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Abstract In the present review, signal-processing capabili-
ties of the canal lateral line organ imposed by its peripheral
architecture are quantified in terms of a limited set of mea-
surable physical parameters. It is demonstrated that cupulae
in the lateral line canal organ can only partly be described as
canal fluid velocity detectors. Deviation from velocity detec-
tion may result from resonance, and can be characterized by
the extent to which a single dimensionless resonance num-
ber, Nr , exceeds 1. This number depends on four physical
parameters: it is proportional to cupular size, cupular sliding
stiffness and canal fluid density, and inversely proportional to
the square of fluid viscosity. Situated in a canal, a cupula may
benefit from its resonance by compensating for the limited
frequency range of water motion that is efficiently transferred
into the lateral line canal. The peripheral transfer of hydrody-
namic signals, via canal and cupula, leads to a nearly constant
sensitivity to outside water acceleration in a bandwidth that
ranges from d.c. to a cut-off frequency of up to several hun-
dreds of Hertz, significantly exceeding the cut-off frequency
of the lateral line canal. Threshold values of hydrodynamic
detection by the canal lateral line organ are derived in terms
of water displacement, water velocity, water acceleration and
water pressure gradients and are shown to be close to the
detection limits imposed by hair cell mechano-transduction
in combination with the physical constraints of peripheral
lateral line signal transfer. The notion that the combination
of canal- and cupular hydrodynamics effectively provides the
lateral line canal organ with a constant sensitivity to water
acceleration at low frequencies so that it consequently func-
tions as a low-pass detector of pressure gradients, supports the
appropriateness of describing it as a sense organ that “feels
at a distance” (Dijkgraaf in Biol Rev 38:51–105, 1963).
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1 Introduction

Most aquatic vertebrates possess a mechano-sensitive lat-
eral line organ (for reviews see Dijkgraaf 1963; Bleckmann
1993; Coombs and Montgomery 1999). This sense organ,
which, like the inner ear, is part of the acoustico-lateralis sys-
tem, enables fishes and amphibians to detect small mechan-
ical disturbances in the water close to the animal. The re-
lated sense has been described as the capacity to “feel at a
distance” (Dijkgraaf 1963; e.g. Coombs and Montgomery
1999) and operates at frequencies from d.c. up to hundreds
of Hertz.

The lateral line organ is instrumental in a diversity of tasks
ranging from the detection of local near field water motion
(e.g. Harris and van Bergeijk 1962), such as for instance pro-
duced by prey (Bleckmann 1980; Elepfandt 1982; Hoekstra
and Janssen 1985; Montgomery and Macdonald 1987; Enger
et al. 1989) or predator (e.g. Bleckmann 1993) or during
schooling (Partridge and Pitcher 1980), to the perception of
static obstacles via the detection of the disturbance in the ani-
mal’s own generated flow field (Hassan 1986; Abdel-Latif et
al. 1990). Recently, also a role in rheotaxis has been reported
(Montgomery et al. 1997).

The significance of the lateral line system for the detec-
tion of water motion was first described by Leydig (1850).
He investigated the subsystem of canal lateral line organs,
in which the functional mechano-detecting elements, called
neuromasts, are located in canals recessed in the skin epider-
mis of fish (Fig. 1a). The lateral line organ owes its name to
this subsystem because of the marked longitudinal appear-
ance of canals along the trunk of several fish species. About
one decade later, Schulze (1861) recognized the detection of
fluid motion by the units belonging to the other main subsys-
tem, called free or superficial neuromasts. These units, found
in both fishes and aquatic amphibians, are positioned on the
animal’s skin surface from which they project into the sur-
rounding water (Fig. 1b). Much information on the mechan-
o-sensory lateral line system has since been obtained in stud-
ies regarding morphological and physiological aspects and
behavioral responses mediated by the system (e.g. Dijkgraaf
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Fig. 1 Schematics of a lateral line neuromast in a canal in the absence of the skin and bone that normally covers the canal. Dimensions indicated
are typical for the supraorbital canal of ruffe (Gemnocephalus cernuus; after van Netten 1991). b Schematics superficial neuromasts of the clawed
frog (Xenopus laevis; after Görner 1963). The thick arrows indicate the direction of mechano-sensitivity of both types of lateral line neuromasts,
which is related to the directional sensitivity of the hair cells

1963; Cahn 1967; Coombs et al. 1989; Bleckmann 1993;
Coombs and Montgomery 1999).

In both the canal- and superficial lateral line organs, a
neuromast consists of a cupula overlying a number of sen-
sory hair cells, projecting their mechano-sensitive organelle,
a staircase-like hair bundle, into the cupular base. Hair cell
numbers vary greatly, but in general canal neuromasts possess
hundreds to thousands, whereas superficial neuromasts con-
tain typically tens of hair cells. Hair cells are the primary mec-
hano-transducer cells and transform their bundle’s motion
into an electrical signal (reviewed by Hudspeth et al. 2000).
The transduction sensitivity is selectively polarized along the
direction of the bundle’s staircase (e.g. Flock 1965), which is
either along the direction of the canal (arrow, Fig. 1a; canal
neuromast) or parallel to the cupular long cross-sectional axis
(arrow, Fig. 1b; superficial neuromast). The transduced sig-
nal, encoded in action potentials, is passed on to the brain.
Cupular motion, resulting in a motion of the hair bundles
in their mechano-sensitive direction, therefore, represents an
important stage in the signal-processing cascade of the lateral
line organ.

Obviously, cupular motion is induced by the hydrody-
namic fluid forces produced by the fluid that flows past the
cupula. Since this fluid force is commonly assumed to be of
a viscous nature, an elastically coupled cupula is usually de-
scribed as being displaced in proportion to the relative veloc-
ity of the excitatory fluid flow, effectively rendering the cup-
ula a fluid velocity detector. Studies based on electrophysio-
logical recordings supported this model of drag-excitation of
the cupula to different extents (Jielof et al. 1952; Görner 1963;
Strelioff and Honrubia 1978; Kroese et al. 1978; Kroese and

van den Bercken 1982; Denton and Gray 1983; Kroese and
Schellart 1992).

Some of these studies suggested that the superficial- and
canal lateral line subsystems are not only morphologically
distinct, but also differ functionally in their detection char-
acter. On the basis of the rate and phase of afferent action
potentials generated by superficial neuromasts, these units
were described as detectors of the velocity of fluid, whereas
canal neuromasts rather detect the surrounding fluid’s accel-
eration (Coombs and Janssen 1990; Kroese and Schellart
1992; Engelmann et al. 2000). The notion that canal neu-
romasts detect the acceleration of the fluid around an animal
could be reconciled to considering canal cupulae as detectors
of velocity of the fluid in the canal, as this velocity appeared
to be proportional to the acceleration of the water outside the
fish at low frequencies (Denton and Gray 1983, 1988, 1989;
Kalmijn 1989).

Most evidence on the physical detection characteristics
of the peripheral lateral line system has been obtained from
recordings of afferent nerve activity. Direct measurements
of cupular displacement in response to hydrodynamic stim-
uli, with the aim to independently test the drag-excitation
hypothesis, have been performed in a limited number of
studies and on only a few species. Such measurements, per-
formed in the micrometer range using optical microscopy
(Jielof et al. 1952; Kuiper 1956; Liff and Shamres 1972;
Denton and Gray 1989), suggested a more complicated
behavior than that predicted from the drag-excitation hypoth-
esis, some indicating resonance behavior and others exci-
tation resulting from a more complicated fluid boundary
layer.
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Cupular- and canal fluid dynamics have been determined
with nanometer accuracy using laser interferometric tech-
niques (van Netten and Kroese 1987, 1989; van Netten 1988;
van Netten and Khanna 1994; van Netten and van Maarseveen
1994; Tsang and van Netten 1997; Wiersinga-Post and van
Netten 2000; Ćurčić-Blake and van Netten 2005). Mechano-
physiological and theoretical studies (van Netten and Kroese
1989; van Netten 1991; Wiersinga-Post and van Netten 2000)
revealed that especially for the case of relatively large cupulae
situated in wide lateral line canals, the fluid forces acting on
the cupular surface arise from a frequency-dependent bound-
ary layer. Because of changes in its thickness the dominant
fluid force on the cupula changes its character from viscous
to inertial as frequency increases in the physiological rel-
evant range (d.c. to hundreds of Hertz). Depending on the
elastic connections to the canal wall and its dimensions, a
cupula may also show resonance behavior. This may lead to
a more complicated detection behavior of a cupula than just
velocity sensitivity and therefore violates the drag-excitation
hypothesis.

In the present review, I will address how the properties
of the fluid–cupula-hair cell interactions affect the transfer of
hydrodynamic signals by the peripheral lateral line system.
Based on previous work, it will be shown that the physical
parameters of a lateral line neuromast combine to a dimen-
sionless number, now termed the resonance number, Nr. This
number characterizes whether a neuromast can be considered
a velocity detector or to what extent its detection character-
istics deviate from this because of resonance properties.

As opposed to superficial neuromasts, those situated in
the lateral line canal receive their stimuli via the fluid flow in
the canal, which is a filtered version of the water flow outside
the fish. It will be demonstrated how the combination of canal
filtering and cupular resonance can nevertheless be balanced
so as to ensure an essentially frequency independent transfer
of local hydrodynamic stimuli to the mechano-detecting hair
cells, at frequencies up to hundreds of Hertz.

The approach taken here specifically focuses on how the
physical parameters of the peripheral lateral line organ gov-
ern the physiological detection characteristics and capabili-
ties of the organ. It may thus serve as a basis for a quantita-
tive investigation of the relationship between morphological
diversity of the lateral line system (Webb 1989; Münz 1989;
Coombs et al. 1988; Northcutt 1989) and its consequences
for the possible diversity in hydrodynamic field detection.

2 Hydrodynamics and mechanics of cupular excitation

2.1 Experimental determination of cupular displacement
in response to canal fluid displacement

Hydrodynamic signals encoded in the local water flow around
an animal are transferred to a lateral line neuromast via the
fluid forces that act on the cupula, resulting in its displace-
ment. Figure 2 shows representative examples of laser-inter-
fer ometrically measured displacements of supra-orbital canal
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Fig. 2 Cupular displacement amplitude (a) and phase (b) measured
using laser interferometry in the ruffe (open symbols) and the Afri-
can knife fish (closed symbols) in response to fluid vibrations in the
canal produced with a sphere (Ø �= 0.8 mm) with constant displace-
ment amplitude of the order of 1µm (Wiersinga-Post and van Netten
2000). The solid line (a) indicates a slope of 20 dB/decade, which is
expected for pure velocity detectors. The phase of cupular displace-
ment shown (b) is referred to the phase of the displacement stimulus
sphere

cupulae of the ruffe (Acerina cernua or Gymnocephalus cern-
uus, open squares) and the African knife fish (Xenomystis ni-
gri, filled squares). These cupular displacements were mea-
sured in response to a vibrating stimulus sphere placed in
the canal at a distance of a few millimeters from the cupu-
la (Wiersinga-Post and van Netten 2000). At such distances
the fluid displacement produced in the canal is proportional
and in phase with that of the sphere (Tsang and van Netten
1997). The stimulating sphere’s displacement amplitude was
kept constant so that cupular motion in the physiologically
relevant displacement range (< 1 µm) was evoked, while its
vibrational frequency was varied.

Figure 2 shows that the effective filter characteristics result-
ing from the fluid–cupula interaction is similar for both types
of neuromasts, except for an upward frequency-shift of the
African knife fish’s response as compared to that of the ruffe.
The transfer of low frequency fluid displacements to displace-
ment of the cupula is clearly suppressed. The amplitude of
cupular displacement increases with (low) frequency along
slopes that are steeper than 20 dB/decade (Fig 2a, cf. solid
line), until a maximum is reached at about 120 Hz for the ruffe
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and at about 400 Hz for the African knife fish. At frequencies
beyond these resonance frequencies, cupular displacement
tends to decrease to a constant value.

The measured cupular phase with respect to the phase
of the excitatory canal fluid displacement is in line with its
amplitude characteristics. The cupular phase lead, which ex-
ceeds 90◦ at low frequencies, declines most steeply around
the resonance frequencies. Also, a phase lead approaching
zero is consistent with a constant displacement amplitude at
frequencies beyond resonance, indicating that a cupula di-
rectly follows the displacement of the excitatory fluid at high
frequencies. Cupular motion at the apex was found to equal
that of its base indicating that the canal cupula moves without
significant bending under physiological stimulus conditions
(van Netten and Kroese 1987).

The frequency responses measured can only be partly
explained by the filtering properties of a second order fluid
driven- and damped mass-stiffness system as proposed in
studies of cupular mechanics (Kuiper 1956; Kalmijn 1988).
In the next sections a more detailed model of cupular excita-
tion (van Netten 1991) will be considered.

2.2 Theory of excitatory fluid forces

To determine the fluid forces acting on a cupula by a vibrat-
ing fluid, first the forces are considered that are required to
vibrate a cupula in a fluid, which is at rest at large distances.
To calculate these fluid forces, the shape of the cupula is
approximated by a sphere.

Because the (non-steady) velocities of fluid and cupula
under physiological conditions, as well as the ratio of (max-
imal) characteristic lateral line dimensions (< 0.1 m) and
shortest times (∼ 1 ms) relevant to the system (e.g. van Netten
1991, Sect. 2.6) are well below the velocity of underwater
sound (∼ 1440 m/s), the fluid may be considered to be incom-
pressible (e.g. Landau and Lifshitz 1987). This implies that
the compression related component of the fluid flow, usu-
ally referred to as the far field, can be neglected and that
the near field remains as the main fluid flow component that
directly stimulates the lateral line system [e.g. Harris and
van Bergeijk 1962; see also Sect. A.1 (Appendix)]. In cer-
tain fish, adaptations to the hearing - and lateral line organ
cause external pressure changes to be transformed into lateral
line fluid displacement (Denton and Blaxter 1976), for which
incompressibility can also be assumed.

Another important simplification on lateral line hydrody-
namics concerns its linearization. For periodic motion pro-
duced by a solid body this is justified (Landau and Lifshitz
1987), if the vibratory displacement amplitude of fluid flow,
usually no more than the order of 1 µm, is much smaller than
the dimensions of the body itself, a condition that is amply
met for the neuromasts that will be considered here, which
have typical dimensions of fractions of 1 mm.

Under these simplifications of an effective incompress-
ible and linear fluid, Stokes (1851) derived a mathematical
solution of the near field flow pressure, (p) and velocity (v)

generated by a rigid sphere with radius (a) and vibrating with
angular frequency (ω) in a fluid with viscosity µ and den-
sity ρ, by solving the accordingly simplified Navier–Stokes
equation:

ρ

(
∂v
∂t

)
+ ∇p − µ∇2v = 0, (1)

in combination with the equation of continuity for an incom-
pressible fluid:

∇v = 0. (2)

The center position of the oscillating sphere will be denoted
by X(t) = B sin(ωt), which, therefore, also prescribes the
motion of the fluid at the sphere’s surface. In line with the
assumption above of linear flow, the amplitude, (B), has to be
small compared to the sphere’s radius, a (i.e. B << a). This
assumption allows that the position of the sphere’s vibrating
surface at which the fluid flow is described, can be treated as
a fixed boundary (Stokes 1851).

The calculated flow field as generated by the vibrating
sphere under these conditions is symmetrical around the axis
of vibration and in spherical coordinates (r is distance to the
sphere’s center; θ is the angle with the axis of vibration), the
pressure,p(r, θ), is (Stokes 1851, e.g. Lamb 1932):

p (r, θ) = −ρ a3Bω2

2r2 cos θ [C1 (δ, a) sin ωt

−C2 (δ, a) cos ωt] , (3)

where the boundary layer thickness around the sphere (δ), is
given by:

δ(ω) =
√

2µ

ρω
, (4)

while the functions C1 and C2 depend on the ratio of sphere
radius to the boundary layer thickness according to:

C1 (δ, a) = 1 + 3δ(ω)

2a
(5)

and

C2 (δ, a) = 3δ(ω)

2a

[
1 + δ(ω)

a

]
. (6)

Integrating the pressure and shear stress components in the
direction of the sphere’s motion over its entire surface (cf.
Landau and Lifshitz 1987, p 60), amounts to (Stokes 1851;
Lamb 1931; Landau and Lifshitz 1987, cf. van Netten 1991):

Ffluid(ω) = −6πaµBω

[(
1 + a

δ(ω)

)
cos(ωt)

− a

δ(ω)

(
1 + 2a

9δ(ω)

)
sin(ωt)

]
. (7)

The first term within square brackets of the right-hand side
of (7) represents the viscous fluid force on the sphere, which
is in anti-phase with its velocity (dX/dt = Bω cos(ωt)). At
low frequencies (i.e. if δ >> a, cf. Eq. 4) this term domi-
nates the fluid force so that it approaches the familiar result
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known as Stokes’ law: Ffluid = −6π aµ ·dX/dt . The second
term between square brackets, which is in anti-phase with the
acceleration of the sphere (d2X/dt2 = −Bω2 sin(ωt); note
that 1/δ2(ω) ∝ ω), and therefore 90◦ out of phase with the
viscous force, represents the inertial fluid force. This term
dominates at high frequencies (i.e. if δ << a, cf. Eq. 4), and
then approaches the force needed to vibrate half of the fluid
mass displaced by the sphere.

For further use in the equation of motion of the cupula
it is convenient to convert (7) to complex notation in which
sphere displacement is denoted as X(t) = B exp(iωt), so
that the sphere’s velocity is dX(t)/dt = iω X(t). The com-
plex amplitude of the fluid force (7) can then accordingly be
expressed as a frequency dependent drag, [D(ω)], times the
velocity, (dX/dt):

Ffluid(ω) = D(ω)
dX

dt
= −6πaµ

[(
1 + a

δ(ω)

)

+i
a

δ(ω)

(
1 + 2a

9δ(ω)

)]
dX

dt
(8)

The related radial and tangential fluid velocity components,
vr(r, θ) and vθ (r, θ), including those within the region of the
viscous boundary layer, can also be derived from the work of
Stokes (1931) and may be of practical use in the generation
of stimuli to the lateral line organ. These are discussed in
Sect. A.2 (Appendix).

2.3 Frequency selectivity of cupular sensitivity

The results of the previous section can be utilized to deter-
mine the steady-state oscillatory displacement, Y (t) = Y0
exp(iωt), of a (hemi-)spherical cupula as it is evoked by an
oscillating fluid flowing past it which has a displacement,
W(t) = W0 exp(iωt). The force exerted by the fluid on
the cupula then equals the drag, D (ω) (e.g. 8), multiplied
by the relative velocity between cupula and excitatory fluid,
dY (t)/dt −dW/dt . In addition to this external fluid force, it
is assumed that the cupula is also subject to the force result-
ing from its elastic coupling to the canal wall which is pro-
portional to the cupular sliding stiffness, K (van Netten and
Kroese 1987). This stiffness force can be attributed to the
elastic hair bundles of the underlying hair cells, which cou-
ple the cupular base (e.g. Fig. 1) to the canal wall (van Netten
and Khanna 1994). The equation of motion of cupular dis-
placement, [Y (t)], in response to a fluid displacement W(t)
can then be written as:

MŸ(t) = −KY(t) + D
[
Ẏ (t) − Ẇ (t)

] + MẄ(t). (9)

Here, time derivatives are indicated as usual andM = 4
3πa3ρ

denotes the cupular mass, which is assumed to possess the
same density, ρ, as the excitatory fluid (e.g. Jielof et al. 1952).
The left hand side term in (9), representing the cupular mass
times its acceleration is set equal to the external forces acting
on the cupula, which consist of the stiffness force, which is
proportional to the sliding stiffness, K and the fluid forces
resulting from the cupular motion, relative to the velocity

of the excitatory fluid. Effectively, the cupula is thus both
driven and damped by the fluid. The last term of the right-
hand side of (9) represents an additional fluid buoyancy force,
related to the acceleration of the amount of fluid displaced
by the cupula, having a mass, (M), which is equal to that
of the cupula, since its density is taken equal to that of wa-
ter. The equation of motion (9) is linear and can be solved
in the frequency domain, so that only steady-state ampli-
tudes need to be considered, thus expressing the complex
amplitude of cupular displacement [Y0(f )] as a function of
excitatory frequency f = ω/(2π) and amplitude (W0) of
water displacement. The time dependence of cupular- and
water displacement is thus implicitly given by the exponen-
tial time factor exp(i2πf t)(i.e. Y (t) = Y0 exp(i2πf t)and
W(t) = W0 exp(i2πf t)). The result for displacement ampli-
tude [Y0(f )] in response to water displacement with ampli-
tude W0 is then (e.g. van Netten 1991):

Y0(f ) =
i

f
ft

+ 1
2

√
2(i − 1)

(
f
ft

) 3
2 − 1

3

(
f
ft

)2

Nr + i
f
ft

+ 1
2

√
2 (i − 1)

(
f
ft

) 3
2 − 1

3

(
f
ft

)2
W0, (10)

and thus shows that the four physical parameters (K, a, µ
and ρ) reduce to only two independent parameters given by:

ft = µ

2πρa2 , (11)

and

Nr = Kaρ

6πµ2 . (12)

The transition frequency (ft) is directly related to the lin-
ear a.c. (unsteady) Reynolds number, (Reac = 2πfρa2/µ =
f/ft(Batchelor 1967) and indicates at which frequencies vis-
cous (Reac < 1, equivalent to f < ft) or inertial fluid forces
(Reac > 1, equivalent to f > ft) dominate the fluid forces
acting on the cupula. The ratio ft/f is sometimes called
Stokes’ number. In (10), ft appears solely in its ratio to the
stimulus frequency (f ) and its value can thus also be consid-
ered as a normalizing scale factor of the frequency.

The number Nr is dimensionless and effectively deter-
mines the shape of a curve depicting cupular sensitivity ver-
sus log-frequency (cf. van Netten 1991, where Nr was termed
cupular parameter Pc). As will be demonstrated below, the
value of Nr governs the resonance properties of a cupula and
it will accordingly be referred to as resonance number in the
following. The further significance and usefulness of the two
independent parameters ft and Nr, which completely gov-
ern the cupular sensitivity given by (10), will be described in
detail in the following sections.

The solution of the steady-state cupular displacement
amplitude, (Y0), as given in (10) can also be expressed in
terms of excitatory fluid velocity

V (t) = dW(t)

dt
= i2πf W0 exp(i2πf t)

= V0 exp(i2πf t),

rather than fluid displacement, W (t).
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If the (complex) cupular sensitivity to velocity [S(f )] is
defined as the ratio of (complex) cupular displacement ampli-
tude [Y0(f )] to excitatory fluid velocity amplitude [V0] it
follows from (10) by substituting W0 = V0/(i2πf ) and sub-
sequently dividing both sides by V0, that S(f ) is given by:

S(f ) = Y0(f )

V0

= 1

2πft

1+ 1
2

√
2(1+i)

(
f
ft

) 1
2 + 1

3 i
f
ft

Nr+i
f
ft

− 1
2

√
2 (1−i)

(
f
ft

) 3
2 − 1

3

(
f
ft

)2
. (13)

Equation (13) expressing the frequency dependent cupular
sensitivity to velocity will be used in the following sections,
rather than the equivalent form (10). Both approaches are
completely equivalent but the sensitivity defined in (13) illus-
trates more clearly how the four physical parameters of the
peripheral lateral line that we consider, namely strength of
sliding stiffness coupling (K), cupular radius (a) and fluid
density (ρ) and viscosity (µ), condensed into the two inde-
pendent parameters, ft and Nr, control the extent to which
the drag-excitation hypothesis is justified.

It should be noted that the frequency characteristics de-
scribed by both (10) and (13) are different from those of a
second order system, which can be represented by a lumped
parameter model. In contrast, the spatially distributed ac-
tion of the fluid considered here, which is both driving and
damping the cupula, gives rise to fractional powers of the fre-
quency (f ) which in the time domain may lead to fractional
derivatives (cf. Landau and Lifshitz 1987).

2.4 Velocity detecting- and resonating cupulae

Given the typical displacement detection range of hair cells
in combination with the conditions under which the lateral
line organ operates, an appropriate unit of cupular sensitivity,
S(f ) = Y0(f )/V0 (13) is nanometer cupular displacement
(Y0) per micrometer/second fluid velocity (V0). Note that this
unit of cupular velocity sensitivity is equivalent to millisec-
ond. The significance of interpreting cupular sensitivity in
terms of time will be discussed in more detail in Sect. 2.6.

To what extent and in which frequency range a cupula
can be regarded as a detector of fluid velocity (drag-excita-
tion hypothesis), or alternatively, in which frequency range
S(f ) is a virtually frequency-independent constant, can be
appreciated from considering the numerical values of the two
independent parameters ft and Nr and inspection of (13).

It will first be assumed that Nr << 1. Equation (13) then
shows that at low frequencies a cupula detects velocity with
an almost constant sensitivity (Sv), which is given by:

S(f ) ∼= 1

2πftNr
= Sv (Nr << 1; lowf ). (14)

A cupula maintains this virtually constant velocity sensitivity
(Sv) up to frequencies at which Nr remains the leading term
in the right-hand denominator of (13), i.e. if Nr > f/ft . This

leads to a bandwidth of almost constant velocity-sensitivity
ranging from d.c. to a cut-off frequency (fc) given by:

fc = ftNr. (15)

Equation (15) shows that the cut-off frequency (fc) lies below
the transition frequency (ft) since it is assumed here that Nr
is smaller than 1. This implies that in the whole velocity
detecting bandwidth (d.c. to fc) viscous fluid forces, which
dominate below ft (11), are responsible for the excitation of
the cupula.

At frequencies exceeding fc, the amplitude of cupular
sensitivity reduces because of the ratio of the leading terms
of the numerator (∝ f ) and denominator (∝ f 2) in (13),
so that at these frequencies the sensitivity (13) effectively
reduces to:

S(f ) ∼= 1

2πft

1
3 i

f
ft

−1
3

(
f
ft

)2 = 1

i2πf
, (f > fc), (16)

which corresponds to a sensitivity roll-of of 20 dB/decade. An
example of the sensitivity of a cupula with resonance number
smaller than 1 (Nr = 0.1) is depicted in Fig. 3, and shows that
the amplitude of the sensitivity (Fig. 3a) can schematically
be represented by two intersecting lines, representative for
a first-order linear low-pass filter (dotted lines) possessing
a constant velocity sensitivity at low frequencies (i.e. low-
pass) given by (14) and displaying a roll-off as expressed by
(16) beyond the cut-off frequency, fc (15). The phase of the
sensitivity (Fig. 3b), in line with its definition, is referred to
the phase of the excitatory fluid velocity, and is accordingly
close to zero in the low frequency (low-pass) range while
turning to −90◦ at frequencies beyond cut-off. A cupula with
Nr << 1 can therefore be considered a pure velocity detec-
tor in the bandwidth limited by d.c. and the cut-off frequency
fc, and shows no significant resonance. The hypothesis of
drag–excitation of the cupula thus appears to be valid under
the condition that Nr << 1 and in the restricted frequency
range from d.c. up to fc, and is expressed indeed by (14), as
it is equivalent to balancing the (low frequency) fluid drag
force to the stiffness related force (i.e.6πaµV0 = KY0).

The situation is different for cupulae with Nr >> 1,
which can be classified as resonating cupulae as illustrated
in Fig. 3 for Nr = 10 and 100. At low frequencies (f << ft)
the cupular sensitivity equals Sv = 1/(2πftNr), which is the
same constant sensitivity as that of a pure velocity detect-
ing cupula (Nr << 1; cf. Eq. 13). However, in contrast to a
pure velocity detecting cupula, the sensitivity of a resonating
cupula may significantly increase above Sv , if the stimulus
frequency (f ) exceeds the transition frequency (ft). This is
the result of inertial fluid forces boosting the displacement of
the cupula. If (Nr >> 1) the cupula thus exhibits resonance
behavior and is tuned to a resonance frequency (fr ) of about
[see (13) and van Netten 1991]:

fr
∼= ft

√
3Nr, (Nr >> 1), (17)

The quality factor (Q) of a resonating cupula can be cal-
culated by considering the expression for the Q-factor of a
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Fig. 3 Effect of resonance number, (Nr), on cupular sensitivity, [S(f )],
as a function of frequency of vibratory fluid flow in the canal. a
Amplitude of cupular sensitivity is expressed in nm/(µm/s), which
is equivalent to ms. b. Phase of cupular sensitivity. The cut-off fre-
quency,fc = ftNr , was kept constant (1000 Hz) for all four situations
depicted (Nr = 0.1, 1, 10 and 100, as indicated). The low frequency
gain, Sv (left arrow), is accordingly the same for all four cases depicted.
For low Nr numbers (e.g. 0.1) the cupular sensitivity is virtually con-
stant implying that the cupular displacement response is proportional to
fluid velocity up to fc, whereas for high Nr numbers (e.g. 10 and 100)
the cupular sensitivity may increase significantly above Sv , due to res-
onance. The enhanced sensitivity at resonance, Sr , is indicated (right
arrow) for the case of Nr = 100. An intermediate response results if
Nr = 1

second-order damped (Df ), mass (M), stiffness, (K) system
(Q = √

MK/Df ). Although the general responses given
by (13) cannot adequately be described by a second-order
lumped parameter model, in the restricted frequency range
around fr , assumingNr >> 1, these responses resemble
those of such a resonating second-order system so that the
approximation for the Q-factor given above can be used. In
that case, Df is defined by the fluid damping which is fre-
quency dependent and given by the real component of D(ω)
(8). This component approaches 6πaµ (a/δ) = 3πa2√2µρω
at frequencies around fr , since its frequency-independent
viscous drag-term (6πaµ) can then be neglected. This can be
derived from the assumption that Nr >> 1 so that with (17)
fr/ft >> 1, which is equivalent to a/δ(ω) >> 1 at frequen-
cies around resonance. When evaluated at ω = 2πfrwith fr ,
given by (17) the Q- factor then yields:

Q ∼=
√

2

3
·
(

Nr

3

)1/4

, (Nr >> 1). (18)

Equation (18) shows that the cupular Q-factor solely depends
on the resonance number (Nr) as expected. This expression
is larger by a factor

√
3/2(∼= 22%) than an earlier approxi-

mation of Q to account for the effective mass of the cupula
(M) which because of the entrained fluid is increased by a
factor 3/2 (cf. van Netten 1991).

It follows from Eqs. 11, 17 and 15 that the relevant fre-
quencies are mutually related as ft < fr < fc, when Nr >>
1. Beyond the cut-off frequency, fc = ftNr, the ampli-
tude of the sensitivity of a resonating cupula resembles that
of a pure velocity detecting cupula and also rolls off with
20 dB/decade, while the phase approaches −90◦ similar to
the behavior of a first-order low-pass filter (see Eq. 16). This
is illustrated in Fig. 3, which compares frequency responses
of cupulae with Nr smaller and larger than 1, but with the
same cut-off frequency (fc = ftNr =1000 Hz). Thus in both
types of cupulae, fc marks the upper range of frequencies
of fluid velocity which evoke a cupular motion with a sen-
sitivity of Sv or higher. The effective bandwidth of a cupula
withNr >> 1, however, is smaller than fc because of the
peaked response around resonance (see also Sect. 2.5).

An indication of the order of magnitude of the extra sensi-
tivity, gained by resonance as compared to the low frequency
sensitivity (Sv) may be obtained by substituting fr (17) into
(13) and evaluating the remaining leading terms in both the
numerator and denominator. The result for the amplitude of
cupular sensitivity at resonance, Sr = |Y0(fr)/V0|, as com-
pared to the low frequency sensitivity, Sv (14), is then:

Sr

Sv

∼= N
3/4
r

35/4
, (Nr >> 1). (19)

The ratio of sensitivities in (19) shows that the extra sensitiv-
ity at resonance increases almost linearly with the resonance
number, Nr. Because of the enhanced sensitivity, a resonat-
ing cupula is not exclusively displaced in proportion to fluid
velocity but, in a limited range of its bandwidth, from approx-
imately ft up to fc, it follows rather a frequency-dependent
combination of velocity and acceleration (Fig. 3).

2.5 Application of theory to cupular displacement
measurements

The two examples of measured frequency responses of canal
lateral line cupulae shown in Fig. 2 were measured in suffi-
cient detail to test the appropriateness of the preceding model
description. Figure 4 shows the same measured data as de-
picted in Fig. 2 but now plotted as cupular sensitivity [S(f )]
i.e. cupular displacement in the ratio to excitatory fluid veloc-
ity rather than displacement, commensurate with the model
description (13). In line with relating the data to the excit-
atory water velocity rather than water displacement, an over-
all phase lag of 90◦ has been taken into account in plotting
the phase data in Fig. 4b. The solid lines represent the model
fits to the data points. From these fits the average values of Nr
and ft of both types of cupulae were determined. Both canal
cupulae belong to the resonating class and the similar shape
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Fig. 4 Same cupular displacement data as shown in Fig. 2 of the ruffe
(open symbols) and the African knife fish (closed symbols), but now
shown as cupular sensitivity (13), defined as cupular displacement per
canal fluid velocity. a Amplitude of sensitivity expressed in nm per
µm/s. b Phase of sensitivity (90◦ delayed as compared with Fig. 2b).
Solid lines show the results of fits (13) to the data points (ruffe: ft =
10 Hz, Nr = 64; African knife fish: ft = 70 Hz, Nr = 20)

of the frequency responses is reflected in their similar res-
onance numbers which as a consequence both significantly
exceed one (ruffe: Nr = 64; African knife fish Nr = 20).

The related quality factors, (ruffe: Q = 1.74; African
knife fish: Q = 1.31; Eq. 18) are rather low, especially in
the case of the African knife fish. The transition frequency,
ft (13) of the African knife fish (ft = 77 Hz) is a factor of
about 7 higher than that of the ruffe (ft = 10.6 Hz), primar-
ily because of the former’s smaller cupular dimensions (cf.
Eq. 13; Wiersinga-Post and van Netten 2000). This results
in the relative upward frequency shift of the African knife
fish’ sensitivity curve. Also, the resonance frequency of the
African knife fish cupula (fr = 460 Hz) is about a factor 4
higher than that of the ruffe (fr = 116 Hz).

The cut-off frequency, fc = ftNr, reflects the enhanced
related bandwidth of the African knife fish’ cupula (fc =
1540 Hz) in comparison to that of the ruffe (fc = 678 Hz).
Note that these cut-off frequencies mark the frequencies at
which cupular sensitivity falls below the low frequency sen-
sitivity (Sv) and is theoretically a factor

√
Nr/3 higher than

the resonance frequency (fr ). Even these latter frequencies,
however, may still be considered an overestimate of the cut-

off of the operational frequency range of the lateral line organ,
as will be further detailed in Sect. 3.3.

Inversely to the cut-off frequency defined by fc = ftNr,
the low-frequency cupular sensitivity of the ruffe,
Sv = 0.23 nm /(µm · s−1) exceeds that of the African knife
fish, Sv = 0.10 nm/(µm·s−1). The latter value is quite sim-
ilar to the sensitivity reported for sprat lateral line cupulae
(0.12 nm/(µm · s−1); Denton and Gray 1989).

2.6 Cupular impulse response and relation to cupular
sensitivity

The inverse relationship between cupular sensitivity and detec-
tion bandwidth observed in the ruffe’s and African knife fish’
cupular mechanics (Sect. 2.5) is reminiscent of a more gen-
eral principle of a fixed sensitivity-bandwidth product. Such
a relationship applies to cupular filtering, as follows directly
from considering the cupular sensitivity (Sv) defined at low
frequencies for both classes of cupulae, in relation to the cut-
off frequency fc (Eqs. 14 and 15), irrespective of Nr:

Sv · fc = 1

2π
. (20)

Because of its first-order low-pass filter characteristics, the
cut-off frequency (fc) of a pure velocity detecting cupula
(Nr << 1) may be taken as the effective cupular filtering
bandwidth�f . Since the time constant (τ ) of a first-order
low-pass filter is inversely related to its effective bandwidth
�f (i.e. τ = 1/ (2π�f ), Eq. 20 implies an identity between
the time constant (τv) of the exponentially decaying (veloc-
ity) impulse response and the constant sensitivity (Sv) of a
pure velocity detecting cupula:

τv = 1

2π�f
= 1

2πfc
= Sv, (Nr << 1). (21)

Equation (21) shows that the decay-time constant of a pure
velocity detecting cupula, given in milliseconds, equals its
cupular sensitivity expressed in nm/(µm/s) (cf. Eq. 14) and
accordingly emphasizes the equivalence of units of nm/(µm/s)
and ms on the amplitude-axis of the sensitivity curves (e.g.
Figs. 3 and 4, see also Sect. 2.4).

A resonating cupula (Nr >> 1), on the other hand, has
a smaller effective filtering bandwidth than fc. The narrower
bandwidth of the peaked sensitivity of a resonating cupula
corresponds in the time domain with an impulse response,
which consists of damped oscillations with a frequency of
about fr . The time constant (τr ) of the envelope of these
oscillations can be estimated with the use of the quality fac-
tor (Q) and the resonance frequency (fr ) given by (18) and
(17). The result is:

τr
∼= Q

π fr

∼= 0.72 τv N
3/4
r

∼= 2
√

2Sr (Nr >> 1). (22)

Inspecting (22) shows that the transients of the impulse re-
sponse of a resonating cupula are prolonged in relation to τv

(21) with a factor, which increases withN
3/4
r . The same fac-

tor was found for the extra sensitivity gained from resonance
(19), so that the cupular sensitivity at resonance (Sr ) may be



Hydrodynamic detection by cupulae in a lateral line canal 75

Table 1 Canal lateral line sensitivities and threshold detection levels.

Description Symbol Theory Ruffe

Low frequency cupular velocity sensitivity S(0) = SV
1

2πftNr
0.23 nm/(µm/s) (= ms)

Low frequency canal acceleration sensitivity Scan(0,0) 1
2πfcan

10 (µm/s)/(mm/s2) (= ms)

Combined lateral line organ acceleration sensitivity Sllo(0) SV · Scan 2.3 – 4 nm/(mm/s2) (= ms2)

Hair cell displacement detection threshold TX, TD
1√
Nch

2kT
Z

6.5 nm *

Neuromast fluid displacement detection threshold TX

((
kT
K

) + 1
NchN

( 2kT
Z

)2
) 1

2
0.3 – 2.5 nm

Neuromast fluid velocity detection threshold TV
TX

SV
1–10 (µm/s)

Lateral line organ fluid acceleration detection threshold TA
TV

Scan
0.1–1 mm/s2

Lateral line organ pressure difference detection threshold T�p TAρL 0.1–1 mPa

Symbols are as used throughout the text and expressed in terms of measurable physical quantities. Numerical values relate to the ruffe, except
for the hair cell displacement threshold, as indicated (*), which was taken from outer hair cells (van Netten et al. 2003).
ft the transition frequency of a cupula (10 Hz; e.g. Eq. 11), Nr the cupular resonance number (64; e.g. Eq. 12), fcan the cut-off frequency of the
lateral line canal, assuming a radius of 0.5 mm (∼ 20 Hz;), kT the thermal noise energy (4.1·10−21 J), Z the molecular gating force of a hair cell
transducer channel (∼150 fN), Nch the number of transducer channels per hair cell (80), K the cupular sliding stiffness (0.13 N/m), N the number
of hair cells underlying a cupula (1,000), ρ fluid density (1,000 kg/m3), L the effective distance over which a supra-orbital canal neuromast detects
a pressure difference (1 mm)

used as a measure of the time constant of a resonating cupula
(τr ) as expressed in the right-hand side of (22).

Evaluation of (22) for the two types of resonating canal
cupulae considered predicts envelope time constants of the
cupular impulse response of about τr = 0.7 ms for the Afri-
can knife fish and about τr = 3.8 ms for the ruffe. It thus
seems inevitable that the ruffe, in the time domain, has to
pay for its increased sensitivity (Sr/Sr

∼= 12), obtained from
enhanced cupular resonance, as compared to that of the Afri-
can knife fish (Sr/Sv

∼= 7). Recently, cupular responses to
velocity impulses have been experimentally determined in
the ruffe (Ćurčić-Blake and van Netten 2005). Time constants
(τr ) were found to be close (mean value, 4.4 ms) to the theo-
retical values considered here (3.8 ms). Detailed comparison
of the impulse response measured and calculated with the
linear cupular model (Eq. 10 or 13), however, also revealed
differences that are most likely due to the nonlinear gating
stiffness that reflects in the cupular sliding stiffness (e.g. van
Netten and Khanna 1994; Sect. 2.11).

2.7 Threshold of velocity-sensitivity of lateral line cupulae

The sensory hair cells are the primary mechano-receptors
of the lateral line organ and detect the displacement of the
cupula. The displacement detection threshold of hair cells
has recently been shown to be restricted by stochastic prop-
erties of the transducer channels and the Brownian gating
spring noise (van Netten et al. 2003). The equivalent trans-
ducer related displacement noise (TX,TD) was shown to be
about TX,TD ∼= 2kT /Z, with kT (∼ 4.1 · 10−21 J) the ther-
mal noise energy and Z (∼ 150 fN) the molecular gating force
of a hair cell’s transducer channel, and was found to be about
6.5 nm per hair cell.

If the approximately 1,000 hair cells that underlie a ruffe
supra-orbital canal cupula, all contribute independently but
equally to the detection process (complete ensemble averag-
ing), the effective displacement noise would decrease with
a factor

√
1, 000 ∼= 32, so that the overall equivalent hair

cell displacement noise, may reduce to about 0.2 nm per neu-
romast. This number appears to be similar to the cupular
Brownian motion that can be calculated for the ruffe’s cupu-
la with sliding stiffness K (

√
kT /K ∼= 0.2 nm; e.g. Landau

and Lifshitz 1983; K ∼= 0.13 N/m, van Netten and Kroese
1987). The resulting overall (root summed squares) displace-
ment detection threshold, TX

∼=0.3 nm, combined with the
low frequency cupular velocity-sensitivity obtained for the
ruffe (Sv = 0.23 nm/(µm · s−1)) thus leads to a threshold
of cupular fluid velocity detection (TV ) of a neuromast of
about TV = TX/Sv

∼= 1.3 µm/s under the assumed complete
ensemble averaging conditions (cf. Table 1).

Alternatively, a threshold displacement value (TX) of the
supra-orbital canal cupula of ruffe has been obtained from
extrapolating results of behavioral responses and was found
to be one order of magnitude larger (TX ≈2.5 nm; Kuiper
1956) than the value just estimated on the basis of transducer
channel stochastics and Brownian motion (∼= 0.3 nm). Cor-
respondingly, this leads to a fluid velocity detection threshold
(TV ) of the cupula of about 10µm/s. This value is comparable
to experimentally determined fluid velocity detection thresh-
olds reported for the superficial lateral line organ (25µm/s,
Görner, 1963; 60µm/s, Oman and Frishkopf, 1973; 38µm/s,
Kroese et al. 1978).

Combining the two approaches followed above leads to
the conclusion that the ruffe’s supra-orbital canal neuromasts
may reliably detect fluid velocities in the canal with a thresh-
old (TV ) ranging from about 1 to 10µm/s.
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Fig. 5 Relation of resonance number, (Nr), to the a.c. Reynolds number (Rea.c. = f/ft), which denotes the position of frequency on the normalized
frequency-axis (11). Two different Nr numbers are distinguished, corresponding to a velocity detector (Nr < 1; dashed lines) and a resonating
cupula (N∗

r > 1; dotted lines). The value 1 on the normalized frequency-axis separates the viscous- from the inertial dominated frequency regions.
The positions of the Nr numbers on this axis mark the frequencies at which fluid forces take over dominance over the stiffness forces acting on a
cupula

2.8 Physical significance of the resonance number, Nr

The dimensionless resonance number,Nr (12), has been shown
to play a pivotal role in cupular dynamics. Dimensionless
numbers are quite common in the description of physical
phenomena and are specifically used in hydrodynamics to
determine how the physical parameters of a system can be
simultaneously modified while keeping the same response.
In the same fluid, different cupular configurations possessing
an equal product of cupular sliding stiffness times cupular ra-
dius (Ka = constant) have the same value for Nr (12). Such
cupulae thus share the same frequency characteristics, apart
from the scaling of the frequency axis with ft (11).

Many dimensionless numbers in fluid dynamics are de-
fined as the ratio of two types of forces. The best-known
example is the Reynolds number,Redc = ρaVdc/µ for steady
(d.c.) flow with velocity (Vdc) past an object with characteris-
tic dimensiona, which can be compared to the (a.c.) Reynolds
number, Reac = f/ft = 2πa2f/µ for periodic flow (cf. Eq.
11). Both types of Reynolds numbers represent the ratio of
viscous to inertial fluid forces.

The resonance number, Nr (12) appears to define the
absolute ratio of the stiffness force acting on an object, elas-
tically suspended via stiffness K , and the Stokes fluid force
acting on it, when vibrating at the transition frequency ft
(11), at which viscous and inertial forces balance, in a fluid
at rest (at infinity):∣∣∣∣∣

KY

6πaµẎf =ft

∣∣∣∣∣ = K

6πaµ(2πft)
= Nr. (23)

The significance of the resonance number is further sum-
marized in Fig. 5 in relation to the a.c. Reynolds number
(Reac = f/ft), which effectively represents the normalized
frequency axis (cf. Eq. 11). The value 1 on this frequency axis
(Fig. 5) separates viscous- from inertial dominated frequency
regions in terms of vibratory fluid forces acting on the cupula.
Nr marks the normalized cut-off frequency, fc (15), which

represents the upper bound of frequencies of excitatory fluid
velocity that result in a significant vibration amplitude of the
object (i.e. S(f ) � Sv).

Similar to the discriminative role of the Reynolds number,
the resonance number, (Nr) separates the frequency regions
of dominance of stiffness – (Reac < Nr) versus fluid forces
(Reac > Nr) acting on the cupula. In case of the latter con-
dition, the fluid force at Nr is either of a viscous – (Nr < 1)
or of an inertial nature (Nr > 1), as can be seen from Fig. 5.

Since the cupular sliding stiffness derives from the col-
lective stiffness of the hair bundles of the hair cells underly-
ing the cupula, information on the bundles’ micromechanical
properties may be obtained in studies on cupular mechan-
ics employing frequencies in the stiffness dominated region
(e.g. van Netten and Khanna 1994; van Netten et al. 1994;
Wiersinga-Post and van Netten 1998).

The basic arrangement of the cupular excitation model
considered consists of an elastically suspended mass with
stiffness coupling K , and characteristic dimension a, both
driven and damped by a fluid characterized by its density
(ρ) and viscosity (µ). Such an arrangement is not unique to
cupulae of the lateral line system and the classification by
means of the resonance number can thus be expected to out-
reach this context. Its usefulness can accordingly be expected
in the fields of vestibular- and hearing research, for instance
in investigating the hydrodynamic excitation of free-standing
hair cell bundles (e.g. van Netten 1997; Géléoc et al. 1997) as
well as in other practical applications of mechano-receptive
devices.

2.9 Prediction of Nr for superficial neuromasts

Since the resonance number (Nr) in canal neuromasts, at least
in the cases investigated, yields values larger than one, the
question arises whether superficial cupulae may possess (Nr)
values smaller than 1 so that they exhibit pure low-pass veloc-
ity detecting characteristics, as suggested by electrophysio-
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logical data of their afferent activity (Görner 1963; Strelioff
and Honrubia 1978; Kroese et al. 1978; Kroese and Schellart
1992; Engelmann et al. 2000, 2002).

Superficial neuromasts have their cupula protruding into
the water surrounding the animal. In water (ρ = 1, 000 kg /
m3; µ = 0.001 Pa · s), the condition Nr < 1 reduces to an
upper bound on the product of the stiffness and cupular radius
(Ka < 19 nN).

The sliding stiffness (K) of canal neuromasts can almost
exclusively be attributed to the collective stiffness of its about
a thousand hair bundles (van Netten and Kroese 1987, 1989;
van Maarseveen 1994). A smaller stiffness is therefore likely
to result from the tens of hair bundles that usually under-
lie superficial cupulae, which may vary in stiffness from 0.1
to 1 mN/m per hair cell bundle, depending on hair bundle
length. Furthermore, the cupulae of superficial neuromasts
are smaller than the canal cupulae investigated. Together,
these two factors predict values of the order of 10–100 nN for
the stiffness-radius product (Ka) of superficial neuromasts.
This suggests that superficial neuromasts can probably be
classified as detectors of fluid velocity in a considerable fre-
quency range and do not likely exhibit strong resonance.

Complicating factors may arise from the more elongated
shapes that superficial cupulae possess and their presumably
more flexible structure as compared to that of canal cupu-
lae, which move as rigid structures (van Netten and Kroese
1987; Kelly and van Netten 1991). Also, because of the lim-
ited extent to which superficial cupulae penetrate into the sur-
rounding water, the boundary layer along the skin is likely
to affect more strongly the velocity sensed by a superficial
cupula as compared to a canal cupula (e.g. Jielof et al. 1952;
Kalmijn 1988).

Mechanical measurements on superficial neuromast dynam-
ics are still pending but are required to investigate whether
the cupular model of excitation used for canal neuromasts is
also applicable to superficial neuromasts.

2.10 Matched cupular- and hair cell filtering

The mechanical frequency responses of the canal neuromasts
investigated have been shown to match the frequency char-
acteristics of extracellular receptor potentials of the mechan-
o-transducing hair cells under the temperature conditions of
their habitat, which is about 4◦C for the ruffe and above 25◦C
for the tropical African knife fish (Wiersinga-Post and van
Netten 2000). Adaptation of these different fish species to
their natural habitat and relevant stimuli may have shaped
these two subsequent stages of peripheral filtering so as to
optimize the signal-to-noise-ratio.

Applying the results of cupular mechanics to different
species, we may predict a variety in dynamics given the mor-
phological diversity in the lateral line system that has been de-
scribed (Coombs et al. 1988, 1992; Webb 1989; Münz 1989).
It has nevertheless been reported that the afferent activity of
morphologically different canal neuromasts in Antarctic fish
points to converging frequency characteristics (Coombs and

Montgomery 1992; Montgomery et al. 1994). A factor that
may be related to this observation is that cupular dimension
and the number of hair cells that fit the cupular base area are
most likely related, so that cupular radius (a) and the stiffness
of the elastic hair bundle coupling to the canal (K) are cor-
related. Such a correlation causes the detection bandwidth of
cupulae within a considerable range of different dimensions
and related stiffnesses to be confined to a relatively restricted
frequency range (e.g. van Netten 1991).

2.11 Hair cell transduction in the lateral line organ

The lateral line organ has been, and still is, frequently used
as a model to study fundamental aspects of hair cell trans-
duction (e.g. Jielof et al. 1952; Kuiper 1956; Flock 1965;
Harris et al. 1970; Russell 1976; Sand 1984; van Netten and
Khanna 1994; Wiersinga-Post and van Netten 1998; Nicol-
son et al. 1998; Sidi et al. 2003; Söllner et al. 2004; Corey
et al. 2004). Also specific blockers of the hair cell trans-
ducer channels have been investigated using electrophysio-
logical recordings of the lateral line organ (Kroese and van
den Bercken 1980, 1982; Karlsen and sand 1987; van Netten
et al. 1994; Wiersinga-Post and van Netten 1998).

Biophysical studies of the transducer channels in bullfrog
saccular hair cells have provided many fundamental proper-
ties of the molecular mechanisms responsible for the opening
of the channel’s gates in response to hair bundle motion (e.g.
Howard and Hudspeth 1988; Markin and Hudspeth 1995).
These properties include the force required to open a single
transducer channel, the swing of the channel upon opening
and the stiffness of the elastic gating springs that engage
each channel’s gate. The gating spring in combination with
the mechanical coupling to the channel’s gate on one side
and the hair bundle on the other side gives rise to a reduction
in hair bundle stiffness (gating compliance) which depends
on the deflection of the hair bundle. Similar nonlinearities in
bundle stiffness were reported in mammalian and other hair
cell types studied in vitro (Russell et al. 1992; Géléoc et al.
1997; van Netten and Kros 2000; Ricci et al. 2002). Studies
on the motion of the cupula in response to fluid flow past it
has revealed nonlinear behavior that could be explained by
the nonlinear gating compliance of the transducer channels
(van Netten and Khanna 1994). Analysis of these mechani-
cal nonlinearities of the lateral line cupula thus enabled the
determination of molecular properties like gating force under
in vivo conditions in an intact hair cell organ, and were found
to resemble those found in in vitro studies.

Hair cell bundles of the bullfrog’s sacculus have also been
reported to display complex active behavior, as reflected in
spontaneous motion, which was explained by an interplay
between a negative stiffness associated with the gating com-
pliance and molecular motors that are involved in calcium-
dependent hair cell adaptation (Hudspeth et al. 2000). Signs
of spontaneous active mechanical behavior so far have not
been reported for cupular dynamics, but are also likely to
be suppressed by the mutual mechanical coupling of tens
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to thousands of hair cell bundles via their overlying cupula.
Detailed investigation of possible power-law behavior of the
input–output relationship of cupular responses at threshold
(< 1 nm) may give indications as to whether similar mecha-
nisms as found in individual bundles of the bullfrog’s saccu-
lus (Martin et al. 2003) enhance the detection properties of
the lateral line organ (see also Sect. 3.4).

3 Canal hydrodynamics and lateral line sensitivity

3.1 Velocity flow profiles in canals

Motion of water surrounding the fish is first transferred into
canal fluid motion before a canal cupula is excited. Denton
and Gray (1983) experimentally investigated the filter char-
acteristics of the transmission step of outside water motion
into canal fluid motion. Their theoretical approach to explain
their observations was based on a lumped parameter model,
representing fluid inertia and viscous resistance (Denton and
Gray 1983, 1988, 1989).

Here a solution of the Navier–Stokes equation will be
considered, which describes the velocity of a viscous fluid
inside a canal, as resulting from an oscillatory pressure with
a constant amplitude gradient along the canal. The solution is
originally due to Sexl (1930), and has been applied by Wom-
ersley (1955) to describe pulsating blood flow in arteries,
while specific numerical solutions are discussed by Schlicht-
ing (1979).

Canal neuromasts are now commonly described as detec-
tors of outside water acceleration (e.g. Denton and Gray
1983; Kalmijn 1988; Coombs and Janssen 1990; Kroese and
Schellart 1992; Wubbels 1992; Engelmann et al. 2002). It
is therefore useful to express the fluid velocity inside the
canal in response to acceleration of water outside the canal.
Assuming potential flow outside the fish causing the water
motion relative to the fish, a pressure gradient corresponds
to water acceleration (A) via dp/dx = −ρA, where ρ is
the density of water (e.g. Denton and Gray 1982; Kalmijn
1988). Sexl’s (1930) original solution for the velocity inside
a canal can then be expressed in terms of periodic outside wa-
ter acceleration, A(t) = A0 exp (i2πf t). Then, the complex
steady-state velocity amplitude (V0(r, f )) of the oscillatory
laminar fluid flow inside a circular canal with radius (R) at
distance (r) from the canal axis, divided by the excitatory
acceleration amplitude of water outside the canal (A0) can
be defined as the canal sensitivity [Scan(r, f )] and is given
by (e.g. Sexl 1930; Womersley 1955; Schlichting 1970):

Scan(r, f ) = V0(r, f )

A0
= −i

2πf

[
1 − J0

(√−2i r
δ

)
J0

(√−2i R
δ

)
]

. (24)

An appropriate unit for the canal sensitivity is (µm/s)
/

(mm/s2) which is equivalent to millisecond, and is thus sim-
ilar to the unit that can be used to express cupular sensitivity
(e.g. Sect. 2.4 and Eq. 21). To calculate numerically the fluid
flow profiles in the canal, the Bessel functions of the first kind

and order zero (J0) with a complex argument having a phase
of − 1

4π (24) were evaluated in terms of the Bessel–Kelvin
functions (J0(

√−i · x) = ber0(x) + i · bei0(x); e.g. Math-
ews and Walker 1970). The calculated flow profiles are fre-
quency dependent, also via the boundary layer with thickness
(δ) defined similarly to that of a sphere (δ = √

µ/(ρπ f ); cf.
Eq. 4).

Figure 6 gives examples at three frequencies (2, 20 and
200 Hz) of the circle-symmetrical laminar fluid flow profiles
across the cross-section of a circular canal, calculated at eight
different points in time normalized to their respective periods
(Fig. 6d). The canal diameter was assumed to equal that of
the supra-orbital canal in ruffe (Ø = 1 mm; e.g. Fig. 1a).

At low frequencies (∼ 2 Hz; Fig. 6a), viscous forces dom-
inate and cause flow velocity with parabolic profiles, which
are in phase with the water acceleration outside the canal,
A(t) (Fig. 6d).
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Fig. 6 Fluid flow profiles across a canal with radius, R = 0.5 mm, cal-
culated with (24) at the three frequencies indicated (a: 2 Hz; b: 20 Hz;
c: 200 Hz; after Schlichting 1979). Viscosity was 0.005 kg/ms (e.g. van
Netten and Kroese 1987). The profiles depicted between thick lines
representing the canal walls, are related via dotted vertical lines to
the different phases, indicated with the period-normalized time, t∗ (d)
of the acceleration of water outside the canal, A(t∗). Horizontal (sin-
gle) arrows indicate the canal sensitivity, Scan(r, f ) (24) measured as
fluid velocity inside per water acceleration outside and are expressed
as (µm/s)/(mm/s2) which equals millisecond. The length of the arrows
is 100 ms in a and b and 10 ms in c. The three vertical (double) arrows
indicate the boundary layer thickness, (δ) in the canal referenced to the
diameter of the canal
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At intermediate frequencies (∼ 20 Hz; Fig. 6b) profiles
are produced by both viscous and inertial forces and result
in parabolic-like profiles with a phase that lags the outside
acceleration with about 45◦.

At high frequencies (∼ 200 Hz; Fig. 6c) inertial fluid
forces cause annular profiles with a central region within
which the fluid velocity is fairly constant. In the high fre-
quency limit, the maximum amplitude is thus not reached at
the axis of the canal but instead at a distance of about 2.3
times the boundary layer thickness from the wall (2.28 · δ;
Schlichting 1979). A similar shift towards the canal wall of
the velocity maximum has been observed by directly measur-
ing fluid velocity profiles in fenestrated supra-orbital lateral
line canals of the ruffe (Tsang and van Netten 1997). At high
frequencies, the phase of inside fluid velocity lags behind that
of the outside acceleration (Fig. 6d) by about 90◦. Across the
canal diameter, however, relatively small phase differences
occur.

The calculated frequency dependence of the canal sensi-
tivity at the axis of the canal [Scan(0, f )] is depicted in more
detail in Fig. 7 (dash-dot lines; canal Ø = 1 mm). In terms
of fluid velocity inside, the supra-orbital lateral line canal in
ruffe thus acts approximately as a first-order low-pass filter
of outside water acceleration with a cut-off frequency (fcan)
of approximately 20 Hz, beyond which the amplitude rolls of
with 20 dB/decade (Fig. 7). These results are in good agree-
ment with experiments performed in real and artificial lateral
line canals in which fluid velocity has been measured (Denton
and Gray 1983, 1988).

3.2 Combined canal- and cupular filtering

To illustrate the combined hydrodynamic filter action of the
canal and the cupula, the fitted cupular sensitivity of the ruffe,
as shown in Fig. 4, has been replotted in Fig. 7 (dashed lines).
Multiplying the sensitivity curves of the cupula with that
determined for the canal (dash-dot lines, Fig. 7) results in the
overall peripheral sensitivity of the canal lateral line organ,
Sllo(f ) = Scan(0, f ) · S(f ) (Fig. 7, solid lines). Both canal
and cupular sensitivity can be expressed as millisecond (left
ordinate), whereas the overall sensitivity amplitude is ex-
pressed as cupular displacement in nanometer, per outside
water acceleration in mm/s2, i.e. nm/(mm/s2) which equals
ms2 (Fig. 7a, right ordinate).

From fcan to about the cupular resonance frequency (∼
120 Hz) cupular sensitivity [S(f )] increases with frequency
with about the same rate at which the canal sensitivity [Scan
(f )] decreases. The overall sensitivity [Sllo(f )] therefore re-
sults in an almost constant value (∼ 4 nm/(mm/s2) or ∼
4 ms2) from low frequencies (∼ 1 Hz) to a frequency some-
what below the cupular resonance frequency (∼ 100 Hz),
with hardly any sign of cupular resonance. Since both canal-
and cupular sensitivity fall with 20 dB/decade in the fre-
quency range beyond cupular resonance, the combined sen-
sitivity [Sllo(f )] rolls of at approximately 40 dB/decade at
these frequencies.
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Fig. 7 Sensitivity of overall peripheral canal lateral line filtering in ruffe.
a Amplitude of canal sensitivity (Scan(0, f ); dash-dotted) and cupular
sensitivity (S(f ); dotted line), which can both be expressed in ms (left
ordinate). The amplitude of the combined sensitivity of canal and cupula
(Sllo(f ); solid line) is expressed in nm/(mm/s2) which equals ms2 (right
ordinate). b Phase of sensitivities (same line codes as in a). The phase
of canal sensitivity is referred to outside water acceleration, whereas the
phase of cupular sensitivity is referred to (canal) fluid velocity. There-
fore, the phase of the combined sensitivity is referred to the outside
water acceleration. Arrows in (a) show that the cupular transition fre-
quency, ft , (∼ 10 Hz) and canal cut-off frequency, fcan (∼ 20 Hz) are
comparable

The cupula in the supra-orbital canal of the ruffe can thus
be considered to be a detector of outside water acceleration up
to frequencies of about 100 Hz. This conclusion is in line with
measured extracellular receptor potentials in the ruffe’s canal
lateral line (Kroese and van Netten (1989)) and with afferent
recordings of canal neuromasts of the ruffe (Wubbels 1992)
and of other fish species (Münz 1985; Kroese and Schellart
1992; Coombs and Janssen 1990; Coombs and Montgomery
1992).

Also, previous work on hydrodynamic field detection im-
plied acceleration sensitivity of canal neuromasts (Denton
and Gray 1983; Kalmijn 1988). The precise characteristics
of the underlying mechanisms for the acceleration detection
of the canal lateral line that is observed here are nonetheless
somewhat different from the mechanisms proposed for it be-
fore. Previously, the actions of two cascaded filters, a first-
order low-pass filter effected by the canal and an additional
velocity sensitive cupular filter, also acting as a first-order
low-pass filter, were implied to explain acceleration detec-
tion. Here, it is shown that the enhanced cupular sensitivity
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resulting from resonance makes up for the decreased canal
sensitivity beyond about 20 Hz, resulting in a flat acceleration
sensitivity up to about 100 Hz.

Such compensatory effects of canal - and cupular filtering
may occur more generally, since the frequency at which the
canal starts to attenuate the flow (fcan) is in general similar
to the transition frequency (ft) at which a resonating cupula
starts to have increased sensitivity. This similarity of both fre-
quencies can be seen from comparing the cut-off frequency
of a canal (fcan) having radius R fcan ∼= 5µ/(2πρR2)(cf.
Schlichting 1979), which is about 20 Hz for the ruffe, with
the transition frequency defined by ft = µ/(2πρ a2) (11),
which is about 10 Hz for the ruffe. A cupula with a radius,
a, which is a considerable fraction,ε, of the canal radius, R,
(i.e.a = εR; 0 < ε < 1), thus has comparable values for both
frequencies (ft ∼= fcan/

(
5ε2

)
). Therefore, the combination

of these two peripheral lateral line filters in general tends to
produce a constant acceleration sensitivity up to almost the
resonance frequency of a cupula.

Additional significant filtering or possible resonance aris-
ing from the compliance of the skin overlying the canal, as
observed in the wide (Ø ∼= 7 mm) cephalic canals of Poromi-
tra (Denton and Gray 1988), has not been observed in the
supra-orbital canal of the ruffe (van Netten and van Maarse-
veen 1994).

Functionally, the constant acceleration detection charac-
teristics of the canal lateral line organ may be of significant
importance, as it renders the lateral line canal organ insensi-
tive to stationary fluid flow (Coombs and Montgomery 1992;
Montgomery et al. 1994).

3.3 Acceleration and pressure gradient detection threshold
of the canal lateral line organ

The sensitivity of a lateral line canal, Scan, in the center
and at frequencies below fcan, in the ruffe amounts to about
Scan(0, 0) ∼= 1

/
(2πfcan) ∼= ρR2/(5µ) ∼= 10 (µm/s)/

(mm/s2) or equivalently, 10 ms (Fig. 7). Note that a similar
sensitivity-bandwidth principle as was described for cupular
hydrodynamics (20) is therefore imposed on canal hydro-
dynamics. Combining the canal sensitivity (Scan ≈ 10 ms;
Fig. 7) with the estimate of the threshold value of cupular
velocity detection ((TV ) ≈ 1–10µm/s; see Sect. 2.7), yields
a fluid acceleration detection threshold, (TA), of the canal lat-
eral line organ of about TA = TV

/
Scan ≈ 0.1 to 1 mm/s2 (cf.

Table 1). A similar value for the threshold of water acceler-
ation detection was observed for the head canal lateral line
organ of mottled sculpin (Cottus bairdi, Coombs and Janssen
1990).

The relationship between fluid acceleration, (A), and the
pressure gradient in a free volume of water (dp

/
dx = −ρA,

see Sect. 3.1) also allows for an interpretation of the acceler-
ation threshold just estimated, in terms of a pressure differ-
ence detection threshold. Since the typical dimensions of the
length, (L), of the canal over which a ruffe supra-orbital
cupula detects a pressure gradient is of the order of 1 mm

(e.g. van Maarseveen 1994), we arrive at an estimate of an
effective pressure difference threshold of T�p = ρTAL ≈ 0.1
to 1 mPa for the canal lateral line organ (cf. Table 1). Pressure
differences of the same order of magnitude have been mea-
sured across the ruffe’s lateral line canal while the cupula was
moving in the displacement threshold range of nanometers
(van Maarseveen 1994).

3.4 Comparison of near field detection threshold in the
lateral line organ and the mammalian inner ear

Given the morphological differences between the lateral line
system and the mammalian hearing organ, which can be clas-
sified as a pressure-detecting sense organ based on hair cells
(e.g. von Békésy 1960), it may not be obvious that both organs
would possess comparable pressure detection threshold lev-
els. Yet, comparing the threshold of hydrodynamic pressure
difference detection of the lateral line organ (0.1 – 1 mPa;
Sect. 3.3), with an estimate of pressure detection in the inner
ear (0.6 mPa), shows that both values are comparable. This
order of magnitude estimate of near field pressure detection
level in the inner ear is based on the threshold value of sound
detection (0 dB, SPL ≈ 20µPa in air) in combination with
assuming a pressure gain of about 30 dB in the transfer of air
pressure to inner ear fluid pressure by the middle ear (e.g. de
Boer 1980; Olson 1998).

Since the pressure threshold values of both sensory organs
are based on the assumption of a similar intrinsic level of
hair cell accuracy (van Netten et al. 2003), their equivalent
detection threshold level may essentially point to comparable
efficiencies of hydrodynamic pressure transfer to the mech-
ano-detecting hair bundles of the hair cells. An important
difference that is related to the differences in architecture
between both mechano-sensory organs is the high-frequency
limit, which in some mammalian hearing organs may be up
to three orders of magnitude higher than that of the lateral
line organ.

A Appendix

A.1 Near- and far field of a hydrodynamic dipole stimulus

In many physiological experiments on the lateral line sys-
tem, a submerged moving sphere suitably located in close
proximity to a neuromast or placed in a lateral line canal, has
been used to produce hydrodynamic near fields to effectively
stimulate lateral line cupulae. This type of stimulus is usually
referred to as a dipole source. In most experimental proto-
cols the sphere exerts sinusoidal displacements at various
frequencies, facilitating the straightforward measurement of
frequency responses of a neuromast.

When dipole sources for lateral line stimulation are con-
sidered, a clear distinction has to be made between the local
and far field produced by the vibrating sphere, which are char-
acterized with respect to the distance to the sphere’s center,
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r . The far field is the dominant flow component in regions
more distant from the sphere. The pressure of this compo-
nent falls with distance as r−1and is usually referred to as
the sound produced by the stimulus sphere. The local or near
field pressure, sometimes called the hydrodynamic compo-
nent as opposed to the sound (far field) component, falls with
r−2and can be shown to be most relevant to lateral line stimu-
lation as it is the predominating component close to the source
(Harris and van Bergeijk 1962; Kalmijn 1988, 1989; Coombs
and Montgomery 1999). This can be appreciated from con-
sidering that the near- and far field components of the total
flow field of a dipole change their dominance in amplitude
approximately at a distance, (rt), from the sphere of the order
of the wavelength rt ≈ λ

/
(2π) = c

/
(2πf ) (e.g. Kalmijn

1988). Here the wavelength, (λ) is alternatively expressed via
the frequency of stimulation, (f ) and the velocity of sound
propagation c (∼1440 m/s in water). Since the lateral line
organ is mainly operational in the frequency range from d.c.
up to the order of hundred Hertz, evaluation of rt yields that
the near field extends into a region of at least meters around
the source. This clearly covers the distances over which the
lateral line obtains its main input (Dijkgraaf 1963).

An extensive overview of the acoustic and hydrodynamic
field of a dipole source in relation to the lateral line organ
has been given previously (Kalmijn 1988). However, as in
most quantitative experimental investigations of the lateral
line organ (e.g. Kroese et al. 1978; Kroese and Schellart 1992;
Kalmijn 1988, 1989; Coombs et al. 1996; Coombs and Mont-
gomery 1999), the effects of fluid viscosity were omitted so
that only the irrotational (potential) flow is considered, al-
though the significance of a viscous boundary layer in this
respect has been recognized (Kalmijn 1988).

In the next section, we will consider the near field pro-
duced by a vibrating sphere while viscosity will be included.
Incorporating viscosity, gives a more complete picture of
the near field flow since it also includes the boundary layer
around the sphere. Comparison with solutions of inviscid
potential flow shows that the viscously induced frequency
dependent boundary layer around the sphere, in which rota-
tional flow effectively changes to potential flow (e.g. Lan-
dau and Lifshitz 1987) introduces both phase and amplitude
differences that may significantly affect the produced stimuli
by small spheres at relatively low frequencies, even outside
the boundary layer.

A.2 Viscous boundary layer affects amplitude and phase
of vibratory dipole lateral line stimuli

Stokes’ analysis (1851) and later treatments (e.g. Lamb 1931)
of the hydrodynamic near field created by a vibrating sphere
comprise one of the few examples of vibrating solid struc-
tures in a viscous fluid for which analytical expressions were
derived for the fluid pressure and velocity fields.

As in Sect. 2.2, we consider here Stokes’ solution of the
near field in a viscous fluid produced under free field condi-
tions by a rigid sphere with radius a vibrating with frequency

f = ω
/
(2π), and amplitude B, so that the sphere’s displace-

ment is given by X = B sin ωt . The result for the pressure is
equivalent to (3), but now rewritten in terms of a dimension-
less correction factor C and phase delayϕ, both with respect
to the (inviscid) potential flow (C = 1; ϕ = 0) case:

p(r, θ) = −C · ρ a3ω2 cos θ

2r2 B sin(ωt − ϕ). (25)

C and ϕ depend on the ratio of boundary layer thickness, (δ),
and sphere radius (a), via the functions C1 and C2:

C =
√

C2
1 + C2

2 ; ϕ = arctan
(
C2

/
C1

)
, (26)

which were already defined in Eqs. 4–6:

C1 = 1 +
(

3δ

2a

)
,C2 =

(
3δ

2a

) [
1 +

(
δ

a

)]

and δ(ω) =
√

2µ

ρω
. (27)

The effects of the viscous boundary layer on the pressure field
thus become less significant if its thickness is considerably
smaller than the sphere’s diameter (δ << a). This occurs
in the high frequency regime [i.e. if ω >> 2µ

/
(ρπa2)], so

that C → 1, while ϕ → 0 (Eqs. 26 and 27), which means
that the high frequency regime of the pressure distribution is
equivalent to neglecting viscosity (µ = 0, leading directly
to δ = 0). Equations 25–27 show that the viscosity results in
a frequency dependent increase in pressure amplitude with
a correction factor, C(> 1), and causes a phase delay,(ϕ) as
compared to inviscid potential flow.

Both quantities are shown in Fig. 8 as a function of stimu-
lus frequency, f = ω

/
(2π), for three different diameters of

a sphere vibrating in canal fluid (e.g. van Netten 1991). The
effect of viscosity on the pressure appears to be significant
when stimulating the lateral line with a sphere having milli-
meter dimensions at frequencies of the order of a few Hertz
and below.

The radial,(vr), and tangential, (vθ ), velocity distribution
around the sphere can be calculated by taking derivatives
of the related stream function as described in Stokes’ work
(1851). The result is:

vr = −e−β · 3aδ cos θ

2r2 Bω

×
[

cos (ωt − β) +
(

1 + δ

r

)
sin (ωt − β)

]

+a3 cos θ

r3 CBω cos(ωt − ϕ), (28)

vθ = e−β · a sin θ

2r
Bω

[
−3

(
1 + δ

2r

)
cos (ωt − β)

−3

2

δ

r

(
1 + δ

r

)
sin (ωt − β)

]

+a3 sin θ

2r3 CBω cos(ωt − ϕ), (29)

with

β = r − a

δ
. (30)
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Fig. 8 Effect of viscosity (5 mPa·s) on pressure amplitude and phase
as compared to potential flow. a The amplitude is increased with a

factor C =
√
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1 + C2

2 , b the pressure’s phase is delayed by ϕ =
arctan (C2/C1) (Eqs. 25, 27), as is shown for a range of frequencies
relevant to the lateral line organ and for sphere diameters, of 0.6, 2 and
6 mm, as indicated

Both radial and tangential velocities (Eqs. 28 and 29) con-
tain two terms, of which the first in each case gives only
a significant contribution in the boundary layer (a � r <

�
Fig. 9 Velocity flow produced by a sphere with a diameter of 0.6 mm
and vibrating at 10 Hz in canal fluid with a viscosity of 5 mPa·s, as calcu-
lated by Eqs. 28–30. a The inner circle represents the sphere’s boundary,
while the outer circle indicates the extent of the boundary layer as calcu-
lated with Eq. 4. The flow trajectories shown indicate the pathways that
a fluid particle’s velocity vector points to during one cycle. The veloc-
ity vectors’ origins lie in the center of each trajectory and represent the
location of the associated flow. The mutual phase relationship of the
velocity trajectories and their relation to that of the sphere’s velocity
is marked by a square. The velocity amplitude of the sphere, to which
the amplitudes of the trajectories are scaled, is indicated by the line in
the inner circle and its phase mark (square) corresponds to the phase
of maximum rightward velocity. b Same flow field as depicted in a, but
in an extended region around the sphere. To compensate for the rapid
fall-of of the velocity amplitudes with distance, r , outside the boundary
layer the trajectory dimensions are multiplied by r3. The constant phase
delay (ϕ ≈ 36◦) of the flow outside the boundary layer is clearly visible.
Also, the phase reversal with increasing distance at θ = 90 and 270◦
is evident. c Streamlines of inviscid potential dipole flow. The resem-
blance with the viscous flow trajectories outside the boundary layer, as
depicted in b is obvious

a + δ(ω)) because of their proportionality with the factor
exp(−β), which vanishes quickly with distance, r , outside
this layer. These terms thus describe the transitions in fluid
velocity between the sphere’s boundary, on which the no slip
condition holds, and the field outside the boundary layer.

Because radial and tangential velocities are not in phase
(Eqs. 28 and 29), the flow is clearly rotational in, but also
extending in a region outside of the boundary layer especially
around angles at 45◦, 135◦, 225◦ and 315◦ with the vibra-

a

b

c
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tional axis, as can be seen from the elliptical pathways that the
fluid velocity follows during one cycle (Figs. 9a and 9b). The
second terms in both expressions represent the velocity com-
ponents that remain (far) outside the boundary layer as previ-
ously described (van Netten 1991). These terms decrease with
the cube of the distance, r−3, and, similar to the pressure dis-
tribution (Eqs. 25–27), are increased by a factor C relative to
potential flow and delayed in phase with ϕ = arctan (C2/C1)
as compared with the sphere’s velocity (Bω cos(ωt)). As the
two velocity components, vrand vθ are equally delayed in
phase outside the boundary layer, the elliptical pathways are
reduced to overlying trajectories of the back and forth phases
of one cycle, which, when connected, form the streamlines
of the potential flow of a dipole (Fig. 9c) as can be seen from
comparison with Fig. 9b.

Acknowledgements The author thanks A.B.A. Kroese, D.G. Stavenga
and C.J. Kros for their comments on a previous version of the manu-
script.

References

Abdel-Latif H, Hassan ES, von Campenhausen C (1990) Sensory per-
formance of blind Mexican cave fish after destruction of the canal
neuromasts. Naturwissenschaften 77:237–239

Batchelor GK (1967) An introduction to fluid mechanics. Cambridge
University Press, Cambridge

von Békésy G (1960) Experiments in hearing. ASA AIP report,
McGraw-Hill, New York

Bleckmann H (1980) Reaction time and stimulus frequency in prey
localization in the surface-feeding fish Aplocheilus lineatus. J Comp
Physiol A 140:163–172

Bleckmann H (1993) Role of the lateral line in fish behaviour. In: Pitcher
TJ (ed) Behaviour of Teleost fishes. 2nd edn. Chapman & Hall, Lon-
don pp 201–246

Bleckmann H, Breithaupt T Blickhan R, Tautz J (1991) The time course
and frequency content of hydrodynamic events caused by moving
fish, frogs and crustaceans. J Comp Physiol A 168:749–757

de Boer E (1980) Auditory physics. Physical principles in hearing the-
ory. I Phys reports 62:87–174

Cahn PH (1967) Lateral line detectors. Indiana University Press,
Bloomington
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