ
(

1 − 2
η2

e2σ

)

.

But it is trivial to verify that

1

e2σ e−(ξ2+η2)/e2σ
(

1 − 2
η2

e2σ

)

= ∂η

(
1

e2σ ηe−(ξ2+η2)/e2σ
)

and therefore, up to first-order approximation,

�(0,σ )(ξ, η) � ∂η

( η

e2σ e−(ξ2+η2)/e2σ
)
. (11)

In our case the tangent vector X3 = eσ (− sin(θ)∂x+
cos(θ)∂y

)
reduces to X3 = eσ ∂η at O . Hence, if we denote

by K(0,σ )(ξ, η) the function on TO M

K(0,σ )(ξ, η) = η

e3σ e−(ξ2+η2)/e2σ
,

123



Biol Cybern (2008) 98:33–48 45

1

0.5

0

-0.5

-1
4

2
0

-2
-4 -3 -2

-1 0 1 2 3

Fig. 11 The shape of the function K(0,σ ). Note that, since the deriv-
ative of K(x,y,θ,σ ) is the even filter �(x,y,θ,σ ), then K(x,y,θ,σ ) is an
odd filter. Left: it reaches its maximum at a distance d(σ ) = eσ /

√
2

from the center. Center: the choice of K(x,y,θ,σ ) which maximizes the

output O . Recall that the function K has been chosen in such a way that
its derivative is the filter �(x,y,θ,σ ). Right: the corresponding shape of
�(x,y,θ,σ ), which vanishes where K(x,y,θ,σ ) is maximum

we get (Fig. 11)

�(0,σ )(ξ, η) = eσ ∂η
( η

e3σ e−(ξ2+η2)/e2σ
)

= X3
(
K(0,σ )(ξ, η)

)
.

Hence the output O(0, 0, 0, σ ) is given by

O(0, 0, 0, σ ) =
∫

M

X3
(
K(0,σ )(ξ, η)

)
I (ξ, η)dξdη

and, integrating by parts, we get

O(0, 0, 0, σ ) = −
∫

M

K(0,σ )(ξ, η)X3 (I (ξ, η)) dξdη

since K(0,σ )(ξ, η)I (ξ, η) vanishes at infinity.
Since I is the indicatrix function of E , its gradient ∇ I van-

ishes inside and outside E , and can be represented, as a Dirac
mass concentrated on ∂E , with the direction of the outer nor-
mal ν of E : ∇ I = νδ|∂E . Then, if 〈• | •〉 is the scalar product,
we have X3 (I ) dξdη = 〈X3 | ∇ I 〉 = 〈X3 | ν〉 δ|∂E = (since
X3 and ω are dual one of each other) = 〈ω, ν〉 = ω(ν). We
get finally that

O(0, 0, 0, σ ) = −
∫

∂E

K(0,σ )(ξ, η)ω(ν)δ|∂E .

Sinceω is the dual form of X3,ω vanishes for the direction
X1, reaches it maximum e−σ for the orthogonal direction X3

and its minimum −e−σ for the opposite direction −X3. The
value ω(ν) is, therefore, extremal when the boundary ∂E is
of orientation θ = 0.

As for K(0,σ )(ξ, η), we have

K ′
(0,σ )(0, η) =

(
−2η2e−2σ + 1

)
e−3σ−η2/e2σ

and K ′
(0,σ )(0, η) vanishes for

η = 1√
2

eσ .

Up to first-order approximation, we can suppose that the reg-
ular boundary ∂E is an horizontal line η = cst. Then

O(0, 0, 0, σ ) = −
∫

∂E

K(0,σ )(ξ, η)ω(ν)δ|∂E

= −
∫

R

K(0,σ )(ξ, η)e
−σdξ

= −√
π
η

e3σ e−η2/e2σ
.

It is proportional to K(0,σ )(0, η) = η

e3σ e−η2/e2σ
and reaches

it maximum

√
π

1√
2

eσ
1

e3σ e
−

(
1√
2

eσ
)2
/e2σ =

√
π

2

1

e(2σ+ 1
2 )

when K(0,σ )(0, η) reaches it minimum.
The integral O(0, 0, 0, σ ) will therefore reach its maxi-

mum
√
π

2

1

e(2σ+ 1
2 )

when K(0,σ ) attains its maximum on ∂E , and−X3 and ν coin-
cide. The orientation θ = 0 is the orientation of the boundary,
while K(0,σ ) is maximum at the point (ξ, η) which have dis-
tance d(σ ) = 1√

2
eσ to the boundary ∂E . This argument is

local, but in order to see that the maximum is reached at the
nearest boundary, we fix the direction of � and we vary the
scale. Since � has null mean, the integral defining O tends
to 0 when the scale tends to 0 and the filter � tends to con-
centrate on the support of the image I . Hence increasing the
value of the scale, the integral increases until the first zero
of � cross the boundary of I . At this point the integral start
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decreasing again. Hence the maximum is reached when θ is
the orientation of the nearest boundary. ��

Appendix B: Differential geometry instruments

Let us briefly recall the definition of some mathematical con-
cepts used in the paper.

By simplicity we give all definitions in R
2. The defini-

tions in vector spaces of higher dimension is analogous. If
the local parametric equation of a curve γ is (x(t), y(t)) then
its tangent vector at a point (x(t), y(t)) will be

X = (α1(t), α2(t)) = (x ′(t), y′(t)).

If we identify the curve γ with the trajectory of a point, the
tangent vector X describes the direction of the motion at every
point.

Definition 2 Tangent space. The set of tangent vectors is
denoted T(x,y)M, and it is a plane, called tangent plane at M
at the point (x, y).

At every tangent vector X = (α1, α2), we can associate
the directional derivative along the vector X, and we denote
it with a similar symbol (where ∂x means ∂

∂x ):

X = α1∂x + α2∂y .

With this identification the basis of the tangent space T(x,y)M
at (x, y) is (∂x , ∂y).

Definition 3 Cotangent space. Linear functions defined on
the tangent space at a point (x, y) are called 1-forms, or cotan-
gent vectors. The set of 1-forms at a point (x, y) is denoted
T ∗
(x,y) and it is a vector space of dimension 2. Its basis is

denoted (dx, dy). This means that a general 1-form can be
expressed as

ω = ω1dx + ω2dy.

By definition, a form is a function defined on the tangent
space, and, being linear the action is formally analogous to a
scalar product:

ω(X) = ω1α1 + ω2α2.

However this operation is called duality, instead of scalar
product, since it acts between different spaces: ω1, ω2, are
coefficients of a 1-form and α1, α2 coefficients of a tangent
vector.

Example 1 The simplest example of a 1-form is the differ-
ential of a regular function f , which can be represented as

d f = ∂ f

∂x
dx + ∂ f

∂y
dy.

Hence it is expressed in terms of the standard basis dx, dy.

Applying the 1-form d f to a tangent vector X = (α1, α2),
we obtain the directional derivative of f , which can be con-
sidered the projection of the differential in the direction X .

d f (X) = α1∂x f + α2∂y f.

We can as well give a notion which generalize the idea of
orthogonal and parallel vectors, using the duality in place of
the scalar product. Given a form ω = ω1dx +ω2dy, its dual
vector field is the vector field which has the same compo-
nents: X = ω1∂x + ω2∂y, formally being parallel to ω. The
kernel of the 1-form ω is the set of vector X such that

ω(X) = 0.

In the model of odd cells, we considered the 1-form

− sin(θ)dx + cos(θ)dy.

It is easy to see that the vector fields

X1 = cos(θ)∂x + sin(θ)∂y, X2 = ∂θ

are orthogonal to ω, so that they belong to the kernel of ω.
The kernel of a 1-form is a subset of the tangent plane. For

this reason the action of simple cells RPs on the image can be
modeled as the selection of tangent vector (to the level lines)
by a 1-form. In particular, the vector X1, which describes the
direction of the level lines of the image, belongs to the kernel
of the form ω.

Up to now we have fixed the point (x, y) and considered
the tangent space T(x,y) to M at the point (x, y). We can now
vary the point (x, y). The union of all tangent spaces is called
the tangent bundle of M :

T M =
⋃

(x,y)∈M

T(x,y).

A point of the tangent bundle is denoted

(x, y, α1, α2),

where (x, y) ∈ M and (α1, α2) belongs to the tangent space
at the point (x, y). Then we have a natural projection

π : T M → M π(x, y, α1, α2) = (x, y).

More generally let us now define a fiber bundle, which is
the mathematical structure proposed to describe the hyper-
columnar structure.

Definition 4 Fiber bundle. A fiber bundle is defined by two
differentiable manifolds M and C , a group G, and a projec-
tion π . C and M are called, respectively, base space and total
space.

The total space is locally described as a cartesian product

C = M × G,
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meaning that at every point (x, y) ∈ M is associated a whole
copy of the group G, called the fiber. The function π is a
surjective differential map, which locally acts as follows

π : M × G → M π(x, y, g) = (x, y),

where g is an element of G. In the paper the base space is
implemented in the retinal space and the total space in the cor-
tical space. Particularly the group G of rotations and scales
to the point (x, y) is implement in an hypercolumn over the
same point.

Definition 5 Section of a fiber bundle. A function


 : (x, y) → (x, y, ḡ)

defined on the base space M with values in the fiber bundle is
called a section of the fiber bundle. In other words a section
is the selection of a point on a fiber.

In the model introduced here we associate to each point
(x, y) of the retinal plane an orientation and scale value, i.e.,
a point (θ̄ , σ̄ ) in the feature space, defining a section of the
cortical bundle


 : (x, y) → (x, y, θ̄ , σ̄ ).

The geometrical tools and bundles described up to now
can be used to define complex geometrical structures.

Contact geometry is the study of a geometric structure
on smooth manifolds given by a hyperplane distribution in
the tangent bundle. This hyperplane can be specified by an
orthogonal vector, or, more precisely by an orthogonal
1-form:

Definition 6 Contact structure. A contact structure is an
odd dimensional differentiable structure with a 1 form ω,

which satisfies a ’maximum nondegeneracy’ condition

ω ∧ (dω)n = 0.

Starting with a contact structureω a classical way to define
a symplectic structure is to multiply ω by a real variable
ω1 = αω and differentiating ω1. Note that � = dω1 is a
2-form such that d� = 0. It can be expressed in terms of the
standard basis

� = �i j dxi ∧ dx j .

The space is now even-dimensional, since we add the extra
variable α. Hence the formal definition of a symplectic struc-
ture is the following:

Definition 7 Symplectic structure. A symplectic form �

on an even manifold M is a nondegenerate, closed two-form

� = �i j dxi ∧ dx j .

Explicitly, nondegeneracy of the form means that the matrix
�i j is a skew-symmetric and nonsingular matrix, i.e., with

nonvanishing determinant. The requirement that� is closed,
means that

d� = 0,

where d is the exterior derivative.

The simplest example of a symplectic form is
∑

i

dxi ∧ dyi ,

in a complex space {(x1 + iy1 . . . xn + iyn)}. In this case the
2-form expresses the coupling of the variables xi with the
correspondent variables yi in the complex structure.
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