
Biol Cybern (2006) 94: 245–261
DOI 10.1007/s00422-005-0047-3

ORIGINAL PAPER

T. Iwasaki · M. Zheng

Sensory feedback mechanism underlying entrainment
of central pattern generator to mechanical resonance

Received: 12 May 2005 / Accepted: 21 November 2005 / Published online: 10 February 2006
© Springer-Verlag 2006

Abstract Rhythmic body motions observed in animal loco-
motion are known to be controlled by neuronal circuits called
central pattern generators (CPGs). It appears that CPGs are
energy efficient controllers that cooperate with biomechani-
cal and environmental constraints through sensory feedback.
In particular, the CPGs tend to induce rhythmic motion of the
body at a natural frequency, i.e., the CPGs are entrained to a
mechanical resonance by sensory feedback. The objective of
this paper is to uncover the mechanism of entrainment result-
ing from the dynamic interaction of the CPG and mechan-
ical system. We first develop multiple CPG models for the
reciprocal inhibition oscillator (RIO) and examine through
numerical experiments whether they can be entrained to a
simple pendulum. This comparative study identifies the neu-
ronal properties essential for the entrainment. We then ana-
lyze the simplest model that captures the essential dynamics
via the method of harmonic balance. It is shown that robust
entrainment results from a strong, positive-feedback coupling
of a lightly damped mechanical system and the RIO consist-
ing of neurons with the complete adaptation property.

1 Introduction

The control system for animal locomotion is formed by a
group of neurons interconnected in a specific manner, called
the central pattern generator (CPG). The CPG can be viewed
as a nonlinear dynamical system capable of generating pat-
terns, i.e., phase-locked oscillations, in the time courses of
cell membrane potentials. Such patterns are used as activa-
tion signals for muscle contractions to achieve coordinated
rhythmic body motions observed in swimming, walking, fly-
ing, etc. The sensory information is not essential for pattern
generation itself, but rather modifies the oscillation profile to
achieve robustness against, and adaptation to, environmental
changes.
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The neuronal circuits of CPGs have been extensively
studied for a wide variety of animals, and their mathemati-
cal models have been developed and validated through com-
parisons of model predictions with experimental observa-
tions (Orlovsky et al., 1999; Cohen et al., 1992; Ermentrout
and Chow, 2002). The simplest and perhaps most fundamen-
tal CPG consists of two (groups of) neurons with mutually
inhibitory synaptic connections (Brown, 1911), and is called
the half-center model or the reciprocal inhibition oscillator
(RIO). The inhibitory connections in the RIO generate out-of-
phase oscillations in the activities of the two neurons, which
drive a pair of muscles (flexor/extensor, dorsal/ventral etc.)
alternately to generate periodic motions of limbs or limbless
bodies. Reciprocal inhibition is considered to be an essen-
tial mechanism underlying the neuronal control of animal
locomotion (Friesen, 1994).

The RIOs and their extensions (e.g., recurrent cyclic inhi-
bition oscillators) have been studied in terms of realistic
neuron models with supporting biological data (Friesen and
Stent, 1978; Friesen, 1994; Getting, 1989) as well as sim-
plified models with mathematical analysis (Matsuoka, 1985,
1987). While the former approach focuses on accurately repro-
ducing the biological behavior, the latter aims to rigorously
analyze the dynamical behavior using simple models at the
expense of some reality. There is, however, a common prin-
ciple in neuronal dynamics found in both lines of research.
The property that diminishes the neuronal response to a tonic
stimulus over time, called adaptation, has been shown cru-
cial for generation of stable out-of-phase oscillations in RIOs
(Matsuoka, 1985; Friesen, 1994).

Neuronal control circuits for locomotion have been stud-
ied in the context of driving the mechanical body, possibly
with sensory feedback (Taga, 1991; Ekeberg, 1993; Wad-
den and Ekeberg, 1998; Williamson, 1998; Ijspeert, 2001;
Lewis et al., 2003; Fukuoka et al., 2003). These references
consider rhythmic motions generated by coupling of CPGs
with various mechanical systems, including lamprey swim-
ming, salamander swimming and walking, and human-like
legged locomotion. Stable locomotions were generated us-
ing the specific control architectures that were developed
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from biological knowledge on neuronal CPG circuits. Suc-
cessful parameter tuning in each work indicated that the
nonlinear control architecture employed was dynamically
rich enough to generate the expected behaviors. However, a
fundamental question still remains: Which dynamical prop-
erties and mechanisms are essential for achieving natural
motions?

One of the intriguing properties of neuronal control sys-
tems is the ability to achieve natural motions by cooperating
with the physical constraints imposed by the dynamics of
the body and the surrounding environment. In particular, the
frequency of rhythmic body motion seems to be set close
to the natural frequency of the mechanical body (possibly
modified through the interaction with the environment). For
instance, bees flap much faster than hawks, and elephants
walk with a much slower pace than ants. From the neuronal
control viewpoint, such phenomena occur as a result of the
entrainment of the CPG to a mechanical resonance through
sensory feedback. The entrainment to resonance is an en-
ergy efficient control strategy for generating natural periodic
motions, and hence its underlying biological mechanism, if
uncovered, will be useful in engineering applications. Indeed,
methods for achieving this phenomenon have been studied in
the engineering literature with different terminologies; “self
excitation” (Ono, 1998; Ono et al., 2001), “feedback reso-
nance” (Fradkov, 1999a,b), and “resonance tuning” (Raney
and Slominski, 2004).

This paper attempts to identify the principles underlying
the natural rhythmic motion achieved by the entrainment of
the CPG to a mechanical resonance. In contrast to the previ-
ous works on the neuro-mechanical interactions that studied
the entire locomotion system of particular animals, we try
to focus on the simplest relevant dynamics that captures the
essential mechanism of the resonance entrainment. In partic-
ular, we will study the motion of a simple pendulum coupled
with an RIO, driven by the following hypothesis: The RIO is
capable of achieving robust entrainment to the mechanical
resonance. This means that an RIO, with intrinsic frequency
ωRIO, tends to drive the body (represented by the pendulum in
our study) at its natural frequency ωo even if ωRIO �= ωo. The
term “robust” is added to emphasize the ability to maintain
this tendency for a wide range of ωo. In other words, an RIO
is expected to change its oscillation frequency in accordance
with the mechanical property of the body to which the RIO is
coupled (e.g. slower oscillation for a straight arm and faster
oscillation for an arm folded at the elbow). The objective of
this paper is to provide evidence for the correctness of this
hypothesis, and to uncover the underlying mechanism for the
robust entrainment.

Our approach is based on mathematical modeling of RIOs,
followed by numerical experiments on, and theoretical analy-
ses of, an RIO-driven pendulum system. We consider several
neuron models with different complexity and structure, and
investigate which neuronal properties are crucial for achiev-
ing the robust entrainment. In particular, for each of the neu-
ron models, an RIO is formed and conditions for existence
of oscillatory trajectory are obtained. Each RIO is then used

to drive a simple pendulum and the entrainment property is
examined and compared with the results for other RIO mod-
els to identify the crucial neuronal properties. Finally, the
method of harmonic balance (see e.g., Khalil 1996; Glad and
Ljung 2000) is applied to the RIO-pendulum system to reveal
how combinations of various dynamical properties determine
the frequency of resulting oscillations. Through this process,
we were able to identify a few properties essential for achiev-
ing the robust entrainment to resonance.

2 Neuron models

In this section, we will present several models of neuronal
dynamics with different complexity and structure. Later, each
model will be used as a basic unit to form an RIO and tested
against capability of robust entrainment. Comparisons of the
results for different models reveal which neuronal properties
are (or are not) important for achieving robust entrainment.

2.1 Dynamic axon with feedforward adaptation

Many neurons consist of three components: dendrite, soma,
and axon. Within a neuron, the information flows from the
dendrites to the soma, and then to the axon, in the form of an
electrical signal. The neuronal dynamics can be modeled as
an input–output system from the current injection input u to
the membrane potential output v. We consider the following
structure for the neuron model

v = A(q), q = F(u)
where A and F represent the dynamical mappings of the
axon and (soma, dendrites), respectively, and q is the current
flowing from the soma to the axon.

The dynamics of the soma and dendrites have often been
modeled by a linear low-pass filter (Hunt et al., 1992; Hadeler,
1974). However, such models do not capture a neuronal prop-
erty important for generating oscillations in RIOs, namely,
the adaptation (Matsuoka, 1985; Friesen, 1994). The adap-
tation property may be characterized by the existence of a
peak in the output q in response to a step (constant) input
u; this means that q increases immediately after the input
stimulus, but soon decreases as it adapts to the stimulus. A
low-pass filter typically has a monotonically increasing step
response and hence does not possess the adaptation property.
To embed this important property in F , we consider a linear
band-pass filter with the transfer function from u to q given
by

F(s) = ks

(1 + τ1s)(1 + τ2s)
(1)

where k, τ1, and τ2 are positive constants. The poles of F(s)
capture the processing time lag, and the zero at the origin
achieves the adaptation by completely blocking the constant
input in the steady state. We shall explain the behavior of this
model later in comparison with other models.
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The mapping A is responsible for generation of action
potentials (spike trains). The essential dynamics of the nerve
impulse can be captured by the so-called two-variable mod-
els (Hindmarsh and Rose, 1982; Rinzel, 1985; Av-Ron et al.,
1993) described by the following general form:

v̇ = ψ1(v)− w + q
ẇ = ρ(ψ2(v)− w)

(2)

where v is the membrane potential, w represents the dynam-
ics of voltage gated ion channels, and ρ > 0 is the rate of
channels opening. The nonlinear functions ψk(v) (k = 1, 2)
are such that the slope of ψ2(v) is always nonnegative, and
the slope of ψ1(v) varies from negative, positive, to negative
as v increases. A typical example of such functions is shown
in Fig. 1 (Iwasaki and Zheng, 2002). The shapes and relative
positioning of the curves are important for capturing certain
neuronal properties, but their sizes are immaterial as their
effects can be captured by scaling the input and output by a
constant.

For the oscillation analysis and simulation studies in this
paper, we consider the dynamic axon model (2) with func-
tions described by

ψ1(v) := φ1(v)− bv, ψ2(v) := φ2(v) (3)

where b is a positive scalar and φk ∈ S where S is the class of
monotonically increasing, bounded, Lipschitz functions. As
shown later, this class of functions simplifies the oscillation
analysis. The particular functions and parameter values used
in our simulation studies are taken from Iwasaki and Zheng
(2002) and are summarized in the Appendix. The functions
ψk are chosen so that the equilibrium point is close to the ori-
gin and the operating regions of v andw are roughly between
0 and 1 (see Fig. 1). The time constant τ1 determines the ini-
tial response speed and is roughly equal to a typical duration
of the nerve impulses (∼=10 ms), while the other time constant
τ2(= 100 ms) determines the rate of adaptation and is much
larger than τ1.
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Fig. 1 Typical shapes of ψ1(v) and ψ2(v). The equations are given in
the Appendix
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Fig. 2 Input/output data of the dynamic axon model (asterisks: data
from dynamics axom with feedforward adaptation (DAFF);solid line
curve fit)

The dynamic axon model described by (2) and (3) has
been shown to possess various neuronal properties includ-
ing threshold, refractory period, rate coding, and bistabili-
ty (Iwasaki and Zheng, 2002). We shall refer to the neuron
model described here as the Dynamic Axon with FeedFor-
ward adaptation (DAFF) model.

2.2 Static axon with feedforward adaptation

In this section, we develop another neuron model by simpli-
fying the DAFF model. We keep the (soma, dendrite) model
F(s) as is, but replace the dynamic axon model (2) by a static
nonlinearity v = ϕ(q) with ϕ ∈ S. This class of functions
will capture the threshold property of the axon, and in this
case, v may be interpreted as the firing rate of nerve impulses
rather than the membrane potential. The neuronal dynamics
is thus modeled by the following Static Axon with Feed For-
ward adaptation (SAFF) structure:

v = ϕ(q), q = F(s)u. (4)

An SAFF model that roughly approximates a given DAFF
model has been developed through numerical experiments
by the following procedure.1 Apply a constant input q to the
dynamic axon model (2) and measure the steady state output
v. If q is less than a certain threshold level, the output v
approaches a constant. Let this constant value be the data y.
If q is above the threshold, the output v will be a periodic
signal (spike trains). In this case, let the average value of v
over a period be the data y. Repeat the numerical experiment
for different values of q to collect the data points (qk, yk),
(k = 1, . . . , n). Find a function ϕ ∈ S that approximates the
data points in the sense that |yk − ϕ(qk)| is small for all k.

1 We do not claim or expect that the procedure described here is
optimal in any sense, although it seems reasonable. The accuracy of
the approximation is not so important in our analysis, as the robust
entrainment property seems insensitive to it.
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Fig. 3 Feedforward adaptation mechanism. The axon model A is given by ϕ for static axon with feedback adaptation (SAFF) and (2) for DAFF.

For the dynamic axon model with the parameters given
in the Appendix, the numerical experiments were performed
to obtain the data points indicated by “asterisk” in Fig. 2.
As the input q increases, the axon model starts to generate
spike trains when q becomes greater than qth ∼= 0.03. The
spike trains are observed with increasing frequency until q
becomes greater than 0.15. The data points in this operating
region are approximated by the following function to capture
the threshold and saturation effects:

ϕ(q) := as tanh

(
q − cs

bs

)
+ ds .

The parameters may be optimized to achieve the least-square
error, but a rough manual tuning yielded the parameter values
in the Appendix with the solid curve in Fig. 2. The behavior
of the DAFF model, on average, is expected to be captured
by the SAFF model thus obtained.

2.3 Static axon with feedback adaptation

This section introduces another neuron model proposed by
Matsuoka (1985) for comparison purposes, and shows how
to choose the model parameters to roughly match its dynamic
behavior with that of the SAFF model. The Matsuoka model
may be interpreted as a static axon with feedback adaptation
(SAFB).

The input–output mapping (u → v) of the SAFB model
is defined by

τr q̇ + q = γ u − baz
τa ż + z = v
v = max(q + β, 0)

where max(·, ·) takes the larger value of the two arguments,
v is the firing rate of the membrane potential, z is the adapta-
tion variable, u is the (current) input, and the parameters γ ,
β, ba , τr , and τa are all taken to be positive.

The behavior of the SAFB model would be similar to a
given SAFF model if the parameters are chosen as follows.
In the active operating region, where q + β ≥ 0, the SAFB
model behaves linearly, with the transfer function

v(s)

u(s)
= γ (1 + τas)

(1 + τr s)(1 + τas)+ ba
.

On the other hand, linearization of the SAFF model around
the equilibrium with any constant input u is given by

v(s)

u(s)
= ks

(1 + τ1s)(1 + τ2s)
· ϕ′(0)

where ϕ′ is the derivative of ϕ. The two transfer functions
are close to each other if

τa >> 1,
γ τa

1 + ba
= kϕ′(0),

τr + τa

1 + ba
= τ1 + τ2,

τrτa

1 + ba
= τ1τ2.

Thus τr and τa are obtained as the solutions x to

x2 − (1 + ba)(τ1 + τ2)x + (1 + ba)τ1τ2 = 0

where τr < τa , and γ is given by

γ = k(1 + ba)

τa
· ϕ′(0).

Note that once ba is fixed, the values of τr , τa , and γ can be
calculated by the above equations. To ensure τa >> 1, we
should choose sufficient large ba > 0.

To choose the value of the biasβ, consider the equilibrium
of the SAFB model with u = 0. The equilibrium-output value
is ve := β/(1+ba). It may seem reasonable to match ve with
the equilibrium output of the SAFF model, i.e., ve = ϕ(0).
However, if β is chosen to achieve this, it is observed that the
resulting SAFB model produces an RIO oscillation with a
very small amplitude when compared with the case with the
SAFF model. Since the oscillation amplitude of an SAFB-
based RIO is proportional to β (Matsuoka, 1985), we can
choose β so that the amplitude is matched with that of an
SAFF-based RIO. When doing so, the condition ve = ϕ(0)
would give a rough initial estimate of β from which its value
can be adjusted. In particular, we may let

ve = δϕ(0), or β = δ(1 + ba)ϕ(0)

and tune the parameter δ ∼= 1 to achieve amplitude matching.
Given an SAFF model and ba >> 1, the procedure de-

scribed above generates the parameters of the SAFB model
such that the linearized dynamics of the SAFF and SAFB
models are close to each other. Note that ba can be thought
of as the strength of adaptation. We consider two SAFB mod-
els with small and large values of ba to compare the effects
of adaptation on the robust entrainment. The parameters thus
fixed are summarized in the Appendix.

2.4 Adaptation effects

The neuron models presented in the previous subsections cap-
ture the adaptation property. We considered two basic mech-
anisms of adaptation – feedforward and feedback. These
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Fig. 4 Feedback adaptation mechanism. The axon model A is given by
max(q + β, 0) for SAFB

mechanisms are illustrated by the block diagrams in Figs. 3
and 4. In each figure, z is the adaptation variable that devel-
ops with some time lag to turn off the effect of the input. Note
that z is generated from either the feedforward of the input u
(Fig. 3) or the feedback of the output v (Fig. 4).

Figure 5 shows the responses of the four neuron models
(DAFF, SAFF, SAFB with ba = 5, and SAFB with ba = 104)
when the step input of magnitude u = 1 is applied at time
t = 0.1 s. Each neuron model responds to the input right
after it is applied, but the model output v tends to return to
the resting value after a while. In particular, the outputs of
SAFF and DAFF models approach the resting values because
the zero of F(s) at the origin blocks the constant input in
the steady state, indicating complete adaptation. The SAFB
model would also achieve the complete adaptation in the limit
where ba goes to infinity. For finite values of ba , the adapta-
tion is incomplete and the distance between the steady state
and resting values is negatively correlated with ba .

3 Reciprocal inhibition oscillator

3.1 Basics

The reciprocal inhibition oscillator is the simplest CPG, con-
sisting of two neurons with mutually inhibitory synaptic con-
nections (Friesen, 1994). The block diagram of the RIO is
shown in Fig. 6 where two neurons N are connected via
inhibitory synapses with strength σ . Note that the RIO has
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Fig. 5 Step responses of the neuron models

Fig. 6 Reciprocal inhibition oscillator

inputs ri and outputs vi (i = 1, 2). Below, we analyze the
RIOs with different neuron models to obtain conditions for
the existence of oscillation.

When the SAFB neuron model is substituted for each of
N , the RIO is known to oscillate if(

1 + τr

τa

)
< σγ < (1 + ba) (5)

with the amplitude proportional to β, provided β > 0 and
r1 = r2 = 0 (Matsuoka, 1985, 1987). This condition is in
fact necessary and sufficient for the nonexistence of any sta-
ble equilibrium points, which constitutes a sufficient condi-
tion for existence of stable oscillation with a proof that every
solution is bounded.

When the DAFF or the SAFF neuron model is substituted
for N , the RIO can be represented through the separation of
linear and nonlinear parts (Doyle et al., 1991) by the feedback
system in Fig. 7, where G(s) is a transfer function and� is a
static nonlinear mapping given by either diag(φ1, φ1, φ2, φ2)
or diag(ϕ, ϕ). In general, a sufficient condition for the exis-
tence of oscillation can be given as follows.

Lemma 1 Consider the system in Fig. 7 where r is a con-
stant input vector, G(s) is a transfer function, and � is a
diagonal mapping with each entry belonging to S. Then the
system oscillates for a generic initial condition2 if G(s) is
stable and every equilibrium point is unstable.

Proof Since� is bounded, stability of G(s)guarantees bound-
edness of every trajectory. A generic trajectory does not con-
verge to any equilibrium point due to the absence of stable
equilibrium points. Since it does not diverge to infinity nor
converge to a point, it has to oscillate. ��
The main idea of this result is that boundedness of every tra-
jectory and instability of every equilibrium point force the
states to oscillate (but not necessarily in a periodic manner).
This idea has been used by Matsuoka (1985) and Efimov and
Fradkov (2004); the latter provide a mathematically rigorous
exposition of the idea starting from a formal definition of an
“oscillatory system.” We shall specialize Lemma 1 for the
RIOs based on the SAFF and the DAFF neuron models to
derive conditions on the synaptic parameter σ under which
the existence of oscillation is guaranteed.

2 In other words, for any initial state except for equilibria and points
on the trajectory converging to an unstable equilibrium (e.g. separatrix).
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Fig. 7 General framework for analysis

3.2 Conditions for existence of oscillation

Let us first consider the SAFF model. In this case, the bound-
edness of the trajectory is always guaranteed regardless of the
value of σ .

Lemma 2 Consider the RIO with the SAFF neuron model.
Then every signal in the RIO is bounded for any bounded
input r and for any value of σ .

Proof Sinceϕ ∈ S, its outputsvi (i=1, 2) are always bounded.
When r is bounded, the input to each neuron N is also
bounded. Since F(s) is stable, its output must be bounded
as well. ��
The stability property of an equilibrium point can be analyzed
by examining the linearized system around the equilibrium
(Khalil, 1996).

Lemma 3 For the RIO with the SAFF neuron model, there is
a unique equilibrium point for each constant input r . More-
over, the RIO system linearized around the equilibrium is
exponentially unstable if and only if

|σk| > τ1 + τ2

ϕ′(0)
where ϕ′ is the derivative of ϕ.

Combining the boundedness result (Lemma 2) and the insta-
bility result (Lemma 3) we have the following.

Theorem 1 The RIO with the SAFF neuron model oscillates
for a generic initial condition if

|σk| > τ1 + τ2

ϕ′(0)
.

This result indicates that the synaptic connection must be
strong enough to induce oscillations. If the parameters of the
SAFB model are chosen as described in Sect. 2.3 to approxi-
mate the dynamics of the SAFF model, then the lower bound
in (5) becomes

σ >
τ1 + τ2

kϕ′(0)
which is exactly the same as the lower bound for the SAFF
case given in Theorem 1.

Next, we consider the DAFF model. In this case, the
boundedness of trajectories is not always guaranteed, and
the following result gives a boundedness condition. See the
Appendix for a proof.

Lemma 4 Consider the RIO with the DAFF neuron model.
Then every signal in the RIO is bounded for any bounded
input r if

|σk| < (1 + bτ1)(1 + bτ2)

1 + bτo
, τo := τ1τ2

τ1 + τ2
. (6)

Thus, boundedness of every trajectory is guaranteed if the
synaptic connections are weak enough. The following result
provides the condition for instability. A proof is given in the
Appendix.

Lemma 5 Consider the system obtained by linearizing the
RIO with DAFF around an equilibrium point. Let ψ ′

1 and ψ ′
2

be the derivatives ofψ1 andψ2 evaluated at the equilibrium.
If

ψ ′
2 < ψ ′

1 or τ+ + τ×(ρ − ψ ′
1) < 0 (7)

where τ+ := τ1 + τ2, and τ× := τ1τ2, then the system is
unstable. If

ψ ′
1 < ψ ′

2 and ψ ′
1 < ρ (8)

then the system is unstable if and only if

|σk| > η

where η is defined by the root of a quadratic equation with
the smaller magnitude:

η := min
λ

{ |λ| : f (λ) = 0 }, (9)

f (λ) := ρc2λ
2 + (ρc1 + a1c2)λ+ a1c1 − a0a2

3
α := ρ − ψ ′

1, β := ρ(ψ ′
2 − ψ ′

1),
a0 := β, a1 := α + τ+β, a3 := τ+ + τ×α,
c1 := τ+(1 + τ1α)(1 + τ2α)+ τ 2

×αβ, c2 := τ+ − ψ ′
1τ×.

For a typical DAFF model, every equilibrium point satisfies
either (7) or (8), with at least one satisfying (8), and hence all
the linearized systems are unstable if and only if |σk| > η.
Combining Lemmas 4 and 5, we have the following.

Theorem 2 Consider the RIO with the DAFF neuron model.
Suppose that every equilibrium point satisfies (7) or (8). Then
its trajectory oscillates for a generic initial condition if

η < |σk| < (1 + bτ1)(1 + bτ2)

1 + bτo

where η and τo are defined in (9) and (6), respectively.

For the DAFF-based RIO, the oscillation condition involves
both lower and upper bounds on the synaptic strength. The
lower bound comes from the instability condition, while the
upper bound guarantees boundedness of every trajectory.
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Table 1 Period and σ -interval for oscillation

σ�b σub Period [s]
DAFF 8.368 33.00 0.187
SAFF 7.480 ∞ 0.199

SAFB (ba = 104) 7.480 74807 0.209
SAFB (ba = 5) 7.480 44.25 0.231

DAFF dynamic axon with feedforward adaption, SAFF static axon with
feedforward adaption; SAFB static axon with feed back adaption

3.3 Basic oscillation profiles

The RIOs with different neuron models were numerically
simulated for the model parameter values given in the Appen-
dix. The synaptic parameter was chosen as σ = 8, which is
near the threshold values for oscillations; see Table 1 for the
lower and upper bounds onσ , for which the existence of oscil-
lation is guaranteed, calculated from (5) and Theorems 1 and
2. A short pulse was applied to r1 to initiate the oscillation but
both r1 and r2 were zero for the rest of each simulation. The
oscillation behavior of v1 and v2 in the steady state for each
RIO is plotted in Fig. 8. The cycle periods of the oscillations
were measured and are summarized in Table 1.
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Fig. 8 Oscillation profiles of RIOs

We see that the oscillation of the DAFF-based RIO is well
approximated by that of the SAFF-based RIO in terms of the
average amplitude and the period. The SAFB-based RIOs
also reasonably approximate the SAFF-based RIO for both
values of ba . However, it is observed that the deviation of the
period of the SAFB-based RIO from that of the SAFF-based
RIO becomes significant if ba is further decreased.

Numerical simulations with other values ofσ (not shown)
indicate that the predicted σ -ranges of oscillations are quite
accurate. All the upper and lower bounds of σ are in agree-
ment with the simulation results within at most 1% error
except for the lower bound for the DAFF case. The DAFF-
based RIO exhibits bistability when σ is just below σ�b. In
particular, σ < σ�b implies that there is a stable equilibrium
point, but at the same time, a stable oscillatory trajectory is
also observed as shown in Fig. 8 for the case σ = 8. Thus,
the RIO has both a stable equilibrium and a stable oscillatory
trajectory. The bistability property is observed for the range
6.5 ≤ σ < σ�b. The other three RIOs do not seem to possess
the bistability property.

It is observed (not shown here) that, for each RIO model,
the oscillations in v1 and v2 are out-of-phase if the connec-
tion is inhibitory (σ > 0) and are in-phase (or synchronized)
if excitatory (σ < 0). For the RIOs with SAFF or SAFB neu-
ron models, the main difference between the inhibitory/excit-
atory cases is the phase, and the wave forms can both be
described as a distorted sinusoid. However, for the DAFF-
based RIO model, there is a significant difference in the wave
forms as well as the phase. Specifically, while alternate burst-
ing of nerve impulses are observed when σ > 0, synchro-
nized plateaux with no spikes are observed when σ < 0.

4 Robust entrainment of RIOs to pendulum

Observations of animal locomotion systems suggest that the
neuronal controller is able to entrain to the natural motion of
the body. Therefore, each of our RIO models is expected to
achieve entrainment to a pendulum if it is properly coupled
with the pendulum and captures essential dynamical proper-
ties of neuronal circuits. The objective of this section is to
verify this expectation by numerical experiments and to iden-
tify the neuronal properties essential for entrainment through
comparative studies of the four RIO models.

4.1 System description

Consider a simple pendulum whose normalized equation of
motion is given by

θ̈ + 2ζωoθ̇ + ω2
o sin θ = ω2

oτ. (10)

where ωo > 0 and ζ > 0 are the natural frequency and
the damping ratio of the system linearized around the stable
equilibrium without input, θ is the angular displacement, and
τ is the torque input applied at the pivot. The period of the
linearized pendulum is To := 2π/ωo. We shall call To the
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fundamental period of the pendulum. The natural period of
the pendulum (when ζ = 0 and τ = 0) is close to To if the
amplitude is small, and becomes larger as the amplitude gets
larger.

The objective is to design a feedback controller that gen-
erates the torque input τ , using the information on the pen-
dulum angle θ , to achieve a maintained oscillation in the
presence of the energy loss due to the positive damping. Intui-
tively, the most energy efficient solution would be to achieve
entrainment to the natural motion of the pendulum, i.e., to
make the pendulum oscillate at its (undamped) natural fre-
quency, provided the damping is sufficiently small.

Consider the feedback system of the pendulum and an
RIO depicted in Fig. 9. The pendulum angle θ is measured
and conditioned by a saturation function

χ(θ) := � tanh(λθ)

before entering the RIO. Both neurons in the RIO are directly
driven by the sensory signal, but with different signs. The
torque τ is generated by rectifying the RIO outputs through
π+(v) := max(v, 0), taking the difference, and multiplying
the feedback gain µ. This rectifying nonlinearity is intro-
duced to reflect the fact that the muscle can only contract but
cannot actively extend. Finally, a pulse signal is supplied at
r2 to initiate the oscillation.

4.2 Numerical experiments

In this section, we shall first verify through numerical simula-
tions that our RIO models are able to achieve entrainment to
the pendulum with some choice of parameters. We will then
examine robustness of the entrainment property with respect
to perturbations in the fundamental period To of the pendu-
lum and the feedback gain µ. Based on the comparison of
different RIO models, a conclusion will be drawn regarding
which neuronal properties appear to be crucial for achieving
robust entrainment.

For the numerical experiments described below, we set
some of the parameters as

ζ = 0.1, � = 0.4, λ = 2

and consider various values for the remaining parameters
(To, µ). Note that the pendulum is lightly damped. If the

Fig. 9 Pendulum driven by RIO

sensor gains are too small, then the RIOs insist on oscillating
at their intrinsic frequencies and act like open-loop control
systems. On the other hand, if the input to the DAFF-based
RIO is too large, then the spike trains tend to be lost and
the system states go out of the intended operation range. The
above parameter values have been roughly chosen with these
considerations in mind.

For each of the RIOs, we have manually searched for
the values of parameters (To, µ) so that the entrainment to
the pendulum occurs. The procedure is as follows. For each
(To, µ), run a simulation of the system in Fig. 9 and, if the
pendulum oscillates, measure its period T and amplitude ϑ .
Simulate the free motion of the undamped pendulum (ζ = 0,
τ = 0) with the initial condition θ(0) = ϑ and θ̇ (0) = 0
to calculate the natural period Tn at this amplitude. If the
period error e := (T − Tn)/Tn is small, we declare that the
entrainment is achieved.

It turned out to be relatively easy to find the parameter
values by fixing To to be a few times larger than the intrin-
sic periods of the RIOs (∼= 200 ms) and gradually increasing
the feedback gain µ. When µ is small, each RIO oscillates
with its intrinsic period. If µ becomes larger than a threshold
value, the period of the RIO suddenly becomes close to the
natural period of the pendulum. Entrainment is observed for
a range ofµwhere the oscillation amplitude increases but the
period is kept close to the natural period asµ gets larger. The
upper bound of the range is typically defined by the event
that the amplitude goes beyond 180◦. We have verified that
SAFB-based RIO with ba = 5 is able to achieve entrainment
with less than e = 3% error from the natural period of the
pendulum, and the other three RIOs with less than 1% error.

Figure 10 shows a sample of the entrainment behavior for
the DAFF-based RIO with To=400 ms andµ=1. Initiated by
a small pulse into the RIO, the system starts to oscillate, and
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Fig. 10 Entrainment of the DAFF-based RIO to the pendulum; To =
0.4 s, µ=1
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the amplitude of the pendulum oscillation gradually increases
to reach a steady state. The θ -amplitude is ϑ=67◦ and the
corresponding natural period is Tn=438 ms. The period of
the oscillation achieved by the RIO is 432 ms, yielding the
entrainment error of e= − 1.4%.

We now examine the robustness. We grid the (To, µ)
parameter plane, run a simulation for each grid point, and
calculate the period error e. The result is summarized by
the contour plots of e as a function of (To, µ) as shown in
Fig. 11. The contours are plotted at levels e=5, 6, . . . , 10%.
Also shown are the boundaries for the region with nearly
natural oscillation. As mentioned earlier, oscillations occur
on the left of the region but the frequencies are close to the
intrinsic frequency of the RIO. On the right of the region,
the pendulum angle goes beyond 180◦ and the simulations
are terminated. The dark region and the lightly-shaded re-
gion correspond to the sets of points such that e < 1% and
1% < e < 3%, respectively. The results are found insensi-
tive to initial conditions. Some of the complex borders appear
to be an artifact resulting from the coarse grid and the sim-
ulation run time shorter than required to reach the steady
state. However, such “noises” are small enough to make the
following important observations.

We see that both RIOs with DAFF and SAFF achieve
entrainment robustly against the perturbations in (To, µ).
This means that the dynamics for generating nerve impulses
are not essential for robust entrainment, and that the basic
mechanism for robust entrainment is effective even under the
influence of the additional spike dynamics. The SAFB-based
RIOs also exhibit some capability of robust entrainment, al-
though the robustness is diminished especially for small ba ,
when compared with the RIOs with DAFF and SAFF. Recall
that the DAFF and SAFF models have a band-pass filter with
a zero at the origin. The linearized SAFB model also has a
zero near the origin when ba is large, but the zero moves
away as ba gets smaller. In view of these facts, it seems that
having zero at the origin in the neuron model is crucial for
achieving robust entrainment. In other words, the “complete
adaptation” property of neuronal dynamics appears to be
essential. Moreover, the detailed mechanism for embedding
the adaptation property (i.e., feedforward or feedback) ap-
pears nonessential.

5 Mechanism of robust entrainment

In the previous section, we have verified through numerical
simulations that our RIO models are capable of achieving
robust entrainment to the pendulum. Complete adaptation
has been identified as an essential property of the neuronal
dynamics, while the properties that were deemed unimpor-
tant include the dynamics for spike generation and the choice
of the feedforward or feedback mechanism for adaptation.
Based on these findings, we now proceed to the theoretical
analysis of the entrainment phenomenon for the feedback sys-
tem of the pendulum and SAFF-based RIO. Our aim here is to
uncover the dynamical mechanism for the robust entrainment
and to explain why the adaptation property is important.
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Fig. 11 Contour plots of period error e(To, µ). Contours at levels
e=5, 6, . . . , 10%. Dark region: e<1%; Lightly shaded region: 1% <
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We hypothesize that the basic mechanism of entrainment
is embedded in the phasic interaction between the oscillatory
dynamics of the pendulum and RIO, and that the nonlinearities
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of the pendulum, sensor, and actuator have secondary effects
only. Based on this hypothesis, we proceed to remove those
nonlinearities and analyze the resulting simpler feedback sys-
tem. In particular, we shall replace the pendulum dynamics
by its linearization

P(s) := ω2
o

s2 + 2ζωos + ω2
o
,

remove the actuator nonlinearity π+ in Fig. 9, and assume
linear sensor dynamics χ(θ) = ηθ with a constant gain η.
In the following subsections, we will analyze the entrain-
ment property of the feedback system consisting of P(s) and
SAFF-based RIO with the linear gains µ and η.

5.1 Oscillation analysis by harmonic balance

Consider the feedback system in Fig. 9 where “Pendulum”
and χ are given by P(s) and χ(θ) = ηθ , respectively, and
the RIO is given by Fig. 6 with N being the SAFF neuron
model (4). In the analysis below, we start with arbitrary trans-
fer functions F(s) and P(s) and arbitrary nonlinear function
ϕ(q), and later assume that ϕ is monotonically increasing
and F(0) = 0. Ignoring the actuator nonlinearity π+, its
dynamical behavior is described by

q1 = F(s)(r1 − σϕ(q2)), q2 = F(s)(r2 − σϕ(q1)), (11)

r1 = ηθ, r2 = −ηθ, θ = P(s)τ, (12)

τ = µ(ϕ(q1)− ϕ(q2)). (13)

We are interested in the periodic solutions of these equa-
tions. In particular, we would like to predict the frequency
and amplitude of such oscillations. To this end, let us assume
that the above equations admit T -periodic solutions qi , ri , τ ,
and θ . We will develop the condition for harmonic balance
(see e.g., Khalil 1996) that the solutions must satisfy, and use
the condition to estimate the frequency and amplitude.

Recall that a generic T -periodic signal x(t) can be ex-
pressed as a Fourier series

x(t) =
∞∑

k=0

[αk sin(kωt)+ βk cos(kωt)]

for appropriately chosen parameters αk and βk where ω :=
2π/T . Let us denote by x̂ := α1 + jβ1 the phasor represen-
tation of the fundamental frequency component. Define

vi := ϕ(qi ), κi := v̂i/q̂i (14)

for i = 1, 2. By the symmetry of the feedback system struc-
ture, we may assume that q1 and q2 have the same time-course
with a possible time-shift. In this case, we have κ1 = κ2 =: κ .

Now, substitution of (14) into (11) yields[
1 σκF( jω)

σκF( jω) 1

] [
q̂1
q̂2

]
= F( jω)

[
r̂1
r̂2

]
. (15)

Solving the equation for q̂i and substituting the results into
(12) and (13), we have

τ̂ = µκ(q̂1 − q̂2) = 2µκηP( jω)F( jω)

1 − σκF( jω)
τ̂ .

Thus the oscillation frequency ω must satisfy the following
harmonic balance equation:

κF( jω)H( jω) = 1, H( jω) := σ + 2µηP( jω). (16)

A solution ω to (16) provides an estimate for the oscil-
lation frequency. However, it is difficult in general to solve
it because κ depends on the unknown time-course of qi . As
in the standard describing function method (see e.g., Khalil
1996), we now introduce an approximation where the second
and higher harmonic terms in qi are ignored. This approx-
imation would be reasonable when P(s) and/or F(s) have
low-pass filter characteristics with sufficient attenuation at
twice the oscillation frequency. In this case, we have

κ = c1 + jd1

a
, (17)

ϕ(a sinωt + b) =
∞∑

k=0

[ck sin(kωt)+ dk cos(kωt)] . (18)

By Lemma 6 in the Appendix, κ is a real number. The har-
monic balance equation (16) then implies that F( jω)H( jω)
must be real-valued. Moreover, if the function ϕ is mono-
tonically increasing as is the case for our SAFF model, κ is
positive. In this case, comparing the phase components on
the both sides of (16), we have

� [F( jω)H( jω)] = 0 (19)

where � [·] denotes the phase angle of the complex number in
the argument. This condition gives candidate(s) for possible
oscillation frequencies.

The harmonic balance equation provides an estimate for
the oscillation amplitude as well for each estimated oscilla-
tion frequencyωe. To explain the idea, let us assume F(0)=0,
which is the case for the SAFF neuron model.3 In this case,
the bias term b in qi (t) is zero, and κ can be considered as
a function of a. The amplitude of qi oscillations can then
be estimated to be the value of a consistent with (16) for
ω = ωe. In particular, (16) gives an estimate for κ as κe :=
1/(F( jωe)H( jωe)), and an estimate for the amplitude is
given by ae satisfying κ(ae) = κe. If there is no such ae, then
a possible reason is that there is no oscillation at frequency
ωe.

The stability of oscillation at frequency ωe may be pre-
dicted by following the argument in Glad and Ljung (2000).
Consider the roots of characteristic equation κF(s)H(s) = 1
and let λ(κ) be the maximum value of their real parts. Then,
the oscillation at frequency ωe is expected to be stable if

λ(κe) = 0, κ ′(ae)λ
′(κe) < 0, (20)

3 In principle, the amplitude can still be estimated without this
assumption by determining the values of κ and its zero-frequency ver-
sion, and then solving for a and b.
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where the prime denotes the derivative. We explain the under-
lying idea for the case λ′(κe)>0. The other case λ′(κe)<0 can
be explained similarly. Note that the approximated closed-
loop system is stable if and only if λ(κ)<0. When κ = κe,
the characteristic equation has some root(s) on the imaginary
axis. The first condition λ(κe)=0 implies that all the other
roots are in the open left half complex plane. The property
λ′(κe) > 0 then implies that a small positive (negative) per-
turbation of κ leads to instability (stability). Now, if the oscil-
lation is perturbed to have a slightly larger amplitude, then κ
decreases due to κ ′(ae)<0. It may be reasonable to assume
that the stability property then tends to decrease the oscilla-
tion amplitude. If it is perturbed to have a slightly smaller
amplitude, then instability may lead to an increasing ampli-
tude. Thus, the oscillation amplitude always tends to return
to the original value after a perturbation, indicating stability
of the oscillation.

In summary, the frequency of a possible oscillation is esti-
mated to be ωe such that the phase angle of F( jωe)H( jωe)
is zero. The amplitude of qi -oscillation is estimated to be the
value of ae for which κ(ae) = 1/(F( jωe)H( jωe)) holds,
where κ(a) is the describing function defined by (17) and
(18). The oscillation is expected to be stable if (20) holds
where κe := κ(ae) and λ(κ) is the maximum real part of the
roots of 1 = κF(s)H(s).

5.2 Harmonic balance predicts entrainment

We now apply the harmonic balance method in the previous
section to a particular case of parameters and verify that the
method predicts entrainment. Robustness of the entrainment
property against parameter perturbations will be addressed
in the next section. Below, we set µ=2, η=1, and To=1 s
(or ωo=2π rad/s), and the other parameters are specified as
before.
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Fig. 12 Bode plots of F(s), P(s), and H(s)

Figure 12 shows the Bode plots of F(s), P(s), and H(s).
The harmonic phase balance (19) is achieved at the three fre-
quencies ωe = 6.11, 7.93, and 31.6 rad/s, where the phase
plots of H(s) and F(s)−1 intersect so that F( jωe)H( jωe) is
a positive real number. These are the candidates for the esti-
mated oscillation frequency. Figure 13 shows the Nyquist plot
of F(s)H(s). The harmonic phase balance occurs when the
curve intersects with the positive real axis (marked by points
A, B, and C). The amplitude of qi -oscillation, ae, is estimated
from the harmonic gain balance and the describing function
for ϕ. Figure 14 shows the describing function κ(a), numer-
ically calculated by the Fast Fourier Transform. The oscilla-
tion amplitude of qi is estimated to be the value of a that gives
κ(a) = 1/(F( jωe)H( jωe)) =: κe. For instance, the oscilla-
tion at point A of Fig. 13 with ωe=6.11 rad/s is estimated to
have qi -amplitude of ae = 0.22 because κe ∼= 1/1.2 ∼= 0.83
and κ(ae) = κe. Figure 15 shows the simulation of the RIO-
pendulum system and confirms that these estimates are close
to the actual values (frequency 6.11 rad/s and q1-amplitude
0.21).

On the other hand, oscillations at other frequencies cor-
responding to points B and C in Fig. 13 were not observed
in simulations with various initial state/pulse conditions we
examined. This is consistent with the prediction from the har-
monic balance equation and the describing function. Recall
that the characteristic equation of the approximated closed-
loop system is given by 1=κF(s)H(s). Hence, by the Ny-
quist criterion (see e.g., Ogata 1996), the system is stable if
and only if the Nyquist plot of F(s)H(s) does not encircle the
point 1/κ + j0, provided F(s)H(s) is stable. It then follows
that point A in Fig. 13 divides the positive real axis into sta-
ble and unstable segments: the system is stable (unstable) if
1/κ+ j0 is on the right (left) of point A. Hence λ(κe)=0 and
λ′(κe)>0 hold at this point. Moreover, Fig. 14 shows that the
slope of the describing function is negative at a = ae, i.e.,
κ ′(ae)<0. Therefore, the oscillation at point A is expected
to be stable. However, points B and C do not satisfy these
requirements. In particular, there is no transition between
stability and instability at point B, violating (20). For point
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C, κe=1/0.21=4.7 and no value of ae satisfies κ(ae)=κe.
Hence, stable oscillations are not expected at points B and C.

In summary, the harmonic balance condition predicts that
a stable oscillation occurs at point A of Figs. 12 and 13 where
the phase angle of F( jω)H( jω) becomes zero for the first
time as ω increases from zero. The frequency at which this
occurs,ωe, provides an estimate for the oscillation frequency.
It turns out that this is close to the natural frequency of P(s),
predicting the entrainment, because the first phase balance
occurs when the phase of P(s) changes abruptly. This esti-
mate also turns out to be close to the actual oscillation fre-
quency. Indeed, for the particular case considered here, the
undamped natural frequency of P(s) is 2π rad/s, and the esti-
mated and actual frequencies are both 6.11 rad/s.
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5.3 Essential mechanism for robust entrainment

Let us now address the mechanism for robust entrainment.
Our first claim is that the entrainment occurs regardless of
the natural frequency ωo of the pendulum if the loop gainµη
is sufficiently large. This can be explained by Fig. 16 where
the phase plots are shown for various values ofµη andωo (or
equivalently To := 2π/ωo). The phase of H(s) is plotted for
µη=2, 8, 32, and 128 with fixed To=1 s, while that of P(s)
is for To=1, 2, and 4 s.

If the loop gain is small, the harmonic phase balance
occurs only at ωe=31.6 rad/s which predicts a stable oscilla-
tion with period T =199 ms. Note that this coincides with the
intrinsic period of the RIO (see Table 1). This is not a coinci-
dence. The harmonic equation (15) with nonzero oscillations
(q̂i �= 0) and zero input to the RIO (r̂i=0) implies that F( jω)
is real. Hence the intrinsic frequency of the RIO, ωRIO, can
be estimated from Im[F( jωRIO)]=0 as ωRIO

∼= 1/
√
τ1τ2 =

31.6 rad/s.
On the other hand, as the loop gain gets larger, the phase

of the transfer function H(s) approaches that of P(s), and
the harmonic phase balance occurs around ωe ∼= 6 rad/s,
predicting a stable oscillation around the natural frequency
ωo=2π of P(s). Note that the intersection of the phase curves
for P(s) and F(s)−1, defining ωe, will always be around ωo
where the phase of P(s) changes abruptly from 0o to −180o,
regardless of the value ofωo. Thus, entrainment (ωe ∼= ωo) is
expected to occur robustly against perturbations in ωo under
a high loop-gain condition. Numerical simulations confirm
that this is indeed the case (not shown).

An essential prerequisite to the above argument is that
P(s) is lightly damped. If the damping ratio ζ is sufficiently
small, then the phase of P(s), and hence H(s), will change
from 0◦—180◦ very quickly at the natural frequency ωo, so
that the harmonic phase balance occurs at this frequency. On
the other hand, if ζ is not small, then the phase of H(s)would
not change abruptly, and the intersection with the phase of
F(s)−1 may occur at a frequency ωe that is away from ωo.
The situation is illustrated in Fig. 17 where the phase response
of H(s) is plotted for various values of ζ with fixed loop-gain
µη=10. The vertical solid line indicates the natural frequency
ωo. The estimated oscillation period Te := 2π/ωe is plotted
as a function of ζ in Fig. 18. Clearly, both the estimated period
Te and actual (simulated) period T are close to the natural
period To if ζ is sufficiently small. However, the difference
between Te, T and To can be large if ζ is not small. The fig-
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ure also indicates that the discrepancy is larger with a higher
loop-gain.

We now turn our attention to the “complete adaptation”
property that has been deemed essential for robust entrain-
ment via numerical experiments. As noted before, this prop-
erty is a result of the zero of F(s) at the origin. The role of
this zero is to place the phase of F(s)−1 near −90◦ in the
low frequency range. Noting that the phase of P(s) is −90◦
at the natural frequency, the intersection of the phase plots of
F(s)−1 and P(s) would be found near the natural frequency
if ωo is sufficiently small when compared with the poles of
F(s). In this case, the entrainment is predicted and actually
occurs. On the other hand, if F(s) had a zero away from
the origin or had no zeros, the phase of F(s)−1 may not be
close to −90◦, resulting in a phase intersection away from
the natural frequency, or no intersection. It then follows that
the entrainment is not predicted, and in fact, does not occur.

Figure 19 shows the phase responses of F(s) := k(s −
zo)/((1+τ1s)(1+τ2s)) for several values of the zero zo. We
see that the intersection of H(s) and F(s)−1 curves move to
the left, and hence ωe decreases, as zo decreases. Figure 20
clearly shows this tendency of estimated period Te together
with the actual period T obtained by simulations. Note that
the entrainment (T ∼= To = 1) does not occur when the zero
of F(s) is away from the origin in the negative direction.
This may explain why the SAFB model does not achieve
robust entrainment when ba=5 but it does when ba=104.
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While positive values of zo in the range 0<zo<0.005 lead
to the entrainment for the case To=1 (Fig. 20), the property
can be lost after a perturbation of To.4 On the other hand, if
zo = 0, then the robust entrainment is achieved for any nat-
ural frequency ωo << ωRIO = 31.6 rad/s because the phase
of F(s)−1 is near −90◦ in this frequency range. Thus, our
analysis by harmonic balance explains why it is essential for
F(s) to have a zero at (or near) the origin to achieve robust
entrainment over a wide range of natural frequencies.

Finally, it should be noted that the positivity of µη is cru-
cial but the sign of σ is not important for entrainment. If µη
were negative, then the phase angle of H( jω) would vary
between 0 and +180◦ and approaches that of −P( jω) as
|µη| gets larger. Consequently, the harmonic phase balance
(19) does not occur near the natural frequency, and indeed,
the entrainment is not observed in simulations. On the other
hand, under the high loop-gain µη>0 relative to the neu-
ronal coupling σ , the phase of the transfer function H(s)
is close to that of P(s) regardless of the sign of σ so that
the entrainment mechanism discussed above applies. This
means that not only a reciprocal inhibition oscillator (σ>0)
but also a reciprocal excitation oscillator (σ<0) can achieve
entrainment. Moreover, even a pair of uncoupled neurons

4 For instance, if ωo = 2 rad/s and zo = 0.005, then the phase plot
of H(s) in Fig. 19 moves to the left to give ωe = 2.33 rad/s, which is
16% off from ωo.
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Fig. 21 Connectivity architectures of pendulum-CPG system for differ-
ent signs of µη and σ . “OK” and “NG” mean that the entrainment is
and is not achieved, respectively. The circles with P and N stand for the
pendulum and neuron, respectively. The lines terminating with a circle
and bar indicate inhibitory and excitatory connections, respectively

(σ=0) can induce natural oscillation of the pendulum. These
predictions from the harmonic balance analysis have been
validated by numerical simulations (not shown). The point
of this discussion may be summarized in Fig. 21 that shows
which connectivity architecture does (or does not) lead to
entrainment.

6 Conclusion

We have considered several RIOs with different neuron mod-
els and derived sufficient conditions for the existence of oscil-
lations. The ability of each RIO to achieve robust entrainment
was examined through numerical experiments of driving a
simple pendulum. Comparative studies of the results for var-
ious RIOs indicated the following.

– The complete adaptation property is essential for achiev-
ing robust entrainment.

– The neuronal dynamics for generating nerve impulses are
not important.

– The specific mechanism of adaptation (i.e., feedforward
or feedback) is not important.

Based on these findings, we have chosen the SAFF-based
RIO model for further theoretical analysis. The method of
harmonic balance has been employed to reveal the funda-
mental mechanism of robust entrainment. Specifically, we
have found the following.

– The pendulum-RIO oscillation occurs at the lowest fre-
quency at which the harmonic phase balance (19) is sat-
isfied.

– This frequency is close to the pendulum natural frequency
ωo if:

– the pendulum is lightly damped;
– the coupling within the RIO (|σ |) is sufficiently weak,

and the coupling between the RIO and pendulum
(µη > 0) is sufficiently strong;

– the neuronal dynamics have the phase of F( jωo) near
90o.

– The phase condition � [F( jωo)] ∼= 90o is satisfied when
the F(s) has a zero at the origin, or equivalently, when
the neuron model has the complete adaptation property.

– The coupling between the pendulum and each neuron
should be a positive feedback loop (µη > 0), while the
coupling between the two neurons can be positive or neg-
ative, or even zero.

It is interesting to note that, under the extreme condi-
tion |σ | << µη, the mechanism of robust entrainment is
essentially the same as the one used in engineering applica-
tions (Raney and Slominski, 2004; Ono, 1998) – positive rate
feedback with saturation. The idea is to destabilize the equi-
librium point by adding a locally negative damping through
feedback and to guarantee the boundedness of every trajec-
tory by the saturation nonlinearity. Since the feedback does
not affect the stiffness, the resulting oscillation is expected to
occur at the natural frequency. This type of control strategy
also resulted from the speed gradient algorithm (Fradkov,
1979) to achieve the feedback resonance (Fradkov, 1999b).
Within the framework of our analysis, this corresponds to
having F(s) = s and σ=0 so that the harmonic phase bal-
ance occurs at the natural frequency: � [F( jωo)H( jωo)] =
� [ j P( jωo)] = 0. Thus the complete adaptation property
may be viewed as a result of the neuronal dynamics F(s)
acting as an approximate differentiator in the neighborhood
of ωo.

We have gained some insights into the biological mecha-
nism of robust entrainment by focusing on the simplest pos-
sible yet relevant setting (i.e., RIO-pendulum system). The
principle uncovered in this work would be useful for engi-
neering designs to achieve natural rhythmic motions. For
instance, the RIO-based control architecture explored here
may provide a way to improve the engineering approach
of positive-rate feedback with saturation for robust entrain-
ment. Possible improvements include incorporation of addi-
tional functionalities such as the speed (or frequency) control
and the phase coordination among multiple limbs (or seg-
ments) through the coupled-oscillator framework (Ermen-
trout and Kopell, 1984; Cohen et al., 1992). The problem
of how to generate natural rhythmic motion for general loco-
motion systems through feedback control is still largely open
and awaits further studies in the intersection of biology and
engineering.
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Appendix A: Neuron model parameters

The parameter values for the neuron models used in our
numerical experiments are summarized below. The time unit
is millisecond for all of the following models.

The (soma, dendrites) modelF (Iwasaki and Zheng, 2002):

k = 10, τ1 = 10, τ2 = 100.

The dynamic axon model A (Iwasaki and Zheng, 2002):

ψ1(v) = cφ(av)+ qo − bv
ψ2(v) = φ(d(v + vo))

, φ(x) := 1

1 + e2−4x

qo = −0.2, vo = −0.35, ρ = 0.3,
a = 1.8, b = 3, c = 2.2, d = 5.

The static axon model :

as = 0.155, bs = 0.075, cs = 0.045, ds = 0.145.

The Matsuoka model :

Case 1

{
ba = 104, τr = 9.09, τa = 1.1 × 106,
γ = 0.134, δ = 1.3, β = 803.

Case 2

{
ba = 5, τr = 9.22, τa = 651,
γ = 0.136, δ = 1.5, β = 0.556.

Appendix B: Proofs

Proof of Lemma 3 Noting that qi must be zero at equilibrium
because F(0) = 0, the unique equilibrium point is charac-
terized by

vi = ϕ(0), qi = 0, (i = 1, 2)

regardless of the value of r . The linearized system around the
equilibrium is described by

qi = F(s)ui , vi = ϕ′(0)qi , (i = 1, 2),

from which we obtain

(1 − σϕ′(0)F(s))(1 + σϕ′(0)F(s))vi = 0.

Thus, the characteristic polynomial of the system is given by
the numerator of the transfer function multiplying vi . Then
we see that the system is stable if and only if

p(s) := τ1τ2s2 + (τ1 + τ2 + λϕ′(0))s + 1

are Hurwitz polynomials for λ := ±σk, which is the case
when

|σk| < τ1 + τ2

ϕ′(0)
.

Proof of Lemma 4 The relations among the signals in the
RIO can be written as[

1 V Fσ
V Fσ 1

] [
v1
v2

]
= V

[
Fr1 + φ1(v1)− Wφ2(v1)
Fr2 + φ1(v2)− Wφ2(v2)

]

where

V (s) := 1

s + b
, W (s) := ρ

s + ρ
.

The transfer function G(s) in the framework of Fig. 7 is
the mapping from (φ1(v1), φ1(v2), φ2(v1), φ2(v2), r1, r2) to
(v1, v2, v1, v2, v1, v2). Since V (s), W (s), and F(s) are all
stable, we then see that G(s) is stable if and only if (1 −
σ 2V (s)2 F(s)2)−1 is stable. This is the case when the numer-
ator polynomials of 1 ± σV (s)F(s),

τ1τ2s3 + (bτ1τ2 + τ1 + τ2)s
2 + (1 + b(τ1 + τ2)± σk)s + b

is Hurwitz. By the Routh criterion, we obtain

±σk > − (1 + bτ1)(1 + bτ2)

1 + bτo

which is equivalent to the claimed condition.

Proof of Lemma 5 At an equilibrium, the input to the filter
F(s) is constant and hence its output is zero due to the zero
at the origin. Thus the equilibrium is characterized by the
equations for the dynamic axon with zero input and zero
derivatives:

wi = ψ1(vi ) = ψ2(vi ), qi = 0, (i = 1, 2).

Note that the equilibrium point is independent of the input
r . When linearized around an equilibrium, the dynamic axon
model becomes

v̇ = ψ ′
1v − w + q, ẇ = ρ(ψ ′

2v − w)

whose transfer function from q to v is given by

H(s) := s + ρ

(s + ρ)(s − ψ ′
1)+ ρψ ′

2
.

In this case, the perturbed signals in the RIO satisfy

vi = H(s)F(s)ui , u1 = −σv2, u2 = −σv1

where i = 1, 2, from which we obtain

(1 + σH F)(1 − σH F)vi = 0.

Thus the closed-loop poles are characterized by the roots of
1 ± σH F = 0.

The numerator polynomial of 1 ± σH F = 0 is given by

n(s) := a4s4 + a3s2 + (a2 + λ)s2 + (a1 + ρλ)s + a0

where λ := ±σk and

a2 := 1 + τ+α + τ×β, a4 := τ×.

From the Routh criterion, it can readily be shown that this
polynomial has a root with positive real part if and only if at
least one of the following conditions holds:

a3 < 0, a0 < 0, c1 + c2λ < 0, f (λ) < 0.
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If (7) holds, then a3 < 0 or a0 < 0 holds and hence the
system is unstable. If (8) holds, then we have a3 > 0 and
a0 > 0 and it suffices to show that either c1 + c2λ < 0 or
f (λ) < 0 holds if and only if |σk| > η. If c2 = 0, the condi-
tion c1 +c2λ < 0 is violated due to c1 > 0, and the condition
f (λ) < 0 becomes λ < − f (0)/(ρc1)which is equivalent to
|σk| > η since

f (0) = ατ+[(1 + τ 2
1 β)(1 + τ 2

2 β)+ α(τ+ + τ×α + τ+τ×β)] > 0.

Consider the case c2 �= 0. Noting that

f (λo) = −a0a2
3 < 0, λo := −c1/c2

and f (0) > 0, we see that f (λ) = 0 has two real roots. Let
λ and λ+ be the two roots such that λ<λ+. Now, if c2 > 0,
the instability condition is given by

λ < λo or λ<λ < λ+.

Since

λ<λo < λ+ < 0,

the condition is equivalent to λ < λ+. This holds for λ = σk
or λ = −σk if and only if |σk| > η. If c2 < 0, the instability
condition is

λ > λo or λ < λ or λ+ < λ

with

λ<0 < λ+ < λo,

and hence we have η < |λ| = |σk|.
Proof of Theorem 2 The result follows from Lemmas 1, 4,
and 5.

Lemma 6 Let a continuous function ϕ and a T -periodic
function q be given. Suppose q(t) can be expressed as

q(t) =
∞∑

k=0

[ak sin(kωt)+ bk cos(kωt)] ,

where a1 �= 0 and ω := 2π/T . Consider the Fourier series
expansion

ϕ(q(t)) =
∞∑

k=0

[ck sin(kωt)+ dk cos(kωt)]

and define

κ := c1 + jd1

a1 + jb1
.

Then the following hold.

(i) If ai = b j = 0 for even i and odd j , then κ is real.
(ii) If ai = b j = 0 for i �= 1 and j �= 0, and ϕ is monotoni-

cally increasing, then κ is positive.

Proof Define

f (t) := ϕ(q(t)), F(θ) := f (θ/ω),
G(θ) := F(θ)+ F(−θ).

Then

d1 = 2

T

T/2∫
−T/2

f (t) cos(ωt)dt

= 1

π

π∫
0

[F(θ)+ F(−θ)] cos(θ)dθ

= 1

π

π/2∫
0

[G(θ)− G(π − θ)] cos(θ)dθ

Noting that

sin k(π − θ) = (−1)k+1 sin kθ,

cos k(π − θ) = (−1)k cos kθ,

it can be verified that G(θ) = G(π− θ) holds when q(t) can
be expressed as a linear combination of sin(kωt) with odd k
and cos(kωt) with even k. Hence statement (i) holds.

To prove statement (ii), note that

c1 = 2

T

T/2∫
−T/2

f (t) sin(ωt)dt

= 1

π

π∫
0

[F(θ)− F(−θ)] sin(θ)dθ

and

a1(F(θ)− F(−θ))
= a1 (ϕ(b0 + a1 sin θ)− ϕ(b0 − a1 sin θ))

is positive when 0 < θ < π and ϕ is monotonically increas-
ing. Hence we have κ = c1/a1 > 0.
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