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In the context of electrical excitation of nerves, one often
uses the term polarization, but this remained rather vague
until Nernst (1899) gave it a foundation based on chemical
physics:

“According to our current knowledge, a galvanic
current can in organic tissue (a purely electrolytic
conductor) only cause movement of ions, i.e. con-
centration changes, and nothing else. We conclude
that these concentration changes must underlie the
physiological effect.

. . . It is well known that in organic tissue the
composition of the aqueous solution that forms the
electrolytic conductor is not everywhere the same. In
particular, it is different on the inside and on the out-
side of the cells. The semi-permeable membranes pre-
vent equilibration by diffusion. On these membranes,
and there only, currents can lead to concentration
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changes. Ions that are stopped by the membrane
accumulate there, while the ions that can cross the
membrane carry the current. It is here that we have to
look for the basis of electric excitation.” (Nernst and
Barratt 1904)

However, as the current accumulates the ions at the mem-
brane, the diffusion acts oppositely; the net change at the
membrane is the result of the opposing effects of the cur-
rent and the diffusion. Nernst uses this insight to explain
the physiological ineffectiveness of high-frequency alternat-
ing currents. These ideas lead, when treated in the simplest
possible way, to already established equations for the polari-
zation of metal electrodes. In the case of sinusoidal currents,
one has that the net effect is inversely proportional to the
square root of the frequency.1 Experiments on the frog sciatic
nerve (with platinum plated electrodes) show that between
100 and 2,000 Hz, the intensity needed to reach threshold
indeed grows as the square root of the frequency (Nernst and
Barratt 1904).

It is known that semi-permeable membranes placed in an
electrolytic conductor can lead to a polarization, as Nernst
remarks [p. 621]. This was demonstrated by Ostwald (1890).
A parchment membrane is placed between a solution of potas-
sium iron cyanide [K+ and Fe(CN)3−

6 ] and a solution of cop-
per sulfate [Cu2+ and SO−

4 ]. Inside the membrane a deposit of
iron cyanide of copper forms. One applies a potential of about
2 V, and a current flows which decreases to about a quarter of
its initial value and remains steady indefinitely. The elec-
tromotive force suppressed, a counter-electromotive force
shows up. Thus we have both polarization and de-polarization.

1 [Note, that a passive membrane would lead to a filtering proportional
to (1 + ( f/ f0)

2)−1/2, and therefore a 1/ f , not 1/
√

f , behavior at large
f .]
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All these phenomena can be explained if one assumes that
the potassium ions of the one solution and the sulfate ions
of the other solution can cross the membrane, while the iron
Fe (CN)6 and copper ions cannot. Indeed, one can observe a
metallic copper deposit on the anode side of the membrane
(Ostwald 1890).

I think that one can explain all our observations on electri-
cal excitation by studying the membrane polarization accord-
ing to Ostwald’s concept, which is not very different from
Nernst’s. Consider a conductor made up from a solution of
various electrolytes. Now, divide this conductor by a mem-
brane that is permeable to some ions (ions I), and imperme-
able (or much less permeable) to other ions (ions II). If a
potential is applied across the conductor, part of the current
will be carried by ions I, while ions II accumulate to some
limit on the two sides of the membrane, the cations on the
side with the higher potential, the anions on the other side.

It is likely that complex phenomena take place at the mem-
brane: some slow diffusion of ions II into the membrane,
and maybe interaction with the membrane itself (e.g. elec-
trostatic dyeing), etc. Despite such secondary phenomena,
we can treat membrane polarization in first approximation
like any polarization. The polarization of metal electrodes
as well exhibit similar secondary phenomena that one might
not have taken into account a few years ago. “According to
Berthelot and Bouty, no electrode is fully robust or imper-
meable to electrolysis products” (Rothé 1904). Corrections
should be studied in each case individually. In the case of
nerves, still very little is known about membranes (despite
recent research on the role of lipids): there are many electro-
lytes in a very viscous environment, due to the presence of
various colloids; lime salts [CaOH] probably play a special
role; the myelin sheet, where present, must have a big effect.
It is a very complex situation. Nevertheless, like with metallic
electrodes, the first approximation is a capacitor. One should
just not forget that this is an approximation.

[Equivalent circuit]

Since the capacitor has a leak, here is the schematic diagram
to which one can compare what physiological experiments
reveal about the law of electrical excitation (Fig. 1).

Given a capacitor K, one of its leads has zero poten-
tial, the other is connected via a resistor R with a voltage
source V [p.622]. A leak resistor ρ is connected parallel to
the capacitor. We assume that the threshold for excitation is
reached when the capacitor is charged to a potential v.

One sees immediately that the circuit satisfies the general
requirement that we derived by combining the viewpoints of
Du Bois–Reymond and those of Weiss, namely: In the steady
state no current passes through the capacitor. The charging
occurs immediately when the contact is made. Assuming a
very small inductance, the current reaches its maximal value,

Fig. 1 [The equivalent circuit used to analyze the threshold behavior.
The product ρK is the time constant.]

close to V/R, very rapidly, after which it decreases to its
steady state value V/(R + ρ). If R is much larger than ρ

(we will see that it is generally the case in the experiments),
V/(R + ρ) is slightly less than V/R. This decreasing period
thus affects only a very small fraction of the current if one
has hundreds of k�s in the circuit.

Weiss, followed by us, considered this a steady state cur-
rent, and from this point of view, the error was not large.
However, at the contact between nerve and electrode, where
the excitation is produced, represented by K and ρ, the vari-
ation [in the voltage] is major. Reduced to the above circuit,
the problem is fully defined and can be mathematically ana-
lyzed exactly.2

2 I had initially posed the problem, as it often happens at the beginning
of a study, in an unnecessarily complicated form. For the mathematical
study, I had the kind assistance of Mr. Chatanay and Mr. Levy, two
students of the École Normale Supérieure who followed my course this
winter. Their work was very useful to clarify the problem, and I address
my sincere thanks here to them.

The simple Eq. (1), can be derived as follows: In resistor R, the current
is i = V −v

R , in resistor ρ, the current is i ′ = v
ρ

. The charge differential is

K dv = i dt−i ′dt , that is to say, K dv = V −v
R dt− v

ρ
dt = (V −v)ρ−vR

Rρ
dt .

Or, after separating out the constants

K Rρ

R + ρ
.

dv

Vρ
R+ρ

− v
= dt,

which one can rewrite as

−dt · R + ρ

K Rρ
= dv

v − Vρ
R+ρ

.

This differential has as integral

A − t
R + ρ

K Rρ
= log

(
Vρ

R + ρ
− v

)

If we assume that initially the capacitor has no charge, i.e., t = 0,
and v = 0, we have for the integration constant A = log Vρ

R+ρ
, which

gives −t R+ρ
RρK = log

(
Vρ

R+ρ
− v

)
− log

(
Vρ

R+ρ

)
. Or, after replacing the

difference of logarithms with the logarithm of the fraction, −t R+ρ
RρK =

log
(

1 − R+ρ
Vρ

v
)

. That is,

e−t R+ρ
K Rρ = 1 − R + ρ

Vρ
v,

which then only needs to be solved with respect to v.
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The potential v to which the hypothetical capacitor will be
charged at a time t after the sudden application of the voltage
V is given by

v = V
R

R + ρ

(
1 − e−t R+ρ

RρK

)
. (1)

However, the experimental quantities that one measures are
the duration t and the necessary voltage V to reach thresh-
old in that duration. From the previous equation one derives
(p. 623)

V = v
R + ρ

R

1

1 − e−t R+ρ
RρK

.

Noting that R is known and constant, while K , ρ, and v are
assumed constant, we can set

v
R + ρ

R
= α,

RρK

R + ρ
= β.

After substitution, we get

V = α

1 − e−t/β
,

which is to be compared with Weiss’ equation V = a/t + b
[see accompanying preceding introduction].

In both formulas one obtains the constants for a given
experiment from two measurement of V for two values of
t . Using the new formula, one needs two values of t , one
double the other, to be able to solve the system of equations.
Given

V1 = α

1 − e−t ′/β , V2 = α

1 − e−t ′′/β ,

where V1, V2, t ′, and t ′′ are numerical values, one needs to
know α and β [p. 624]. Setting et ′/β = x , then if t ′′ = 2t ′,
et ′′/β = x2. After substitution into the above equations and
subtracting one from the other, we obtain a second degree
equation with one unknown. Solving it towards x , one finally
finds after all simplifications, x = V2

V1−V2
(the other root of

the equation is 1). From which one gets

β = t ′ log e

log V1 − log(V1 − V2)
.

We will use these two parameters to compare the two for-
mulas with the experiments. But afterward we will have to
examine the physical quantities, both real and hypothetical,
that are combined in these two parameters.

At this point it is worthwhile to point out that in over-
all form the new equation that we derived for a capacitor
with leak, is identical to the one we would obtain without
leak. For the latter, v = V

(
1 − e−t/(RK )

)
, from which V =

v

1−e−t/(RK ) . Setting v = α and RK = β, one arrives at the
same equation. But study of the parameters would reveal
contradictions with the experiment. For instance, adding or
removing a resistor in the driving circuit [i.e. changing R],
would not change the required voltage, but would change

the time constant. In reality the opposite is true, and that is
consistent with the full equation, as we shall see.

Despite the fact that Weiss’ equation (a hyperbolic) and
the one I propose (a logarithm) are different, both are con-
vex curves. Both diverge near t = 0, while for long durations
both run parallel to the x-axis and reach a constant value. In
small regions the curves look very similar, but for large dura-
tions, the curves diverge, with the hyperbole going below the
logarithm.

I recall that in the preceding paper, my main criticism of
Weiss’ equation concerned the constant b, which is difficult
to interpret physically and leads to a too low value for the
threshold voltage for long durations (Lapicque 1907, p. 570).
In contrast, the logarithmic equation extrapolates very satis-
factorily in this direction. We will show this using an exam-
ple experiment from a paper by Weiss [p. 625]. It is the only
experiment that gives V for t = ∞. (The time is expressed in
centimeters, which corresponds to 1/13,000 s. The voltages
are in arbitrary units, likely on the order of millivolts. The
resistance R was about 0.5 M�.)

Experiment of 6 December 1900 (Weiss 1901)

From durations 4 and 12 I extracted for Weiss’ equation,
the values a = 168 and b = 21. From durations 8 and 16 I
extracted for the logarithmic equation, α = 29.5 and β =
6.3. (Durations 6 and 12 gave α = 29.5 and β = 6.5.) For
t = ∞, Weiss’ equation becomes V = b; mine becomes
V = α.

Duration Voltage
Observed a

t + b α
1−exp(−t/β)

3 82 77 78
4 63 63 62.5
6 49 49 48
8 41 42 41

12 35 35 34.5
16 32 31.5 32
∞ 30 21 29.5

For duration 3, the experiment is certainly poor; the dura-
tion is too short to ignore onset transients. For the next dura-
tions, both equations match the experiments equally well. For
t = ∞, Weiss’ equation deviates considerably. My equation,
fitted using short durations, matches very well without any
correction.

If the experiment encompasses somewhat longer dura-
tions, as is generally the case for Weiss’ experiments, the
logarithmic equation cannot follow the experimental data.
The parameters extracted using different durations will then
vary systematically with duration.
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Example: Weiss experiment of December 19

Duration 4 6 8 10 12 14 20 40
Observed voltage 185 142 123 112 103 97 86 77

We obtained the following values:

Calculated with β α

4 and 8 5.8 92
6 and 12 6.2 87

10 and 20 8.3 78
20 and 40 9.4 76

On the contrary, Weiss’ formula gives for the constants a
and b values that vary only from 62 to 65 for b, and from
46 to 49 for a [p. 626]. This formula therefore seems closer
to the experiment, especially given that the slight deviations
from the formula do not appear systematic.

However, let us plot, rather than V , the values of the prod-
uct V·t which are predicted by Weiss’ formula to lie on a
straight line; this is sensitive to smaller deviations. We see
that the straight line going through the point with duration
40 and points corresponding to the shortest durations leaves
the point with duration 20 below it.

This deviation would not matter, if it occurred once.
However, such an inflexion occurs in almost all Weiss’ exper-
iments that he has published, as well as those he was kind
enough to communicate to me during the very amicable con-
versation that we have been having, orally or through mail,
since several years on the law of excitation.3 This small devi-
ation interested me, since it seemed to indicate that the curve
is convex, as in the logarithmic formula. The curve, using for
the parameters found for durations 20 and 40, is plotted in
Fig. 2.

I found such curvature, more or less pronounced, in my
own experiments. Until then, I had considered them suffi-
ciently well described by a straight line. However, I have
redone particular experiments to characterize the curvature
further. To do this, it was first necessary to get more data
for the longer durations, in the part of the curve in which
I suspected an upward convexity [p. 627]. Secondly, it was
desirable to decrease as much as possible the resistance of the
circuit, in such a way as to obtain excitation with the smallest
voltage possible.

3 Weiss himself also noted this inflexion. I had asked him for the data
on the toad, because I had great trouble to admit that in this animal the
larger voltages did not deflect the curve towards the origin. On send-
ing me the data on April 26th 1903, Weiss noted as a curious fact an
inflexion between durations 10 and 15. At that time, we did not find any
interpretation and neither him nor me gave the matter further thought.

Fig. 2 [Plot of the threshold voltage times duration (V · t) versus dura-
tion (t). Solid line Weiss’ law V ·t = a + bt ; dashed line Lapicque’s
formula: V t = αt

1−exp(−t/β)
.]

Fig. 3 [The electrodes used by Lapicque.]

[Methods]

Concerning this second point, I have built unpolarizable elec-
trodes with a weak resistance, with mercury, calomel [Hg Cl]
and physiological solution; the drawing (Fig. 3) should give
the reader the idea. A pair of those electrodes, with small
plugs of filter paper on which the nerve rests, have a resis-
tance of about 7k� (instead of the 50 k� for the model with
the same chemical elements that I usually use). I checked
several times that these electrodes are practically unpolariz-
able in the conditions in which I use them, as follows: with
the two plugs of filter-paper being in direct contact, I applied
several tens of mV to the circuit, i.e. the order of magnitude
used in such experiments. The galvanometer deflected with
its usual speed and stayed absolutely constant. On the other
hand, when un-damped and working ballistically the galva-
nometer, upon applications of constant voltage lasting 1, 2,
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and 3 ms, gave deflections that are approximately in a 1, 2, 3
ratio.

In the remaining part of the circuit there is only a resistance
of 5k�. Since the nerve is interposed for a length of 3–4 mm,
we have a total resistance of 30–40k� which comes from
the most part (2/3 approximately) from the nerve. Concern-
ing stability of the results, this last point is obviously very
unfavorable—the least variation of resistance in the nerve
provokes an appreciable variation of the current. Our goal
of understanding polarization forces us to accept at the same
time a relatively big influence on other phenomena, such as
drying out, or temperature changes. One needs to try to elim-
inate such perturbations with more rigor than usually.

After experimenting, I came to place the experimentalist
with the whole experiment (except the ballistic interrupter
with its fulminate rifle, which emits unpleasant smoke in a
restricted space) in a big incubator. [fulminate is an explo-
sive based on fulminic acid]. This still allows us to maintain a
small wet chamber around the nerve. The temperature was set
several hours in advance. Alive frogs to be used in the exper-
iment, electrodes, instruments, all was placed in advance in
the incubator such as to be in equilibrium. Lumbar nerves
have to be dissected up to the spinal cord; placing the sci-
atic nerve on the electrodes, we thus operate on a region far
removed from the section of cylinder-axis. Furthermore, one
should not take measurements made during the first minutes
after the section into account.

To obtain a sufficiently large and accurate series of thresh-
old measurements using the ballistic circuit breaker, about an
hour is needed. In spite of all precautions, the threshold mea-
sured after that time differs from the one measured at the
beginning. To eliminate annoyances of this type, each series
of measurement was made twice, in both directions; i.e. after
going from the longest to the shortest duration, we went from
the shortest to the longest [p. 628]. Or we took alternatively
a long duration and a short duration. In that way we can rule
out the effect of progressive alteration of the nerve on the
measured duration or voltage.

With the used resistance, one needs extremely small volt-
ages. To manage those with precision, we established half a
volt across a plated iridium bridge of one meter long, which
is well calibrated and has a precise contact slide (instrument
by Fritz Köhler, used for the Kohlrausch method [a method
to measure conductance of electrolytes using a Wheatstone
bridge]). Every millimeter is thus equivalent to half a milli-
volt. The contacts are carefully made, and a calibrated volt-
meter with a precision of 0.1 V allows to verify the voltage
across the bridge from time to time.

The determination of the threshold for a current of indef-
inite duration is done at the end of the experiment, for fear
that such long applications produce permanent alterations,
but immediately after the measurement of the threshold for
the longest duration.

Experimental results

Here are a few experiments. Experimental values are repro-
duced in the order in which they were obtained. Times are
expressed in cm of the rheotome (27 cm = 1 ms), voltages
in mm of the bridge (1 mm = 0.5 mV) [see preceding intro-
duction]. All experiments are on the gastrocnemius muscle
[muscle of the back lower leg] of the frog (Rana Esculenta)
excited through the sciatic nerve.

Experiment of March 10, temperature 18◦C.

t 81 27 67 18 40 9 54 9
V 135 200 137 240 170 360 145 370
t 67 54 40 27 19 9 81 ∞
V 145 150 180 200 245 380 144 143

Given the order in which these data have been collected, it
would seem illegitimate to take the average of the two values
of V taken for each value of t . But it is also interesting to
note that the seven first, as well as the seven last measure-
ments show clearly the curvature that appeared in Weiss’
experiments (Fig. 4). As this curvature is obtained with two
apparatuses that only have their principle in common and is
independent on the order in which durations are applied, the
curvature is therefore due to the law of excitation.

The following series have been made symmetrically to
allow for a more correct use of means. I was able to further
reduce the deviations [p. 629].

Fig. 4 [Plot of the threshold voltage times duration (V · t) versus dura-
tion (t). The two curves are from the same experiment, but differ because
of experimental drift.]
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Experiment of 15 March, temperature 12.5◦C

t 81 67 54 40 27 18 9
V 58 62 66 76 91 115 175
t 18 27 40 54 67 81 ∞
V 115 92 77 70 67 64 63

The mean gives, with durations in ms,

t 1
3

2
3 1 1.5 2 2.5 3

V 175 115 91 76 68 64 61

For t = ∞, we take V to be one unit below the value for
t = 3, i.e. 60.

Here, the experimental data points expressed as V · t devi-
ate only slightly from a straight line. The curvature, though
recognizable, is not very pronounced. It seems to hold gener-
ally in experiments at low temperature. Weiss’ formula cap-
tures very well the seven measurements at limited duration.
The parameters take the values a = 44, b = 46.5; the devi-
ation between the value of b and the voltage for the long
duration current is here quite large (almost 25%).

In reality, the lower limit of the voltage is reached at
3 ms, as shown by the experiment. For all longer durations,
Weiss’ formula would give rise to more pronounced devia-
tions. Indeed, instead of 60, it gives for t = 5, V = 55 (a
deviation of 10%) and for t = 10, V = 51 (almost 20%). We
see that there is no need to do a sophisticated extrapolation
to disprove the formula that only works in a limited range.

On the contrary, if one takes the logarithmic formula with
α = 59, β = 1(ms) we find too large values for the shortest
durations (the deviation being smaller than 15%), but a better
agreement from 1ms to infinity.

Duration Observed V = 44
t + 46.5 Deviation V = 59

1−exp(−t) Deviation

voltage (%) (%)

0.33 175 178 +2 208 +19

0.66 115 111.5 −2 125 +8

1 91 90.5 0 93 +2

1.5 76 75 −1 76 0

2 68 68.5 +1 68 0

2.5 64 64 0 64 0

3 61 61 0 62 +1.5

∞ 60 46.5 −22 59 −1.5

In spite of the very small deviation between the experi-
mental values and Weiss formula for all measured durations,
on a graph it is easy to see which formula corresponds best
to reality (Fig 5) [p. 630].

The value of V t , according to the logarithmic formula
tends to αt [for large t]; hence the curve is asymptotically
a straight line going through the origin. Weiss’ law, repre-
sented by the straight line a + bt , crosses the straight line αt
with a pronounced angle. Above the crossing point, experi-
mental values are approximately constant, i.e. they follow αt
and not a + bt .

Fig. 5 [Plot of the threshold voltage times duration (V · t) versus dura-
tion (t). Solid line Weiss’ law, dashed line Lapicque’s equation, short-
dashed asymptote of Lapicque’s formula for large t , given by V t = αt .]

However, in reality, most experiments show that our for-
mula stemming from an ideal capacitor can accurately follow
the experimental curve only in a very restricted range. Here
are the values of the constants of the logarithmic formula,
taken directly from the experiment below:

Durations β α

0.33 and 0.66 0.51 84
1 and 2 0.93 60

1.5 and 3 1.07 57

The parameters in the table were obtained combining the
two last values, so as to obtain a reasonable agreement on
the largest set of durations. The value of 57 for α presents
a smaller deviation than one could expect. This deviation is
more pronounced when temperature is higher [p. 631].

Experiment of March 13, temperature 24.5◦C.

t 81 67 54 40.5 27 18 9
V 111 112 115 125 154 185 270
t 18 27 40.5 54 67 81 ∞
V 190 156 127 115 113 112.5 112

In this series of experiments, done at a relatively high tem-
perature, the duration 3 ms (81 cm) is relatively long. For this
duration, we see that the necessary voltage becomes asymp-
totically close to its minimal value. From these very similar
values we obtain the mean as:

t 9 18 27 40.5 54 67 81
V 270 187 155 126 115 112.5 112

From duration 1 to 3, experimental values for V · t show
a pronounced convexity (Fig. 6). It has not been possible to
find constants for which the logarithmic formula exactly fits
that curve. All theoretical curves built from the formula are
less curved and give too small values, either for duration 1, or
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Fig. 6 [Similar experiment as Fig. 5, but at higher temperature.]

duration 3. For theoretical reasons I accept this last deviation.
In the scale of experimental durations, except for the shortest
duration, we obtain deviations which are of the same order
as the ones given by Weiss law. Both do not exceed 5%.

Observed Deviation Deviation

Duration voltage V = 60
t + 92 (%) V = 103

1−exp(−t/0.9)
(%)

0.33 270 272 0 327 +21

0.66 187 182 –2.5 197 5.5

1 155 152 –2 154 0

1.5 126 132 +4.5 127 0

2 115 122 +6 115 0

2.5 112.5 116 +3 110 0

3 112 112 0 107 –4.5

∞ 111.5 92 –18 103 –7

[Discussion]

We have therefore shown that for the sciatic nerve on the
frog the part of the experimental curve between 0.3 and
3 ms, treated by Weiss as a straight line, is actually a non-
linear curve. However, treating the excitation as charging of
a capacitor leads to a formula that shows systematic devia-
tions for both short and long durations. These deviations are
very pronounced for very short intervals, but are smaller for
longer durations.

It seems to me that these systematic deviations confirm
that the involved phenomenon is indeed polarization [p. 632].
We have treated this polarization like an ideal capacitor, with
a perfectly well determined capacitance. However, we know
that such a description is only approximate for platinum elec-
trodes in any electrolytic solution. The polarizability is only
a fictitious quantity, measured as the ratio between the differ-
ence of potential V between the electrodes and the charge.
This ratio varies both with charge time and with voltage, and

therefore the polarizability has a well-defined meaning only
in the limit, v = 0 and t = 0 (Bouty 1894).

If the same line of reasoning applies to the polarization
of a membrane (most likely, the difference with a capacitor
is even more pronounced here), it is clear we will not find
data that fits exactly with electrostatic capacity. It would be
premature to investigate if the observed deviations can be
explained by secondary phenomena associated to polariza-
tion, since here we do not know what these secondary phe-
nomena are. For the moment, from the physical point of view,
it is wise to content oneself with this first-order approxima-
tion. However, from the physiological point of view, there
is a number of experimental facts that should agree with the
proposed formula.

For this discussion it is necessary to return to the formula
that represents the theory of the membrane polarization. With
the two parameters α and β we have studied the formula as
an empirical formula, comparing it to data obtained in some
given experimental conditions. However, both constants rep-
resent a set of physical quantities, some hypothetical, some
experimentally modifiable. We have to check what happens
to the formula when we vary one of these quantities, and to
compare the results with experiment.

Let us recall the formula that gives the threshold voltage
V as a function of the duration t :

V = v
R + ρ

ρ
.

1

1 − exp
(
− R+ρ

K Rρ
t
) (2)

and we set

α = v
R + ρ

ρ
, β = K Rρ

R + ρ
(3)

The constants corresponding to physical quantities are v, K ,
ρ and R. In the schematic apparatus that we have used, R
is the sum of the resistances of the circuit external to the
capacitor [p. 633].

In the experiments of excitation of the nerve (we consider
here only the sciatic nerve of the frog), these resistances can
be divided in three types: (1) the sum of the resistances in
the excitation circuit, (2) the intrinsic resistance of the part
of the nerve interposed between the electrodes, the nerve is
considered to be an electrolytic conductor to which Ohm’s
law can be applied; (3) a membrane resistance at the anode,
with an undefined form, that behaves in part as a polarization
resistance.

The sum of 1 and 2 is always much larger than 3. One cm
of nerve, taken in the sense of 2, has a resistance of
50–60 k�. The unpolarizable electrodes, which are part of
1 have a resistance which is greater. Furthermore, there are
always additional resistances which can be sometimes very
large. In Weiss’ experiments, the total resistance of the circuit
was often 800 k�.
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As a general rule, in experiments of electrical excitation
of the nerve, the resistor is on the order of 105 �, while the
resistance of the membrane at the anode is on the order of 104.
Compared to the sum, we can therefore neglect the part of
this last resistance which is due to polarization. Overall R is
therefore on the order of several hundreds k�.

In the schematic apparatus,ρ is the leak resistance between
the two leads of the capacitor. In the nerve, it [ρ] is the
resistance of the membrane in immediate contact with the
cylinder-axis in front of the cathode. It is only a part of the
membrane resistance in this area. It is an unknown quantity,
and it varies as a function of the contact area of the electrode
(see below). However, according to the physical picture that
we have introduced here, in given experimental conditions,
it has a well-defined value, that is certainly in most cases
smaller than 104 �. R is therefore much larger than ρ.

1. We will first examine the excitability for a sudden appli-
cation of a constant current. The formula applies when we
insert t = ∞; e−t/β tends towards zero, and V becomes
equal to α, i.e. v

R+ρ
ρ

.
Influence of resistances. Since R is much larger than ρ,

R+ρ
ρ

≈ R
ρ

. Since V and ρ are assumed constant, we see
that V will be approximately proportional to R. This means
that if we add or subtract resistances (without inductance) to
the excitation circuit, we will need to increase or decrease
the voltage approximately in proportion to the increase or
decrease of the total resistance. This is what is observed.

Influence of cathode area. We know that the contact area
of the active electrode has a considerable importance. Du
Bois-Reymond said that the excitation is a function of the
density of the current, which is equivalent to say that the
necessary current to excite grows as the contact area. Let us
consider the membrane that corresponds to the resistance ρ.
This membrane is a conductor of constant length, but vari-
able cross section [p. 634]. Let r be its resistance per unit
section. For a cross section s, the total resistance is ρ = r/s.
Inserting this expression in V = vR/ρ yields V = vRs/r ;
we see that V grows with the surface.

2. Let us return to the temporal aspect of the function, i.e. the
fact that time appears in a logarithmic fashion. β appears as
a time scale in this formula. It seems that physiological con-
siderations on this parameter, to which I ascribe the utmost
importance, will then appear in a more concrete fashion—it
will be the equivalent of the ratio a/b of the constants in
Weiss formula, a ratio whose physiological variations I have
already studied in various cases.

The expression 1
1−e−t/β goes rapidly to 1 when t/β grows.

For t = 3β, its value is 1.055; for t = 4β, it becomes 1.02.
This means that, in ordinary experimental conditions, the
influence of duration on threshold voltage be negligible as

soon as t = 3β. In case of the gastrocnemius muscle of the
frog excited by the sciatic nerve, according to the above men-
tioned values, β is approximately 1 ms. Three milliseconds is
therefore the duration after which the process corresponding
to the threshold for constant current is practically over. It is
exactly the value that I gave previously calculating the ratio
a :b in Weiss’ formula.

We should now examine the possible variations of the sev-
eral physical quantities that enter in the coefficient β. We can
write β = Kρ R

R+ρ
. R

R+ρ
has a value very close to 1, since ρ

is much smaller than R. It follows that in practice, in nerve
excitation experiments, β = Kρ, the product of a capac-
ity and a resistance, which is indeed a time. Here, it is the
product the capacity of the membrane times the resistance
of this membrane. This product is constant, for any consid-
ered surface; indeed, capacity grows with the surface, while
resistance decreases inversely proportional to it.

It follows that if we vary the contact area of the active elec-
trode, we will change the voltage necessary to the excitation,
as we just saw, but not the temporal aspect of excitation.
In addition, if we vary the resistances of the circuit, i.e. R,
either adding or subtracting resistances, or applying current
through a varying length of the nerve, the factor R

R+ρ
, stays

always very close to 1. It follows that β = Kρ R
R+ρ

will not
be appreciably affected by any modification of the experi-
mental apparatus. That is what I indeed found in numerous
experiments [p. 635].

This temporal aspect, measured as the a : b ratio, was
always approximately constant, even though each of the two
parameters depended greatly upon the arrangement of the
electrodes (Mr & Mrs Lapicque 1906). This invariance can
be very well explained by the idea that membrane polariza-
tion is the mechanism of electrical excitation. The product
Kρ, i.e. the polarizability and the resistance per unit area,
depends on the organization of the considered nerve: on the
width and nature of the membrane, on the composition of
the electrolytic solution, on the colloidal solution etc. Fur-
thermore, it varies with temperature, hydration, etc, but is
absolutely independent on the conditions in which the exci-
tation is given.

This temporal aspect is therefore a fundamental property
of excitable tissue, nervous or other. I already insisted on this
point of view in various previous works. Therefore, the phys-
ical interpretation that I reach today gives a precise meaning
to several important previously known facts on excitability,
facts that I did not consider when building this interpretation.
It seems to me a reason to consider it a step in the direction
of realism.

The most serious problem that currently remains, is that
the equation does not explain the inefficiency of slowly
increasing currents [to excite the nerve]. This is a hiatus, not
an objection. One should recognize that these ineffective cur-
rents increase very slowly, compared to the timescales con-
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sidered here; they are of another order. It is possible that the
explanation can be found in the necessary correction terms.
However, it is preferable to wait for the results of further
experiments that I propose to do.

Postscript: While this paper was at the printer, I have been
able to create a strongly polarizable membrane using sub-
stances common to the physiological milieu (parchment
between a sodium phosphate solution and a calcium chlo-
ride solution). A preliminary study of this polarization shows
notable deviations from the equation of a charging capacitor;
the deviations are exactly of the size and direction required
to explain the excitation of nerves.
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