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Abstract. The pooled spike trains of correlated presynap-
tic terminals acting synchronously upon a single neuron
are realizations of cluster point processes: the notions of
spikes synchronizing in bursts and of points bunching in
clusters are conceptually identical. The primary processes
constituent specifies the timing of the cluster series; sub-
sidiary processes and poolings specify burst structure and
tightness. This representation and the Poisson process rep-
resentation of independent terminals complete the formal
approach to pooled trains. The notion’s usefulness was
illustrated by expressing physiological questions in terms
of those constituents, each possessing a clear biological
embodiment; constituents provided the control variables
in simulations using leaky integrate-and-fire postsynaptic
neurons excited by multiple weak terminals. Regular or
irregular primary processes and bursts series determined
low or high postsynaptic dispersions. When convergent
set synchrony increased, its postsynaptic consequences
approached those of single powerful synapses; concom-
itantly, output spike trains approached periodic, quasi-
periodic, or aperiodic behaviors. The sequence in which
terminals fired within bursts affected the predictee and
predictor roles of presynaptic and postsynaptic spikes;
when inhibition was added, EPSP and IPSP delays and
order were influential (summation was noncommutative).
Outputs to different correlations were heterogeneous; het-
erogeneity was accentuated by conditioning by variables
such as DC biases.

1 Introduction

Correlations between presynaptic terminals are critical in
convergent arrangements where presynaptic terminals act
upon the same postsynaptic neuron. Formal approaches
and simulations have been specially useful for understand-
ing them (e.g., Brunel and Sergi 1998; Burkitt 2001; Burkitt
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(e-mail: leonel@biomat.fcien.edu.uy,
Tel.: 598-2-5258618, Fax: +598-2-5258617)

and Clark 2001; Feng and Zhang 2001; Fourcaud and
Brunel 2002; Fujii et al. 1996; Hohn and Burkitt 2001;
Moreno et al. 2002; Rudolph and Destexhe 2001; Salinas
and Sejnowski 2000, 2002; Schneidman et al. 2003; Se-
gundo 1970; Segundo et al. 1968; Shadlen and Newsome
1995; Softky and Koch 1993; Svirskis and Rinzel 2000).

This communication argues for the thesis that the
pooled spike trains of correlated converging presynaptic
terminals are realizations of cluster point processes. Fur-
thermore, using the thesis as guide to simulations based
on a simple model of weak synchronous converging ter-
minals, it illustrates its biological potential. The questions
targeted concern the output spike trains associated with
weak excitatory terminals that correlate in several ways;
these questions are not trivial and remain incompletely
answered. Involved are regular or irregular synchrony-
inducing referent events, increasing or decreasing presyn-
aptic terminal synchronies, delays and order generally and
when both EPSPs and IPSPs are present, and, finally, how
correlation effects are conditioned by other variables (say,
DC biases).

2 Thesis

The thesis is that the pooled or total spike trains of corre-
lated presynaptic terminals are realizations of cluster point
processes. This section identifies the targeted biological sit-
uation (Sect. 2.1), defines cluster point processes (Sect. 2.2)
and argues the case (Sect. 2.3).

2.1 Convergent synaptic arrangements. Total or pooled
spike trains

2.1.1 Convergent arrangement description. Figure 1a de-
picts synaptic arrangements involving single postsynaptic
neurons, sorting them by individual synaptic strengths a
and numbers N of terminals (e.g., Shepherd 1998). Sort-
ing is schematic because categories overlap, and many
individual neurons may involve several. Moreover, syn-
aptic strengths reflect the induced conductance changes:
their common representation by PSP amplitudes a (which,
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Fig. 1. a Synaptic arrangements (schematic). A–D: categories with
increasing numbers N of presynaptic terminals and decreasing PSP
sizes a (adapted from Segundo et al. 1968). C, D: convergent arrange-
ments with multiple weak terminals and, respectively, small or min-
ute PSPs. E: simulated preparation combining categories C and D.
b Leaky integrate-and-fire postsynaptic neuron model. Membrane
potential P(t) (time constant τP ; asymptote P∞). Threshold H(t),
time constant τH ; asymptote H∞. EPSP amplitude a. Spikes occur
when P(t) reaches H(t). Resetting after spikes: P(t) to P∞ +B; H(t)

to H(t)+Hd

as currents, depend on transmembrane voltages), though
defensible, is an oversimplification.

Figure 1a-C, D, E represent the convergent arrange-
ments discussed here: multiple presynaptic terminals act
directly upon the postsynaptic neuron and elicit weak syn-
aptic effects (Sect. 2.3).

Convergent arrangements pervade neural networks:
examples are “Ia afferents-dorsal spinocerebellar tract
neurons,” “parallel fiber-Purkinje neuron,” and others
(e.g., Mendell and Henneman 1971; Softky and Koch
1993; Shadlen and Newsome 1995; Fujii et al. 1996; Sali-
nas and Sejnowski 2000; Chen and Shepherd 2002). More-
over, they play critical roles in neural transactions. Each
terminal (called #1, . . . ,#j, . . . , or #N ) generates a spike
train that drives the shared postsynaptic neuron. The weak
effects (conductance changes, currents, potentials) of indi-
vidual spikes in some terminals can be recognized by the
naked eye in conventional records; others demand spike-
triggered averages or simultaneous activation of many.
The union of all N individual or “component” presyn-
aptic spike trains will be called “total” or “pooled” spike
trains: intervals between one spike and the next, i.e., of
the first order, are between points in the same or separate
components and need not have lower bounds.

2.1.2 Correlations. Correlations between spike trains in
separate neurons pervade neural operations. Spike trains
“correlate” when, at certain times relative to a spike
in one train, the other train tends to have more than
average spikes or less; they are independent otherwise.

Correlations have been reported in practically all fields; in-
deed, since neurophysiology’s beginnings, abundant pub-
lications (from textbooks to specialized papers) tell us that
neurons performing specific tasks not only generate indi-
vidually suitable trains but also work together with others,
firing or not firing close in time or at subtly staggered de-
lays. Indeed, firing coincidences, anticoincidences, and/or
orderings play prominent roles in many kinds of neural
coding that match referent events and specific neurons
(e.g., Abeles 1991; Caputi 1999; Eckhorn et al. 1990; Wil-
son et al. 2004).

This happens in sensory neurons whenever appropriate
stimuli arrive (taps, vibrations, electric organ discharges,
etc.) and in effector neurons when driven by commands
from higher centers including pattern generators (agonist
motoneurons during twitches, respiratory neurons during
breathing, etc.). Multicell correlations exist also in cortical
networks when, say, animals perform learned delayed-
pointing tasks, thus proving the existence of function-
ing cell assemblies and intrinsic synch-chains (Villa et al.
1999).

Correlations alluded to here will be those where neu-
rons tend to fire close in time, thus “synchronously,” and
in particular orders. In such cases, if one used a single elec-
trode to record from all neurons, the total or pooled spike
train would exhibit bursts and bursty patterns. “Bursts,”
as used here, has the sense that is traditional in neurophys-
iology, namely, sets of spikes tightly packed in time sepa-
rated from other such sets by longer intervals. Requiring
the bracketing of shorter interval runs by longer intervals,
with an obvious functional importance in, say, breathing,
chewing, etc., has a sound physiological rationale.

Germane to the argument is that referent events, and
thus bursts, recur, composing series along time. The tim-
ings of such series reflect those of, for example, stimulus
deliveries, needs for particular acts, learned task compo-
nents, and so forth. Possible timings therefore are numer-
ous; they are, moreover, highly heterogeneous, exhibiting
an enormous variety of averages arising from every few
seconds to very frequently every few milliseconds and
exhibiting patterns from highly periodic and predictable
to highly aperiodic and unpredictable. In, say, auditory
nerve fibers, bursts in noisy environments or listening to
1-kHz tones will arise, respectively, irregularly at inter-
vals of up to seconds or regularly every 1 ms. Terms ap-
plied to series of events have the precise senses defined
earlier (Segundo et al. 1966, 1968). “Timings” are the
increasing sets of instants when events occur. “Pattern”
refers to the dispersion and sequence of the point process.
Patterns plus averages (rates, intervals) describe timings
fully.

The same neuronal sets whose spike trains in natural
operation correlate can also behave independently. Inde-
pendence holds particularly during unvarying conditions
(e.g., Durbaba et al. 2003), for example, in sensory coding
of constant length and contraction by Ia afferents from
muscles and in motor coding by motoneurons when the
“desired” outcome is a constant muscle length. Thus, inde-
pendence also has a place in neural coding. Schneidman
et al. (2003) have discussed independence and correlation
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in neuronal ensembles that code (or decode) sensory sig-
nals in the presence of noise. They propose (and compare
with others) a conceptual framework composed by differ-
ent situations: “activity related” situations involve corre-
lations between cells, regardless of stimuli; “conditional”
situations involve correlations that separately depend on
signals and noise; “information” situations involve how
much more one knows about stimuli when observing joint
responses than by summing the individual contributions,
thus cell “synergies”.

Correlations (and independence) exist also in converg-
ing arrangements, where they affect postsynaptic outputs.
In vivo analyses of convergent arrangements pose techni-
cal difficulties (e.g., multiple controls and monitorings):
hence, understanding them has come largely from for-
mal approaches. It was in fact work with physiologically
plausible models and simulations that first proved the
importance of correlations and the kind of correlations, as
opposed to independence, in determining the output neu-
ron’s behavior (Segundo et al. 1968; Segundo 1970); formal
approaches and analyses in specific networks confirmed
and extended these findings (e.g., Softky and Koch 1993;
Shadlen and Newsome 1995; Fujii et al. 1996; Salinas and
Sejnowski 2000; Svirskis and Rinzel 2000; Burkitt 2001;
Feng and Zhang 2001; Hohn and Burkitt 2001; Rudolph
and Destexhe 2001; Moreno et al. 2002). Hence, corre-
lations (and independence) contribute to the code that
summarizes synaptic codings, i.e., the relation between
presynaptic and postsynaptic spike trains. Separate con-
verging terminals can differ operationally because, taken
either individually or in subsets, they have dissimilar
sources, special postsynaptic effects, etc. For instance, sep-
arate Ia afferents act differently on single dorsal spinocer-
ebellar tract neurons (Henneman et al. 1974). Distinctness
implies the relevance of when and how many times each
terminal fires in the burst. Accordingly, one must worry
about where each spike cames from, retaining terminal
individuality.

2.2 Spike trains as point processes

Spike trains in individual neurons are series of events stud-
ied as point processes along time. The present consider-
ations are largely based on Cox and Isham (1980) and Cox
and Lewis (1966); references to them, though often omit-
ted for brevity, are implicit throughout. Stationarity will
be assumed unless specifically noted.

2.2.1 Sets of neurons. Total spike trains. Pooled point pro-
cesses. A point process obtained by superposing indi-
vidual point processes and ignoring where each point
came from is called a “pooled point process.” When deal-
ing with representations of convergent spike trains it is
legitimate to ignore initially that points may come from
separate components, assigning all to a single class and
studying the total train as a “univariate” point process.
The counts and average rates of a pooled process are the
sums of those of its components. An assumption, useful
and also plausible with convergent spike trains, is that all

individual components #1, . . . ,#j, . . . , or #N have aver-
age rates {m1, . . . ,mj , . . . ,mN } close to the same value
m (m1 ≈· · ·≈mj ≈· · ·≈mN ≈m); their average intervals,
{T1, . . . , Tj , . . . , TN } are close to T (T1 ≈ · · · ≈ Tj ≈ · · · ≈
TN ≈ T ). Subscripts will indicate the respective compo-
nents, so labeled because of the order in which they tend
to fire (Sects. 2.3 and 3.1.1). All point processes are defined
from a time origin at the first event to the last; such pro-
cesses are known as “ordinary” and the sampling as “syn-
chronous” (Cox and Lewis 1966; Cox and Isham 1980).
Hence, mj = 1/Tj and m= 1/T . The pooled mean rate is
M =∑

j mj ≈Nm with j going from 1 to N . The pooled
mean interval is I ≈T/N with M =1/I .

As noted, it may not be legitimate to always ignore
the fact that components differ; component individuality
must be retained and each point assigned to a particular
category. The pooled process is treated as “multivariate.”
This clearly applies when targeting convergent arrange-
ments where terminals, arising in different neurons and/or
acting through different synapses, often have different
roles.

2.2.2 Relevant spike train statistics. Both bursts and the
bursty spike trains that include them in significant num-
bers are represented by point processes with characteristic
features. Statistics relevant to simulations will be men-
tioned. The intervals of the first order between successive
spikes, depending on whether they are within bursts or
between them, fall into clearly distinct shorter or longer
categories, respectively. Interspike interval histograms (IS-
IHs) reflect this by modes in clearly distinct categories at
small or large values; in the simplest cases, ISIHs are bi-
modal.

The second-order properties of spike trains can be
quantified using auto-intensity functions (AIFs) mAA and
autocorrelation histograms (ACHs): these are, respec-
tively, the cross-intensity function and crosscorrelation
histogram (defined below) of the series of events A with
itself. ACHs of bursty spike trains show around the ori-
gin a broad “central” peak, usually with a trough on ei-
ther side. This peak’s profile, height, and width reflect
the details of how the different terminals synchronize
when composing bursts. If terminals tend to fire at par-
ticular instants and particular numbers of times within
bursts, the central peak is jagged with secondary narrower
peaks and troughs. In simulations, the presynaptic neuron
that usually fires the first, . . . , j th,. . . , or N th is labeled,
respectively, #1, . . . ,#j, . . . , or #N (Sect. 3.1.1) and con-
tributes mainly to the similarly ordered peaks. Features
around the origin become more marked when spikes ex-
hibit timings consistent from one burst to the next. Away
from the origin, additional ACH peaks (with adjacent
troughs) may appear: their presence, locations, and fea-
tures depend on burst consistency as well as on the timing
of the series of bursts (reflecting the referent event tim-
ing). When bursts vary little and occur at equal intervals,
additional peaks are obvious and evenly separated; when
bursts vary and arise irregularly, peaks are less noticeable
and happen irregularly.
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Correlation or independence between separate termi-
nals as well as those between individual terminals and
the postsynaptic neuron can be evaluated by several sta-
tistics (e.g., Brillinger 1975; Bryant et al. 1973; Conway
et al. 1993; Durbaba et al. 2003; Farmer et al. 1993; Oshio
et al. 2003; Rosenberg et al. 1989; Rudolph and Destexhe
2001; Schneidman et al. 2003; Svirskis and Rinzel 2000);
simulations use the cross-intensity functions (CIFs) and
their estimators the crosscorrelation histograms (CCHs).
Moore et al. (1966, 1970), Perkel et al. (1967), Bryant
et al. (1973), Brillinger (1975), Brillinger et al. (1976), and
Lindsey et al. (1989) pioneered their application to spike
trains. Bryant et al. (1973) explained the CIF formulae
and definitions together with their main properties, exten-
sions, estimations, and interpretations; they also described
what they look like in simple circuits (synaptic connec-
tions, shared inputs in Aplysia).

For simultaneously occurring stationary series of
events, e.g., spike trains, A, B, MAB is the expected number
of B events in the interval from 0 to τ(B(0, τ )) with an A
event at time 0:

MAB =E(B(0, τ )/A event at 0) , (1)

where E indicates the expected value.
The CIF is:

mAB = d(MAB)

dτ
= lim

�τ→0

MAB(τ +�τ)−MAB(τ)

�τ
. (2)

The CIF expresses the B rates that exist on the average
at each delay τ from an A event. Converted to covariances,
CIFs lead to the covariance densities of the counting pro-
cess; the covariance’s Fourier transform defines the spec-
tral density function for the counting process. CIF peaks,
troughs, or flatness reveal, respectively, local increases, de-
creases, or invariance relative to the overall average and
thus correlations between A and B; flatness throughout
CIF implies that A and B are independent processes. In
all practical applications, CIFs become flat at sufficiently
long delays; this reflects the finite duration of any physi-
cal issue imposing correlations. Moreover, if adjusted by
the proportion of the respective averages, mAB(τ) and its
converse CIF mBA(τ) are symmetric: this reflects that “A
precedes B by τ” is equivalent to “B follows A by τ .”
Full interpretation of mAB and mBA requires knowledge of
the AIFs mAA and mBB of the matched processes (Bryant
et al. 1973). The CIF concept can be extended to relations
involving several presynaptic and/or postynaptic spikes.

CCHs (CIFs estimators) are histograms of intervals of
all orders (the first, second, . . . ) forward or backward from
an A event to a B event. Abscissae or delays τ are the
magnitudes of A to B intervals. Ordinates are the aver-
age of the B rate at τ from the A event, normalized to
per-unit time per reference event. CCHs require select-
ing bin width and τ range. Another legitimate ordinate is
B firing probability. Rigorous confidence procedures that
establish whether deviations in a particular CCH are sta-
tistically significant exist only for special theoretical cases
(Brillinger et al. 1976); therefore, in most instances one
relies on empirical criteria such as those identified later.

2.2.3 Cluster point processes. Definition. Constituents.
The notion of point processes called “cluster point pro-
cesses” arose when studying univariate count distributions
in fixed sets; it has been applied in, say, cosmology, traffic
problems, etc. Cox and Isham (1980) warn that practically
all processes whose points tend to form tight sets qualify as
cluster point processes that, consequently, compose a het-
erogeneous broad category. In biology, this need not be a
minus for, as Winfree (1980) stresses, natural fuzziness and
diversity may be alien to excessive exactitude and restric-
tion. Grüneis et al. (1989) studied cluster point processes
extensively and, noting they represent well brainstem spike
trains during paradoxical sleep, recognized their impor-
tance in spike train analyses.

Cluster point processes are defined by their constitu-
ents: (α.) the primary process, (β.) the subsidiary process,
and (γ .) an orderly pooling (Cox and Isham 1980; Grüneis
and Musha 1986; Grüneis et al. 1989). Each constituent
is independent of the others. This argument implies uni-
variate approaches unless explicitly noted; however, when
points represent dissimilar components, multivariate ap-
proaches are indispensable (Cox and Isham 1980).

α. “Primary process.” This specifies the timing of points
pk (k= . . .−1,0,1, . . . ) called “centers” (Fig. 3a). Assum-
ing a finite number n of centers,

{p1, . . . , pk, . . . , pn} . (3)

The primary processes can be any point process;
accordingly, their series may involve many or few cen-
ters, tightly packed or dispersed, occurring regularly or
irregularly, predictably or unpredictably (Figs. 2 and 3).
At the extremes of this heterogeneous simplicity-complex-
ity scale are highly regular centers and clusters with all
interposed intervals practically equal to their average and
highly irregular, Poisson-like ones. Simulations represent
them by cases called, respectively, “correlated pacemaker”
(Fig. 3a) or “correlated Poisson” (Figs. 2b-rasters and 3a).

β. “Subsidiary process.” A “cluster” is a set of points
scattered around a center. Each cluster is identified by its
center subindex k. Points . . . pk,j , . . . , pk,K are identified
by a first subscript k indicating the cluster it pertains to;
a second subscript separates the points in each cluster.
Points from the same component are assigned the same
second subscript j in all clusters.

The subsidiary process imposes the structure of the
individual clusters. (i) First, they specify the number of
points 0,1,2, . . . in each. The kth cluster will have K
points (k and K need not relate). Outcome 0 means an
“empty” cluster. Emptiness in convergent arrangements
implies that a referent event does not associate with spikes
in any terminal. Subsidiary processes can stipulate K by
assigning to each component a discrete probability den-
sity for the number of points it contributes to individ-
ual clusters. Thus, subsidiary processes stipulate for each
cluster how many components participate and how many
points each provides. Empty clusters or the absence of
particular components may have physiologically plausi-
ble implications. (ii) The subsidiary process specifies also
the separations sk,1, . . . , sk,j , . . . , sk,K that in each cluster
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Fig. 2. Rasters of spike trains with different drives. Presynaptic indi-
vidual spike trains (presynaptic #1, . . . ,10) or pooled (pool). Arrow-
heads and vertical lines: Postsynaptic spikes (post). a Independent
Poisson spike trains. Pooled spike trains: Poisson point processes.
b Correlated spike trains imposed by the selected cluster point pro-
cess. Pooled spike trains: Cluster point processes. c Independent shuf-
fled spike trains; shuffling is explained in text (Sect. 3.1.2). Pooled
spike trains: Poisson point processes. Simulations with 19.2-mV bi-
ases

exist between each of its K points and its center: i.e.,
sk,1 =pk,1 −pk, . . . , sk,j =pk,j −pk, . . . , sk,K =pk,K −pk.
They stipulate this by assigning to each component a prob-
ability density for the separations of its points from the
centers. The densities in separate components determine
the sequence or ordering in which their respective points
arise along individual clusters: for example, components
with predominantly negative separations will tend to pre-
cede those with predominantly positive ones. “Sequence”
means how components line up in time.

Clearly, subsidiary processes can include many different
rules. What follows, based on rules used in the simulations
(Sect. 3.1.2), simplifies arguments without changing their
conclusions. A first rule is that each component contrib-
utes a single point to all clusters; because of this, every clus-
ter has one point from each component and a total of N
points (K ≡N ). Also, a particular separation probability
density is assigned to each component. Densities imposed
a tendency for components to appear in a preferred order:
the component usually appearing the first, . . . , j th, . . . , or
last, is labeled #1, . . . ,#j, . . . , or #N (Sect. 3.1.2).

Clusters will be (k =1, . . . , n):

{pk + sk,1, . . . , pk + sk,j , . . . , pk + sk,N } . (4)

Abbreviating {pk + sk,j } by {pk,j },
{pk,1, . . . , pk,j , . . . , pk,N } . (5)

Examples of subsidiary processes are illustrated by sim-
ulated ones in Fig. 3b, one in each column (Sect. 3.1.2). All
processes imposed N points in every cluster. Each process
imposed upon sk,j a different probability density estimated
by the histogram in the bottom row. Rasters of separate
clusters in isolation (not yet pooled) illustrate the features
of individual clusters and how clusters vary (i.e., consis-
tence).

γ . “Pooling.” A final superposition of all clusters uses all
pk,j (i.e., all k and j ) and creates the cluster point process
(Fig. 2). Pooling rules stipulate ignoring or preserving the
identities of the component process (i.e., #1, . . . ,#j, . . . ,
or #N ) and/or of the cluster (i.e., 1, . . . , k, . . . ,or n)
whence each point came. Rules stipulate also including
or excluding centers in clusters and accepting or rejecting
cluster overlaps.

The resulting cluster point process has averages (rate,
interval) that reflect jointly those of the primary process
and the average number of spikes per cluster. Its dispersion
reflects that of the primary process, as well as the spreads
and numbers implied by the subsidiary process.

The final recovery of component identities (e.g.,
#1, . . . ,#j, . . . , or #N ) and use of multivariate point
processes is mandated by terminal heterogeneity. Sub-
script k or j represents, respectively, the cluster or compo-
nent the point pertains to. The #j individual component
point process is

{p1,j , . . . , pk,j , . . . , pn,j } . (6)

The statistical features of cluster point processes are
essentially those summarized above for the bursty to-
tal spike trains of correlated convergent arrangements
(Sects. 2.1 and 2.3) (Bryant et al. 1973). Their Fourier fre-
quency representations involve spectra of counts (as far as
we know, not of intervals) (Daley and Vere-Jones 1980).
Expressions have terms that reflect either filtered versions
of the spectrum of the burst series or the internal structure
of the bursts, thus, respectively, the primary and subsidiary
processes.

2.3 Total trains of correlated terminals as cluster point
processes. Natural embodiments of process constituents

The notion that the point process representation of bur-
sty total spike trains of correlated synchronous terminals
are samples from cluster point processes is justified be-
cause of the oneness of the ways in which they are gener-
ated. Indeed, spikes form bursts and points form clusters
in ways that conceptually are identical; the sum and sub-
stance of this shared conceptualization is that spikes and
points from different sources arise at about the same in-
stants and, being contemporary, group forming aggregates
called, respectively, “spike bursts” or “point clusters”.
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Fig. 3. a Primary process (α) specifying the
timing of centers pk : pacemaker (top), Poisson
with short dead time (bottom). b Subsidiary
process (β) specifying how points
pk,1, . . . , pk,j , . . . , pk,N forming each cluster
scatter around their center pk ; all clusters had
N =10 points. Columns imply different point
dispersions around centers pk ; points
correspond to separations bj +dk,j obtained
with different combinations of standard
deviations in the Gaussian densities �1{0, σ1}
and �2{0, σ2}. Top row: Gaussian densities
�1{0, σ1} (expressed as percents) provide a
single sample of N values bj (down-pointing
arrows below) that, added to each center, give
the “basic” clusters pk +bj ; all basic clusters
involve points with identical separations from
the respective center. Gaussian density
�2{0, σ2} (not drawn) provides n sets each
with N values that shift all basic cluster points
creating n “definitive” clusters pk +bj +dk,j ;
all definitive clusters in principle differ. Central
row: Each raster sweep centered on the
respective center pk represents a particular
definitive cluster showing how points separate
from the respective center. Bottom row:
Histograms (expressed as percents) estimating
the density of point separations bj +dk,j from
their centers. Rasters and histograms
correspond to individual clusters before
pooling. From left, first column σ1 small
(0.001)-σ2 small (0.0001); second small
(0.001)-large (0.002); third large (0.002)-small
(0.0001); fourth, large (0.002)-large (0.002)

As a consequence, the formal constituents of the pro-
cess have obvious functional meanings and implications,
thus natural embodiments. Each embodiment is indepen-
dent of the others. Primary processes (α.), specifying cen-
ter and cluster timings, reflect the recurrence in time of the
referent events associated with the spike bursts in the con-
vergent sets. Each referent event composes in time a series
whose characteristic timings are many and heterogeneous
(Sect. 2.1).

Subsidiary processes (β.), specifying point dispersion
and number per cluster, reflect jointly events and circuits.
Indeed, the referent event has a profile in time (magni-
tude, derivatives) that molds the final input to the target
cell. Profiles, pulselike, quasisinusoidal vibrations, pattern
generator output shapes, etc., are also many and heter-
ogeneous: often, events (e.g., taps, clicks, twitches) with
greater magnitudes and shorter durations associate with
tighter, briefer bursts with more spikes. Also, molding
the final input are the neural circuits interposed between
events and convergent sets; circuits, too, involving differ-
ent latencies, conductions, connectivities and operational
time frames, can also be many and heterogeneous.

Poolings (γ .) join subsidiary processes in shaping indi-
vidual clusters. Poolings stipulate, for example, keeping or
ignoring component identities. Identities, obviously mean-
ingful when terminals are involved, reflect the intrinsic
anatomical and physiological details of the convergent
arrangement; different identities reflect terminals with dis-
similar sources and synaptic contacts, as well as different
postsynaptic contributions to individual synapse.

Independent point processes and their poolings will
be used in simulations as reference. Physiologically, inde-
pendence is no less important than correlations, and
both jointly embrace the formal background for total
spike trains in converging synaptic arrangements. Studied
extensively elsewhere, independence is not the main target
of this communication and will be mentioned only briefly.
It is well known that when poolings involve independent
components in increasing numbers, the counts in an inter-
val of given duration and the intervals between succes-
sive points asymptotically approach, respectively, Poisson
and exponential distributions. In short, the pooled pro-
cesses tend to the Poisson (Cox and Lewis 1966; Feller
1966). One of the mutually equivalent defining properties
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of the stationary Poisson point process stipulates seri-
ally independent exponentially distributed intervals with-
out a minimum. Feller (1966), who among others proved
this asymptotic result, gave a qualitative version of the
rationale stating that, roughly, the approximation takes
place when the points from each component event be-
come “ . . . extremely rare so that the cumulative effect
is due to many small causes.” The statistical Poisson-like
properties of the superposition are “local,” in the sense
of holding only over periods of time that contain many
events and point sets rarely including more than one point
from each component, all of which therefore are individu-
ally sparse; approximations depend on the magnitudes of
the mean individual and pooled intervals between points.
Constraints are that components be in sufficient numbers
and balanced (e.g., like averages) so that none dominates.
Individual patterns can be any (e.g., “Poisson with dead
time,” “pacemaker” with all intervals close to their aver-
age, etc.), and all patterns need not be the same. Individual
patterns affect the number of processes needed for pooled
samples to approach a Poisson: obviously, just one suffices
when its pattern is Poisson with a very short dead time, and
several would be necessary if all were very periodic. These
formal restrictions are not unduly restrictive physiologi-
cally: in pooled trains, the lack of interval minima does
not clash with refractoriness.

3 Simulated experiments

Clearly, each physiological entity (terminal, spikes, trains,
bursts) implies its formal counterpart (component, points,
point processes, clusters), and vice versa (Sect. 2.2.2).
Accordingly, the correlation-related issues tackled were
translated into formal terms by substituting the phys-
iological entities by the cluster point process constitu-
ents they embody. The simulated experiments were then
designed within that formal context (Sect. 3.1.1). Experi-
ments explored how primary processes affected postsyn-
aptic intensity and dispersion (Sect. 4.1), how subsidiary
processes and poolings affected the roles of presynap-
tic and postsynaptic spikes as predictees and predictors
(Sect. 4.2.1), what happened when subsidiary processes
enhanced or relaxed cluster synchrony (Sect. 4.2.2), how
subsidiary processes and poolings influenced spatial sum-
mation of excitatory and inhibitory terminals (Sect. 4.2.3),
and how biases impressed by other converging sets af-
fected outcomes (Sect. 4.3). Finally, conclusions were
translated back to the physiological domain for their final
interpretation. Questions will be discussed in Sect. 5.2.

Section 5.2.5 shows values assigned to the variables in
most simulations and are in the range reported for liv-
ing neurons (e.g., Lux and Pollen 1966), but results do not
depend qualitatively on them. Parametric analysis, though
not exhaustive, sufficed to show that results happened
within physiological domains and were reasonably robust:
hence, the rules extracted from data may apply to living
entities. Obviously, individual clusters and bursts could
have arisen in series with many other timings (i.e., averages,
patterns), and clusters had other structures (synchroni-
es, numbers of spikes, components). Moreover, depending

also on postsynaptic variables, each burst could have
triggered several, one, or no spikes (resembling, respec-
tively, climbing fibers, motoneurons, or invertebrate EP-
SPs, Fig. 1a-A, B).

3.1 Data generation

3.1.1 Preparations. Figure 1a-E illustrates that prepara-
tions included two presynaptic arrangements and one
shared postsynaptic neuron. PSP amplitudes a were nor-
malized to the difference between the postsynaptic po-
tential and threshold asymptotes (see below); terminals
were excitatory, except when otherwise indicated. The
arrangement includes a moderate number of terminals N ,
usually 10, less frequently 20 than those in Fig. 1a-C. Ter-
minals were called #1, . . . ,#j, . . . ,#N , reflecting the or-
der in which they tended to fire (see below). EPSPs, with
a≈ (�/10), were called “small”. The second group of affer-
ents, similar to those in Fig. 1a-D, includes many termi-
nals and “minute,” almost negligible EPSPs (N →∞ and
a →0, meaning huge and vanishingly small, respectively).
Examples of both types of afferents are, respectively, Ia
afferent or parallel fibers on dorsal spinocerebellar tract
or Purkinje neurons, (e.g., Fujii et al. 1996; Henneman
et al. 1974; Mendell and Henneman 1971; Salinas and Se-
jnowski 2000, 2002; Shadlen and Newsome 1995). Fig-
ure 1a-A involves powerful single terminals where one
presynaptic spike triggers one or more postsynaptic ones
(N = 1, a ≥ 1); B involves moderately powerful terminals
where at least, say, three spikes are needed to trigger [N =1,
a ≈ (�/3)]. Examples are climbing fiber-Purkinje and neu-
romuscular junctions in vertebrates or several synapses in
mollusks, crustacea, or vertebrates, respectively.

The spontaneously silent postsynaptic neuron was rep-
resented by the well-known leaky integrate-and-fire (LIF)
model (Fig. 1b) (e.g., Holden 1976). The membrane po-
tential P(t) evolved according to:

dP

dt
=−τP P +

∑
Ii . (7)

Presynaptic spikes elicited postsynaptic current pulses
(Ii) of duration dsyn and amplitude Isyn; pulses determined
EPSPs of amplitudes close to a (Table 1). τP is the mem-
brane time constant. Excluding postsynaptic spiking, P(t)
evolved with the pooled Poisson arrivals of independent
drives as shot-noise (Davenport and Root 1958) or with
correlated drives according to the selected cluster point
process (see below). P(t) also reflected a bias B due to the
minute EPSPs elicited by independent terminals (Segundo
et al. 1968). Spikes occurred when P(t) became equal to
H(t), i.e., when H(t)−P(t)=�PH became 0. Reset after
spikes were P(t) to P∞ +B and H(t) to H(t)+Hd , decay-
ing exponentially with time constant τH . The variation of
H(t) represents the evolution of refractoriness. Time spans
were judged long or short relative to τP , average rates low
or high relative to 1/τP , and voltages large or small relative
to H∞ −P∞.

Following the classic work of Davenport and Root
(1958), formal and experimental approaches to P(t)
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Table 1. Model parameters

Variable name Symbol Value

Membrane potential initial value (mV) P(0) −60
Membrane potential asymptotic value (mV) P∞ −60
Membrane time constant (ms) τP 10
Synaptic current duration (ms) dsyn 0.1
Synaptic current amplitude (µA) Isyn 1
EPSP amplitude (mV) a 0.1
Bias (mV) B 19–20
Threshold initial value (mV) H(0) −40
Threshold asymptotic value (mV) H∞ −40
Threshold time constant (ms) τH 10
Threshold increment (mV) Hd 10
Presynaptic terminal number N 10
Primary process average interval (ms) µ 10
Subsidiary process first standard deviation (ms) σ1 5
Subsidiary process second standard deviation (ms) σ2 0.4

fluctuations abound and, almost without exception, incor-
porate threshold parameters representing postsynaptic
excitability (e.g.,Brunel and Sergi 1998; Burkitt 2001;
Burkitt and Clark 2001; Calvin and Stevens 1968; Four-
caud and Brunel 2002; Feng and Zhang 2001; Gerstein
and Mandelbrot 1964; Hohn and Burkitt 2001; Levi-
tan et al. 1968; Salinas and Sejnowski 2000, 2002; Se-
gundo et al. 1968; Shadlen and Newsome 1995; Svirskis
and Rinzel 2000). Recently, Burkitt and collaborators
(Burkitt 2001; Burkitt and Clark 2001; Hohn and Burkitt
2001) expanded LIF model uses, exploring rarely incor-
porated parameters (e.g., inhibitory reversal potentials)
and noting novel consequences (e.g., how excitation
to inhibition balances influence “dynamic ranges” and
output dispersions). They judiciously insist that approx-
imations (Gaussians, uncorrelated inputs, etc.), though
inherent to models, require systematic parametric stud-
ies and matches with data from living preparations. Feng
and Zhang (2001), besides other contributions, proved
theoretically that consequences could be model depen-
dent. For example, similar correlation shifts influence
output variability and signal-to-noise ratios inversely in
LIF and Hodgkin–Huxley models: the critical issue is
the P(t) decay rate, respectively, potential-independent or
potential-dependent.

Brunel and Sergi (1998) examined the forcing by ran-
dom Gaussian inputs of LIF neurons whose membrane
time constants were frankly longer than those at the excit-
atory synapses, which, therefore, filtered the diffusion
inputs with shorter time scales; their results, combining
analytical and numerical procedures, give an expression
for that neuron’s firing rate, as a function of the synapse
to membrane time constant ratio.

Fourcaud and Brunel (2002) contributed a detailed
and exhaustive analytical description of a neuron’s lin-
ear dynamical response to cosine inputs in the presence of
noise. They used integrate-and-fire (simple or leaky), fixed-
threshold models. Reasoning was within the framework
of diffusion approximations and Fokker–Planck equation
expansions. Neurons tend to fire irregularly but, provided

appropriate constraints are met, exhibit average instan-
taneous rate and firing probabilities that map faithfully
the oscillatory drive’s profile in time, i.e., behave linearly.
When the noise is white, the amplitudes decay with the re-
ciprocal of the frequency’s square root and lags approach
45◦ but, when noise is more realistic, amplitudes remain
finite at high frequencies and limit phase lags disappear.
The authors extend consideration to more biological con-
ditions. No less desirable would be matching the linear
domain (e.g., with large noise-to-signal amplitude ratios)
with those of the nonlinear behaviors encountered with
several drives in living and simulated preparations (e.g.,
Segundo 2003a,b; Segundo et al. 1998a,b).

3.1.2 Procedures. The preparation (Fig. 1a-E) included
a weak terminal set eliciting small EPSPs: the j th ter-
minal elicited a small EPSP of size aj (j = 1, . . . ,N),
excitatory unless otherwise specified. Sizes, all close to an
assigned value (a >0), differed little between terminals: a
was such that, with P(t)=P∞ and H(t)=H∞, triggering
occurred only if all terminals fired almost simultaneously
[(N − 1)a <H∞ −P∞ <Na]. Individual terminal average
rates mj and intervals Tj , because of conventions indicated
below, were the same as values m and NT assigned to the
primary process. Spike trains in all terminals had statis-
tically similar patterns. In short, as is common in nature,
no terminal differed markedly or predominated. Pooled
average rates and intervals were Nm and T =1/Nm.

The pooled presynaptic spike trains were samples from
specified cluster point processes (Sect. 2.2.2), thus simulat-
ing total spike trains in sets of correlated synchronous ter-
minals. Primary processes (α.), subsidiary processes (β.),
and poolings (γ .) were such that they imposed the correla-
tions involved in the questions selected. Reference inputs
with independent terminals were samples from Poisson
point processes or shuffled (described below).

Primary processes (α.) imposed the timing of the point
process representing the series ofn centerspk (k=1, . . . , n)
[(6)] and thus of clusters (Fig. 3a). Manipulating them
served to explore the physiological question (Sect. 2.1.2)
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of how the timing of the referent events (sensory stimuli,
etc.) that induce the bursts influence postsynaptic intensity
and dispersion (Sect. 2.1). Because of the adopted con-
ventions, their average rate m and interval T (m = 1/T )
were the same as those in each of the N individual ter-
minals. Simulations used primary process timings such
that the intervals between centers were picked indepen-
dently of populations with specified probability densities.
Primary processes in cases called “correlated pacemaker”
had regular and predictable patterns whose interval den-
sities were Gaussians with low (under 0.05) coefficient
of variation (CV) (Fig. 3a). Primary processes in “cor-
related Poisson” cases (Figs. 2b and 3a) had irregular and
unpredictable patterns whose serially independent inter-
vals came from exponential densities with large CVs [per-
taining to the Neyman–Scott class of stationary Poisson
cluster processes (Cox and Isham 1980)].

Subsidiary process (β.) specify for each cluster how
many points it will have and how points separate from their
centers pk [(8), (9)]; implied are cluster profile and disper-
sion (synchrony) and cluster series consistency. Manip-
ulating subsidiary processes explored the influences of
the profile in time (magnitude, derivatives) of the refer-
ent event and their coding by the circuits between where
events arise (e.g., sensorium, pattern generator output)
and the converging terminals (Sect. 2.1.2). Stipulated first
was that each component #1, . . . ,#j, . . . , or #N, con-
tributed a single point to each cluster, thus every cluster
having N points, as many as components, i.e., each termi-
nal fired once in every burst and there were as many spikes
as terminals.

Subsidiary processes also stipulate the separation sk,j

between each of the N cluster points pk,j and its center
pk; k and j represent, respectively, cluster and compo-
nent. In simulations, separations were sums of indepen-
dent Gaussian distributed variables bj and dk,j ; hence,
sk,j = bj + dk,j . Both Gaussians (represented by �) had
0 means and different dispersions. The columns in Fig. 3b
illustrates different subsidiary processes.

First specified was the Gaussian density �1{0, σ1}
(Fig. 3b-upper row). The same sample of N values from
�1{0, σ1} was assigned to all centers and clusters: it im-
posed upon all clusters the same basic structure. This “ba-
sic” sample (represented by arrowheads in Fig. 3b) was:

{b1, . . . , bj , . . . , bN } . (8)

j from 1 to N refers to their order in an increasing sequence
(b1 < · · ·<bj < · · ·<bN ). k, identifying centers and clus-
ters, is omitted because all shared the same values. This
sample had average Ab and standard deviation S1 close to,
respectively, 0 and σ1. The basic sample’s N values were
added to all n centers {pk} (k=1, . . . , n), creating n “basic”
clusters:

{pk +b1, . . . , pk +bj , . . . , pk +bN } . (9)

Points in all basic clusters were distributed identically
around the respective center; as discussed below, the rea-
son for this was to impose the tendency for components

to appear (i.e., for terminals to fire) in the same sequence.
Accordingly, subindices j reflect the order in which com-
ponents tended to arise in clusters. This led to labeling the
component (terminal) usually arising first . . . , j th,. . . , or
last #1, . . . ,#j, . . . , or #N . Basic clusters, though iden-
tically timed around centers pk, surrounded different ones
and happened at different times.

The second step specified another Gaussian density
�2{0, σ2} and took from it n independent samples of N
values:

{dk,1, . . . , dk,j , . . . , dk,N } . (10)

The average A2 and standard deviation S2 of all n
samples were close to stipulated values of, respectively,
0 and σ2.

�2{0, σ2} samples were used to convert each basic clus-
ter into another cluster called “definitive.” The kth basic
cluster [(11)] was converted into the kth definitive cluster
by taking each basic point {pk + bj }(j = 1, . . . ,N), add-
ing to it the value {dk,j } with its same j in the kth sample
[(5)] and generating the j th definitive point pk +bj +dk,j .
Definitive points were random shifts of basic points. The
kth definitive cluster, probably different from all others,
follows:

{pk +b1 +dk,1, . . . , pk +bj +dk,j , . . . , pk

+bN +dk,N } . (11)

Gaussians jointly shaped clusters, �1 imposing a basic
separation and sequence subsequently perturbed by �2.
Figure 3b, second row, displays rasters of several defini-
tive clusters in isolation, i.e., before pooling; the bottom
row shows the histograms of all {bj +dk,j }.

Finally, the n definitive clusters were pooled to pro-
duce a cluster point process with Nn points (N per cluster,
n clusters). Cluster overlaps (allowed, see below) became
less likely when the magnitudes of the primary process
intervals between centers exceeded (σ1 +σ2).

The average definitive separation was the sum of the
average A1 of the basic �1 sample plus the average A2
of the set of �2 samples, thus (A1 +A2) close to 0. Clus-
ter dispersion, implying terminal synchronies, is measured
appropriately by the variance var(bj +dk,j ) over all clus-
ters. It was the sum of the variance S2

1 in the sample from
�1 plus the variance S2

2 of the set from �2, thus (S2
1 + S2

2 ),
close to (σ 2

1 +σ 2
2 ).

When var(bj + dk,j ) was small (σ 2
1 and σ 2

2 small)
(Fig. 3b, first column), clusters were tight; terminals were
strongly synchronous and total spike trains clearly bursty.
If var(bj +dk,j ) was 0 (σ1 =σ2 =0), the timing of all com-
ponents was that of the centers; terminals were absolutely
synchronous. When var(bj +dk,j ) was large (σ1 and/or σ2
large) (Fig. 3b, fourth column), clusters lost individuality;
terminal synchrony and bursting were weak. If very large,
clusters overlapped, and terminal synchrony and bursting
faded. σ2 also controls cluster consistency; when small or
large, clusters are homogeneous or heterogeneous, respec-
tively.

Histograms of separations had preferred values at those
of the shared sample (bj ) from �1 (Fig. 3b, bottom row).
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Points accumulated around modes according to �2; mul-
timodality faded when σ2 increased (e.g., columns 3 and 4).
The order #1, . . . ,#N depends on the relation between
σ1 and σ2. Its preservation becomes more likely when σ1
exceeds σ2.

Specifying when each terminal fires within bursts re-
quired preserving their identities and multivariate ap-
proaches: it thus related to poolings (γ .). Poolings served to
explore questions such as whether terminal position along
the cluster would affect what presynaptic and postsynaptic
spike trains say about one another and what would happen
when terminals were either excitatory or inhibitory.

The individual component processes and terminal spike
trains were (j =1, . . . ,N):

{p1 +bj +d1,j , . . . , pk +bj

+dk,j , . . . , pn +bj +dn,j } . (12)

Rules excluded from clusters their centers and allowed
cluster overlaps. Each component and terminal partici-
pated once in all clusters (see above); hence, individual
average rates mj and intervals Tj (Tj = 1/mj ) were the
same as for primary processes, respectively, m and T . The
instant when each point arose depended on the center it
was attached to and on the separations imposed by the
Gaussians, thus jointly on primary and subsidiary pro-
cesses. Interval variances and standard deviations in indi-
vidual components reflected those of the primary process
and both Gaussians.

A few simulations involved IPSPs, in addition to the
usual EPSPs. Both categories had the same PSP sizes (a
and −a, respectively), averages, and numbers of terminals.
Moreover, EPSP and IPSPs occurred in pairs: EPSP to
IPSP delays δ were invariant. Negative or positive delays
meant, respectively, IPSPs preceding or following EPSPs.
Pairings implied that IPSP train timings were those of
the EPSP partner [(12)] shifted by δ. The arrivals of both
EPSPs and IPSPs during particular epochs are reported
commonly in living nerve cells; consistent pairings are con-
ceivable, though not yet looked for in data. Excitatory
and inhibitory terminals converge upon, say, motoneu-
rons from antagonistic muscles. The first correlations one
thinks about are anticoincidences during limb movement
but, because of complex interplays of tension, length and
central controls; inhibitions as precise as the simulated
pairings arise in time difference coding (Brand et al. 2002).

Obviously, any independent vs. correlated compari-
son of pooled processes should involve components with
identical individual averages (Sect. 2.3). When simulat-
ing switches from independence to correlation averages
do not vary, but patterns almost always do (Segundo et al.
1968). The unlikely risk of pattern, i.e., dispersion, se-
quence, interfering was reduced by first running the corre-
lated case, taking one at a time the component processes
#1,#2, . . . , or #N , permuting their intervals, pooling the
permuted components, and using these “shuffled” pooled
processes as the matched independent. Original and shuf-
fled partners have identical averages and dispersions but,
most likely, lack the associations within individual spike
trains and between separate ones of correlated cases: tests
showed that shuffling did indeed eliminate them.

The preparation (Fig. 1a-E) included also a set with
a huge number N ′ (>> N ) of independent weak termi-
nals generating minute EPSPs of amplitude a′ (<< a).
They were assumed to induce superposed DC-like biases
B equal to a′N ′m′τP (Segundo et al. 1968). B changes were
attributed to varying numbers of active terminals and/or
averages. Biases served to illustrate how other variables
can condition the consequences of particular correlations
(Sect. 4.3).

3.2 Data analysis

Intensity was evaluated by averages (rates, intervals), dis-
persion by interval coefficients of variation (CVs) and IS-
IHs, and second-order properties by ACHs. They served
to analyze the influence of referent timings (Sect. 4.1),
burst synchrony extremes (Sect. 4.2.2), delays and order
(Sect. 4.2.3), and conditionings by biases (Sect. 4.3). CCHs
evaluated associations between spike trains in terminals
(e.g., “presynaptic #1, presynaptic #10”) or between the
postsynaptic neuron and the individual terminal (“post-
synaptic, presynaptic #j CCH”). The converse “presyn-
aptic #j , postsynaptic CCH” used reference #j and
estimated postsynaptically. The bin widths in the figures
acceptably displayed the rate fluctuations judged relevant.
CCH confidence bands were based on heuristic criteria.
One was that peaks or troughs exceed the range of values
at long delays when presumably all correlating influences
had subsided. Others, adapted to specific questions, were
that they appear at the same delays in all comparable his-
tograms (e.g., all #j ), or that values consistently exceed
their neighbors every fixed number of bins.

4 Results

Figures 2 and 4 illustrate raw data. Figure 2 displays cor-
responding spike train rasters. With independent drives
(a, c), individual presynaptic spike trains (presynaptic,
#1, . . . ,#10) were either Poisson or shuffled (Sect. 3.1.2).
Rasters suggest no tendencies of terminals to fire synchro-
nously or in particular orders. Statistically, total or pooled
spike trains (pool), irregular and unpredictable, were sam-
pled from Poisson processes without dead times. With cor-
related Poisson (b), individual presynaptic trains reflected
the chosen cluster point process. Separate terminals syn-
chronized, usually firing in the #1, . . . ,#10 order. Pooled
spike trains showed bursts that, because of the Poisson pri-
mary process, arose unpredictably. Most bursts triggered
postsynaptic spikes (postsynaptic, at arrowhead tips); ver-
tical dashed lines illustrate their relation with the presyn-
aptic trains.

Figure 4 displays the postsynaptic P(t) (thick line)
and H(t) (thin line); upwards P(t) or H(t) steps indi-
cate, respectively, when EPSPs (presynaptic spikes) or
postsynaptic spikes happen. Biases (attributed to a sepa-
rate set with many independent terminals generating min-
ute EPSPs) are “weak” (upper row), “medium” (center),
or “strong” (lower). P(t) fluctuations with independent
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Fig. 4. Postsynaptic state variables. Membrane potential P(t) (thick
line) and threshold H(t) (thin line). Steplike EPSPs are produced by
presynaptic spikes. Bias: 19 mV (upper row), 19.2 mV (center), and
20 mV (lower). Independent drives (left column). P(t) follows shot-
noise, undistorted when there are no firings (upper left) or distorted
by spikes elsewhere. Poisson correlated drives (right column). P(t)

fluctuations reflect the cluster point process

drives (left) evolved as shot-noise distorted by postsyn-
aptic spikes and resettings; with correlated drives (right),
P(t) fluctuated according to the cluster point process, cor-
related Poisson.

An expected key finding was that P(t) reached the H(t)
level and triggered at special waveforms imposed by spe-
cial pooled timings (Segundo et al. 1966). Triggering wave-
forms had globally overall positive-going displacements,
steep slopes, and large amplitudes; triggering timings in-
volved successively shorter intervals (accelerating) with
a short average (high average rate). This is apparent in
Figs. 2 and 4. The timing of the series of triggering events
(waveforms, pooled sets) determined that of the postsyn-
aptic discharge: both were identical when each event trig-
gered one spike. Triggerings with independent terminals
occurred unpredictably; with correlated terminals, they
occurred at instants stipulated by the Poisson (Figs. 2b
and 4) or pacemaker primary processes.

Figure 4 also suggests results in Sects. 4.1 and 4.3.
With weaker (upper row) or stronger (lower) biases, fir-
ings were, respectively, slower and irregular or faster and
regular. With weaker biases (upper) there were more trig-
gerings with correlated (right) than with independent (left)
drives; with stronger biases (lower), both were about as
effective.
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Fig. 5. Conditioning by bias. a Postsynaptic interval average (semi-
logarithmic plot). b Coefficient of variation. Abscissae: Bias relative
to the potential asymptote P∞. Symbols (each from a sample with 20
simulations of up to 20 s duration or with up to 500 output spikes):
circles – correlated Poisson, triangles – correlated pacemaker, squares
– independent. Vertical bars: Standard deviation of each estimate in
the sample (some are small and contained in the circles, squares or
triangles)

4.1 Primary processes. Postsynaptic intensity
and dispersion

Figure 5 shows that dissimilar primary processes associ-
ate with outcomes conditioned by the superposed biases
(on abscissa) (Sect. 4.3). Throughout Fig. 5 the intrinsic
structures of the individual clusters, and thus the synchro-
nous presynaptic bursts, though differing in precise details,
are statistically identical. Each mark comes from a sam-
ple based on 20 simulations, each lasting up to 20 s or
with up to 500 output spikes; vertical bars represent the
standard deviations of the estimates in the correspond-
ing sample. Figure 5a with a logarithmic ordinate displays
the postsynaptic interval averages that evaluate intensi-
ties. At the weakest biases, the influence of the primary
process controlling cluster and burst timings is clear. Cor-
related Poisson (circles) imposed the shortest intervals
(highest rates). Contrastingly, correlated pacemaker (tri-
angles) practically did not trigger, their extremely long
averages requiring logarithmic ordinates. This reflected
that at weak biases the standardized cluster or burst trig-
gered when, as in the correlated Poisson, the intervals be-
tween it and other such bursts occasionally were short
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enough to allow successive ones to add their contribu-
tions; the same bursts triggered rarely or not at all when, as
in the correlated pacemaker, they systematically occurred
far from other bursts. As expected, when biases increased,
average intervals decreased, reaching a plateau (saturat-
ing); dissimilar drives differed less, eventually becoming
indistinguishable from one another. The primary process
average of 0.010 s separated correlated pacemaker clus-
ters and bursts, and about one every four triggered. These
contrasts involving biases and Poisson versus pacemaker
patterns match those at different P(t) levels in Aplysia
neurons driven by moderate EPSPs (Levitan et al. 1968).

Figure 5b displays postsynaptic interval CVs evaluating
dispersion or variability. With a correlated Poisson (cir-
cles), CVs at all biases were relatively high, never under
0.3 and around 0.60 at weak ones. With a correlated pace-
maker (triangles), CVs at all biases were low, never over
0.20 and at strong ones around 0.10; ISIHs and ACHs
(not shown) confirmed and extended this. Clearly, then,
the regularity of how bursts arise has postsynaptic conse-
quences, and changing it may increase or decrease output
dispersion.

Independent drives (squares) behaved differently (Se-
gundo et al. 1968). At weak biases, they elicited few spikes
at long interval averages (low rates); CVs were the high-
est (around 0.8). At strong biases, averages (around 0.03)
were the smallest (highest rates) and CVs (0.10) low.

4.2 Subsidiary processes and poolings

4.2.1 Crosscorrelation histograms. Subsidiary processes
stipulate timings and numbers of points within clusters
and bursts; poolings stipulate superposition rules, such
as preserving component and terminal identities and thus
revealing tendencies to particular sequences. Jointly, they
impose burst structures and consistency along the series.

CCHs, evaluating time domain associations between
postsynaptic and presynaptic spike trains, had the char-
acteristic features assigned to excitatory synapses (Bryant
et al. 1973), namely, features due to synaptic influences,
presynaptic periodicities, postsynaptic periodicities, and
correlated events. All tended to be more obvious with cor-
related than independent drives.

Figure 6 (strong biases) displays matched CCHs. Inde-
pendent drives (left column) had flat CCHs between all
presynaptic pairs (e.g., “presynaptic #1, presynaptic #10,”
upper row). Moreover, all “postsynaptic, presynaptic #j”
CCHs were practically the same. “Postsynaptic, presyn-
aptic #1” (center), say, shows a small central peak to the
left of the origin. This means that reference postsynaptic
spikes tended to be preceded within the bin width (10 ms)
by mild accelerations in #1. In the converse CCH (not
shown) with presynaptic references, this peak would be
to the origin’s right, and, equivalently, spikes in individ-
ual terminals tended to be followed by mild postsynap-
tic accelerations. This peak was judged significant, even
if differing little from values encountered at long de-
lays, because it appeared in all ten comparable CCHs
(using {#1, . . . , or #10}). Under the null hypothesis that
the bin did not differ from its neighbors, one can argue
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Fig. 6. Crosscorrelation histograms (CCHs). On abscissae, time from
reference spike; on ordinate, average number of the other spikes in
each bin, normalized to per-second and per-reference event. Aster-
isks: Peaks reset by presynaptic spikes indicate the presence of post-
synaptic periodicities. Large bias (19.8 mV). Drives: independent (left
column); correlated Poisson (right). Upper row: “Presynaptic cell #1,
presynaptic cell #10” CCH. Center row: “Postsynaptic cell, presynap-
tic cell #1” CCH. Bottom row: “Postsynaptic, presynaptic cell #10”

nonparametrically that on the basis of chance alone the
encountered excesses could happen around once in 1024
(210) cases. Peak smallness reflects that each terminal had
a weak effect and that, as others, it triggered only about
one every ten postsynaptic spikes.

Independent cases showed also other CCH peaks, par-
ticularly with strong biases. They occurred periodically,
approximately every 30 ms (i.e., every three bins); present
on both sides of the origin, they were clearer to the left
(asterisks). Present in all CCHs, under the null hypothesis
that bin values in every third bin to the left of the ori-
gin did not differ from their neighbors, their presence in
all #1– #10 CCHs could happen very rarely on the ba-
sis of chance alone. (Periodicity manipulations described
below supported this significance). Thus, time-locked to
the postsynaptic spike, particularly prior to it, terminal
#1 (or any other) tended to fire periodically. Equivalently,
time-locked to a presynaptic spike and particularly fol-
lowing it, the postsynaptic neuron fired periodically. That
period, or related ones, was absent or not outstanding pre-
synaptically: trains were either pacemaker with unrelated
periods or aperiodic Poisson. Moreover, when the postsyn-
aptic τH was changed from 10 ms to 20 ms, this periodicity
switched to around every 70 ms; likewise, it disappeared
when τH was 1 ms. Thus, this periodicity arose postsynap-
tically. Prevalence to the left of the origin here (or to its
right in the converse CCH) implies that presynaptic spikes
reset it (as happens in a tuning fork when struck).

In correlated drives, “presynaptic #1, presynaptic #10”
CCH (upper row, right column) presents a clear central
trough-peak complex to the origin’s right: hence #1 spikes
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were followed almost immediately by #10 slowings but, af-
ter around 10 ms, by accelerations. This reflected the fact
that, following the early terminal’s spike at the beginning
of the burst, the likelihood of late spikes firing was low
immediately but became high at its end. Central peaks
and troughs are considered statistically significant because
they exceed CCH fluctuations far from the origin, when
presumably correlation-inducing issues had faded: this
contrast is sufficiently clear to the naked eye to make bars
unnecessary. If individual terminals fired several consis-
tently timed spikes per burst (instead of one as was usual),
central peaks were multimodal.

The “postsynaptic, presynaptic #1” CCHs of corre-
lated drives (right column, central and bottom rows, cor-
related Poisson) confirmed that, in addition to the (weak)
consequences of the plotted terminal, they reveal the influ-
ence of others firing almost simultaneously (Bryant et al.
1973). Moreover, postsynaptic spikes usually were trig-
gered close to a burst’s midpoint, thus following early,
being around intermediate and preceding late presynap-
tic spikes (e.g., #1, 5 and 10). Accordingly, in the corre-
sponding “postsynaptic, presynaptic #j” CCHs, the delay
relative to the postsynaptic spike reference revealed the
terminal’s favored position in the cluster. The “postsynap-
tic, presynaptic #1” CCH (center) showed central effects
just to the left of the origin, meaning that the postsyn-
aptic spike tended to be preceded immediately by more
#1 spikes than average (accelerations) preceded in turn
by fewer (slowings); equivalently, #1’s spike tended to be
followed first by a postsynaptic acceleration and then a
slowing. The “postsynaptic, presynaptic #10” CCH (bot-
tom) showed the central complex more to the right, the
trough barely preceding the reference and the peak follow-
ing it: postsynaptic spikes were preceded by #10 slowings)
and followed by accelerations. Equivalently, #10’s spikes
were followed by postsynaptic slowings and preceded by
accelerations.

Other “postsynaptic, presynaptic #j” CCH peaks and
troughs could exist away from the origin, reflecting the
timing of the burst series as well as their structure and
consistency, thus all process constituents. They were most
noticeable in correlated pacemaker cases (not shown)
when bursts arose periodically, closely resembling cen-
tral ones, particularly with narrow and consistent bursts.
They were practically absent in correlated Poisson (Fig. 6),
when bursts were aperiodic, particularly if also broad and
heterogeneous. Finally, smaller peaks (asterisks) reflecting
postsynaptic periodicities were also present, exhibiting the
same periods as with independent drives.

4.2.2 Cluster synchrony. As synchrony increased within
the set of weak terminals (Fig. 3b, from fourth to first,
ignoring second column), the consequences of each burst
approached those of the single spike in a powerful termi-
nal; this will be described extensively elsewhere (Gómez
et al., unpublished manuscript). In the first place, the
central features in all “postsynaptic, presynaptic #j”
CCHs were emphasized; moreover, all CCHs approached
those of early terminals, becoming more similar and
independent of #j . Emphasized also were the features

revealing postsynaptic periodicities. With extremely small
variances, CCHs resembled those at single powerful syn-
apses (Fig. 1a-A, B). In fact, when the tight bursts had
different timings (i.e., reflected different primary pro-
cesses), the postsynaptic spike trains exhibited forms that
closely resembled those imposed by powerful terminals
and proven to embody universal periodic, quasiperiodic,
aperiodic behaviors (Segundo et al. 1998a). (A “form” is
a category of timings defined by shared specified proper-
ties). This important aspect will be covered by Gómez et al.
(unpublished manuscript). Increasing subsidiary process
variances stretched individual clusters, weakening syn-
chrony and consistency: “postsynaptic, presynaptic #j”
CCH features attenuated.

4.2.3 Spatial summation of convergent excitatory and inhib-
itory terminals. Noncommutativity. Some simulations
included paired EPSP and IPSPs separated by delays δ.
Figure 7 illustrates how delays (abscissae) affected out-
put average intervals (ordinates). Panels correspond to
different subsidiary process variances; all were correlated
Poisson cases with the same values used in Fig. 3. In all
panels, the longest output average intervals (lowest rates)
occurred with delays close to 0, indicating that IPSPs
thwart triggerings more efficiently when close to EPSPs.
Moreover, plots were asymmetric, showing greater length-
enings when IPSPs led EPSPs (negative delays) than when
they lagged (positive delays). Only when the clusters were
tight and inconsistent did the largest interval correspond
to zero delay. Lengthenings were more marked with dis-
persed, consistent clusters (bottom left) than with tight
variable ones (upper row).

4.3 Conditioning by biases. Heterogeneous results

Biases were attributed to numerous independent weak ter-
minals eliciting minute EPSPs. Figure 5 summarizes how
biases conditioned the consequences of each drive. Maxi-
mally influential biases (at least from 19 mV to the maxi-
mum tested 20 mV) put P(t) close to H(t).

As biases increased, predictably the average postsynap-
tic intervals (a) of all drives first decreased (rates increased)
monotonically and, when biased potentials were slightly
less than H∞ (around 19.5 mV), all reached similar min-
ima; further depolarizations caused no further changes
(saturations). CV changes with increasing biases (b), on
the other hand, were drive dependent. With a correlated
Poisson (circles), CVs at the weaker biases were large and
fluctuated (around 0.60), decreased to a local minimum,
subsequently increasing to reach another maximum and fi-
nally decreasing to an overall minimum (not shown). What
underlies this was not examined.

With correlated pacemaker (triangles), CVs were large
(around 0.8) at the weakest biases when postsynaptic firing
was sparse. When biases were strengthened, the CVs de-
creased rapidly to small values (under 0.1) and remained so
throughout. The plot was not monotonic, and the smallest
CVs close to 0 occurred at intermediate biases. Identifying
the reason for this, which would have required extensive
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Fig. 7. Converging excitatory and inhibitory terminals.
Separation and sequence. Noncommutative
summation. Average postsynaptic interval (ordinates)
as function of delay from EPSPs to IPSPs (abscissae):
negative (IPSPs preceding EPSPs), positive (IPSPs
following EPSPs), 0 coincidence. Biases were the same
for all entries. Each point corresponds to one
simulation; bars correspond to the standard error.
Panels correspond to involved subsidiary processes
used in different columns of Fig. 3b: top left: first
column; top right: second column; bottom left: third
column; bottom right: fourth column

formal and simulated efforts, was not examined. With
independent drives (squares), CVs as reported (Segundo
et al. 1968) at weak biases were large (around 0.80), but, as
biases augmented, they decreased monotonically, achiev-
ing around 19.5 mV small values (under 0.20) and main-
taining them beyond. Concomitantly, ISIHs narrowed,
ACHs became more periodic with higher peaks and 0-val-
ued troughs. Thus, output patterns tended to pacemaker.

Biases affected the relative CV magnitudes: these, listed
in order of decreasing value, were “independent, corre-
lated Poisson, correlated pacemaker” at weak biases but
“correlated Poisson, independent and correlated pace-
maker” at strong biases.

Each finding occurred within a domain circumscribed
by variables involving correlations and other issues
(Sect. 3). The restricted parametric analyses performed,
though not exhaustive, sufficed to prove that variables
were influential within physiologically meaningful do-
mains.

5 Discussion

5.1 The thesis

Our thesis contends that, if presynaptic terminals in con-
vergent arrangements correlate, the pooled spike train
composed by superposing all individual trains is the real-
ization of a cluster point process (Sect. 2.1). The rationale
simply is that conceptually the two entities are identical.
This interpretation of pooled correlated spike trains joins
the well-known proposal that those of independent cases
are realizations of Poisson point processes; between them,
therefore, they complete the formal approach to the perva-
sive and functionally important convergent arrangements.

Furthermore, as discussed below, their primary process,
subsidiary process, and pooling constituents have, not
only separate independent formal roles, but also separate
independent physiological embodiments (sensory, motor,
synaptic, etc.) (Sect. 2.2). Embodiments are many and
heterogeneous (Sects. 2.1 and 2.3) and thus so are physi-
ologically plausible constituents, which can impose series
anywhere from regular predictable to irregular unpredict-
able, synchronies from barely demonstrable to extreme,
structures from simple to complicated, and consistencies
from slack to faultless. Recent work extends the domain of
correlated firing implications to the peripheral and central
neural development (e.g., Buffelli et al. 2004).

The above allows for innumerable plausible fluctua-
tions in correlations, supporting the idea that convergent
sets contribute within broad and diverse physiological
domains to neural, including synaptic, codings (see also
Sect. 5.2.2) (Segundo et al. 1994). In fact, proof abounds
that all cluster point process constituents and their embod-
iments participate widely in all such codings (e.g., Sects. 2.1
and 2.3) (Segundo et al. 1968, 1995; Segundo 2003a). Sim-
ulations confirmed this and added examples, and in so
doing, they illustrate how that thesis can orient physiolog-
ically relevant research.

This formal proposal provides sensible guidelines for
recognizing further physiologically meaningful questions
and for providing suitable rules and criteria applicable to
experimental designs and data interpretations. For exam-
ple, using notions from nonlinear dynamics, it suggests
strategies that involve taking an output characteristically
driven by specific inputs as references and then explor-
ing if and how that output persists when conditions are
perturbed. Sections 5.2.1, 5.2.3, and 5.2.4 will illustrate
more precisely why, conceivably, references and perturba-
tions can involve, say, pacemaker series of bursts and their
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irregularization, or perfect burst synchronies and their
weakenings, or coincident excitation and inhibition and
increasing leads or lags. Natural domains contain substan-
tial portions wherein such tests have clear physiological
meanings.

Cluster point processes may have been used, perhaps
inadvertently, to represent the total input from correlated
terminals. Indeed, several pooled correlated spike trains
seem to comply with the definition of cluster point pro-
cesses. For example, in Segundo et al. (1968), “source”
neurons forced presynaptic terminals into synchrony, and,
therefore, source spike train timings embodied primary
processes; moreover, each source spike influenced the ter-
minals with particular delays, firing probabilities, etc. that
embodied subsidiary processes and poolings. In Salinas
and Sejnowski (2000), all terminals shared the same frac-
tion of the samples contributing to the postsynaptic spike
triggerings; because of this, drives imposed similar (or pro-
portionate) influences upon all terminals that, therefore,
correlated. Hence, the timing of any presynaptic termi-
nal could embody the primary process: the latter (close to
either steady-state Poisson with short dead time or modu-
lated periodically) could be deduced probabilistically from
the specified variables; furthermore, the CCH between the
terminal embodying the primary process and any other
terminal would embody subsidiary processes and poo-
lings.

The following sections (Sects. 5.2.1–5.2.5) will concen-
trate on findings judged novel and on how they depend
on selected constituents with physiological connotations.
Even though the constituents of the cluster point process
are separate and independent, most output spike train fea-
tures depend jointly on several of them.

5.2 Simulation outcomes

Simulations performed for this paper included only cer-
tain realizations of cluster point processes. For example,
the probability of each component participating and each
terminal firing in each cluster was always 1. Obviously,
when this probability is close to 1, results are expected
to be similar. It would be interesting to extend this study
to the more general and biologically meaningful case of
much smaller probabilities.

5.2.1 Postsynaptic dispersion increases or decreases. The
presynaptic frequency composition imposed by the cluster
point process clearly marks the postsynaptic spike train;
this was revealed by CVs, ACHs, “postsynaptic, presyn-
aptic #j” CCHs, and other statistics.

Such frequency transfers, given their reported complex-
ity when a single stronger terminal is involved, very likely
require considerable separate projects (e.g., Segundo et al.
1998a): apparent in the present series were hints of non-
trivial issues (e.g., results in Fig. 5 or commented in the
next paragraph and Sect. 5.2.5)

Primary processes were major contributors, setting
the timings (i.e., averages, patterns) of the cluster series,
the presynaptic pooled burst series, and the individual

spike trains (Sect. 2.1). When, as in correlated pacemaker
cases, primary processes involved strong low-frequency
(long period) components (in nature often pacemaker)
revealed by clear and repeated broad peaks, postsynap-
tic trains showed similar components (Fig. 5b-triangles)
(Sect. 5.2.3). Contrastingly, the largely aperiodic primary
processes of the correlated Poisson determined, unless
biases were strong, postsynaptic spike trains without
prevalent periodicities and with large CVs (circles).
Shorter-period, higher-frequency periodicities, revealed
by, for example, jagged broad ACH and CCH peaks,
depended more on the intrinsic burst structures imposed
by subsidiary processes and poolings.

This influence of the frequency composition of the
series of bursts upon its postsynaptic counterpart had been
reported earlier for steady-state and modulated drives
(Sect. 4.1) (Brunel and Sergi 1998; Burkitt 2001; Salinas
and Sejnowski 2000; Segundo et al. 1968). However, the
broad spectrum of postsynaptic variabilities associated
with correlations, as well as the fact that correlation shifts
could just as well induce decreased as increased variabili-
ties, has been somewhat overlooked. This may be because
many earlier reports concentrated on largely irregular and
unpredictable pooled spike trains, separating from Poisson
processes only by excesses of the shortest intervals (e.g.,
Salinas and Sejnowski 2000, 2002; Svirskis and Rinzel
2000); thus excluded were the no less pervasive and vital
situations with strongly periodic bursts. Earlier reports,
even if contributory, have been insufficient in this respect.

5.2.2 Postsynaptic spikes as predictees and predictors (antic-
ipators) of presynaptic spikes. It is valid to ask how much
does the postsynaptic spike train say about the individual
presynaptic spike trains and vice versa. Statistics of choice
for answering this were the “postsynaptic, presynaptic #j”
CCHs (Fig. 6-middle, bottom rows) and their converses
“presynaptic #j , postsynaptic.”

Postsynaptic spikes were triggered usually during pre-
synaptic bursts and close to their middle; moreover, spikes
in individual presynaptic terminals arose along bursts in
the prevalent order #1, . . . ,#j, . . . , or #N . As a conse-
quence, the fact of a postsynaptic spike justified both infer-
ring backwards in time when early terminals had fired and
predicting forwards, i.e., anticipating, forthcoming firings
in late terminals (e.g., respectively, #1 and #10, Figure 6,
right column, middle and bottom rows). Anticipation im-
plies simply that the individual convergent terminal’s syn-
apse does not pertain to the formal category of “causal”
or “realizable” systems (Brillinger 1975); the just detailed
rationale indicates clearly how, though in a roundabout
way, causality is respected.

All CCH features became more conspicuous when
passing from independent to correlated cases, as well
as when burst synchronies increased (Sect. 5.2.3); these
enhancements illustrate how CCHs at the particular syn-
apse “presynaptic #j on postsynaptic neuron” reveal
associations with events that, such as “spikes in other
terminals,” arise close in time with one of the paired spikes
(Bryant et al. 1973).
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The subsidiary processes and poolings were major con-
tributors to the above. Subsidiary processes set point
dispersions and numbers within clusters. They were
embodied by referent event profiles in time and by how
these profiles were transformed by the neural circuits
interposed between events and convergent sets. Poolings
further shaped individual clusters by, say, requiring that
component’s identities to be preserved; they thus were
embodied by the anatomical and functional individual-
ity of terminals and their synapses. Both contributed to
cluster consistency.

5.2.3 Burst synchrony. Subsidiary processes control syn-
chrony. At one extreme, barely synchronous (or
independent) terminals impose a noisy background that
can significantly condition other inputs to the same neu-
ron (Segundo et al. 1994). At the other extreme, bursts of
strongly synchronous terminals act very much like single
spikes in more powerful terminals, mimicking the PSPs
from climbing fibers, motoneurons, or invertebrate syn-
apses (Fig. 1a-C, D mimic A, B) (Sect. 4.3). Relevant
here is the point raised by Segundo et al. (1994) that,
when influenced by conditions such as noisy sinelike skin
indentations, convergent terminals can simultaneously be
independent at high firing frequencies and synchronous at
low frequencies, thus simultaneously providing noise and
signal.

Accordingly, as synchrony increases, bursts tend to act
like spikes in powerful terminals. Indeed, as will be re-
ported extensively elsewhere (Gómez et al., unpublished
manuscript), the pacemaker or Poisson correlated drives
tend to impose output spike trains similar to those re-
ported for stronger synapses driven by pacemaker or
Poisson trains, respectively (Segundo 2003a,b; Segundo
et al. 1998a,b). These outputs exhibit input-pattern- and
average-dependent forms called “locked,” “intermittent,”
“phase walk-throughs,” “erratic,” “stammerings,” and
“noisy.” Segundo et al. (1998a) showed that forms embody
the universal behaviors known as periodic, quasiperiodic
or chaotic, noisy, intermittent, and windowings (skip-
pings), also conjecturing they are building blocks for any
synaptic coding. There would be great interest in extending
analyses such as that of linear domains of combined sig-
nals and noise by Fourcaud and Brunel (2002) and Brunel
et al. (2001) to these eminently nonlinear behaviors.

5.2.4 Delays, order, and noncommutative synaptic summa-
tion when excitation and inhibition coexist. The postsyn-
aptic consequences of single bursts jointly reflect those of
the individual terminals plus possible interactions. They
are much more easily predictable when all terminals are
excitatory and do not interact (as here and in several pub-
lications) than when terminals differ and/or interact (e.g.,
excitatory or inhibitory, facilitating or depressing, etc.).

Subsidiary processes and poolings are the major con-
tributors, setting within burst timings and preserving
the identity of the terminal that each spike pertains to.
These details, implying interterminal delays and orders,
are critical for interactions, whose significance is enhanced

when terminals have dissimilar sources and/or postsynap-
tic consequences.

In our experiments, when convergent arrangements
included both excitatory and inhibitory terminals
(Sect. 4.2.3), output intensity and dispersion depended
on the delays between the respective spikes (Fig. 7). Post-
synaptic dispersions, for example, were largest with neg-
ative delays close to 0. The influence of order implied
that spatial synaptic summation can be noncommuta-
tive. Dudel and Kuffler (1961) and Segundo et al. (1963)
had found in crayfish and Aplysia order-dependent EPSP
and/or IPSP summations, attributing these to asymmetric
synaptic localizations and/or chemical processes. Hence,
synaptic coding evaluations must take ordering into ac-
count, together with the usual statistics.

The influential delays were in milliseconds. This order
of magnitude is far from unphysiological, for numerous
publications have proven that in, say, mammals and birds,
neurons are sensitive to differences in the millisecond and
even the microsecond ranges (e.g., Brand et al. 2002; Moi-
seff and Konishi 1981; Moortgat et al. 1998); such results
are compatible with the numerous psychophysical obser-
vations involving perception and behavior.

5.2.5 Conditioning by biases. Output heterogeneity. The
numerous postsynaptic consequences of presynaptic cor-
relations reflect first the number and variety of physi-
ologically plausible cluster point processes. They reflect
also that individual outcomes are conditioned by several
variables, not necessarily participating in the correlations
themselves. Present simulations (Sect. 3) included para-
metric analyses that, though limited, showed that each
variable explored was influential within a multidimension
physiologically meaningful domain. This was illustrated
using biases as conditioning variable and evaluating aver-
age intervals and CVs (Fig. 5); biases were assigned to
a separate set with many weak independent terminals
eliciting minute EPSPs (Fig. 1a-E) (Segundo et al. 1968).
Biases also conditioned the best strategies needed for
“desired” outcomes. For example, correlated Poisson max-
imized postsynaptic intensity at weak biases, but all condi-
tions were about equivalent at strong biases; independent
terminals maximized dispersion at weak biases but cor-
related Poisson did so at strong ones; finally, correlated
pacemaker (when triggering) minimized dispersion at all
biases.
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