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Abstract Chaos is a central feature of human locomotion
and has been suggested to be a window to the control mecha-
nisms of locomotion. In this investigation, we explored how
the principles of chaos can be used to control locomotion
with a passive dynamic bipedal walking model that has a
chaotic gait pattern. Our control scheme was based on the
scientific evidence that slight perturbations to the unstable
manifolds of points in a chaotic system will promote the
transition to new stable behaviors embedded in the rich cha-
otic attractor. Here we demonstrate that hip joint actuations
during the swing phase can provide such perturbations for
the control of bifurcations and chaos in a locomotive pattern.
Our simulations indicated that systematic alterations of the
hip joint actuations resulted in rapid transitions to any sta-
ble locomotive pattern available in the chaotic locomotive
attractor. Based on these insights, we further explored the
benefits of having a chaotic gait with a biologically inspired
artificial neural network (ANN) that employed this chaotic
control scheme. Remarkably, the ANN was quite robust and
capable of selecting a hip joint actuation that rapidly tran-
sitioned the passive dynamic bipedal model to a stable gait
embedded in the chaotic attractor.Additionally, theANN was
capable of using hip joint actuations to accommodate unsta-
ble environments and to overcome unforeseen perturbations.
Our simulations provide insight on the advantage of having
a chaotic locomotive system and provide evidence as to how
chaos can be used as an advantageous control scheme for the
nervous system.
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1 Introduction

Human locomotion is typically described as having a peri-
odic movement pattern. For example, it can be readily ob-
served that the legs oscillate to-and-fro with a limit cycle
behavior that is similar to the pendulum motions of a clock
(Clark and Phillips 1993). Any variations from this periodic
pattern have traditionally been considered as “noise” within
the neuromuscular system (Hausdorff et al. 1995). However,
recent investigations of human locomotion have confirmed
that variations from one step to the next are not noise. Rather
these variations have a chaotic structure (Buzzi et al. 2003;
Dingwell et al. 2000; Hausdorff et al. 1995, 1997, 1998, 1999,
2000; West and Griffin 1998, 1999; Stergiou et al. 2004a,b).
Several authors have noted that the chaotic structure pres-
ent in human locomotion is influenced by the health of the
neuromuscular system and have speculated that chaos is re-
lated to the neuromuscular control of locomotion (Buzzi et al.
2003; Dingwell et al. 2000; Hausdorff et al. 1995, 1998, 2000;
Stergiou et al. 2004a,b). However, no efforts has been made
to explain how chaos can provide control of the locomotive
pattern or why a chaotic gait pattern is necessary.

A chaotic system is typically described as being both sta-
ble and flexible (Li and Yorke 1975; Allgood et al. 1997;
Baker and Gollub 1996). Chaotic systems have an ergodot-
ic property where their trajectories come close to a fixed
point’s neighborhood but never converge to the specific point
(Allgood et al. 1997; Baker and Gollub 1996). This ergodotic
property has been used to describe a chaotic system as being
flexible since they are capable of maintaining a stable and
variable pattern. The degree of these variations in the state
space have been linked to the health of a biological system
(Buzzi et al. 2003; Dingwell et al. 2000; Hausdorff et al.
1995, 1998, 1999, 2000; Goldberger et al. 2002; Stergiou
et al. 2004b). For example, several investigations have deter-
mined that a heart rhythm that has chaotic pattern is healthy,
while heart rhythms that have a more periodic pattern are
more susceptible to heart disease (see Goldberger et al. 2002
for review). Although chaotic flexibility appears to be quite
an advantage from a clinical standpoint, an additional benefit
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of having a chaotic system is that small perturbations can be
used to drive the system to stable trajectories that are embed-
ded in the chaotic attractor (Starrett and Tagg 1995; Ott et al.
1990; Shinbrot et al. 1993). For example, a small perturba-
tion along the unstable manifold of a point in the attractor
can promote the system to transition from a chaotic pattern
to a periodic pattern (Starrett and Tagg 1995; Ott et al. 1990;
Shinbrot et al. 1993). This property comes from the fact that
multiple points found in a chaotic attractor have both unstable
and stable manifolds (Starrett and Tagg 1995; Ott et al. 1990;
Baker and Gollub 1996; Allgood et al. 1997). Periodic sys-
tems cannot demonstrate such transition flexibility because
no points in the attractor have unstable manifolds (Starrett
and Tagg 1995; Ott et al. 1990; Allgood et al. 1997; Baker
and Gollub 1996;Abarbanel 1996). The ability to transition to
various stable patterns embedded in the chaotic system truly
demonstrates ultimate flexibility. It is possible that the ner-
vous system may use the principles of the chaotic attractor to
control gait patterns and ensure stability in uncertain environ-
ments. Hence, chaos may be necessary to allow the nervous
system to accommodate a variety of locomotive strategies by
using well-timed perturbations that promote the central pat-
tern generator to switch to stable locomotive patterns avail-
able in the rich chaotic attractor. No effort has been made
to explore if such a perturbation scheme could be used to
control locomotion.

The biomechanical requisites and engergetics of human
locomotion have been successfully explored with a class of
passive dynamic bipedal robots that walk down a slightly
sloped surface (Kuo 2001, 2002; Kurz et al. 2005; Garcia
et al. 1998; McGeer 1990; Collins et al. 2005; Groswami
et al. 1996; Howell and Baillieul 1998). These bipedal mod-
els are composed of an inverted double pendulum system
where one leg is in contact with the ground and the other
leg swings freely with the trajectory of the system’s cen-
ter of mass (Fig. 1). Recently, Groswami et al. (1996) and
Garcia et al. (1998) have demonstrated that a simple passive
dynamic walking model can exhibit a cascade of bifurca-
tions (i.e. period 1, period 2, period 4. . . ) that converges
to a chaotic locomotive pattern. Numerical experiments by
Garcia et al. (1998) suggested that the basin of attraction for
a stable chaotic gait is bigger than the basin for a periodic
fixed point gait. This suggests that a chaotic gait may be more
robust because it has a greater basin of stability. Additionally,
Garcia et al. (1998) suggested that since the basin of stability
is larger for chaotic systems it may be useful to add control to
the passive dynamic walking system to maintain locomotive
pattern within the chaotic region. However, no further inves-
tigations have been conducted to extend Garcia et al.’s (1998)
concepts. It is possible that slight joint actuations may per-
turb the locomotive system to stay within the chaotic basin of
attraction. Further investigation of these concepts may prove
to be fruitful in further understanding why a chaos is present
in human locomotion.

In this investigation, we have extended Garcia et al. (1998)
passive dynamic walking model by incorporating a hip joint
actuator for the swing leg (Fig. 1). We hypothesized that the

Fig. 1 The passive dynamic walking model where φ is the angle of the
swing leg, θ is the angle of the stance leg, γ is the angle of inclination
of the supporting surface, and g is gravity. Both legs are of length l

central nervous system may use such hip joint actuations
to provide a perturbation to the chaotic locomotive system.
Potentially, joint actuations will cause the passive dynamic
bipedal model to transition to new stable locomotive patterns
embedded in the chaotic attractor and help to maintain the
gait within the basin of the chaotic attractor. Additionally, we
further explored how chaos can be used as a control scheme
by developing a biologically inspired artificial neural network
(ANN) that selects hip joint actuations for the model’s gait.
We hypothesized that the simulated nervous system would
be able to utilize hip joint actuations to transition to a stable
locomotive pattern embedded in the chaotic attractor during
unpredictable environments and when unforeseen external
perturbations are encountered.

2 Modeling bipedal locomotion

The passive dynamic walking model used in this investigation
was a simplified mathematical model of the lower extremities
based on the work of Garcia et al. (1998) and Kuo (2002)
(Fig. 1). The model consisted of two rigid massless legs con-
nected by a frictionless hinge at the hip. During locomo-
tion, the stance leg swung like an inverted pendulum until
the swing leg made contact with the supporting surface. At
heel-contact, the swing leg became the stance leg and the
stance leg became the swing leg for the next step. The swing
leg was allowed to pass through the supporting surface dur-
ing midstance and had a plastic collision with the surface
at heel strike. Energy for the locomotive pattern was sup-
plied to the model via a slightly sloped rigid walking surface
(γ < 0.0190 rad). The simplified equations of motion for the
passive dynamic bipedal walking model developed by Garcia
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et al. (1998) are presented in Eq. 1.

θ̈ (t) − sin(θ(t) − γ ) = 0,

θ̈ (t) − φ̈(t) + θ̇ (t)2 sin φ(t)

− cos(θ(t) − γ ) sin φ(t) = kφ(t), (1)

where γ is the slope of the walking surface, t is time, k is
the stiffness of the hip torsional spring, θ is the angle of the
stance leg, φ is the angle of the swing leg, and θ̇ , θ̈ , φ̇, φ̈
are the respective derivatives. Further detailed explanations
regarding the derivation of the governing equations for the
passive dynamic model used in this investigation can be found
in Garcia et al. (1998) and Kuo (2002). Inspection of the gov-
erning equations indicates that hip joint actuation was applied
to the swing leg via a torsional spring. The magnitude of the
hip joint actuation was adjusted by increasing the value of k.

The governing equations were integrated using a modi-
fied version of Matlab’s (MathWorks, Natick, MA) ODE45.
The ODE45 was modified to integrate the equations of mo-
tion with a tolerance of 10−12 and to stop integrating when
the angle of the swing leg angle was twice as large as the
stance leg angle (Eq. 2).

φ − 2θ = 0. (2)

The swing leg became the stance leg and the former stance leg
became the swing leg when the conditions presented in Eq. 2
were satisfied. The switching of the roles of the legs was per-
formed with a transition equation developed by Garcia et al.
(1998) (Eq. 3).
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where “+” indicated the behavior of the model just after the
swing leg made contact with the ground and “−” indicated the
behavior of the model just before the swing leg made contact
with the ground. The transition equation assumes that angu-
lar momentum of the entire system was conserved about the
swing foot point of contact and also for the former stance
leg about the hip (Garcia et al. 1998). Therefore, the energy
gained in the descent of the walking model was balanced by
the energy lost at each heel-strike. Further information on the
derivation of Eq. 3 can be found in Garcia et al. (1998).

3 Analysis of locomotive patterns

We used systematic numerical simulations to confirm the
influence of hip joint actuation on the locomotive patterns
of our model. Analyses of the locomotive patterns of the
model were performed from 5,000 footfalls with the first 500
footfalls removed to be certain that the model converged to
the given attractor. Initial simulations were performed with
no joint actuations (i.e. k = 0 s−2). This was followed by a
systematic exploration of the influence of hip joint actuations
on the identified locomotive patterns at the respective γ .

Bifurcations and changes in the model’s locomotive pat-
tern were noted with Poincaré maps composed from initial
stance leg angle of the model for a given step (Eq. 4).

ζn+1 = f (ζn) (4)

where ζn is the stance leg angle for the nth step and ζn+1 is
the stance leg angle for the proceeding step. The Poincaré
maps provided a way to simplify the dynamics of the sys-
tem by viewing the behavior of the system stroboscopically
(Baker and Gollub 1996). This involves cutting or section-
ing the attractor at regular intervals or events. An increase in
the order of the gait pattern as a joint actuation was applied
results in more points in the Poincaré map (i.e. Period 4–8).
Alternatively, a decrease in the order as a joint actuation was
applied results in fewer points in the Poincaré map (i.e. Period
8–4).

Lyapunov exponents were calculated to quantify the
exponential separation of nearby trajectories in the recon-
structed state space of the simulated locomotive pattern at the
respective γ (Allgood et al. 1997; Baker and Gollub 1996;
Abarbanel 1996; Stergiou et al. 2004a,b). This information
was necessary to classify the locomotive pattern as periodic
or chaotic. As nearby points of the state space separate, they
diverge rapidly and can produce instability. Lyapunov expo-
nents from a stable system with little to no divergence will be
zero (e.g. sine wave). Alternatively, Lyapunov exponents for
an unstable system that has a high amount of divergence will
be positive (e.g. random data). A chaotic system will have
both positive and negative Lyapunov exponents. Although a
positive Lyapunov exponent indicates instability, the sum of
the Lyapunov exponents for a chaotic system remains nega-
tive and allows the system to maintain stability (Allgood et al.
1997; Baker and Gollub 1996;Abarbanel 1996; Stergiou et al.
2004a,b). This notion can be seen by inspecting the largest
Lyapunov exponent for a sine wave (0), a chaotic Lorenz
attractor (0.100), and random data series (0.469). Hence a
chaotic system lies somewhere between a completely peri-
odic system and a completely random system. The Chaos
Data Analyzer (American Institute of Physics) was used to
numerically calculate the largest Lyapunov exponent for each
γ . Previously, we had confirmed that an embedding dimen-
sion of three is necessary to calculate the largest Lyapunov
exponent for Garcia et al.’s 1998 passive dynamic bipedal
walking model (Kurz et al. 2005).

4 Artificial neural network

Artificial neural networks are composed of biologically
inspired neuron like elements operating in parallel (Russell
and Norvig 2003; McClelland and Rumelhart 1981; Rumelhart
and McClelland 1986; Morris 1989; Cohen et al. 1990;Thelen
and Bates 2003). As in the human nervous system, the out-
put of each neuron is determined by its interconnections with
other neurons in the simulated nervous system. Each inter-
connection has a weight associated with the connected edge.
It is the collective activity of multiple weighted edges that
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determines the behavior of the respective neuron (Russell and
Norvig 2003; McClelland and Rumelhart 1981; Rumelhart
and McClelland 1986; Morris 1989; Cohen et al. 1990;Thelen
and Bates 2003). By adjusting the weighted connections
between the respective neurons, the ANN learns to perform
specific tasks for a given set of inputs. ANNs have been
successfully used to model the neural activity associated
with human cognitive behaviors (McClelland and Rumelhart
1981; Rumelhart and McClelland 1986; Morris 1989; Cohen
et al. 1990; Thelen and Bates 2003). These models have
advanced our understanding of the organization and perfor-
mance of the central nervous system. We employed a similar
methodology to explore how the nervous system can use the
principles of chaos to control locomotion.

We developed a feed-forward ANN that had sixteen input
neurons, four hidden neurons and one output neuron (Fig. 2).
Neurons between each layer were connected via a series of
weighted edges (wij ). Each ith neuron had an input value
xiand an output value yi = g(x). A sigmoid function g(x) =
(1+ex)−1 was used to determine the excitation of the neuron
where the value of x was given by xi = ∑

wijyj . The input
to the ANN consisted of eight time delays of the model’s
initial right leg angle and angular velocity for a given step
(Xn−1, Xn−2, . . ., Xn−8). These time delays served as a cog-
nitive memory for the past states of the locomotive sys-
tem. Our decision to use time delays as input parameters
was based on the current scientific literature that indicates
human locomotion has a neural memory of past locomo-
tive states (Hausdorff et al. 1995, 1997, 1998, 1999, 2000).
These memories appear to serve as a basis for selecting the
neuromuscular behavior of proceeding steps. Additionally,

Fig. 2 Schematic for the artificial neural network that determines a
stiffness value (k in Eq. 1) for modulating hip joint actuation

several investigations have determined that kinematic codes
of past neuromuscular behaviors are stored in working mem-
ory (Shand 1982). The use of angular position and velocity
as input parameters for the ANN was based on the prevalent
literature that indicates the receptors in the muscle monitor
the position and velocity of the limb trajectories (McCloskey
1978).

We trained the ANN to select a hip stiffness (k in Eq. 1.)
that would transition a period-n gait to a period-2 gait.
Although it is unlikely that humans walk with a period-2
gait, we selected period-2 because it is feasible to visually in-
spect the performance of the model with Poincarè sections.
Changes in the hip stiffness variable subsequently altered
the hip joint actuation applied to the locomotive system. The
training data utilized was from 0.0182 rad > γ > 0.0183 rad.
The assignment of edge weights in the final neural network
was determined with a backpropogation algorithm where the
output of theANN was compared with the training data (Rus-
sell and Norvig 2003; Rumelhart and McClelland 1986). We
tested the ANN performance at γ that it had not been trained
(e.g. 0.0183 rad > γ > 0.0191 rad). Additionally, the robust-
ness of the ANN was tested by supplying an impulse directed
toward the model’s center of mass at the 150th step (Eq. 5
where P > 0). This impulse provided an unforeseen pertur-
bation to the models gait at heel-contact. P was dimension-
less and had a normalization factor M(g l)1/2. When P was
set to zero, the equation is the same as the transition equation
presented in Eq. 3.
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Fig. 3 Bifurcation map for the passive dynamic bipedal walking model
with no hip joint actuations (e.g. k = 0 s−2). Without hip joint actuation,
no stable gait patterns are present beyond 0.0190 rad
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Fig. 4 Poincaré sections for the model while walking at γ = 0.01823 rad and k = 0 s−2 (a), k = 0.002 s−2 (b), k = 0.01 s−2 (C), k = 0.06 s−2

Perturbations were systematically increased for each simu-
lation until the passive dynamic walking model fell down.
The robustness was classified by how much of a perturbation
the locomotive system could overcome with and without the
presence of the ANN.

5 Simulation results

With no added hip joint actuation (i.e. k = 0), the model had
a cascade of bifurcations that led to a chaotic gait pattern as γ
was increased (i.e. period-one, period-two, period-four, etc.)
(Fig. 3). Period one locomotive attractors were present for
γ < 0.0150 radians. A period one attractor indicated that the
model selected the same initial stance leg angle for every step
of the continuous locomotive pattern. At γ = 0.0151 rad, the
locomotive pattern bifurcated from period one to period two.
A period two indicated that the locomotive pattern alternated
between two different initial stance leg angles. Additional
increases in γ systematically resulted in further bifurcations
in the initial stance leg angle chosen by the walking model.
Positive Lyapunov exponents were present from 0.01839 rad

< γ < 0.0189 rad (Lyapunov exponent range = +0.002 to
+0.158).

Subsequently, we explored if hip joint actuation was a
mechanism to control the locomotive pattern of the walking
model. As the hip joint actuation was increased (i.e. k > 0),
the order of the period-n gaits at the respective γ were de-
creased. For example, systematic increases in hip joint actua-
tion applied to a period-8 gait drove the system to a period-4
gait, to period-2 gait and to a period-1 gait (Fig. 4). This
type of joint actuation could be used to rapidly transition to
any gait pattern in the bifurcation map (Fig. 3). For exam-
ple, Fig. 5 demonstrates that the chaotic pattern present at
γ = 0.0189 rad was rapidly transitioned to a period one gait
when a hip joint actuation of 0.06 s−2 was applied at the
150th step of the model’s gait. This should not be misinter-
preted that hip actuation could only be used to transition to
periodic gait. Hip actuation could be used to transition to any
period-n gait, which included a lower level chaotic attractor
that was embedded in the higher level chaotic system. We
define a lower level chaotic attractor as a chaotic attractor
with its largest Lyapunov Exponent closer to zero.
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Fig. 5 A series of steps from the passive dynamic walker at a ramp
angle of 0.0189 rad. No hip actuation was supplied prior to the 150th
step and the model walked with a chaotic gait pattern. After the 150th
step, a hip actuation of 0.06 s−2 was applied which promoted the gait
pattern to rapidly transition to a period one gait

Simulations of the ANN’s performance indicated that it
was capable of selecting a proper hip joint actuation that
transitioned any period-n gait at a respective γ to a period-2
gait. Additionally, the ANN was capable of using hip joint
actuations to induce locomotive stablity in regions where the
model was not previously able to walk. Without the addition
of hip joint actuation (i.e. k = 0), the model would fall down
at ramp angles larger than 0.019 rad. However, employment
of the ANN’s chaotic control scheme resulted in the selection
of hip joint actuations that allowed the model to walk with
a stable gait at ramp angles that were previously considered

Fig. 6 An exemplar gait pattern where an unforeseen perturbation was
applied to the passive dynamic bipedal walking model. The artificial
neural network utilized the hip joint actuator to rapidly transition to a
stable gait embedded in the chaotic attractor

Fig. 7 Corresponding hip joint stiffness selected by the artificial neural
network to transition to stable gaits embedded in the chaotic attractor
when the unforeseen perturbation is encountered

unstable. Hence, the ANN was able to use hip joint actua-
tions to induce stability in the model’s locomotive pattern in
uncertain environments.

The results from the perturbation analysis further dem-
onstrated the robustness of the ANN. When the ANN was not
used for control, the model was able to use passive dynam-
ics alone to stabilize a perturbation of P = 0.0007. How-
ever, with the use of the ANN, unforeseen perturbations that
were 73% larger were stabilized by rapidly transitioning to
a stable gait embedded in the chaotic attractor. Figures 6
and 7 depict the robustness of the ANN where a perturba-
tion was applied during stable locomotion. The ANN rapidly
selected a hip joint actuation that transitions the locomotive
system to a stable pattern. Upon stabilizing the disturbance,
the ANN quickly transitioned the locomotive system back to
the original stable gait pattern.

6 Discussion

Chaos is a central feature of human locomotion (Buzzi et al.
2003; Dingwell et al. 2000; Hausdorff et al. 1995, 1997,
1998, 1999, 2000; Stergiou et al. 2004a,b; West and Grif-
fin 1998, 1999). The origin of such complex physiological
rhythms in locomotion has come under closer examination
because it has been suggested that they are linked to the con-
trol mechanisms of the neuromuscular system (Buzzi et al.
2003; Dingwell et al. 2000; Hausdorff et al. 1995, 1997, 1998,
1999, 2000; Stergiou et al. 2004a,b; West and Griffin 1998,
1999). In this investigation, we explored how the principles
of chaos can be used as a control scheme for bipedal loco-
motion. With no hip joint actuation (e.g. k = 0 s−2), our
passive dynamic bipedal walking model was capable of pro-
ducing a chaotic locomotive pattern when the ramp angle was
0.01839 rad < γ < 0.0190 rad (Lyapunov exponent range =
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+0.002 to +0.158). When hip joint actuation was added to
the model, it provided a mechanism to control bifurcations
and the presence of chaos. Hip joint actuation allowed the
model to transition to other stable gaits embedded in the cha-
otic attractor. These simulations suggest that humans may use
well-timed joint actuations to transition to stable locomotive
patterns available in the chaotic attractor when instabilities
are encountered in the walking environment. These simula-
tions build on Garcia et al. (1998) concept that the basin of
stability may be larger for chaotic gaits compared to the basin
of stability for periodic fixed point gaits. It is theoretically
plausible that hip joint actuations could be used to ensure
that the locomotive system remains within the basin of sta-
bility of the chaotic attractor. The advantage of remaining in
the chaotic region is that there are many different step length
combinations available for a stable gait pattern. Once in the
chaotic basin, further hip joint actuations can be used to select
a stable gait that meets the changes in the environment.

Our biologically inspired ANN was capable of utilizing
the principles of chaos as a control scheme. Remarkably, the
ANN selected a hip joint actuation that rapidly transitioned
the locomotive system to a stable gait embedded in the rich
chaotic attractor. Additionally, our simulations demonstrated
that the chaotic control scheme employed by the ANN was
very robust. The ANN was capable of using hip joint actu-
ations to accommodate unstable environments and to over-
come unforeseen perturbations. Insights from our simula-
tions are quite striking and provide a foundation for further
understanding of the advantage of having chaotic walking
pattern. We suggest that chaos may provide ultimate flexibil-
ity in the gait pattern by allowing the nervous system to select
a stable gait pattern that is embedded in the chaotic attractor.
This type of control may be highly desirable in the ever chang-
ing environment. By having a chaotic locomotive system, the
controller can match what type of gait pattern is necessary
for the given environment. This may include various types
of period-n locomotive patterns. Based on these insights, it
was quite evident that the ANN provided additional benefit
beyond the natural stability of the chaotic attractor. The ANN
could use the properties of the chaotic attractor to select a hip
joint actuation that transitions the locomotive system to a gait
that is stable for the given perturbation or environmental cir-
cumstances.

Several investigations have indicated that gait is con-
trolled by a central pattern generator (e.g neuronal group)
located in the spinal cord (Grillner 1981; Rossignol et al.
2000; Forssberg et al. 1980a,b; Barbeau and Rossignol 1987;
Harkema 2001; Suster and Bate 2002; Marder 2002). The
central pattern generator provides neural timings necessary
for locomotive patterns. Even in the absence of higher brain
center influences, the central pattern generator is capable of
producing viable gaits in spinalized animals (Rossignol et al.
2000; Forssberg et al. 1980a,b; Barbeau and Rossignol 1987)
and humans with spinal cord injuries (Harkema 2001). Since
there is extensive evidence that steady state human locomo-
tion has a chaotic structure (Buzzi et al. 2003; Dingwell et al.
2000; Hausdorff et al. 1995, 1997, 1998, 1999, 2000; Stergiou

et al. 2004b; West and Griffin 1998, 1999), it is possible
that chaos may actually be embedded in the dynamics of the
central pattern generator. However, neural signals from the
higher brain centers may be necessary for altering the behav-
ior of the chaotic central pattern generator. Possibly neural
signals from higher brain centers may initiate well-timed joint
actuations that cause the central pattern generator to alter its
neural firing pattern to a new stable gait patterns embedded
in the chaotic system. Such a control scheme may be advan-
tageous because it will reduce the need for continuous com-
mands to be sent to the multiple degrees of freedom present
in the musculoskeletal system during locomotion. Addition-
ally, it would allow the central pattern generator to rapidly
switch to the multiple stable gait patterns available in the
chaotic attractor as environmental circumstances change. To
further explore this hypothesis, we are experimentally inves-
tigating and modeling the influence of higher brain centers
on chaotic locomotive dynamics in clinical populations with
isolated disorders of the central nervous system (i.e. Parkin-
son’s, stroke and spinal cord injuries).

Based on the results of our simulations, we suggest that
how the nervous system takes advantage and utilizes the prop-
erties of the chaotic locomotive attractor may be a source of
the previously observed differences in chaotic dynamics of
abnormal locomotive patterns (Buzzi et al. 2003; Dingwell
et al. 2000; Hausdorff et al. 1997, 1998, 2000; Stergiou et al.
2004a,b). As stated previously, the nervous system may be
able to select a desired gait pattern from among the infinite
number of behaviors naturally present in the chaotic locomo-
tive attractor. The ability of the nervous system to capitalize
on the properties inherent to the chaotic system may allow
for a healthy and flexible locomotive system. An example
of this notion is provided in a recent investigation where it
was determined that the elderly have altered chaotic loco-
motive dynamics (Buzzi et al. 2003). Since it is well known
that the elderly have abnormal hip joint mechanics (Winter
et al. 1990; Winter 1991; Judge et al. 1996; Kerrigan et al.
1998), it is possible that the altered chaotic dynamics may
be related to an inability of the elderly nervous system to
champion the use of hip joint actuation for the control bifur-
cations and chaos. In a sense, the elderly may not be able to
supply joint actuations that are necessary for transitions to
stable locomotive patterns when instabilities are experienced
in the gait pattern. Such instabilities may arise from slight
changes in the walking environment or local changes in the
performance of the musculoskeletal system (Dingwell et al.
2000). Currently, we are using our passive dynamic bipedal
walking model to further explore the influence of other lower
extremity joint actuations on the control of bifurcations and
chaos in locomotive patterns.

7 Conclusions

In this investigation, we have demonstrated that hip joint
actuation can be used to control bifurcations and chaos in
a bipedal locomotive pattern. Based on our simulations, it
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appears that having a locomotive system with a chaotic pat-
tern provides an advantageous control scheme. As long as
the locomotive system remains within the basin of the cha-
otic attractor the nervous system can select from among the
many different step length combinations. Our simulations
indicate that hip joint actions selected by the nervous system
allow the locomotive system to rapidly transition to stable
gaits embedded in the rich chaotic attractor. Chaos may be
embedded within the locomotive central pattern generator.
Further exploration of how chaos is used as a control scheme
will enhance our understanding of the neural control of loco-
motion.
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